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We discuss the structure of the Poincaré gauge theory of gravity (PG) that can be considered as the
standard theory of gravity with torsion. We reconfirm that torsion, in the context of PG, couples only to
the elementary particle spin and under no circumstances to the orbital angular momentum of test particles.
We conclude that, unfortunately, the investigations of Mao et al. (2007) and March et al. (2011)—who
claimed a coupling of torsion to orbital angular momentum, in particular in the context of the Gravity
Probe B (GPB) experiment—do not yield any information on torsion.
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1. Introduction

Ever since E. Cartan in the 1920s enriched the geometric frame-
work of general relativity (GR) by introducing a torsion of space-
time, the question arose whether one could find a measurement
technique for detecting the presence of a torsion field. Mao et al.
[1] claimed that the rotating quartz balls in the gyroscopes of the
GPB experiment [2], falling freely on an orbit around the Earth,
should “feel” the torsion. We emphasize that the GPB team of
Everitt et al. never made such a claim; they were aware that GPB
would not be able to sense torsion [3]. However, similar to Mao
et al., March et al. [4] argue with the precession of the Moon and
the Mercury and extend later their considerations to the Lageos
satellite.

A consistent theory of gravity with torsion emerged during the
early 1960s as gauge theory of the Poincaré group, see the review
in [5]. This Poincaré gauge theory of gravity incorporates as sim-
plest viable cases the Einstein–Cartan(–Sciama–Kibble) theory (EC),
the teleparallel equivalent GR‖ of GR, and GR itself. So far, PG and,
in particular, the existence of torsion have not been experimen-
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tally confirmed. However, PG is to be considered as the standard
theory of gravity with torsion because of its very convincing gauge
structure.

Since the early 1970s up to today, different groups have shown
more or less independently that torsion couples only to the el-
ementary particle spin and under no circumstances to the orbital
angular momentum of test particles. This is established knowl-
edge and we reconfirm this conclusion by discussing the energy–
momentum law of PG, which has same form for all versions of
PG. Therefore, we conclude that, unfortunately, the investigations
of Mao et al. and March et al. do not yield any information on
torsion.

2. Torsion defined, spin of matter introduced

Einstein’s theory of gravitation, GR, was finally formulated
in 1916. Already since this time, mathematicians and physicists,
namely Hessenberg, Levi-Civita, Weyl, Schouten, and Eddington,
amongst others, started to develop the geometrical concept of a
(linear) connection Γ . This is a tool for the parallel displacement
of vectors in a differential manifold, in particular in 4-dimensional
spacetime. The final formulation of the connection was given by
E. Cartan in 1923/24. He defined the connection 1-form Γα

β =
Γiα

β dxi as a new fundamental geometrical object (with α,β, . . .

as frame and i, j, . . . as coordinate indices, both running from 0
to 3); for the explicit references and for the formalism, including
the conventions, compare [5, pp. 17–21].
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If the connection is expressed purely in coordinate components,
then the antisymmetric part of it is a tensor, Cartan’s torsion ten-
sor,

Tij
k = Γi j

k − Γ ji
k ≡ 2Γ[i j]k = −T ji

k, (1)

with its 24 independent components. This is the tensor alluded to
in the title of our paper. Mao et al. [1] wanted to sense torsion by
using the results of the Gravity Probe B experiment of Everitt et al.
[2]; later, March et al. [4] tried to do the same thing by using data
of the Moon, of the Mercury, and of the Lageos satellite. We will
come back to this issue later.

In GR, the Riemannian connection is represented by the
Christoffel symbols Γ̃i j

k := 1
2 gkl(∂i g jl + ∂ j gli − ∂l gi j), where gij are

the components of the metric tensor and ∂i := ∂/∂xi . The Rieman-
nian connection is symmetric, it is torsion-free, that is, T̃ i j

k = 0.
Massive test particles in GR move along the geodesics of the Rie-
mannian connection:

d2xk

dτ 2
+ Γ̃i j

k dxi

dτ

dx j

dτ
= 0. (2)

When Cartan extended the geometrical framework of GR by in-
troducing a torsion of spacetime, he was conscious of the fact that
he also had to use a more fine-grained description of matter than
in GR. Instead of a classical fluid, acting via a symmetric energy–
momentum density t, he suggested a Cosserat type fluid with an
asymmetric energy–momentum density T and an intrinsic or spin
angular momentum density S, see [5, pp. 21 and 103].

This conception has been developed even before the spin of the
electron was discovered. We recognize that the introduction of the
geometrical concept of a torsion goes hand in hand with ascribing
to matter, besides an energy–momentum density, a further dynam-
ical characteristics, namely a spin angular momentum density. In a
general-relativistic theory of gravity, torsion and spin are interde-
pendent.

This interdependence was clear to Cartan. However, because of
an unfounded assumption, see Section 7, he was not able to for-
mulate a consistent theory of gravity with torsion.

3. Poincaré gauge theory as standard torsion theory

In the early 1960s, a consistent framework for a valid physical
theory of torsion was initiated by Sciama [6] and Kibble [7]. It was
conceived as a gauge theory of the Poincaré group [7], the semi-
direct product of the translations (4 parameters) and the Lorentz
rotations (6 parameters). In Minkowski spacetime, the Poincaré
group acts rigidly (“globally”). By means of the gauge procedure à
la Weyl–Yang–Mills, the Poincaré group is “localized”, acts merely
locally. This is made possible by introducing 4 gauge potentials for
the translations and 6 gauge potentials for the Lorentz rotations.
The emerging theory is called Poincaré gauge theory of gravitation
(PG), see [5], Part B for details.

The arena of the PG is a Riemann–Cartan (RC) spacetime. It is de-
termined by a metric gαβ (and its reciprocal gγ δ), an orthonormal
coframe ϑα = ei

α dxi , and a Lorentz connection Γ αβ := gαγ Γγ
β =

−Γ βα = Γi
αβ dxi . Having such a connection, we can define a co-

variant exterior derivative D . For a RC-space, we find Dgαβ = 0
(vanishing nonmetricity).

The coframe ϑα can be understood as translational gauge po-
tential and the Lorentz connection Γ αβ = −Γ βα as rotational
gauge potential. The corresponding gravitational field strengths are
torsion and curvature, respectively, which we find by differentia-
tion of the corresponding potentials:

T α := Dϑα = dϑα + Γβ
α ∧ ϑβ, (3)

Rαβ := dΓ αβ − Γ αγ ∧ Γγ
β = −Rβα. (4)
Fig. 1. A Riemann–Cartan space U4 with torsion T and curvature R and its different
limits (nonmetricity vanishes: Q αβ := −Dgαβ = 0), see [5, p. 174].

Note that in the term Γβ
α ∧ ϑβ of (3) the rotations and trans-

lation mix algebraically, due to the semi-direct product structure.
Hence it has to be taken with a grain of salt that T α is called
the translation field strength. In (4), the second term on the right-
hand side −Γ αγ ∧ Γγ

β is due to the non-commutative structure
of the Lorentz rotations: they form a non-Abelian sub-algebra of
the Poincaré algebra.

The different limits of a RC space are represented in Fig. 1. GR
takes place in a V 4, PG in a U4, GR‖ in a T4, and, when gravity
can be neglected, we are in an M4.

The definition (3) of the torsion, written with respect to co-
ordinates, degenerates to (1). Moreover, the explicit form of the
Lorentz connection, spelled out in coordinate indices, is Γi j

k =
Γ̃i j

k − Kij
k , with the contortion tensor

Kij
k = −1

2

(
Tij

k − T j
k

i + T k
i j
) = −Ki

k
j . (5)

So much about the geometry of the PG.
The physics of the PG is determined by a Lagrange 4-form

L = V
(

gαβ,ϑα, T α, Rαβ
) + Lmat

(
gαβ,ϑα,Ψ, DΨ

)
. (6)

V is the gravitational gauge part of the Lagrangian, depending on
the geometrical field variables, Lmat is the matter Lagrangian de-
pending on some minimally coupled matter fields Ψ (x), a Dirac
field, for example. For special considerations referring to nonmini-
mal coupling, compare Section 8.

By varying with respect to the gauge potentials (δ denotes a
variation), we can read off the sources in the field equations of the
PG as

Tα = δLmat

δϑα
and Sαβ = δLmat

δΓ αβ
= −Sβα, (7)

respectively. They turn out to be the canonical 3-forms of energy–
momentum Tα and of spin angular momentum Sαβ of matter.1

We postpone the discussion of the explicit form of the gravita-
tional Lagrangian V since this is not necessary for the understand-
ing of the equations of motion of test particles in PG. We will only
use it later in order to see that PG embodies viable gravitational
theories, namely GR, Einstein–Cartan theory, and the teleparallel
equivalent of GR.

4. How does one measure torsion of spacetime?

We have now a general idea how a PG looks like. We recognize
that PG is a straightforward extension of GR, and we wonder, how
a test particle moves in a spacetime with torsion.

1 They translate into the corresponding quantities of tensor analysis as follows:
Tα = Tα

βεβ and Sαβ = Sαβ
γ εγ , with the 3-form density εa := eα�ε , the frame

eα , and the volume 4-form density ε . In the reverse order, we have ϑβ ∧Tα = εTα
β

and ϑγ ∧Sαβ = εSαβ
γ .
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Clearly, we will take recourse to the established methods of GR.
GR is the only theory of nature in which the motion of a test parti-
cle is a consequence of the field equation of that theory and of the
energy–momentum law following therefrom. Thus, Dtα = 0, the
energy–momentum law of matter in GR, yields the motion of the
momentum vector of a test particle, see, for instance, the textbook
of Papapetrou [8], Chapter X (Equations of motion in general rela-
tivity). The angular momentum law is trivial in GR. It just entails
the symmetry of the energy–momentum tensor of matter.

In PG, there emerges a second field equation of gravity and,
induced by it, an independent angular momentum law. Thus, in
PG we have the momentum and the angular momentum laws. This
coupled set of equations is used as a basis to derive equations of
motion for test bodies. Why should there be a reason to change
horses that carried us so far in the past? To postulate the equations
of motion for a test particle independently of the field equations
controlling gravity is potentially dangerous, because it will likely
lead to inconsistencies, and it defies established practice in GR.

In other words, the study of the equations of motion of test
particles in PG follows the same pattern as in GR. The only dif-
ferences, see [5], Chapter 14 (Equations of motion), are as follows:
The energy–momentum law picks up Lorentz type of forces,

∂ jT i j ∼= (
K jk

i − Γ̃ jk
i)T jk − S jkl R jk

i
l, (8)

and the angular momentum law, for nonvanishing spin, becomes
nontrivial,

∂kS i jk ∼= T [i j] + 2Γ [i
klS j]kl. (9)

These equations are here displayed in coordinate language for
better comparison with the older literature. They are “weak identi-
ties”, hence the ∼= sign, since we assumed the validity of the field
equation for matter: δLmat/δΨ = 0. We stress that the two the-
orems (8) and (9) are generally valid in PG independently of the
explicit choice of the gravitational Lagrangian V in (6). That is,
they apply to all torsion theories that are formulated in a general-
relativistic framework.

Let us now list chronologically a selection of decisive papers
on the measurement of torsion in order to provide an appropriate
background for the evaluation of the papers of Mao et al. [1] and
March et al. [4]. In

• 1971: Ponomariev [9] assumed that test particles move along
autoparallels (the straightest lines) of the RC-spacetime:

d2xk

dτ 2
+ Γi j

k dxi

dτ

dx j

dτ
= 0. (10)

There was no reason given. Of course, from a purely geomet-
rical point of view, these curves have a preferential role in a
RC-space. This does not imply, however, that they have to have
a preferred role in physics, too. We will see that this assump-
tion reappears in the literature later on. Then, in

• 1971, one of us [10] pointed out that “Torsion can be mea-
sured by means of a test particle with spin possessing a
canonical energy–momentum tensor with a nonvanishing
antisymmetric part”. This was derived from the energy–
momentum law (8) of PG; note that the torsion enters (8)
via the contortion K , see (5). As far as we know, Ponomariev
did not object to this conclusion. In

• 1975, Adamowicz and Trautman [11] took the angular mo-
mentum law (9) and deduced the spin precession induced by
torsion: “The torsion of space-time may be measured by ob-
serving the precession of [the] spin of a particle”. These two
papers set the stage for the application of some more subtle
methods. In
• 1979, Rumpf [12], in his Erice lecture (given during the be-
ginning of May 1979), computed by a quantum-mechanical
method the characteristic precession frequency of a Dirac spin
in a torsion field. This gave confidence that the spin preces-
sion in a torsion field is a realistic effect, obeyed by one of the
fundamental fermionic fields of nature, see also [13]. In

• 1979/80, Stoeger and Yasskin [14,15] asked the question: “Can
a macroscopic gyroscope feel a torsion?”. They used the gen-
eral theory of spin motion of Mathisson and Papapetrou. Their
verdict is unequivocal: “Our results show that the torsion cou-
ples to spin but not to rotation. Thus a rotating test body with
no net spin will ignore the torsion and move according to the
usual Papapetrou equations. Hence the standard tests of gravity
are insensitive to a torsion field” (emphasis by us). Is there any-
thing more to be said? This should have been the (definite)
end of the story. In

• 1981, Audretsch [16] considered the Dirac electron in a space-
time with torsion. Since Rumpf [12] had used a somewhat
unconventional quantum-mechanical procedure, it was reas-
suring that Audretsch, by employing a WKB approximation of
the Dirac equation in lowest order, found the same precession
frequency of the spin as Rumpf and the same effective con-
nection for the transport of the spin vector.
The basic understanding of the spin–torsion coupling was clar-
ified at this time (1981). For more details and further litera-
ture, we refer to [5], Chapter 14. Still, let us have a quick look
at some subsequent papers for curiosity. In

• 1997, Lämmerzahl [17] revisited the Hughes–Drever experi-
ment, which was originally used to exclude a possible aniso-
tropy of the mass. He determined the influence of torsion
on the energy levels of the atoms involved and found as
upper bound for the axial piece of the torsion (3)T α <

10−15 meter−1.
This result reminds us that the remaining irreducible pieces
of the torsion,2 namely the tensor piece (1)T α and the vector
piece (2)T α , with T α = (1)T α + (2)T α + (3)T α , must be mea-
sured by means of test particles with spins s �= 1

2 . We extract
from the results of Seitz [18] and of Spinosa [19,20] the fol-
lowing formula for the torsion as seen by a test spin s, which
is valid for s = 1

2 ,1, 3
2 ,2:

T α
s>0 =

(
1 − 1

2s

)
T α + 3

2s
(3)T α

=
(

1 − 1

2s

)(
(1)T α + (2)T α

) +
(

1 + 1

s

)
(3)T α. (11)

Accordingly, a Proca field, which carries spin 1, couples, in
contrast to the Dirac field, to all three pieces of the torsion.
Subsequently, in 2008, Kostelecky, Russell, and Tasson [21], by
using new data, confirmed the upper bound for a possible tor-
sion. In

• 2000 Kleinert [22], quite surprisingly, “proved”, neglecting al-
most all of the previous literature on equations of motion, that
a spinless particle follows an autoparallel path thereby sensing
torsion. This contradicts established theories, see our discus-
sion above of Ponomariev (1971) and the consequences.
Kleinert takes an argument from particle physics. The spin 1 of
a rho vector-meson, if considered as a bound state on a quark
level, may be only caused by orbital angular momentum, that
is, the spin 1 of the ρ(770) may be orbital angular momentum

2 Explicitly, we have for the (co)vector and the axial (co)vector pieces V := eβ�T β

and A := (ϑα ∧T α), with (2)T α = − 1
3 V∧ϑα and (3)T α = 1

3
(A∧ϑα), respectively,

see [5], p. 225.
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in camouflage. However, this argument forgets the lesson of
effective field theory.3

If a ρ(770) moves at moderate speed in an exterior gravita-
tional field, there is every reason to believe that it does behave
like a Proca field of spin 1, in accordance with its classifica-
tion in elementary particle tables. In fact, we know experi-
mentally in the case of a neutron, moving in a gravitational
field, that it behaves like a Dirac particle of spin 1

2 , see the
Colella–Overhauser–Werner (COW) experiment [23] and its in-
terpretation [24,25]. Whether the neutron spin 1

2 has, on the
quark level, an orbital angular momentum contribution of the
three quarks, has no relevance for the COW-type experiment.
If we are in a quark–gluon plasma, however, then the quark
spin is of relevance and torsion couples to it, but under nor-
mal conditions the neutron is of spin 1

2 .
Accordingly, Kleinert’s new universality principle of orbital and
spin angular momentum mixes up different levels of obser-
vation. Above all, Kleinert’s conclusion on the autoparallels
drawn therefrom, as we saw above, defies all knowledge on
equations of motion in general-relativistic field theories. His
nuclear physics arguments are contrived and do not apply to
the neutrons of the COW experiment nor to the ρ(770). In

• 2002 Shapiro [26], in his extended review of torsion, found
again equations of motion for a spin in a torsion field that are
consistent with those of Rumpf, Audretsch, and Lämmerzahl
mentioned above, see [26], Eq. (4.60). However, in

• 2007, Mao, Tegmark, Guth, Cabi4 [1], in their investigation on
the possible effect of torsion on the rotating quartz balls of
the gyroscope of the Gravity Probe B experiment [2], proposed
two postulates: (i) The equation of motion for their “spin”, see
[1], Eq. (19), and (ii) their spin has to move along an autopar-
allel. Both postulates are ad hoc and the second one is even
inconsistent, as we saw above. We will come back to their pa-
per in Section 9. Already before the final publication of the
Mao et al. paper, in

• 2007, Flanagan and Rosenthal [27] noted that the gravitational
theory with torsion, taken by Mao et al. as a guinea pig, is
inconsistent. This led Mao et al. to declare that the torsion
theory they used should “. . . not be viewed as a viable phys-
ical model, but as a pedagogical toy model giving concrete
illustrations of the various effects and constraints that we dis-
cuss”. Why should an inconsistent model be good enough for
pedagogical purposes if it is basically not good enough for a
scientific journal?
At the same time Flanagan and Rosenthal [27] stated in their
conclusions that “There may exist other torsion theories which
could be usefully constrained by GPB. It would be interesting
to find such theories”. In Section 9 we will show that such a
finding appears to be only a very remote possibility. Shortly
afterwards, in

• 2007/08, Puetzfeld and Obukhov [28,29] showed by a multi-
polar approximation scheme that Mao et al. are ruled out for
a very large class of theories, only intrinsic spin couples to
torsion, in particular it was explicitly shown, see Section 10

3 “In physics, an effective field theory is, as any effective theory, an approximate
theory (usually a quantum field theory), that includes appropriate degrees of free-
dom to describe physical phenomena occurring at a chosen length scale, while
ignoring substructure and degrees of freedom at shorter distances (or, equivalently,
at higher energies)”, see Wikipedia of 30 March 2013.

4 In 2006, when the Mao et al. paper was uploaded to arXiv.org, one of us imme-
diately communicated his objections to Max Tegmark and his coauthors, basically
the same objections as those to be discussed in this Letter; but it was of no avail.
The analogous happened in the case of the March et al. papers. They did not find
our arguments convincing either.
of [29], that the model of Hayashi and Shirafuji [30] does not
have the properties claimed by Mao et al. In

• 2010, Babourova and Frolov [31] came up with an alterna-
tive gravitational theory in which they claim that orbital an-
gular momentum can be a source of torsion. However, their
construct is inconsistent since already their Lagrangian [31],
Eq. (10), depends on the position “vector” and is as such no
longer a covariant quantity. Still, in

• 2011, March et al. [4] reiterate Mao et al., but take instead
Mercury and Moon data and, later, data of the Lageos satellite.
Again they “. . . make use of the autoparallel trajectories, which
in general differ from geodesics when torsion is present”. We
saw already in the context of the Mao et al. discussion that
this leads to nowhere.

5. Poincaré gauge theory, its general structure, quadratic gauge
Lagrangians

Let us now come back to the PG, which we only sketched
in Section 2. Consider the minimally coupled total Lagrangian L
in (6). Since we want to leave the gravitational Lagrangian V =
V (gαβ,ϑα, T α, Rαβ) open for the time being, we define the trans-
lational and Lorentz field excitations (or field momenta),

Hα = − ∂V

∂T α
, Hαβ = − ∂V

∂ Rαβ
. (12)

As soon as we specify the explicit form of V , we can compute the
H’s simply by partial differentiation.

The field equations of the PG read

D Hα − tα = Tα

(
First grav. FEQ, δ/δϑα

)
, (13)

D Hαβ − sαβ = Sαβ

(
Second grav. FEQ, δ/δΓ αβ

)
, (14)

δLmat/δΨ = 0 (Matter FEQ, δ/δΨ ); (15)

for their derivation see [5], Chapter 5, and the references given
there. The sources on the right-hand side of First and Second are
the canonical energy–momentum Tα and spin Sαβ of matter de-
fined in Eq. (7). The energy–momentum and spin of the gauge
fields are, respectively,

tα := eα�V + (
eα�T β

) ∧ Hβ + (
eα�Rβγ

) ∧ Hβγ , (16)

sαβ := −ϑ[α ∧ Hβ]. (17)

As we shall see later in detail, we will find the Einstein sector
of the PG if Hα = 0 and thus First degenerates to the innocently
looking −tα = Tα .

Like in electrodynamics and in Yang–Mills theory, the gauge
field Lagrangian should be algebraic in the field strengths, here
in T α and Rαβ . Then we find second order partial differential
equations (PDEs) in the gauge variables (ϑα,Γ αβ). Moreover, they
should be quadratic in order to induce quasi-linearity of the PDEs
and thus wave type equations for both gravitational field equa-
tions.

Symbolically, such a quadratic gauge Lagrangian, with the con-
ventional “weak” gravitational constant κ , the “strong” gravita-
tional constant �, and the cosmological constant Λ0, reads

V qPG ∼ 1

κ

(
R + X + Λ0 + {T }2) + 1

�
{R}2. (18)

Here R denotes the curvature scalar and X ∼ ε i jkl R[i jkl] the curva-
ture pseudoscalar, {T }2 symbolizes the sum of four torsion square
pieces and {R}2 the sum of eight curvature square pieces. The ex-
act formula, which we do not need here, can be found in Baekler
et al. [32] or in [5], Eq. (5.13).
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Fig. 2. Classification of Poincaré gauge theories of gravity (Blagojević, Hehl, Obukhov,
see the frontispiece of [5]): PG = Poincaré gauge theory (of gravity), EC = Einstein–
Cartan(–Sciama–Kibble) theory (of gravity), GR = general relativity (Einstein’s the-
ory of gravity), TG = translation gauge theory (of gravity) aka teleparallel theory
(of gravity), GR‖ = a specific TG known as teleparallel equivalent of GR (spoken
“GR teleparallel”). The symbols in the figure have the following meaning: rectangle� → class of theories; circle © → definite viable theories.

6. Poincaré gauge theory and its viable subsets

The quadratic gauge Lagrangian (18), taken together with the
field equations (13), (14), and (15), represent the output of gauging
the Poincaré group according to the conventional gauge principles.
This we consider to be the class of standard torsion theories. To se-
lect a definite gauge Lagrangian V qPG will be a task for the future,
for details see [5], Part B.

The simplest Lagrangian is the curvature scalar of the RC-
spacetime yielding the Einstein–Cartan theory of gravity (EC), see
Fig. 2:

V EC ∼ 1

κ
R ∼ 1

κ

(
ϑα ∧ ϑβ

) ∧ Rαβ(Γ )

∼ 1

κ
ei

αe j
β Rij

αβ(Γ )
(
 = Hodge dual

)
. (19)

The EC can be put in such a form that it is represented by GR
plus a weak gravitational spin–spin contact interaction that only
leads to deviations from GR at extremely high matter densities.
The critical density at which GR breaks down is

ρcrit ∼ m/
(
λCompton�2

Planck

)
. (20)

For a nucleon this is more than 1052 g/cm3 or 1024 K, with a crit-
ical length of �crit ∼ 10−26 cm. Thus, EC is a viable gravitational
theory. In cosmological applications it could be of relevance. If in
EC the material spin S and thus the torsion vanish, we recover GR,
see Fig. 2. Consequently, PG contains the viable theories EC and GR
and is as such a non-empty framework with a reasonable GR limit.

Perhaps surprisingly, PG has a further subclass of a viable grav-
itational theory. If we choose in the Lagrangian (18) the option
with ∼ 1

κ {T }2 and require the vanishing of the curvature, that is,
we imbed this Lagrangian in a Weitzenböck spacetime, then we
have the Lagrangian of a translational gauge theory of gravity (TG),
namely

V TG ∼ 1

κ
{T }2 + Rα

β ∧ λα
β; (21)

here λα
β is a Lagrange multiplier, see [5, Chapter 6], for details

and literature.
Now we require additionally local Lorentz invariance and can

single out a definite version of {T }2, namely

V GR‖ = − 1

2κ
T α ∧ 

(
− (1)Tα︸ ︷︷ ︸

tensor

+2 (2)Tα︸ ︷︷ ︸
vector

+ 1

2
(3)Tα︸ ︷︷ ︸

axial vec.

)

+ Rα
β ∧ λα

β, (22)

the teleparallel equivalent of GR. For scalar and for Maxwell mat-
ter, that is, for Ti j = ti j , it can be shown that GR‖ and GR are
equivalent, see [5], Chapter 6, and as well the recent reviews of Al-
drovandi and Pereira [33] and Maluf [34]. Hence we found another
viable version of PG, demonstrating the power of this framework.

7. The universally valid energy–momentum law in Poincaré
gauge theory

We generalize the corresponding law of GR, Dtα = 0, to-
gether with the symmetry condition ϑ[α ∧ tβ] = 0, to the energy–
momentum law and angular momentum law of PG:

DTα
∼= (

eα�T β
) ∧Tβ + (

eα�Rβγ
) ∧Sβγ , (23)

DSαβ
∼= −ϑ[α ∧Tβ]. (24)

These are the laws in exterior form calculus, for the tensor analysis
version, see (8) and (9). Incidentally, Cartan assumed ad hoc that
the right-hand side of (23) has to vanish, similar as in GR’s law
Dtα = 0. However, if one does the Noether “algebra” correctly, one
finds (23), indeed; see, for instance, [35], Eq. (5.2.10) for Q αβ = 0,
or [36], Eq. (4.11). Interestingly enough, in 3 dimensions, Cartan’s
assumption turns out to be correct.

In order to isolate the torsion-dependent terms, we decom-
pose the connection Γ αβ = Γ̃ αβ − K αβ into its Riemannian part
Γ̃ αβ plus torsion-dependent pieces. The contortion K αβ is defined
in (5); furthermore, we have T α = K α

β ∧ ϑβ . The split connection
will be substituted into the D and Rβγ of (23). We find (L = Lie
derivative),

D̃
[
Tα −Sβγ (eα�Kβγ ) −Sβγ ∧ (Leα Kβγ )

]
∼= Sβγ ∧ (eα�R̃βγ ). (25)

This is a universally valid law for all PGs, independent of the grav-
itational Lagrangian V . It shows conclusively that spin alone does
couple to contortion and hence to torsion. Note that its right-hand
side depends only on the Riemannian piece, in contrast to Eq. (8),
which depends on the complete RC-curvature.

For vanishing torsion, we have D̃Tα = Sβγ ∧ (eα�R̃βγ ), that is,
a momentum law that exhibits a spin–curvature force density on
its right-hand side. This is the same structure as the Mathisson–
Papapetrou force in GR, with the difference that here the force
density does not contain integrated moments. Then, D̃tα = 0, with
tα = Tα − D̃μα and μα = −2eβ�Sα

β + 1
2 ϑα ∧ (eβ�eγ �Sβγ ).

In PG, integrate (25) over a drop of a spin fluid. Then we find
the equation of motion of the momentum of the spin drop. It will
certainly not be an autoparallel curve, see [29].

8. On nonminimal coupling

In this Letter we have confined our discussion to matter inter-
acting minimally with the gravitational field. However, currently
considerable attention is drawn to models with nonminimal gravi-
tational coupling see [37–39], for example. In particular, in some
theories such a generalized interaction arises when the gravita-
tional coupling constant is replaced by a coupling function F that
depends on the gravitational field strength (curvature and/or tor-
sion). The corresponding modified Lagrangian reads F Lmat. One
can verify that the metrical energy–momentum tensor

√−gti j =
2δ(

√−gLmat)/δgij even for the spinless matter is not covariantly
conserved [40,37], but instead it satisfies the balance law

∇ iti j = −(gij Lmat + ti j)
∇ i F

F
. (26)

As an immediate consequence, we find that the motion of a test
particle or body is non-geodetic since an extra force is acting on it,
which is proportional to the gradient of the coupling function F .
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It was demonstrated in [39] that the modified conservation law
(26) leads to non-geodetic motion, in which F can depend arbi-
trarily on the components of the Riemann curvature tensor (in
practice, being a scalar, F is any function of all possible algebraic
invariants built from the curvature). Furthermore, in [41] it was
shown that the remarkably simple law (26) is also true for the cou-
pling function F that depends arbitrarily on the Riemann–Cartan
curvature and torsion tensors.

This implies that a nonminimal coupling of matter to gravity
represents actually a loophole that allows to detect the possible
non-Riemannian structure of spacetime by means of spinless mat-
ter. Such a loophole, however, is qualitatively different from the
“Hypothesis T” which we discuss in the next section.

9. Our answer to Mao et al. and March et al.

In a discussion, Tegmark made an attempt to elucidate the
Mao et al. philosophy by defining the Hypothesis T [42]: “There’s
a consistent nonstandard gravity theory where torsion couples
to macroscopic rotation”. Taking this hypothesis as their starting
point, Mao et al. believe that they could constrain the possible
torsion of spacetime in such a nonstandard gravity theory via the
experimental results of GPB.

If we take PG as the standard torsion theory, then rotating
quartz balls are blind to torsion, as we underlined again in Sec-
tion 7. Even if we do not commit ourselves to a specific form of
the gravitational Lagrangian V , the energy–momentum law com-
mands that torsion only couples to spin, see Eq. (25) and the two
terms that couple spin S directly to the contortion K .

Moreover, as Flanagan and Rosenthal [27] and two of us [29]
have shown, the teleparallel theory used by Mao et al. also cannot
provide a framework for measuring torsion. Hence Hypothesis T is
empty so far. Furthermore, Mao et al. postulated the autoparallel as
an equation of motion, which is incorrect in a general-relativistic
set-up anyway, quite independent of the field equations.

It is a general rule in physics that one can only measure a
certain quantity provided one has a consistent theory about this
quantity in the first place. If one wants to measure, say, an ac-
celeration of a particle, one has first to define an acceleration via
a = d2x/dt2. After these considerations, one can measure a. A sen-
sible interpretation of experiments in physics usually requires preceding
theoretical groundwork. By the same token, we have first to develop
a consistent theory of the torsion before we are able to measure it.

But there is even a more direct argument that is lethal to Hy-
pothesis T: In the whole of the Mao et al. paper, the authors only
speak about the vacuum field equations. They never address the
question of how a field equation could look like where “macro-
scopic rotation”, that is, macroscopic orbital angular momentum
features as a source of a gravitational field equation. Mao et al.
claim that in other papers there is an “assumption that orbital an-
gular momentum cannot be the source of torsion”. In fact, orbital
angular momentum as a tensor is only known for extended struc-
tures, never as a density existing at one point. It is a quantity alien
to local field theory. The torsion tensor, however, is a local point-
dependent object. Accordingly, in a local field equation, these two
quantities cannot be related to each other. That is, orbital angu-
lar momentum cannot be the source of torsion on account of the
different nature of those two objects.

In special relativity in Cartesian coordinates, the orbital angular
momentum flux density is x[iT j]k , with the position vector xi and
the energy–momentum tensor Ti

j . The divergence of the orbital
angular momentum flux density reads

∂k
(
x[iT j]k) = T[ ji] + x[i|∂kT| j]k. (27)
If the action of a physical system without (intrinsic) spin angular
momentum is invariant under spacetime translations and (Lorentz)
rotations, the energy–momentum is conserved, ∂kTi

k = 0, and we
find the angular momentum conservation law

∂k
(
x[iT j]k) = T[ ji] = 0. (28)

The orbital angular momentum x[iT j]k is not a tensor in curvi-
linear coordinates. In the words of Truesdell [43], it is a quantity
that is “not indifferent” to coordinate transformations, whereas le-
gitimate field-theoretical quantities should be indifferent. Accord-
ingly, this quantity does not exist as a local quantity in a curved
(in particular, in Riemann–Cartan) spacetime. However, the con-
servation law of the angular momentum, namely T[ ji] = 0, can
be generalized to Riemann–Cartan spacetimes, provided the mo-
mentum law is fulfilled. When, in addition, matter possesses the
intrinsic spin angular momentum Si j

k , it contributes to the bal-
ance law the divergence DkSi j

k thus providing the total angular
momentum law DkSi j

k − T[i j] = 0. The latter is meaningful even
if the orbital angular momentum does not exist in curved space:
In contrast to its orbital partner, spin angular momentum Si j

k is
a well-defined “indifferent” tensor in a Riemann–Cartan spacetime
and can act as a source.

Hypothesis T is untenable, since it links the field theoretical
notion “torsion” with the orbital angular momentum of an ex-
tended structure; this net orbital angular momentum cannot be
represented as an integral over a local orbital angular momentum
density, since such a density does not exist. We thus conclude that
Hypothesis T is empty.

No counterexample is known to our result. Our conclusion can
be found in the last phrase of our Abstract.

Eventually, we have also an optimistic message: Already in
1983, Ni [44] suggested to build gyroscopes with spin-polarized
balls as active elements consisting of solid helium-three (3He) and
to put them into orbit around the Earth. Ni has also used for ex-
periments in the gravitational field dysprosium–iron compounds
Dy6Fe23, see [45], with a relatively high net spin of about 0.4 elec-
tron spins per atom, but with no disturbing magnetic moment.
With such tools one could hope to find torsion, if it exists in na-
ture.
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