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Via Sansone 1, 50019 Sesto Fiorentino, Italy

E-mail: Spinoro@gmail.com

Received 16 April 2010, in final form 21 August 2010
Published 27 September 2010
Online at stacks.iop.org/CQG/27/215003

Abstract
For the study of Planck-scale modifications of the energy–momentum
dispersion relation, which had been previously focused on the implications
for ultrarelativistic particles, we consider the possible role of experiments
involving nonrelativistic particles, and particularly atoms. We extend a recent
result establishing that measurements of ‘atom-recoil frequency’ can provide an
insight that is valuable for some theoretical models. From a broader perspective
we analyze the complementarity of the nonrelativistic and the ultrarelativistic
regimes in this research area.

PACS numbers: 04.60.Bc, 11.30.Cp

1. Introduction

Over the last decade there has been growing interest in the possibility of investigating
experimentally some candidate effects of quantum gravity. The development of this ‘quantum-
gravity phenomenology’ [1] of course focuses on rare contexts in which the minute effects
induced by the ultra-high ‘Planck scale’ MP (≡ √

h̄c/G � 1.2 × 1028 eV) are not completely
negligible. Several contexts of this sort have been found particularly in the study of quantum-
gravity/quantum-spacetime effects for the propagation of ultrarelativistic particles (see, e.g.,
[2–10]), and often specifically for the cases in which the ultrarelativistic on-shell condition5,
E � p + m2/(2p), is modified by Planck-scale effects.

5 We adopt units in which the speed-of-light scale c is set to 1 (whereas we will explain in detail the role of the
Planck constant h).
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In the recent work [11] some of us observed that experiments involving cold (slow,
nonrelativistic) atoms, and particularly measurements of the atom-recoil frequency, can
provide a valuable insight into certain types of modifications of the dispersion relation which
had been previously considered in the quantum-gravity literature. We here extend the scope
of the analysis briefly reported in [11], also adopting a style of presentation that allows us to
comment in more detail on the derivation of the result. Concerning the conceptual perspective
that guides this recent research proposal, we here expose some previously unnoticed aspects
of complementarity between the nonrelativistic and the ultrarelativistic regimes in the study
of Planck-scale modifications of the dispersion relation. We offer several observations on
how the insight gained from studies of slow atoms might translate into limits of different
strengths depending on some details of the overall framework within which the modifications
of the dispersion relation are introduced. We also report a preliminary exploration of the
relativistic issues involved in these studies, which have been already well appreciated in the
ultrarelativistic regime but appear to provide novel challenges when the focus is instead on
the nonrelativistic regime.

2. Complementarity of nonrelativistic and ultrarelativistic regimes

Results in support of the possibility of modifications of the energy/momentum (dispersion)
relation have been reported in studies of several approaches to the quantum-gravity problem,
and perhaps most notably in analyses inspired by loop quantum gravity [6, 12], and in studies
that assumed a ‘noncommutativity’ of spacetime coordinates [13–15]. The analyses of these
quantum-gravity approaches that provide encouragement for the presence of corrections to
the dispersion relation have become increasingly robust over the last decade [12–16], but in
the majority of cases they are still unable to establish robustly the functional dependence
of the correction on momentum. This has led to the proposal that perhaps on this occasion
experiments might take the lead by establishing some experimental facts (at least amounting to
constraints on the form of the dispersion relation) that may provide guidance for the ongoing
investigations on the theory side. From this perspective the fact that presently available results
on the theory side are insufficient to provide narrowly defined phenomenological models is
not viewed as a sufficient reason for being discouraged: the alternative is giving up on any
experimental guidance in the search for quantum gravity, and instead even the constraints
produced by a phenomenology of rather broad scope can be of some value on the theory side,
hopefully in turn allowing theorists to provide sharper indications to the phenomenologists.

In light of these considerations the majority of phenomenological studies of Planck-scale
corrections to the dispersion relation have assumed a rather general ansatz,

E2 = p2 + m2 + �QG(p,m,MP ), (1)

with E being the energy of the particle and �QG a model-dependent function of the Planck
mass MP, the spatial momentum p and the mass m of the particle.

Different models do give (more or less detailed) guidance on the form of �QG, and we
will consider this below, but even at a model-independent level a few characteristics can be
assumed with reasonable robustness6. As done by many authors in the field, we will also focus
here our analysis on the cases in which the mass m still is the rest energy and the dispersion

6 We should stress however that while the perspective schematized in equations (2)–(3) is by far the most studied in the
relevant quantum-gravity-inspired literature, in principle more general possibilities may well deserve investigation.
For example, one might contemplate non-integer powers of MP appearing, and this would not be too surprising,
especially in light of the rather common expectation that the correct description of quantum gravity might require
sizable nonlocality.
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relation regains its ordinary special-relativistic form in the limit where the Planck scale is
removed (MP → ∞):

�QG(p,m,MP )−−−→
p→0

0, �QG(p,m,MP )−−−−→
MP →∞

0. (2)

And, since the relevant phenomenology clearly can at best hope to gain an insight into the
leading terms of a small-M−1

P expansion, it is natural to focus on a power-series expansion:

E2 = p2 + m2 +
1

MP

�
(1)
QG(p,m) +

1

M2
P

�
(2)
QG(p,m) + · · · , (3)

where the terms in the power series are subjected to the condition �
(1)
QG(p,m)|p=0 = 0 =

�
(2)
QG(p,m)|p=0.

The past decade of vigorous investigations of these modifications of the dispersion relation
focused primarily (but not exclusively) on the terms linear in M−1

P and reached its most
noteworthy results in analyses of observational astrophysics data, which of course concern the
ultrarelativistic (p � m) regime of particle kinematics [2–4, 7, 17, 18]. For these applications,
the function �

(1)
QG(p,m) can of course be usefully parametrized in such a way that the relation

between energy and spatial momentum takes the following form:

E � p +
m2

2p
+

1

2MP

(η1 p2 + η2 m p + η3 m2), (4)

where, considering the large value of MP, we only included correction terms that are linear
in 1/MP , and, considering that this formula concerns the ultrarelativistic regime of p � m,
the labels on the parameters η1, η2, η3 reflect the fact that in that regime p2/MP is the leading
correction, mp/MP is next-to-leading and so on.

Evidence that at least some of these η1, η2, η3 parameters have nonzero values is indeed
found in studies inspired by the loop-quantum-gravity approach and by the approach based on
spacetime noncommutativity, and most importantly some of these studies [6, 12–15] provide
encouragement for the presence of the strongest imaginable ultrarelativistic correction, the
leading-order term η1 p2/(2MP ).

Unfortunately, as usual in quantum-gravity research, even the most optimistic estimates
represent a gigantic challenge from the perspective of phenomenology. This is because, if
the Planck scale is indeed roughly the characteristic scale of quantum-gravity effects, then
correspondingly parameters such as η1, η2, η3 should take (positive or negative) values that
are within no more than one or two orders of magnitude of 1. And this in turn implies that,
for example, all effects induced by equation (4) could only affect the running of our present
particle-physics colliders at the level [1] of at best 1 part in 1014. In recent years certain
semi-heuristic renormalization-group arguments (see, e.g., [1, 19] and references therein)
have encouraged the intuition that the quantum-gravity scale might be plausibly even three
orders of magnitude smaller than the Planck scale (so that it could coincide [19] with the
‘grand unification scale’ that appears to play a role in particle physics). But even assuming
η1, η2, η3 values plausibly as ‘high’ as 103 is of not enough help in traditional high-energy
particle-collider experiments.

It was therefore rather exciting for many quantum-gravity researchers when it started
to emerge that some observations in astrophysics could be sensitive to manifestations of the
parameter η1 all the way down to |η1| ∼ 1 and even below [2–4, 7, 17, 18], thereby providing
for that parameter the ability to explore the full range of values that could be motivated from a
quantum-gravity perspective. These studies are presently being conducted at the Fermi Space
Telescope [20–24] and other astrophysics observatories.
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In the recent work [11] some of us observed that it would be very valuable to combine
these astrophysics studies of the ultrarelativistic regime of the dispersion relation with a
complementary phenomenology program of investigation of the nonrelativistic regime of
p 	 m (which of course is not accessible to massless particles). When p 	 m, the three
largest contributions to �

(1)
QG(p,m) have behavior7 m2p, mp2 and p3, allowing us to cast the

relation between energy and spatial momentum in the following form:

E � m +
p2

2m
+

1

2MP

(
ξ1mp + ξ2p

2 + ξ3
p3

m

)
, (5)

where, again, ξ1, ξ2, ξ3 are the dimensionless parameters.
Evidence that at least some of these dimensionless parameters ξ1, ξ2, ξ3 should be nonzero

has been found for example in the much-studied framework introduced in [6, 25], which was
inspired by loop quantum gravity, and produces a term linear in p in the nonrelativistic limit (the
effect here parametrized by ξ1). And for the purposes of this section, which we are devoting
to the complementarity of the nonrelativistic and ultrarelativistic regimes of the dispersion
relation, it is particularly insightful to consider two of the most studied scenarios that have
emerged in the literature on noncommutative-geometry-inspired deformations of Poincaré
symmetries. These are the scenarios proposed in [26, 27] and in [28], which respectively
produce the following proposals for the exact form of the dispersion relation:(

2MP

η

)2

sinh2

(
ηE

2MP

)
=

(
2MP

η

)2

sinh2

(
ηm

2MP

)
+ e−η E

MP p2, (6)

and

m2

(
1 − η m

MP

)2 = E2 − p2

(
1 − η E

MP

)2 . (7)

Both of these proposals have the same description in the nonrelativistic regime

E � m +
p2

2m
− η

p2

2MP

, (8)

i.e. the type of correction term in the nonrelativistic regime that we are parameterizing here
with ξ2. But these proposals have significantly different behavior in the ultrarelativistic regime.
From equation (6) in the ultrarelativistic regime, one finds

E � p +
m2

2p
− η

p2

2MP

, (9)

whereas from equation (7) in the ultrarelativistic regime, one finds

E � p +
m2

2p
− η

m2

MP

. (10)

Therefore, the example of these two much studied deformed-symmetry proposals is such that
by focusing exclusively on the nonrelativistic regime one could not (not at the leading order at
least) distinguish between them, but one could discriminate between the two proposals using
data on the ultrarelativistic regime. The opposite is of course also possible: different candidate
dispersion relations with the same ultrarelativistic limit, but with different leading-order form

7 Note that a contribution of the form m3 (i.e. momentum independent) to �
(1)
QG(p,m) cannot be included in the

nonrelativistic regime because of the requirement �
(1)
QG(p = 0,m) = 0. A contribution to �

(1)
QG(p, m) of the form

m3 is instead admissible in the ultrarelativistic regime (since in that regime the requirement �
(1)
QG(p = 0, m) = 0 of

course is not relevant), but we ignored it since m3 is too small with respect to p3, mp2 and m2p in the nonrelativistic
regime.
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in the nonrelativistic regime. In general, it would be clearly very valuable to constrain the form
of the dispersion relation both using experimental information on the leading nonrelativistic
behavior and using experimental information on the leading ultrarelativistic behavior.

3. Probing the nonrelativistic regime with cold atoms

Our main objective here is to show that cold-atom experiments can be valuable for the study
of Planck-scale effects. We illustrate this point mainly by considering the possibility, already
preliminarily characterized in [11], of using cold-atom studies for the derivation of meaningful
bounds on the parameters ξ1 and ξ2, i.e. the leading and next-to-leading terms in (5) for the
nonrelativistic limit:

E � m +
p2

2m
+

1

2MP

(ξ1mp + ξ2p
2). (11)

In this section we work exclusively from a laboratory-frame perspective, as done in [11], but,
as for most relativistic studies, it is valuable to also perform the analysis in one or more frames
that are boosted with respect to the laboratory frame and we will discuss this in section 5.

The measurement strategy proposed in [11] is applicable to measurements of the ‘recoil
frequency’ of atoms with experimental setups involving one or more ‘two-photon Raman
transitions’ [29–31]. Let us initially set aside the possibility of Planck-scale effects and
discuss the recoil of an atom in a two-photon Raman transition from the perspective adopted
in [31], which provides a convenient starting point for the Planck-scale generalization that
we will discuss later. One can impart momentum to an atom through a process involving
absorption of a photon of frequency ν and (stimulated [29–31]) emission, in the opposite
direction, of a photon of frequency ν ′. The frequency ν is computed taking into account a
resonance frequency ν∗ of the atom and the momentum that the atom acquires, recoiling upon
absorption of the photon: ν � ν∗ + (hν∗ + p)2/(2m) − p2/(2m), where m is the mass of
the atom (e.g. mCs � 124 GeV for cesium), and p its initial momentum. The emission of
the photon of frequency ν ′ must be such to de-excite8 the atom and impart to it additional
momentum: ν ′ + (2hν∗ + p)2/(2m) � ν∗ + (hν∗ + p)2/(2m). Through this analysis one
establishes that by measuring �ν ≡ ν − ν ′, in the cases (not uncommon) where ν∗ and p can
be accurately determined, one actually measures h/m for the atoms,

�ν

2ν∗(ν∗ + p/h)
= h

m
. (12)

This result has been confirmed experimentally with remarkable accuracy. A powerful way to
illustrate this success is provided by comparing the results for atom-recoil measurements of
�ν/[ν∗(ν∗ + p/h)] and for measurements [32] of α2, the square of the fine structure constant.
α2 can be expressed in terms of the mass m of any given particle [31] through the Rydberg
constant, R∞, and the mass of the electron, me, in the following way [31]: α2 = 2R∞ m

me

h
m

.
Therefore, according to equation (12) one has

�ν

2ν∗(ν∗ + p/h)
= α2

2R∞

me

mu

mu

m
, (13)

where mu is the atomic mass unit and m is the mass of the atoms used in measuring
�ν/[ν∗(ν∗ + p/h)]. The outcomes of atom-recoil measurements, such as the ones with

8 We only give a schematic and simplified account of the process, which suffices for the scope of our analysis. A
more careful description requires taking into account that, rather than a single ground state, the relevant two-photon
Raman transition involves hyperfine-split ground states [29–31], and that, rather than tuning the two lasers exactly on
some energy differences between levels, some detuning is needed [29–31].
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cesium reported in [31], are consistent with equation (13) with the accuracy of a few parts
in 109.

The fact that equation (12) has been verified to such a high degree of accuracy proves to be
very valuable for our purposes as we find that modifications of the dispersion relation require
a modification of equation (12). Our derivation can be summarized briefly by observing that
the logical steps described above for the derivation of equation (12) establish the following
relationship:

h�ν � E(p + hν + hν ′) − E(p) � E(2hν∗ + p) − E(p), (14)

and therefore Planck-scale modifications of the dispersion relation, parametrized in
equation (5), would affect �ν through the modification of E(2hν∗ + p) − E(p), which
compares the energy of the atom when it carries the momentum p and when it carries the
momentum p + 2hν∗.

Since our main objective here is to expose sensitivity to a meaningful range of values of
the parameter ξ1, let us focus on the Planck-scale corrections with coefficient ξ1. In this case
relation (12) is replaced by

�ν � 2ν∗(hν∗ + p)

m
+ ξ1

m

MP

ν∗, (15)

and in turn in place of equation (13) one has

�ν

2ν∗(ν∗+p/h)

[
1− ξ1

(
m

2MP

)(
m

hν∗ + p

)]
= α2

2R∞

me

mu

mu

m
. (16)

We have arranged the left-hand side of this equation emphasizing the fact that our quantum-
gravity correction is as usual penalized by the inevitable Planck-scale suppression (the
ultrasmall factor m/MP ), but in this specific context it also receives a sizable boost by
the large hierarchy of energy scales m/(hν∗ + p), which in typical experiments of the type of
interest here can be [29–31] of order ∼ 109.

Our result (16) for the case of modification of the dispersion relation by the term with
coefficient ξ1 can be straightforwardly generalized to the case of a modified dispersion relation
of the form

E � m +
p2

2m
+

ξβ

2

m2−β

MP

pβ (17)

which reproduces our terms with the parameters ξ1 and ξ2 respectively, when β = 1 and β = 2
(but in principle could be examined even for non-integer values of β).

One then finds

�ν

2ν∗(ν∗ + p/h)

[
1 − ξβ

(
m2−β[(p + 2hν∗)β − pβ]

4MP hν∗

)(
m

hν∗ + p

)]
= α2

2R∞

me

mu

mu

m
, (18)

which indeed reproduces (16), for β = 1, and gives [11]

�ν

2ν∗(ν∗+p/h)

[
1− ξ2

m

MP

]
= α2

2R∞

me

mu

mu

m
, (19)

for β = 2.
We have so far assumed that the only Planck-scale corrections to the analysis come from

parameters such as ξ1 and ξ2, characteristic of the nonrelativistic regime, for particles of
nonzero mass. In the experimental setups we consider all particles are indeed nonrelativistic
with the exception of course of the photons involved. Clearly massless particles are inevitably
ultrarelativistic and actually (at leading order in 1/MP ) there is a single possible modification
of the dispersion relation for massless particles, the one with coefficient η1 and quadratic
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dependence on momentum (see equation (4)). Of course, in a given quantum-gravity scenario
one might have, for example, ξ1 �= 0 and η1 = 0, in which case the derivations we gave above
would immediately be applied. It is natural to also contemplate the possibility of cases in
which both ξ1 and η1 are roughly of order 1. We find however that for the analysis of atom-
recoil studies, the effects produced by η1 of order 1 are completely negligible with respect to
the effects produced by ξ1 of order 1. This is essentially due to the fact that photons enter the
derivation of the recoil frequency through momentum transfers that never have a chance to
pick up the ‘amplification’ coming from the only large energy scale in the problem which is
the atom mass. The amplification of the effects of ξ1, which was underlined in the comments
we made just after equation (16), is not found for the effects of η1. Indeed by repeating all the
steps of our derivation allowing for a nonzero η1, one ends up replacing equation (14) with

h�ν � E
(
2hν∗ + p − η1h

2ν2
∗
/
MP

) − E(p). (20)

And from this, one arrives at a rather intelligible characterization of the different roles of ξ1

and η1 in atom-recoil analysis:

�ν

2ν∗(ν∗+p/h)
= h

m
+ ξ1

hm

2MP (p + hν∗)
− η1

hm

2MP (p + hν∗)

(
hν∗p + 2h2ν2

∗
m2

)
, (21)

which shows that the effects of η1 are suppressed with respect to the ones of ξ1 by a factor of
order (hν∗/m)2 or hν∗p/m2 (note the two powers of the mass in the denominator, and that
the mass of the atoms in the setup here of interest is much larger than both p and ν∗).

The balance of strengths changes a bit, but not enough, in the case of scenarios with
ξ1 = 0 but both ξ2 and η1 are of order 1. In such cases one should compare the effects of ξ2

(which we established to be smaller than those of ξ1) to the effects of η1. What one finds is
summarized by the formula

�ν

2ν∗(ν∗+p/h)
= h

m
+ ξ2

h

MP

− η1
h

MP

hν∗
2m

(
1 +

hν∗
p + hν∗

)
, (22)

which shows that the effects of η1 are significantly suppressed with respect to those of ξ2.
(Here, it is only one power of the mass in the denominator, but there is plenty of suppression,
considering the large hierarchy between mass of the atoms and spatial momenta available in
atom-recoil studies.)

4. Limits on different models

From a phenomenological perspective the most noteworthy observation one can ground on the
results reported in the previous section is that the accuracies achievable in cold-atom studies
allow us to probe values of ξ1 that are not distant from |ξ1| ∼ 1. This is rather meaningful
since, as stressed in the previous section, the quantum-gravity intuition for parameters such
as ξ1 is that they should be (in models where a nonzero value for them is allowed) within a
few orders of magnitude of 1. Besides discussing this point, in this section we also consider
the case of the term with ξ2 parameter and we comment on the relevance of these analyses
from the perspective of a class of phenomenological proposals broader than the one discussed
here in section 2. The closing remarks of this section are devoted to observations that may be
relevant for attempts to further improve the relevant experimental limits.

7
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4.1. Limits on ξ1 and ξ2

The fact that our analysis provides sensitivity to the values of ξ1 of order 1 is easily verified by
examining our result for the case of the ξ1 parameter, which we rewrite here for convenience:

�ν

2ν∗(ν∗+p/h)

[
1− ξ1

(
m

2MP

)(
m

hν∗ + p

)]
= α2

2R∞

me

mu

mu

m
, (23)

and taking into account some known experimental accuracies. Let us focus in particular
on the cesium-atom recoil measurements reported in [31], which were ideally structured for
our purposes. Let us first note that R∞, me/mu and mu/mCs are all experimentally known
with accuracies of better than 1 part in 109. When this is exploited in combination with
the value of α−1 recently determined from electron-anomaly measurements [32], which is
α−1 = 137.035 999 084(51), the results of [31, 33] then allow us to use (23) to determine
that ξ1 = −1.8 ± 2.1. This amounts to the bound −6.0 < ξ1 < 2.4, established at the 95%
confidence level, and shows that indeed the cold-atom experiments we considered here can
probe the form of the dispersion relation (at least in one of the directions of interest) with
sensitivity that is meaningful from a Planck-scale perspective.

As mentioned in section 2, among the models that could be of interest here, there are
some where, by construction, ξ1 = 0 but ξ2 �= 0. In such cases it is then of interest to
establish bounds on ξ2 derived, assuming ξ1 = 0, for which one can easily adapt the derivation
discussed above. These are therefore cases in which our result (19) is relevant, and one then
easily finds that the atom-recoil results for cesium atoms reported in [31, 33] can be used to
establish that −3.8 × 109 < ξ2 < 1.5 × 109. This bound is still some six orders of magnitude
above the most optimistic quantum-gravity estimates. But it is a bound that still carries some
significance from the broader perspective of tests of Lorentz symmetry [11].

We should stress that, since we relied on the results of [32], our noteworthy bounds on ξ1

and ξ2 could in principle be affected by the hypothesis of Planck-scale effects that happened
to be relevant for the determination of α from electron-anomaly measurements. One could
consider the possibility of a matching between the ‘Planck-scale-kinematics effects’ that appear
on the left-hand side of (23) and the ‘Planck-scale gravity-interaction effects’ that could be
relevant for the determination of α from electron-anomaly measurements. At the present stage
of understanding of the quantum-gravity problem such a matching appears implausible, since in
the relevant models (see, e.g., [6, 12]) anomalous behavior of gravitational interactions is only
expected to start at order M−2

P . We should also stress that electron-anomaly measurements are
not the only way to accurately determine α (although they presently provide the most precise
determination): one could for example use our strategy of analysis to obtain a bound weakened
by not more than one order of magnitude without relying on electron-anomaly measurements,
but rather comparing the results of atom-recoil experiments with different types of atoms (e.g.
cesium and rubidium).

4.2. Relevance for other quantum-gravity-inspired scenarios

Up to this point we have assumed ‘universal’ effects, i.e. modifications of the dispersion relation
that have the same form for all particles, independently of spin and compositeness, and with
dependence on the mass of the particles rigidly inspired by the quantum-gravity arguments
suggesting correction terms of the form mjpk/MP

l (i.e. with a characteristic dependence on
momentum and with a momentum-independent coefficient written as a ratio of some power
of the mass of the particle versus some power of the Planck scale).

While this universality is indeed assumed in the majority of studies of the fate of Poincaré
symmetry at the Planck scale, alternatives have been considered by some authors [34] and

8
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there are good reasons to at least be open to the possibility of nonuniversality. One reason of
concern about universality originates from the fact that clearly modifications of the dispersion
relation at the Planck scale are a small effect for microscopic particles (always with energies
much below the Planck scale in our experiments), but would be a huge (and unobserved)
effect for macroscopic bodies, such as planets and, say, soccer balls. Even the literature that
assumes universality is well aware of this issue and in fact the opening remarks of papers
on this subject always specify a restriction to microscopic particles. With our present (so
limited) understanding of the quantum-gravity realm, we can indeed contemplate for example
the possibility that such effects be confined to motions which admit description in terms of
coherent quantum systems (by which we simply mean that the focus is on the type of particles
whose quantum properties could also be studied in the relevant class of phenomena, unlike the
motions of planets and soccer balls). This is clearly (at least at present) a plausible scenario
that many authors are studying and for which atoms provide an extraordinary opportunity for
investigation of the nonrelativistic regime. Let us compare for example our study to the popular
studies of the ultrarelativistic regime with photons. The best limits on the ultrarelativistic side
are obtained [23] through observations of photons with energies of a few tens of GeV. The
limit we here obtained in the nonrelativistic regime involves very small speeds (	c) but for
particles, the atoms, with (rest) energies in the ∼100 GeV range.

While it is therefore rather clear that atoms are excellent probes of scenarios with
universality for ‘quantum-mechanically microscopic particles’, their effectiveness can be
sharply reduced in models with some forms of nonuniversality. In particular, one could
consider the compositeness of particles as a possible source of nonuniversality [35]. And
this would imply that in the study of processes involving, for example, protons and pions
one should adopt a ‘parton picture’ with the number of partons acting in the direction of
averaging out the effects: if quantum-spacetime effects affect primarily the partons, then a
particle composed of three partons could feel the net result of three such fundamental features,
with a possible suppression (e.g. by a factor of

√
3) of the effect for the particle with respect to

the fundamental effect for partons. These ideas have not gained much attention, probably also
because things might change only at the level of factors of order 1 if one has for example to
devise ways to keep track of the different number of partons for nucleons and for pions. But in
the case of atoms that we are now bringing to the forefront of quantum-gravity phenomenology,
clearly, these concerns cannot be taken lightly: for the description of an atom one might have
to consider hundreds of partons (or at least ∼100 nucleons). We therefore expect that our
strategy to place limits on ξ1 and ξ2 will be less effective (limits more distant from the Planck
scale) in scenarios based on one or another form of ‘parton model’ for the implications of
spacetime quantization on quantum-mechanical particles. We do not dwell much on this here
at the quantitative level since the literature does not offer us definite models of this sort that
we could compare to data.

Even assuming that the effect is essentially universal, one could consider alternatives to
the most common assumption that quantum-gravity corrections have the form mjpk/Ml

P . In
particular, some authors (see, e.g., [36–38]) have argued that the density of energy (or mass)
of a given particle (be it elementary or composite) should govern the magnitude of the effect,
rather than simply the mass of the particle. This is another possibility which is also under
investigation [36–38] as a mechanism for effectively confining the new effects to elementary
particles. In the simplest scenarios this proposal might amount to replacing terms such as our
ξ1mp/(2MP ) with terms of the general form ξ̃1ρ

1/4p/(2MP ), but of course the implications
of such pictures depend crucially on exactly which density ρ one adopts. For different choices
of ρ, the limits derived from atom-recoil experiments can be more or less stringent than those
derived in studies of lighter particles, such as electrons.

9



Class. Quantum Grav. 27 (2010) 215003 F Mercati et al

Another framework which can be used to illustrate the different weights that cold-atom
studies can carry in different scenarios for the deformation of the dispersion relation is the one
already studied in [39, 40], parameterized by a single-scale λ such that E2 = m2 + p2 + 2λp.
Limits on this form of the dispersion relation have been obtained for neutrinos in [39], and for
electrons, in [40]. Taking into account that from E2 = m2 + p2 + 2λp it follows that in the
nonrelativistic limit, E = m + p2/(2m) + λp/m, one easily finds that the parametrization we
introduced in equation (5) and the parametrization of [39, 40] are related by ξ1m/MP ≡ 2λ/m.
In light of this one can quickly estimate that the study of atom-recoil measurements can provide
access to |λ| ∼ 10−6 eV. This shows that the cold-atom-based strategy is also suitable for
studies of the λ-parameter picture of [39, 40]. But, while, as some of us already stressed in
[11], these atom-based studies on λ are more powerful (by roughly six orders of magnitude)
than previously obtained bounds on λ using neutrino data [39], we should note here that the
best present bound on λ is the electron-based bound derived in [40], which is at the level
|λ| � 10−7 eV. We stress that there is no contradiction between the remarks we offered above
on the unique opportunities that cold-atom studies provide for setting bounds on the parameter
ξ1, and the fact that instead for the λ parameter electron studies are competitive with (and
actually still slightly more powerful than) atom-based studies: this difference between the
strategies for bounding the ξ1 parameter and the λ parameter is easily understood in light of
the relation ξ1m/MP ↔ 2λ/m and of the large difference of masses between electrons and
(cesium or rubidium) atoms.

Finally, in closing this subsection on alternative models, let us mention the possibility
of intrinsically non-universal modifications of the dispersion relation, i.e. phenomenological
scenarios in which the modifications of the dispersion relation are assumed to be different for
different particles without introducing any specific prescription linking these differences to the
mass, the spin or other specific properties of the particles. For example, in [34], and references
therein, the authors introduce a free parameter for each different type of particle. In such cases
studies of cesium and, say, rubidium atoms could be used to set constraints on parameters that
are specialized to those types of atoms. In essence, according to this (certainly legitimate)
perspective, we might learn that for cesium and rubidium, ξ1 is small but without assuming
any implications for the values of ξ1 for other particles. Another noteworthy example is that of
[41], and references therein, where it is argued, within a specific scenario for quantum gravity,
that the effects of modification of the dispersion relation should be confined to a single type
of particle, the photon (in which case of course atoms cannot possibly be of any help).

4.3. Strategies for improving the limits

As a contribution toward the development of experimental setups that in some cases may
be optimized for our proposal, it is important for us to stress that while here we essentially
structured our analysis in a way that might appear to invite interpretation as ‘quantum-gravity
corrections to h/m measurements’, not all improvements in the sensitivity of measurements
of h/m will translate into improved bounds on the parameters we considered here.

First we should note that our result for the ξ1-dependent correction to �ν/[2ν∗(ν∗+p/h)]
would not appear as a constant shift of h/m, identically applicable to all experimental setups.
This is primarily due to the fact that, as shown in equation (23), our quantum-gravity correction
factor has the form 1− ξ1m

2/[2MP (hν∗ +p)], and therefore at the very least should be viewed
as a momentum-dependent shift of h/m. Different h/m measurements, even when relying
on the same atoms (same m), are predicted to find different levels of inconsistency with the
uncorrected relationship between h/m and α2. This is particularly important because the
remarkable accuracy of some measurements of h/m relies crucially [31, 42] on imparting
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high values of momentum to the atoms, but from our perspective one should note that the
magnitude of the ξ1-governed effect decreases with the magnitude of momentum. This is after
all one of the reasons why the bound on ξ1 that we discussed here relied on the determinations
of h/m reported in [31, 33]: a more accurate determination of h/m was actually obtained in
the cold-atom (rubidium) studies reported in [43, 44], but those more accurate determinations
of h/m relied on much higher values of momentum, thereby producing a bound on ξ1 which
is not competitive [11] with the one obtainable using the h/m determination of [31, 33]. The
challenge we propose is therefore that of reaching higher accuracies in the measurement of
h/m without significantly increasing the momentum imparted to the atoms.

Interestingly these concerns do not apply to our result for the ξ2 parameter. In fact,
our result for the ξ2-dependent correction to �ν/[2ν∗(ν∗ +p/h)] would actually appear as a
constant shift of h/m, a mismatch between h/m results and α2 results of identical magnitude
in all experimental setups using the same atoms (same m). This is due to the fact that, as
shown in equation (19), our quantum-gravity correction factor has the form [1 − ξ2m/MP ]
and therefore can indeed be viewed as a (mass-dependent but) momentum-independent shift
of h/m.

Besides these issues connected with the role played by the momentum of the atoms in
our analysis, there are clearly other issues that should be taken into consideration by the
colleagues possibly contemplating measurements of h/m that could improve the limits on
our parameters. One of these clearly deserves mention here, and concerns the setup of h/m

measurements as differential measurements. In this respect it is rather significant that our
derivation of dependence of the measured �ν on the Planck-scale effects shows that the
sign of the correction term depends on the ‘histories’ (beam-splitting/beam-recombination
histories) of the atoms whose interference is eventually measured. Even from this perspective
our result is therefore not to be viewed simply as ‘a shift in h/m’: often in the relevant
cold-atom experiments, one achieves a very accurate determination of h/m by comparing (in
the sense of a differential measurement) two different values of �ν obtained by interference
of different pairs of beams produced in the beam-splitting/beam-recombination sequence
of a given experimental setup. We therefore inform our readers that for some differential
measurements, the effect measured would be twice as large as the one we computed here
(same effect but with opposite sign on the two sides of the differential measurement), but on
the other hand it is not hard to arrange9 for a differential measurement that is insensitive to the
quantum-gravity effects (if the ‘histories’ are such that the correction carries the same sign on
the two sides of the differential measurement).

5. Atom velocity, energy–momentum conservation and other relativistic issues

We have so far focused on schemes which assume that the only new relevant quantum-gravity-
induced law amounts to a modification of the energy–momentum dispersion relation. The
main results derived here in section 3 relied on a strategy of analysis that only requires
a specification in the ‘laboratory frame’ of the form of the dispersion relation (which is
used to establish, for example, the energy gained by an atom when its spatial momentum
is increased) and the law of energy–momentum conservation (which is used to establish,
for example, the spatial momentum imparted to an atom upon absorption of a photon of
known wavelength). Even within that scheme of analysis one clearly should also consider the
possibility of modifications of the law of energy–momentum conservation, especially in light

9 The careful reader will for example notice that [45] provides an example of setup in which our Planck-scale effects
would cancel out.
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of the fact that certain quantum-gravity scenarios establish (see below) a direct link between
modifications of the dispersion relation and some corresponding modifications of the law of
energy–momentum conservation.

Moreover, the laboratory-frame perspective is of course too narrow for the investigation
of the relativistic issues that clearly must be involved in scenarios that introduce modifications
of the dispersion relation. Also from this perspective the quantum-gravity literature
offers significant motivation for a careful investigation, since modifications of the laws of
transformation between reference frames have been very actively studied (see below). And, as
we will stress here, connected to this issue of boost transformations between reference frames,
one also finds intriguing challenges concerning the description of the velocity of particles.

In this section, we offer an exploratory discussion of these issues. Even in the quantum-
gravity literature on ultrarelativistic modifications of the dispersion relation, the study of these
issues has proven very challenging and many puzzles remain unsolved. So we will not even
attempt here to address these issues fully in the novel domain of the nonrelativistic limit,
which we are here advocating. But we hope that the observations we report here may provide
a valuable starting point for more detailed future studies.

Among the ‘exploratory aspects’ of our discussion, we in particular stress that we
assume here, as done in most of the related quantum-gravity-inspired literatures, that
concepts such as energy, spatial momentum and velocity can still be discussed in a standard
way, so that the novelty of the pictures resides in new laws linking symbols that admit
a conventional/traditional physical interpretation. Of course, alternative possibilities also
deserve investigation: a given quantum-gravity/quantum-spacetime picture might well (when
fully understood) provide motivation not only for novel forms of, say, the dispersion relation
but also impose upon us a novel description of the entities, such as the energy E that appears
in the dispersion relation. But we have already highlighted several challenges for the more
conservative scenario (with traditional ‘interpretation of symbols’) and therefore we postpone
the investigation of alternative interpretations to future works.

5.1. Velocity and boosted-frame analysis

As a partial remedy to the laboratory-frame limitation of the strategy of analysis discussed
in section 3, we take as our next task the one of obtaining the same result using a scheme
of derivation involving boosting and the Doppler effect. The role played by transformation
laws between different observer frames motivates part of our interest in this calculation, since
investigations of the fate of Poincaré symmetry in models with Planck-scale modifications
of the dispersion relation must in general address the issue of whether the symmetries are
‘deformed’, in the sense of the ‘doubly special relativity’ scenario [26, 27], or simply ‘broken’.
When the symmetry transformations are correspondingly ‘deformed’, the dispersion relation
will be exactly the same for all observers [26, 27]. In the symmetry-breaking alternative
scenario, the laws of boosting are unmodified and as a result one typically finds that the
chosen form of the dispersion relation only holds for one class of observers (at the very least
one must expect [46] observer dependence of the parameters that characterize the modification
of the dispersion relation). Another aspect of interest for such analyses originates from the fact
that the description of the Doppler effect requires a corresponding description of the velocity of
the atoms, and therefore requires a specification of the law that fixes the dependence of speeds
on momentum/energy at the Planck scale: this too is a debated issue, with many authors
favoring v(p) = ∂E/∂p, but some support in the literature is also for some alternatives, the
most popular of which is v = p/E.
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As stressed in the opening remarks of this section, we are just aiming for a first exploratory
characterization of these issues and their possible relevance for our atom-recoil studies.
Consistently with this scope we assume that the Doppler effect (boosting) is undeformed and
that the dispersion relation is an invariant law. This of course is only one (and a particularly
peculiar) example of combination of the possible formulations of the main issues here at
stake, but it suffices for exposing the potentially strong implications that the choice these
formulations can have for the analysis.

Let us start by reanalyzing the recoil of atoms in terms of a Doppler effect, neglecting
initially the possible Planck-scale effects (which we will reintroduce later in this section).
When an atom absorbs a photon whose frequency is ν in the laboratory frame, in the rest
frame of the atom the photon has frequency ν̃ = ν(1 − v), where v is the speed of the atom
in the lab frame (and for definiteness we are considering the case of photon velocity parallel
to the atom velocity). Then in the rest frame, if the absorption of the photon takes the atom to
an energy level hν∗, energy conservation takes the form

ν̃ � ν∗ +
hν2

∗
2m

, (24)

which of course can also be equivalently rewritten in terms of the lab-frame frequency of the
photon:

ν � ν∗(1 + v) +
hν2

∗
2m

, (25)

also neglecting a contribution of order v hν2
∗/m, which is indeed negligible in the nonrelativistic

(v 	 1) regime.
This photon absorption also takes the atom from velocity v to velocity v′,

v′ � v + hν∗/m, (26)

in the laboratory frame (where we also observed that the gain of momentum of the atom is
approximately hν∗).

For the stage of (stimulated) emission of a second photon, whose frequency in the lab
frame we denote as ν ′, the atom would then be moving at the speed v′, and in the rest frame
of the atom, the frequency of this emitted photon is ν̃ ′ = ν ′(1 + v′). (Also taking into account
that if, in the lab frame, the absorbed photon moved in parallel with the atom, then the emitted
photon must move in an anti-parallel direction.) In the case of photon emission, conservation
of energy in the rest frame has a different sign with respect to equation (24), i.e.

ν̃ ′ � ν∗ − hν2
∗

2m
, (27)

which again one may prefer to re-express in terms of the lab-frame frequency of the photon:

ν ′ � ν∗(1 − v′) − hν2
∗

2m
. (28)

So the lab-frame frequency difference between the two photons is

�ν = ν∗(v + v′) +
hν2

∗
m

� 2vν∗ +
2hν2

∗
m

, (29)

and this (as easily seen upon noticing that in the nonrelativistic limit, v = p/m) of course
perfectly agrees with the corresponding result (12), which we had obtained relying exclusively
on lab-frame kinematics.
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It is easy to verify that re-performing this Doppler-effect-based derivation in the presence
of our Planck-scale corrections to the dispersion relation (but setting aside, at least for now,
possible Planck-scale dependence of the Doppler effect) one ends up by replacing (29) with

�ν = ν∗ [v(p) + v(p + hν∗)] +
hν2

∗
m

+ ξ1
m

MP

ν∗. (30)

This is the formula that should reproduce our main result (15). Indeed this is the point where
one might encounter the necessity of Planck-scale modifications of the boost/Doppler-effect
laws and/or of Planck-scale modifications of the law that fixes the dependence of speeds on
momentum/energy. Concerning speeds, if one assumes (as done by many authors [2, 4, 6,
9, 12]) v = ∂E/∂p, then in our context (nonrelativistic regime, with the ξ1 parameter) one
finds v(p) = p/m + ξ1m/MP . If instead, as argued by other authors [47–49], consistency of
the Planck-scale laws requires that v = p/E should be enforced, then in our nonrelativistic
context one of course has v(p) = p/m.

We find that the desirable agreement between (30) and (15) is found by assuming
v(p) = p/m, which indeed allows one to rewrite (30) as

�ν = 2ν∗(p + hν∗)
m

+ ξ1
m

MP

ν∗. (31)

If instead one insists on the alternative v(p) = ∂E/∂p = p/m + ξ1m/MP , then (30) takes the
form

�ν = 2ν∗(p + hν∗)
m

+ 2ξ1
m

MP

ν∗, (32)

which is sizably different from (15).
Our observation that the law v = p/m is automatically consistent with a plausible

symmetry-deformation perspective is intriguing, but might well be just a quantitative accident.
We thought it might still be worth reporting just as a way to illustrate the complexity of
the issues that come into play if our cold-atom studies are examined within a symmetry-
deformation scenario, issues that we postpone to future studies. The Doppler effect in models
with deformed Poincaré symmetries had not been previously studied, and there are several
alternative ‘schools’ on how to derive from the energy–momentum dispersion relation a law
giving the speed as a function of energy. In the specific case of the correction term we here
parametrized with ξ1, it would seem that v = p/m is a natural choice, at least in as much
as the choice v(p) = ∂E/∂p appears to be rather pathological/paradoxical since it leads to
v(p) = p/m + ξ1m, i.e. a law that assigns nonzero speed to the particle even when the spatial
momentum vanishes.

5.2. Testing energy–momentum conservation

Up to this point our analysis has focused on tests of the Lorentz sector of Poincaré symmetry.
But of course there is also interest in testing the translation sector, and indeed there has been
a corresponding effort, particularly over the last decade. The aspect of the translation sector
on which these studies have primarily focused is the law of energy–momentum conservation
in particle-physics processes, and particularly noteworthy are some results [50, 51] which
exposed ‘Planck-scale sensitivity’ for the analysis of certain classes of ‘ultraviolet’ (high-
energy) modifications of the law of energy–momentum conservation. Even for these studies
one can contemplate the alternative between breaking and deforming Poincaré symmetry, and
from this perspective it is rather noteworthy that the scenarios in which one deforms Poincaré
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symmetry require [26, 35] a consistency10 between the scheme of modification of the dispersion
relation and the scheme of modification of the law of energy–momentum conservation. Instead
of course if one is willing to break Poincaré symmetry, one can consider independently (or
in combination) both modifications of the dispersion relation and modifications of the law of
energy–momentum conservation.

In this section we want to point out that our cold-atom-based strategy also provides
opportunities for studies of the form of the law of energy–momentum conservation in the
nonrelativistic regime. The observations on cold-atom experiments that some of us reported
in [11] already inspired the recent analysis of [52], which provides preliminary encouragement
for the idea of using cold-atom experiments for the study of the form of the law of energy–
momentum conservation in the nonrelativistic regime. The scope of the analysis reported in
[52] was rather limited, since it focused on one specific model, which in particular codifies no
modifications of the dispersion relation: the only modification allowed in [52] appeared in the
law of energy–momentum conservation and appeared only at subleading order (in the sense
introduced here in sections 2 and 3) in the nonrelativistic limit.

While maintaining the perspective of a first exploratory investigation of these issues, we
will here contemplate a more general scenario, with modifications of both energy–momentum
conservation and dispersion relation, and with correction terms strong enough to appear even
at the leading order in the nonrelativistic regime. Besides aiming for greater generality,
our interest in this direction is also motivated by the desire of setting up future analysis
which might consider in detail the interplay between modifications of the dispersion relation
and modifications of energy–momentum conservation, particularly from the perspective of
identifying scenarios with deformation (rather than breakdown) of Poincaré symmetries, for
which, as mentioned, this interplay is required for many instances [26, 35]. While we do not
attempt to formulate a suitable deformed-symmetry scenario here, the observations we report
are likely to be relevant for the possible future search of such a formulation.

In light of the exploratory nature of our investigation of this point we are satisfied
illustrating the possible relevance of the interplay between dispersion relation and energy–
momentum conservation for the specific case of modified laws of conservation of spatial
momentum (ordinary conservation of energy):

�p1 + �p2 − ρ1

4MP

(
E2

1

E2
�p1 +

E2
2

E1
�p2

)
− ρ2

2MP

(E1 �p2 + E2 �p1)

= �p3 + �p4 − ρ1

4MP

(
E2

3

E4
�p3 +

E2
4

E3
�p4

)
− ρ2

2MP

(E3 �p4 + E4 �p3). (33)

We are focusing on the case of two incoming and two outgoing particles (relevant for processes
in which a photon is absorbed and one is emitted by an atom), and we characterized the
modification in terms of the parameters ρ1 and ρ2. As demonstrated, we will keep track
of these parameters ρ1 and ρ2 together with the parameters ξ1 and ξ2 that parametrized the
modifications of the dispersion relation in the nonrelativistic limit11.

For a two-photon Raman transition our modified law of conservation of spatial momentum
has significant implications along the common direction of the laser beams used to

10 These consistency requirements for a deformation of Poincaré symmetry are very restrictive but may not suffice
to fully specify the form of the law of energy–momentum conservation by insisting on compatibility with a chosen
form of the dispersion relation [26, 35].
11 For simplicity we here simply assume that the photon dispersion relation (bound to be in the ultrarelativistic regime)
is undeformed. As stressed at the end of section 3, one could introduce for photons the parameter η1, characteristic
of the ultrarelativistic regime, but in the analysis of atom-recoil studies η1 turns out to have effects much smaller than
those of ξ1 and ξ2 (as already discussed at the end of section 3) and also of ρ1 and ρ2.
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excite/de-excite the atoms:

h|�k| + |�p| − ρ1

4MP

(
h2ν2

m
h|�k| +

m2

hν
|�p|

)
− ρ2

2MP

(hν|�p| + Eh|�k|)

= −h|�k′| + |�p′| − ρ1

4MP

(
−h2ν ′2

m
h|�k′| +

m2

hν ′ |�p′|
)

− ρ2

2MP

(hν ′|�p′| − E′h|�k′|), (34)

In section 3 we used ordinary momentum conservation, h|�k| + |�p| = −h|�k′| + |�p′|, but if
instead one adopts (34), then the following result is straightforwardly obtained:

�ν

2ν∗(ν∗ + p/h)
� h

m
+

1

MP

[m(ξ1 − ρ1) + (2ξ2 − ρ2)p + 2(ξ2 − ρ2)hν∗]
hν∗

2ν∗(hν∗ + p)
.

(35)

While this is, as stressed, only an exploratory investigation of the role that could be played
by modifications of energy–momentum conservation (in particular there is clearly a strong
influence of the specific ansatz we adopted for the modified law of conservation of energy and
momentum) it is still noteworthy that the parameter ρ1 enters the final result at the same order
as the parameter ξ1 and similarly the parameter ρ2 enters the final result at the same order
as the parameter ξ2. In particular, this implies that even at the type of leading order we here
mainly focused on (the order where ξ1 appears) the possibility of modifications of the law of
energy–momentum conservation may well be relevant, with non-negligible effects even in the
cases where ξ1 = 0 but ρ1 �= 0.

6. Closing remarks

In this paper we have used the noteworthy example of atom-recoil measurements to explore
whether it is possible to set up a phenomenology for the nonrelativistic limit of the energy–
momentum dispersion relation that adopts the same spirit of a popular research program
focusing instead on the corresponding ultrarelativistic regime. It appears that this is indeed
possible and that on the one hand there is a strong complementarity of insight to be gained
by combining studies of the nonrelativistic regime and of the ultrarelativistic regime, and
on the other hand the nature of the conceptual issues that must be handled (particularly
the relativistic issues associated with the possibility of breaking or deforming Poincaré
symmetry) are closely analogous. We therefore argue that by adding the nonrelativistic
limit to the relevant phenomenology agenda we could improve our ability to constrain certain
scenarios, and we could also gain a powerful tool from the conceptual side, exploiting the
possibility of viewing the same conceptual challenges within regimes that are otherwise very
different.

For what concerns the phenomenology we here proposed, it is noteworthy that, particularly
considering the values of ξ1 being probed, any improvement in sensitivity that will be achieved
could also be viewed as a (slim but valuable) chance for a striking discovery. We therefore feel
that our analysis should motivate experimentalists to tailor some of their plans in this direction
(also using the remarks we offered in subsection 4.3) and should motivate theorists toward a
vigorous effort aimed at overcoming the technical difficulties on the quantum-gravity-theory
side that presently obstruct the derivation of more detailed quantitative predictions.
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