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Abstract. A pedagogical derivation is given of the Lense–Thirring effect using basic
notions from the motion of point particles and light rays. First, the notion of rotation
is introduced using the properties of light rays only. Second, two realizations for a non–
rotating propagation of space–like directions are presented: the gyroscope and the spin
of elementary particles. Then the gravitational field around a rotating body is specified
which is taken for determining the various effects connected with a point particle or a
gyroscope: the deSitter precession (geodesic precession) and the Lense–Thirring effect
(‘frame dragging’). The results are applied to the precession of gyroscopes and to the
motion of satellites around the earth.

1 Introduction

In the Lense–Thirring effect three rotations are involved: the rotation of the
gravitating body, the rotation of the test body around its own axis, and the
rotation of the axis of rotation of the test body. The properties of the gravitating
body are prescribed, the rotating test body can be shown to move approximately
on a geodesics around the gravitating body, and its axis of rotation can be shown
to be Fermi propagated along the path of the test body resulting in a precession
of the axis of rotation with respect to distant stars. In this note we want to derive
all these notions and equations of motion from scratch in order to indicate clearly
that everything is provided by General Relativity: Everything follows from the
geodesic equation for point particles and the validity of Einstein’s equations;
we don’t have to use additional assumptions. At the end we will discuss several
experimental approaches to test the various effects related to rotating bodies.

In the following we (i) introduce the notion of rotation, (ii) derive the equa-
tion of motion of the spinning axis of a rotating test body, (iii) derive the gravita-
tional field of a rotating gravitating body, and (iv) use these results for discussing
and analyzing the equation of motion of the test body and of its spinning axis.

All of what we assume is that gravity is described by means of a Riemannian
geometry endowed with a space–time metric g and that light rays and freely
falling point particles move along geodesics of that metric,

Dvv = αv , (1)

where D is the unique metric compatible, Dg = 0, torsion–free, Duv − Dvu −
[u, v] = 0, covariant derivative. In components, (Dwv)ν = wµ(∂µvν + { ν

µσ }vσ),
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with the Christoffel symbol { ν
µσ } := 1

2g
νρ (∂µgρσ + ∂σgρµ − ∂ρgµσ). We do not

assume any normalization condition of the 4–velocity. Light rays with tangents l
obey the same equation of motion (1), but with the additional condition g(l, l) =
0. – In addition, we will assume Einstein’s field equations.

2 Rotation

central particle
auxilary particle auxilary particle

u

l1
l2

Fig. 1. Geometry of the bouncing photon.
Two auxilary particles communicate via
light rays in such a way that all light rays
(dashed lines) have to meet the central
particle. No particle is assumed to be in
geodesic motion.

In order to define the notion of ro-
tation, we use the so–called zig–zag
construction, or the bouncing photon,
as introduced by Pirani [1]. This con-
struction uses a central point particle
which moves along an arbitrary path,
see Fig.1. In the neighborhood of that
central particle there are two other
point particles equipped with a mir-
ror. At first, the central point particle
emits a flash of light which hits the
auxilary point particles. These auxi-
lary point particles reflect this flash of
light in such a way that it again meets
the central point particle and, in ad-
dition, the other auxilary particle po-
sitioned appropriately behind the cen-
tral particle. Then the auxilarty par-
ticles again reflect the flash of light so
that it again meets the central parti-
cle and the other auxilary particle, and
so on, see Fig. 1. For this construc-
tion we assume that the two satellites
are “near” to the central particle which
means that no curvature effects should
be involved. This is a condition which
can always be fulfilled.

It is not assumed that the central
particle moves along a geodesic. And
even if the path of this particle is geodesic, then the two auxilary particles in
general are not geodesic because they always have to be re–positioned in order
to meet the above construction.

In this way the particles define a time–like 2–surface, or, after projection
into the rest space of the central particle, a direction in the rest space prop-
agating along the path of the central particle. This construction defines the
propagation of the direction of the light rays in the rest space of the central
particle. It turns out that this propagation can be used to define the notion of
a “non–rotating” propagation of a vector. This notion coincides with the notion
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of Fermi–displacement which usually is used for the description of non–rotating
propagation. However, in our case we get this notion from an operational proce-
dure.

We now turn to the mathematical description of this procedure. We make
use of the equation of motion (1). The condition that the light rays with tangent
l1 and l2 lie in the same plane with the central particle u is

u = σ1l1 + σ2l2 , for some σ1, σ2 ∈ R . (2)

The condition that, after reflection, the light rays will cross the central worldline
again, is secured by

Ll1 l2 = ε1l2 + ε2l1 , for some ε1, ε2 ∈ R . (3)

Now we derive the equation which governs the transport of the directions

V1 := Pul1 or V2 := Pul2 , (4)

along u, where

PuA := A− g(A, u)
g(u, u)

u (5)

is the projection operator onto the rest space of the world line of the central
particle.

Using σ1V1 = −σ2V2 we get

PV1PuDuV1 =
1
σ1

PV1PuDu(σ1V1) =
1

2σ1
PV1PuDu(σ1V1 − σ2V2) . (6)

Inserting (2, 3, 4) and the equation of motion (1) for the light rays l1 and l2, we
finally get

PV1PuDuV1 = 0 . (7)

The expression FuV := PV PuDuV is the so–called Fermi–derivative of the vector
V along u. Eq.(7) is invariant against reparametrization of the paths, so that
it indeed describes the propagation of the direction V . This is precisely the
characterization of the bouncing photon which we take as definition for a non–
rotating propagation of a vector along a given path [1]. If for another vector
W defined along P the above expression does not vanish, then the operator Ω,
which is a ( 11 )-tensor defined by PWPuDuW = Ω(PuW ), is called the rotation
of W . This is the characterization of the notion “rotation” we announced.

Now we turn to the question whether, beside this bouncing photon, there are
other physical realizations of a non–rotating propagation.

3 Equation of Motion for Angular Momentum

There are indeed two further realizations for a non–rotating propagation which
are experimentally easier to handle with than the bouncing photon: One real-
ization is given by a rotating gyroscope possessing orbital angular momentum,
the other is the elementary particle with spin.
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3.1 The Motion of Gyroscopes

The metrical energy–momentum tensor Tµν which, within Einstein’s theory, is
the source of the gravitational field, is symmetric and divergence–free

DµT
µν = 0 . (8)

This is the equation of motion for matter in General Relativity.

Tµν �= 0

t = const.

Σt :

xcm(τ)

Fig. 2. The world–tube of space–time points
for which the energy–momentum tensor in non–
vanishing. The center–of–mass wordline is dotted.

In the case that matter is
fairly localized (that is, Tµν �= 0
for a compact space–like region
only, within which the gravita-
tional field in terms of the cur-
vature does not vary too much),
it is possible to extract from this
tensor a center–of–mass and
correspondingly the equation of
motion of this center–of–mass.
We assume that this center–of–
mass xcm(τ), where τ is the
proper time, lies within the
body, that is, {xcm(τ)|τ ∈ R} ⊂
suppTµν , see Fig.2. With this
center–of–mass worldline there
is connected the 4–velocity v =
d
dτ xcm.

In addition, one can define
an angular momentum with re-
spect to this distinguished point
is space–time and derive its

temporal evolution. In doing so we follow the procedure originated by Papa-
petrou [2,3] and developed further by Dixon and [4] and Ehlers and Rudolph
[5].

We first introduce a 3+1–slicing of the space–time by introducing hypersur-
faces Σt with normal nµ, see Fig. 2. From the energy momentum tensor we can
define various moments (Tµν =

√−g Tµν)

Pµ1µ2...µnν :=
∫
Σt

δxµ1δxµ2 · · · δxµnTν0d3x , (9)

Mρ1ρ2...ρnµν :=
∫
Σt

δxρ1δxρ2 · · · δxρnTµνd3x , (10)

where δxµ = xµ − xµcm with x, xcm ∈ Σt. We use coordinates so that t = const.
over Σt. Consequently, δx0 = 0 in (9) and nµ = δ0µ.

We can distinguish between various types of particles: If all momenta (9) but
the symmetrical

Mµν =
∫
Σt

Tµνd3x (11)
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vanish, then we have a particle which possesses no internal structure and thus
is called a point particle. It will become clear in the following that in this case

Pµ =
∫
Σt

Tµ0d3x (12)

can be identified with the momentum of that point particle. — If all momenta
but Mµν and

Mµνρ =
∫
Σt

δxµTνρd3x (13)

vanish, then we have a particle with mass and, in addition, an orbital angular
momentum which in this case is given by

Lµν := 2P [µν] = 2
∫
Σt

δx[µTν]0d3x . (14)

That this quantity indeed describes the angular momentum will become clear
later, too. This quantity characterizes a special type of internal motion, so that
we call this type of matter a spinning particle (please note, that this notion
“spin” does not mean the elementary particle spin), or spinning top. It can be
shown that the order of the highest moment is an invariant [2]. That means that a
spinning particle cannot become a point particle by a coordinate transformation.

We assume in the following that all other moments but (11) and (13) vanish.
From these definitions and the basic equation of motion (8) we first derive the
equations of motion for a point particle, and second for a spinning particle.

The point particle. From (8) we have 0 = ∂0T
µ0 + ∂iT

µi + { µ
νσ }Tνσ from

which we get by integration

d

dt
Pµ =

∫
Σt

∂0T
µ0d3x = −{ µ

νσ }Mνσ . (15)

In an analogous way we analyze the quantity
∫
xρTµνd3x. With (8) we get

∂0(xρTµ0) + ∂i(xρTµi) = Tµρ − xρ{ µ
νσ }Tνσ (16)

and thus, by integration,

Mµρ =
d

dt

∫
Σt

xρTµ0d3x+
∫
Σt

xρ{ µ
νσ }Tνσd3x . (17)

We expand x and { µ
νσ } around the coordinate of the worldline xcm

x = xcm + δx , { µ
νσ }(x) = { µ

νσ }(xcm) + δxκ∂κ{ µ
νσ }(xcm) (18)

and get, taking into account the condition for a point particle,
∫
δxTd3x = 0,

Mµρ = vρPµ . (19)
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Since Mµν is symmetric, we must have Pµ = mvµ with m := P 0/v0. Therefore
Mµν = m vµvν , and, consequently, we get from (15) Dv(mv) = 0. From this
and the fact that v is a normalized 4–velocity, g(v, v) = −1, we get Dvm = 0
which means that m is the mass of the particle which is constant. Then we also
have the geodesic equation for the center–of–mass trajectory:

Dvv = 0 . (20)

The spinning particle. This kind of particle is defined by
∫

Tµρd3x �= 0 and∫
δxµTνρd3x �= 0; all other moments vanish. We consider the divergences ∂ρTµρ,

∂ρ(xµTνρ), and ∂ρ(xµxνTσρ) and get in a way analogous to above

d

dt
Mµ0 = −{ µ

ρσ }Mρσ − ∂κ{ µ
ρσ }Mκρσ , (21)

d

dt
Mµν0 = Mµν − vµMν0 − { ν

ρσ }Mµρσ , (22)

vµMνσ0 + vνMµσ0 = Mµνσ +Mνµσ , (23)

where all Christoffel symbols are evaluated at the center–of–mass position xcm
and where, in addition to (11), we used (13). With definition (13) we also have
(note δx0 = 0)

Lµν = Mµν0 −Mνµ0 , (24)
Lµ0 = Mµ00 . (25)

Now we first express, using (23), Mµνρ in terms of v and L, and second, using
(22), the propagation of L, and, at last, with (21) the equation for the center–
of–mass motion.

Cyclic permutation of the three indices in (23) and adding two and subtract-
ing the third relation gives

2Mµνρ = vµ(Mνρ0 +Mρν0) + vνLµρ + vρLµν , (26)

where we used (24). By specifying σ = 0 in (23), we can express the first part
also in terms of the angular momentum, Mµν0+Mνµ0 = vµLν0+vνLµ0, so that
we finally find

2Mµνρ = vµ(vνLρ0 + vρLν0) + vνLµρ + vρLµν . (27)

Choosing ν = 0 in (22) and reinserting this into (22) gives

0 =
d

dt
Mµν0 + { ν

ρσ }Mµρσ −Mµν + vµ
(
vνM00 +

d

dt
Mν00 + { 0

ρσ }Mνρσ

)
.

(28)

Antisymmetrization leads to an equation of motion for L:

0 =
d

dt
Lµν − { µ

ρσ }Mνρσ + { ν
ρσ }Mµρσ +

[
vµ
(

d

dt
Lν0 + { 0

ρσ }Mνρσ

)
− (µ↔ ν)

]
.

(29)
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Inserting Mµρσ in terms of the center–of–mass velocity and the angular mo-
mentum, Eq.(27), we obtain a covariant equation of motion for the angular
momentum L:

0 = DvL
µν + vµDvL

ν0 − vνDvL
µ0 . (30)

Multiplication with vν gives DvL
µ0 = −vνDvL

µν − vνv
µDvL

ν0 which can be
inserted into (30)

0 = DvL
µν + vµvρDvL

ρν + vνvρDvL
µρ = PvDvL

µν . (31)

This is the equation of motion for the angular momentum.
In a similar fashion [2] we derive from (21) the equation of motion for the

path. We get
Dv (mvµ − vρDvL

µρ) =
1
2
Rµ

νρσv
νLρσ . (32)

By counting the degrees of freedom, it is clear that (31) and (32) are 6
equations for 3 components of vµ and 6 components of Lµν . Therefore we have
to reduce the numer of unknown components in the angular momentum. What
is still unspecified in our approach is the center–of–mass coordinate. The center–
of–mass coordinate can be determined by the so–called Frenkel condition

0 = Lµνvν = vν

∫
δx[µTν]0d3x , (33)

which leads to an expression of the form 0 =
∫
ρδxµd3x+ relativistic corrections,

where ρ = T00 is the energy density, see [5], e.g., for a detailed treatment of the
center–of–mass problem.

If the Frenkel condition is valid, then it makes sense to introduce a vector
for the angular momentum Lµ := 1

2ε
µνρσvνLρσ. In terms of this vector, Eq.(30)

means that the angular momentum vector is Fermi propagated,

FvL = PvDvL = 0 (34)

and thus is non–rotating.

3.2 Motion of an Elementary Particle with Spin 1
2

A spin–12–particle ψ is assumed to obey an equation of motion which can be de-
rived from the minimally coupled Lagrangian for the Dirac field in a Riemannian
geometry:

L =
√−g

[
i�

2
(
ψ̄γµDµψ − (Dµψ̄)γµψ

)−mψ̄ψ

]
. (35)

The parameter m is the mass of the Dirac particle. The matrices γµ are given by
γµ = hµaγ

a where the γa are the special relativistic Dirac matrices obeying the
Clifford algebra γaγb + γbγa = 2ηab (ηab = diag(−1,+1,+1,+1)). The tetrads
hµa are defined by gµνh

µ
ah

ν
b = ηab. Therefore

γµγν + γνγµ = 2gµν . (36)
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Dµ is the covariant spinorial derivative Dµ = ∂µ+Γµ with the spinorial connec-
tion Γµ := − 1

2 (Dµh
ν
a)hbνG

ab (the covariant derivative Dµ acts on the vectorial
index µ in Dµh

ν
a only). The Gab := 1

4 (γ
aγb − γbγa) are the generators of the

Lorentz–group. The adjoint spinor is defined by ψ̄ := ψ+γ(0) (in this case ψ̄ψ
transforms as a scalar). Here γ(0) is the zeroth special relativistic Dirac–matrix.

Variation of the above Lagrangian with respect to ψ̄ gives the field equation

0 = i�γµDµψ −mψ . (37)

This is the Dirac equation in curved space–time. Here we use c = 1.
Now we describe a particle in a quasiclassical approximation. That means,

we look for a solution of the Dirac equation (37) which locally has the form of a
plane wave:

ψ = e
i
�
S(x)a(x) . (38)

Inserting this ansatz into the field equations (37) gives

0 = −(γµ∂µS +m)a+ i�γµDµa . (39)

The main step of the quasiclassical approximation consists in the assumption
that the external fields are weak enough, so that, in first approximation, the
derivatives of the amplitudes can be neglected. That means (−γµ∂µS +m)a +
i�γµDµa ≈ (−γµ∂µS+m)a, or |�γµDµa| � |ma|, where | · | denotes some norm
on a complex vector space. If we use this condition, then we get from (39) with
pµ := −∂µS

0 = (γµpµ −m)a . (40)

Here pµ is the momentum of the plane wave. Eq (40) is an algebraic condition
which possesses a solution for pµ if and only if the determinant of the coefficient
matrix vanishes, 0 = det(γµpµ −m). This leads to the condition

0 =
(
gµνpµpν +m2)2 . (41)

(The exponent 2 characterizes the fact that we have for both spin states the
same mass shell.) Eq (41) is a Hamilton–Jacobi partial differential equation for
the phase S(x, t) which always possess a solution.

From the plane wave ansatz (38) we can define a wave packet by superposition
of plane waves from a continuous spectrum of momenta peaked around p̂µ. Then
one can show that the tangent vector of the path of the peak of this wave packet
is given by the group velocity vµ := 1

mgµνpν |p=p̂ which fulfills the normalization
condition, g(v, v) = −1. Differentiating (41) once more yields immediately the
geodesic equation for this group velocity

0 = Dvv . (42)

The integral curves of this geodesic equation are the paths of the peaks of wave
packets.
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If we have a solution of the first order equation, then the first part in (39)
vanishes and we get as equation for the next order of approximation

0 = γµDµa . (43)

What we are looking for is a propagation equation for the amplitude, that is, an
equation of the form Dva = f(x, v)a which describes the evolution of a along
the path given by v. For this we multiply (43) with (γνpν +m)/m and get

0 =
1
m
(pνγν +m)γµDµa

=
1
m

(γµ (Dµ ((pνγν +m)a)−Dµ(γνpν +m)a) + pν [γν , γµ]Dµa)

= −Dµv
µa− 2vµDµa . (44)

Here we used ∂[µpν] = 0. For obtaining this result, the existence of a Clifford
algebra is important. With the definition for the expansion θ := Dµv

µ we finally
find

Dva = −1
2
θa . (45)

The same holds true for the adjoint spinor: Dvā = − 1
2θā. Within the frame of

the theory of congruences [6] (see also the Appendix), θ is interpreted as the
divergence of the trajectories given by the phase S(x). If we define a normalized
spinorial amplitude b := a/

√
āa, then we get [7,8]

Dvb = 0 , Dv b̄ = 0 . (46)

That means that the normalized spinors b and b̄ are parallely propagated along
the path of the center of the wave packet.

With these propagation equations for the spinors b and b̄, we can calculate
propagation equations for the bilinears [9] S := b̄b, P := b̄iγ5b, jµ := b̄γµb,
Sµ := γ̄5γ

µb, and Sµν := b̄2iGµνb. Using (40) one can derive

Spµ = mjµ , (47)
Sµpµ = 0 , (48)

P = 0 , (49)
εµνρσS

σpρ = −mSµν . (50)

The last relation can be inverted:

vaSb − vbSa =
1
2
εabcdS

cd . (51)

From these identities we get an interpretation of these bilinear quantities.
Eq.(47) yields ja = Sva so that S is the intensity of the Dirac field. Since Sa is
an axial vector and, according to (48) a rest–frame quantity, it is identified with
the spin of the Dirac particle.
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Therefore, the only independent normalized quantities are the normalized
current ĵµ = b̄γµb = vµ and the normalized spin–vector Sµ = b̄γ5γ

µb. The
propagation equations (46) for b and b̄ then give propagation equations for jµ

and Sµ:

Dvv = 0 , (52)
DvS = 0 . (53)

Therefore the direction of the spin is parallely propagated along the path of
the Dirac particle. The spin behaves in the same way as a spinning top. (For a
gravitational theory with torsion it can be shown that the spin couples to torsion
while the orbital angular momentum does not [10].)

We note without proof that in the next approximation it is possible to get
an influence of the spin on the path of the wave packet [8]:

Dvv =
1
2
λCR

∗(·, v, S, v) , (54)

where R∗ is the right–dual of the curvature tensor and C the Compton wave-
length of the Dirac particle.

4 Gravitational Field of a Rotating Body

In this section we want to derive the general features of a gravitational field
which is created by a rotating body. The gravitational field, that is, the space–
time metric gµν , is given by Einstein’s equations

Rµν − 1
2
gµνR =

8πG
c2

Tµν , (55)

where G = 6.673(10)×10−11m3kg−1s−2 is Newton’s gravitational constant [11].
We now analyze two aspects of a rotation in the gravitational field: (i) we discuss
the gravitational field of an arbitrary stationary situation and (ii) discuss the
general structure of the gravitational field created from a rotating mass given in
form of the energy momentum tensor.

4.1 Stationary Gravitational Field

A stationary gravitational field is characterized by a time–like Killing vector ξ,
g(ξ, ξ) < 0, with £ξg = 0, whereas a gravitational field with an axial symmetry
is characterized by a space–like Killing vector η, g(η, η) > 0, with £ηg = 0 and
the integral curves of η are space–like closed curves. An axisymmetric space–
time possess both Killing vectors ξ and η which, in addition, should commute
[ξ, η] = 0. For any Killing vector field then there exists a coordinate system,
which coordinate lines are the integral curves of the Killing vector field, so that
the metric does not depend on the coordinates corresponding to the Killing field.
For a stationary gravitational field this means g(x) ∗= g(x1, x2, x3) and, if the
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gravitational field possesses an additional axial symmetry, then g(x) ∗= g(x1, x3),
where x0 plays the role of the time coordinate and x2 the role of the angle ϕ.
Therefore ds2 = gµν(x1, x3)dxµdxν . If we choose x1 = ρ and x3 = ϑ, then

ds2
∗= g00(ρ, ϑ) dt2 + 2g0i(ρ, ϑ) dt dxi + gij(ρ, ϑ) dxi dxj . (56)

We call a gravitational field static if the rotation of the time–like Killing
congruence vanishes (cf. Appendix): ω = 0 or εµνρσξν∂ρξσ = 0. The gravitational
field is stationary, if the Killing congruence rotates: ω �= 0 or εµνρσξν∂ρξσ �= 0.

The standard example for a static space–time is given by the Schwarzschild
solution, and an example for a stationary space–time is given by the Kerr so-
lution, see [12], e.g., or the space–time determined from a thin rotating disk
[13].

4.2 Gravitational Field of a Rotating Source

It is intuitively clear what a rotating source is: The source consists of a set
of point particles (a gas, or a rigid body, for example), which form a rotating
congruence. The particles of the source may interact with one another. Therefore,
the source is a conguence of point particles moving on trajectories with 4–velocity
u. This congruence may possess rotation, acceleration, expansion, and shear. If
we have, as a very simple example, a perfect fluid, then we have as source of
the gravitational field the energy–momentum tensor Tµν = (ρ+ p)uµuν + pgµν ,
where ρ is the energy density and p the pressure. For p = 0 (dust) one can show
that the geodesic equation (1) follows from (8). If the vector field u belongs to
a rotating congruence, then this energy–momentum tensor describes a rotating
source.

We now calculate the gravitational field which is created by such a rotating
source. For this purpose, we split the metric into two parts, g = g0 + g1. The
curvature associated with g can be split into a term corresponding to g0 and
terms depending on g1 [12]: R(g) = R(g0) + δR(g0, g1). We assume that the
curvature associated with g0 vanishes, R(g0) = 0. From the Einstein equations
(55) we finally get a differential equation for the part g̃1 := g1 − 1

2 ḡ1g0 with
ḡ := gµν0 g1µν :

� g̃1 = κT , (57)

where � is the d’Alambertian with respect to the metric g0 and where we have
chosen a coordinate system such that ∂νg

µν
1 = 0, with gµν1 := gµρ0 gνσ0 g1ρσ. Be-

cause the curvature associated with g0 vanishes, it is possible to introcduce a
global coordinate system such that g0µν = ηµν . If the source is stationary, then g1
does not depend on the time and (57) reduces to the Poisson equation ∆ g̃1 = κT
which can be integrated,

g̃1 = κ

∫
T (r′)
|r − r′|d

3x′ , (58)

provided T falls off appropriately at spatial infinity.
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The component T00 =: ρ of the energy–momentum tensor is interpreted as
the energy density, the components Ti0 = Ti0 =: ρvi as the energy flux, and the
Tij as the stress tensor (i, j, . . . = 1, 2, 3). Therefore,

(g̃1)00 = G

∫
ρ(t, r′)
|x− r′|d

3x′ , (59)

(g̃1)i0 = G

∫
ρ(t, r′)vi(t, r′)
|r − r′| d3x′ , (60)

(g̃1)ij = G

∫
Tij(t, r′)
|x− r′| d

3x′ . (61)

It is clear that (g̃1)i0 is smaller than (g̃1)00 by a factor v/c and (g̃1)ij by a factor
(v/c)2, cf. [12]. In the case of an isolated body and large distances, we have

U := (g̃1)00 = G
M

r
, hi := (g̃1)i0 = −G

2
(r ×L)i

r3
, (62)

where M is the total mass and L the angular momentum of the gravitating
body.

In a coordinate system where the components of the metric are isotropic, we
have as line element

ds2 = −(1− 2U + 2U2) dt2 + (1 + 2U)(dx2 + dy2 + dz2)− 4hi dxi dt , (63)

or

gµν =
(−1 + 2U − U2 −2hi

−2hi (1 + 2U)δij

)
. (64)

This metric is time–independent. Thus a time–like Killing vector ξ = ∂t exists,
in components ξµ = δµ0 . The different components of this vector ξ are given by

ξµ = δµ0 , ξ0 = g0νξ
ν = g00 , ξi = giµξ

µ = g0i = −2hi . (65)

Hence the curl of the Killing vector field (see Appendix) is connected with ∂[ihj].
The tetrads ϑa (one–forms, a = 0, . . . 3) connected with the Killing vector

field ξ are given by

ϑ
(0)
0 = −1 + U − 1

2
U2 , ϑ

(0)
i = −hi (66)

ϑâ0 = −hâ , ϑâi = (1 + U)δâi . (67)

Later we need to boost this tetrad to a comoving (with the gyroscope) tetrad
ϑ̄a = La

b(ẋ)ϑb where ẋ is the relative velocity of the gyroscope with respect
to the tetrad ϑa. Since for a pure boost with small velocity v we have L =(
1− 1

2 ẋ
2 ẋ

ẋ δij +
1
2 ẋ

iẋj

)
, we find for the new tetrad

ϑ̄
(0)
0 = −1 + U − 1

2
U2 − 1

2
ẋ2 , ϑ̄

(0)
i = −hi + ẋi (68)

ϑ̄â0 = −hâ + ẋâ , ϑ̄âi = (1 + U) δâi + ẋâẋi . (69)



The Lense–Thirring Effect 43

5 Lense–Thirring Effect

Let us combine the results and notions derived above in order to describe the
dynamics of a rotating test body in the neighborhood of a gravitating rotating
body. We consider a stationary situation: The gravitating body rotates with a
constant angular velocity. In the field of such a body we will consider the motion
of a point particle as well as the motion of a gyroscope.

5.1 Motion of a Point Particle

The equation of motion for a point particle is the geodesic equation Dvv = 0.
The four components of this equation can be evaluated by using the solution
for a static spherically symmetric mass distribution, that is the Schwarzschild
solution, or the solution for rotating bodies, like the Kerr metric or the metric
for a rotating disk of dust [13]. However, in our approach, we restrict ourselves to
the case of a weak stationary gravitational field. In this case, for a point particle
without spin and in 3–notation, the geodesic equation reads

d2r

dt2
= ∇U + F − 2v × (∇× h) . (70)

The first term is the Newtonian part whereas F symbolizes nonlinear contribu-
tions of the gravitostatic field U which are responsible for the perihelion shift,
for example. The last term is the gravitomagnetic part due to the rotation of the
gravitating body. Since the motion of a satellite around the earth represents a
gyroscope, too, this interaction results in a precession of the angular momentum
of the satellite around the earth. Therefore, the plane of the path of the satellite
is no longer fixed, as it is in the Schwarzschild case, but starts to precess instead.
Thus the pericenter (perihelion) or the nodes (intersections of the paths of the
satellite with the equatorial plane of the earth) move. This should be observable
in an experiment proposed by Ciufolini [14] according to which two excentric
satellites orbit around the earth.

5.2 Motion of a Gyroscope

For the description of the motion of a direction attached to a gyroscope we use
Eqs.(34) and (32) or (53) and (54). For simplicity we assume that the path is
geodesic which is very well fulfilled because, according to Eqs.(32) and (54), all
non–geodesic terms can be neglected for weak gravitational fields.

The non–rotating frame defined by the gyroscope will be compared with a
direction given by a fixed star far away from the gravitating body. The light from
that star comes from a fixed direction. Thus the tangent vector l of light rays
of this star is stationary: £ξl = 0. Accordingly, we can introduce a stationary
space–like unit vector: e(1) = Pul/(g(Pul, Pul))1/2, which again is stationary
£ξe(1) = 0. We can complete this unit vector to give a 3–bein by adding two
more spatial unit vectors which are orthogonal to e(1) and to each other and
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which are stationary, too: g(eâ, eb̂) = δâb̂, £ξeâ = 0. If we take e(0) = u, then
ea = (u, eâ) defines a tetrad with £ξea = 0. Accordingly, also for the dual basis
ϑa we have £ξϑ = 0.

In order to determine the behaviour of the gyroscope with respect to the
direction given by the fixed star, we project the spin of the gyroscope on the
comoving basis connected with the fixed star: S̄a := ϑ̄a(S). This projection is
the quantity observed. We calculate the dynamics of this projection ˙̄Sa = ∂vS̄

a,
where S is parallely displaced along the path of the gyroscope, while the basis
ϑa is Lie–displaced along ξ:

ϑ̄
comoving with gyro��

��

Lorentz–transf. La
b�� ϑ
attached to distant stars��

��
DvS = 0 £ξϑ = 0

The four–velocity of the gyroscope is related to the fourth leg u via v = γu +
γẋâeâ where γ is the Lorentz factor (1− ẋ2)−1/2 and ẋâ is the relative velocity
measured between u and v. Moreover, because of ϑ̄(0)(S) = 0, we have 0 =
L(0)

bϑ
b(S) = L(0)

(0)ϑ
(0)(S) + L(0)

âϑ
â(S) so that

ϑ(0)(S) = −ẋâϑâ(S) . (71)

We calculate, using (34) and (53), respectively, (â = 1, 2, 3),

˙̄S
â
= Dv(ϑ̄â(S))
= (Dvϑ̄

â)(S) + ϑ̄â(DvS)
= (Dvϑ̄

â)(S)
= (Dv(Lâ

bϑ
b))(S)

= DvL
â
bϑ

b(S) + Lâ
b(Dvϑ

b)(S) . (72)

The first term can be evaluated by using La
b =

(
1 + 1

2 ẋ
2 ẋb̂

ẋâ δâ
b̂
+ 1

2 ẋ
âẋb̂

)
and

DvL
a
b =

(
ẋĉẍ

ĉ ẍb̂
ẍâ 1

2 (ẍ
âẋb̂ + ẋâẍb̂)

)
. With (71) this yields

DvL
â
bϑ

b(S) = DvL
â
(0)ϑ

(0)(S) +DvL
â
b̂ϑ

b̂(S) ≈ −1
2
(v̇âvb̂ − vâv̇b̂)ϑ̄

b̂(S) . (73)

For the seond term

Lâ
b(Dvϑ

b)(S) = Lâ
b(Dγu+γẋϑ

b)(S) ≈ Lâ
b(Duϑ

b)(S) = Lâ
be
−U (Dξϑ

b)(S)(74)

we use the fact that the frame ϑ is stationary: £ξϑ
a = 0. In components: 0 =

ξνDνϑ
a
µ + ϑaνDµξ

ν , so that (Dξϑ
a)µ = −ϑaνDµξ

ν . Thus

(Dξϑ
a)µ = −ϑaνDµξ

ν = −ϑaν(eUωµν +
ξ
aµξ

ν − ξ
aνξµ) . (75)
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Therefore we find for the total precession of the spin

˙̄S
â
= −1

2
(ẍâẋb̂ − ẋâẍb̂) ϑ̄

b̂(S)− Lâ
be
−Uϑbν (eUων

µ +
ξ
aµξ

ν − ξ
aνξµ) Sµ

= −ωa
bS̄

b −
[(

ξ
aâ +

1
2
ẍâ
)
ẋb̂ − ẋâ

(
ξ
ab̂ +

1
2
ẍb̂

)]
S̄ b̂ , (76)

with uâ = 0 and where we neglected terms with “velocity × gravitomagnetic

field” and terms of the order ẋ2. Using ẍâ = aâ +
ξ
aâ, where a is any non–

gravitational acceleration, we finally arrive in 3–notation at

d

dτ
S = Ω × S , (77)

with

Ω = v ×
(
−1
2
a+

3
2
∇U

)
+ ∇× h . (78)

The first term v × a is a special relativistic term, called the Thomas precession
which is known from atomic physics. It describes the precession of the spin due
to inertial forces. Thus, the second term, v×∇U , is a gravity–induced Thomas
precession, the so–called de Sitter precession or geodetic precession. Note that
only the Newtonian potential enters this term. The last term is purely post–
Newtonian and describes the Lense–Thirring effect. This is the rotation of the
locally non–rotating frame with respect to distant fixed stars due to the rotation
of a nearby rotating gravitating body (‘frame dragging’).

6 On the Observation of Gravitomagnetic Effects

The systematic analysis of relativistic effects of planetary motion and motion
of the moons of the planets dates back to the first years after the publication
of Einstein’s theory in 1915. In 1916, W. de Sitter [15] predicted a geodetic
precession of the rotating earth-moon system (‘earth–moon gyroscope’) in the
gravitational field of the sun. (The de Sitter term in (78) provides a simple
model of the dynamics of that system.) The effect has finally been detected in
the late 80’s by means of an elaborate combination of lunar ranging and radio
interferometry data [16]; refined data can be found in [17]. The accuracy of
this verification is of the order of 1%. Three years after de Sitter, J. Lense and
H. Thirring published their pioneering work “about the influence of the proper
rotation of the central bodies on the motion of the planets and moons according
to Einstein’s gravitational theory” [18]. Analyzing the equations of motion (70),
they excluded measurable effects for the moon orbit as well as for the orbits
of the planets, but found considerable secular relativistic perturbations of the
orbital parameters of the moons of the outer planets. In particular, Jupiter V
evidenced a gravitomagnetic shift of its pericenter of 2.26 arcsec/yr. However, a
confirmation of their prediction by observation was not possible at that time.
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In the next two sections, we will discuss the theoretical fundamentals of recent
satellite experiments. In this context, the earth will be considered to be a sphere
(radius R) rotating with a constant angular velocity about its axis, which has a
fixed orientation in an inertial system connected with the (distant) stars.

6.1 Lense–Thirring Effect for Point Particles

According to (70) and (62), the equation of motion for a spinless particle (satel-
lite) in the gravitational field of the rotating earth is given by1

d2r

dt2
= − 1

r3
GMr+

2G
c2r3

dr

dt
×
(
L− 3 (L · r)

r2
r

)
, (79)

where M is the mass of the earth and L is its angular momentum. A detailed
discussion of these equations and explicit expressions for the relativistic pertur-
bations of the particle orbit may be found in the original paper of Lense and
Thirring [18].

According to the proposal of Ciufolini, it should be possible, with present-
day technology, to measure the advance of the pericenter and the nodes of highly
eccentric satellites. A first attempt to do this using the LAGEOS I and LAGEOS
II satellites, has been carried through in [19–21]. It was possible to verify the
gravitomagnetic effect with an precision of about 10%. This poor precision is a
result of the low eccentricity of the orbits of the satellites and the difficulties in
eliminating the multipoles of the earth which give rise to contributions of com-
parable order. The idea of a further experiment [14] is to orbit a new LAGEOS
satellite with the same orbital parameters as those of an existing LAGEOS, but
with supplementary inclinations, and to observe the bisector of the angle be-
tween the nodal lines which defines a kind of gyroscope. The expected precision
of the verification of the gravitomagnetic effect is of the order of 3% after 3 years
of Laser measurements (see also [22]).

6.2 Lense–Thirring Effect for Gyroscopes

Since the early 60’s, the Stanford orbiting gyroscope experiment, Gravity Probe
B, has been under development [23]. The experimental construction has been
completed and the experiment should be performed in 2000/2001. The idea is
to put a spacecraft in a polar orbit equipped with four gyroscopes (see Fig.1 on
page 53 of Everitts’s paper in this volume) and to measure the gravitomagnetic
precession of the spins of the gyroscopes. To calculate the expected numerical
values for the de Sitter and Lense–Thirring effects, we consider a single gyroscope
with spin S at a circular polar orbit. We introduce a co–moving but non–rotating
orthogonal coordinate system Σ the z–axis of which is parallel to the earth’s
angular momentum L and the x–axis of which lies in the orbital plane (y = 0),
which has a fixed position with respect to the distant stars. The orientation of
the co–moving frame can be maintained by two telescopes on board the satellite
each of which points at a particular fixed star.
1 For simplicity, the nonlinear term of (70) has been omitted.



The Lense–Thirring Effect 47

ω
L

∇ × h

S

Fig. 3. The Lense–Thirring effect for gyroscopes: The earth rotating with angular
velocity ω and angular momentum L creates a gravitomagnetic field with the shape of
a magnetic dipole. A gyroscope with angular momentum or spin S moves around the
earth along a geodesic circular polar orbit (thick solid line). The Lense–Thirring effect
consists in the precession of S around the direction given by the field lines of ∇ × h.

In order to apply Eqs. (77,78), we have to specify the position vector r of
the gyroscope (origin of Σ) and the angular velocity Ω. Obviously,

r = (r cosω0t, 0, r sinω0t) . (80)

Here r is the constant distance of the gyroscope from the center of the earth and

ω0 =
1
r

√
GM

r
(81)

is the orbital angular velocity of the satellite. Then,

Ω =

(
3GL

2r3c2
sin 2ω0t,

3
2

√
GM

r

GM

r2c2
,

GL

2r3c2
(1− 3 cos 2ω0t)

)
. (82)

A good approximation for the angular momentum of the earth is

L = 0.3306 ·MR2ω, (83)

where M = (5.974± 0.004) 1027 g is the mass, R = (6378140 ± 5) m the equa-
torial radius, and ω the angular velocity of the earth.
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Note that the choice of Σ has separated the de Sitter and the Lense–Thirring
contributions to Ω: Ωx and Ωz are pure Lense–Thirring terms whereas Ωy is of
geodetic origin. After a decomposition of the spin vector S in spherical polar
coordinates,

Sx = S cosϕ sinϑ , Sy = S sinϕ sinϑ , Sz = S cosϑ , S = |S| , (84)

Eqs.(77,78) take the form

ϕ̇ = −Ωx cosϕ cotϑ−Ωy cotϑ sinϕ+Ωz , (85)

ϑ̇ = −Ωx sinϕ+Ωy cosϕ . (86)

In order to keep the two effects separate, we may start from an equatorial position
(t = 0; r = (r, 0, 0)) and choose the spin vector S to be perpendicular to the
angular momentum L of the earth (t = 0 : ϕ = 0, ϑ = π

2 ). From the linearized
Eqs.(85,86)

ż = iΩxz + (Ωy + iΩz) , (87)

where z = ϑ− π
2 + iϕ, we finally obtain the desired secular angular precessions

∆ϑ = Ωy∆t =
3
2

√
GM

r

GM

r2c2
∆t (88)

∆ϕ = Ωz
t
∆t =

GL

2r3c2
∆t . (89)

Here Ωz
t
is the time–averaged Ωz as experienced by the gyroscope. For a polar

orbit at about 650 km altitude (r = (6371+650) km) this leads (note also (83))
to a rate of

∆ϑ

∆t
= 6.6 arcsec/yr (90)

for the geodetic precession and

∆ϕ

∆t
= 0.041 arcsec/yr (91)

for the Lense–Thirring precession.
The goal for the precision of the Gravity Probe B experiment is about 0.01%

for the de Sitter effect and about 1% for the Lense–Thirring effect (in contrast
to the Lense–Thirring effect for orbiting point particles the multipole moments
of the earth play no role here [24]). The measurement of these effects is based
on SQUIDs. The numerical values (90) are illustrated in Fig.1 of Everitt’s talk
(see p. 53), which, moreover, describes the technicalities o f the sophisticated
equipment.

6.3 Lense–Thirring Effect in Quantum Physics

Due to huge improvements in the accuracy of devices based on the quantum
properties of matter, it may be useful to estimate the effect of a rotating grav-
itating body on quantum particles. Two types of effects can be imagined: The
effect on a matter wave interferometer and the effect on the spectrum of atoms.
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In the first case, the field Ω acts like a rotation of the interferometer if
the interferometer is attached to the fixed stars. The effect of rotation of the
interferometer on the phase of the quantum interference is the famous Sagnac
effect δφSagnac = m

�
ω ·A, where ω is the angular velocity of the interferometer

and A its area. Due to great success, e.g., in the cooling of atoms which makes
it possible to prepare interfering atoms which stay for a long time inside the
interferometer and thus possess a long interaction time, it may be possible to
detect the Lense–Thirring effect with atomic interferometry, see [25] for a recent
account on the sensitivity of atomic interferometers on rotation.

A realization of this effect is attempted within the HYPER project which is
planned to put atomic interferometers in space and to measure, beside the fine
structure constant and the quantum gravity induced foam structure of space, the
Lense–Thirring effect. For this purpose, two atomic interferometers based on Mg
and two based on Cs will be placed in two orthogonal planes. The resolution of
rotation rates aimed at is 10−14 rad/s for an integration time of 1000 s. Note that,
contrary to the GP-B approach where the cumulative effect over apoproximately
one year is read out, in this case the angular velocity ∇×h is measured locally.
No integration over many days is carried through. The integration takes place
for a few minutes only, that is, for a duration, over which the curl ∇ × h is
approximately constant. HYPER is planned to be put into orbit within the next
10 years.

It has been shown that the rotation of the earth has an influence on the
spectrum of atoms: While searching for anomalous spin–couplings in atoms [26],
one has to compensate for the influence of the earth’s rotation on the spin. This
in fact establishes [27] an experimental verification of the coupling between spin
and rotation, see [28]. However, since the accuracy of this result is not very high,
and since the rotation caused by Ω is about 9 orders of magnitude smaller than
the earth’s rotation, there is no hope in near future to use this approach for a
verification of the Lense–Thirring effect.

Appendix: Theory of Congruences

For a time–like vector field u, g(u, u) = −1, which may be interpreted as a field
of four velocities being tangents at a set of point–like particles, like dust, we
have [6]

Dµuν = ωνµ + σνµ +
1
3
θPµν − uµaν , (92)

where

ωνµ := (Pu)ρν(Pu)σµD[σuρ] , (93)

θ := Pµν
u D(µuν) , (94)

σνµ := (Pu)ρν(Pu)σµD(σuρ) − 1
3
θ(Pu)µν , (95)

a := Duu , (96)
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with the projection operator

(Pu)νµ := δνµ + uνuµ . (97)

For a time–like Killing congruence, that is, a congruence the four–velocity of
which is proportional to a Killing vector field,

ξ = eUu , £ξg = 0 , g(u, u) = −1 , (98)

we have σµν = 0 and θ = 0. A Killing congruence possesses only rotation and
acceleration. (One can show, that ω is, indeed, a rotation as defined in section
2.) Then the acceleration of u is given by

ξ
a := Duu = dU , DuU = 0 , (99)

which we get from projecting 0 = Dµξν + Dνξµ onto uν and uµuν . With this
result we get

Dµξν = Dµ(eUuν) = eUωνµ +
ξ
aµξν − ξ

aνξµ . (100)
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