```
656'th WE-Heraeus Seminar "Fundamental Physics in Space,"
    October 23-27, 2017, Innside, Bremen, Germany
```


Direct Multipixel Imaging and Spectroscopy of an Exoplanet with a Mission to the Focus of the Solar Gravitational Lens

Slava G. Turyshev ${ }^{1}$, Michael Shao ${ }^{1}$, Nathan Strange ${ }^{1}$, Mark R. Swain ${ }^{1}$, Leon Alkalai ${ }^{1}$, Hanying Zhou ${ }^{1}$, Janice Chen ${ }^{1}$, Stacy Weinstein-Weiss ${ }^{1}$, Nitin Aurora ${ }^{1}$, Dmitri Mawet ${ }^{1}$, Viktor Toth ${ }^{2}$, James DeLuca ${ }^{3}$, and Jared R. Males ${ }^{4}$
${ }^{1}$ Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91009 USA
${ }^{2}$ wwww.vttoth.com, ${ }^{3}$ www .jimiticus.com,
${ }^{4}$ University of Arizona, Tucson AZ

Precision alignment between a Lens and the Earth is very unlikely...

The First Test of General Theory of Relativity

Gravitational Deflection of Light:

$$
\alpha_{\mathrm{GR}}(b)=\frac{2(1+\gamma) G M_{\odot}}{c^{2} b} \simeq 1.75\left(\frac{1+\gamma}{2}\right)\left(\frac{\mathcal{R}_{\odot}}{b}\right) \operatorname{arcsec}
$$

Campbell's telegram to Einstein, 1923

Solar Eclipse 1919:
Deflection $=0$; possible outcomes
Newton = 0.87 arcsec;
Einstein $=2 \times$ Newton $=1.75$ arcsec

Einstein and Eddington, Cambridge, 1930

THE SOLAR GRAVITATIONAL LENS

 Gravitational Deflection of Light

 Gravitational Deflection of Light is a Well-Known Effect Today

\beth THE SOLAR GRAVITATIONAL LENS

Techniques for Gravity Tests:

Radar Ranging:

- Planets: Mercury, Venus, Mars
- s/c: Mariners, Vikings, Pioneers, Cassini, Mars Global Surveyor, Mars Orbiter, etc.
- VLBI, GPS, etc.

Laser:

- SLR, LLR, interplanetary, etc.

Dedicated Gravity Missions:

- LLR (1969 - on-going!!)
- GP-A,'76; LAGEOS,'76,'92; GP-B,'04; LARES,'12; MicroSCOPE,'16, ACES, '18; LIGO,'16; eLISA, 2030+(?)

New Engineering Discipline Applied General Relativity:

The Nobel Prize in Physics 2017

© Nobel Media. III. N. Elmehed
Rainer Weiss
Prize share: 1/2

© Nobel Media. Ill. N. Elmehed Barry C. Barish Prize share: $1 / 4$

Q Nobel Media ill. N. Emehed
Kip S. Thorne Prize share: 1/4
"for decisive contributions to the LIGO detector and the observation of gravitational waves"

- Daily life: GPS, geodesy, time transfer;
- Precision measurements, deep-space navigation \& μ as-astrometry (Gaia)

General relativity is now well tested. Can we use it to build something?

Eshleman V.R., Science 205, 1133 (1979)

Gravitational Lens of the Sun: Its Potential for
 Observations and Communications over Interstellar Distances

Abstract

The gravitational field of the sun acts as a spherical lens to magnify the intensity of radiation from a distant source along a semi-infinite focal line. A spacecraft anywhere on that line in principle could observe, eavesdrop, and communicate over interstellar distances, using equipment comparable in size and power with what is now used for interplanetary distances. If one neglects coronal effects, the maximum magnification factor for coherent radiation is inversely proportional to the wavelength, being 100 million at 1 millimeter. The principal difficulties are that the nearest point on the focal half-line is about 550 times the sun-earth distance, separate spacecraft would be needed to work with each stellar system of interest, and the solar corona would severely limit the intensity of coherent radiation while also restricting operations to relatively short wavelengths.

About 40 years ago, Einstein (I) published a short note in Science on the focusing of starlight by the gravitational field of another star. He emphasized the improbability of observing this phenomenon by the chance alignment of two stars and the earth. From concepts based on current technology and trends, however, it appears that gravitational focusing of electromagnetic radiation might be employed, by design, for highly directional observations and communications over interstellar distances.
In such use, the gravitational field of the sun could play several roles. First, it might be used to reduce fuel and time re-
$1+\nu$, where the refractivity $\nu=g / r$ at radius r. A ray is deflected through the angle $\alpha=2 g / a$, where a is the ray impact parameter and g is the gravitational radius $\left(g=2 G \mathrm{~m} / \mathrm{c}^{2}\right.$, where G is the gravitational constant, m is the mass of the central body, and c is the speed of light). It is assumed throughout that $\alpha \ll 1$. An observer at position z behind the lens and x from the center line, as illustrated, would see an energy density lessened by defocusing in the plane of propagation, but increased by focusing due to the curved limb normal to this plane. The relative single-ray intensity $I=F_{\mathrm{h}}{ }^{2} F_{\mathrm{v}}{ }^{2}$, where in ray optics $F_{\mathrm{h}}{ }^{2}=$
nel scales along the circumference of a circle at the ray-impact radius. Using also the wave number $k=2 \pi / \lambda$, the maximum intensification of the coherent signal is simply

$$
\begin{equation*}
I_{\max }=2 \pi k g \tag{2}
\end{equation*}
$$

As an approximation, let the focal "spot" radius x_{s} be the value of x where I falls to $I_{\max } / 4$, so that $x_{s}=$ $(2 / \pi k)(z / 2 g)^{1 / 2}$. Thus the angular resolution for distinguishing two adjacent coherent sources by a corresponding change in intensity is x_{s} / z radians. (The first null off the center line is at $x=\pi^{2}$ $x_{3} / 2$, and the first sidelobe is twice this distance with intensity $I_{\max } / \pi^{2}$.) The periapsis or minimum radius of the ray relative to the center of mass is $a-g$, or essentially a, and this must be greater than r_{0}, the physical radius of the spherical mass. Thus $\alpha_{\max }=2 g / r_{0}$ and the focal line begins at $z_{\min }=r_{0}^{3} / 2 g$.
Now consider the focusing at $z>z_{\text {min }}$ of incoherent radiation from a uniformly bright, circular, extended source of radius r_{p} and distance $z_{\mathrm{p}} \gg z$. This is the problem considered by Einstein (I) and more completely by others, notably Liebes (4). The gain factor A of the gravitational lens for the intensity observed from the two individual imagn com. Kraus J.D., Radio Astronomy, Cygnus-Quasar Books, Powell, Ohio, 6-115 (1986) Maccone C., many papers, 1999-present \quad Turyshev \& Andersson, MNRAS 341, 577 (2003)

SGL enables direct multipixel imaging

- Overcoming the issue of a small target size:
- Consider an exo-Earth @ 30pc (100 I.y.) is $\sim 1.4 \times 10^{-11}$ rad;
- A diffraction-limited telescope needed to resolve an object with this size at such distance must have a diameter of $\sim 76 \mathrm{~km}$;
- But, even this telescope would barely resolve the disk of the planet.
- To resolve the planet with 1,000 pixels one needs a telescope with a diameter of $7.6 \times 10^{4} \mathrm{~km}$ (or $\sim 12 R_{\oplus}$), which is impractical...
- An imaging interferometer with a set of such baselines - not feasible.
- Even more challenging is the integration time needed to reach SNR=10:
- a 50 m telescope would need an integration time of $t \sim 10^{6}$ years (zodi);
- with SGL's light amplification ($\sim 2 \times 10^{11}$) we could do the job in ~ 5 weeks.
- Solving the parent start light contamination issue:
- Current exoplanet-imaging concepts detect light of a planet as a single pixel. Contamination from the parent star (~ 0.1 " off the planet) is a major problem;
- Due to the high angular resolution of the SGL (~ 0.5 nas), the parent star is resolved from the planet with its light amplified 0.01 AU away from the optical axis, making the parent star contamination issue negligible.

THE SOLAR GRAVITATIONAL LENS
 The Solar Gravitational Lens (KISs study, 2015)
 JPL

The Interstellar Medium

Heliosphere

Interaction Zone

The Local Interstellar Cloud .
InterstellarWind
$\stackrel{\leftarrow}{\leftarrow}$

Interstellar Medium

The G Cloud
Oort
Cloud

Oort
Cloud
 interference

Focal beam of extreme intensity

Herlt \& Stephani, IJMP 15, 45 (1976)

- Major brightness increase:
- For small departures from the optical axis, ρ, magnification of the SGL is:
$\mu_{z}(\rho, z, \lambda) \cong 4 \pi^{2} \frac{r_{g}}{\lambda} J_{0}^{2}\left(2 \pi \frac{\rho}{\lambda} \sqrt{\frac{2 r_{g}}{z}}\right)$
- Max value of $G(\rho, \lambda)$ is on axis:

$$
\mu_{z}(0, z, \lambda) \cong 4 \pi^{2} \frac{r_{g}}{\lambda}
$$

Point-spread

Turyshev \& Toth, Phys. Rev. D 96, 024008 (2017)
Gain of the SGL as seen in the image plane as a function of possible observational wavelength

Properties of the Solar Gravity Lens

- Important features of the SGL (for $\lambda=1 \mu \mathrm{~m}$):
- Major brightness magnification: a factor of 10^{11} (on the optical axis);
- High angular resolution: ~0.5 nano-arcsec. A 1-m telescope at the SGL collects light from a $\sim(10 \mathrm{~km} \times 10 \mathrm{~km})$ spot on the surface of the planet, bringing this light to one 1-m size pixel in the image plane of the SGL;
- Extremely narrow "pencil" beam: entire image of an exo-Earth ($\sim 13,000 \mathrm{~km}$) at 100 I.y. is included within a cylinder with a diameter of $\sim 1.3 \mathrm{~km}$.
- Collecting area of a 1-m telescope at the SGL's focus:
- Telescope with diameter d_{0} collects light with impact parameters $\delta b \simeq d_{0}$;
- For a 1 -m telescope at 750AU, the total collecting area is: $4.37 \times 10^{9} \mathrm{~m}^{2}$, which is equivalent to a telescope with a diameter of $\sim 80 \mathrm{~km} . .$.

Imaging Exoplanets with the Solar Gravitational Lens

Please watch the movie at:

https://www.youtube.com/watch?v=Hjaj-Ig9jBs

Exploring optical properties of the SGL

- Significant potential for high-resolution spectroscopy:
- Spectroscopic signal is high: SNR~106 in 1 sec (broadband);
- Splitting this signal in $\sim 10^{6}$ bands would yield high-resolution spectra.
- Although very powerful, the Sun is not a very good lens:
- Magnified images will be highly blurred, with any given pixel containing light reflected from adjacent regions on the surface of the exoplanet.
- Would require correction with modern image reconstruction techniques:
- Planetary rotation would provide periodic changes. Rotational deconvolution (aka tomography): ~250-300 pixel images in ~ 1 year;
- Direct deconvolution: SNR reduction because of blurring, leading to longer integration times to reach ~ 800 pixel (study is ongoing).
- Observing on the background of the solar corona:
- Corona pushes us to higher heliocentric distances ~650-850 AU;
- Required chronographic performance 10^{-6} (WFIRST needs 10^{-9});
- Internal coronagraph that has $\sim 2 \times 10^{-7}$ attenuation, 15% throughput, but pushes to larger apertures $1.5-2.2 \mathrm{~m}$;
- External coronagraph (i.e., starshade) allows for smaller aperture(s).

Point spread function \& gain of the SGL

Turyshev \& Toth, Phys. Rev. D 96, 024008 (2017)

Image formation by the SGL

Accretion disk around a black hole as a test object for convolution by the PSF of the SGL.

$$
\begin{gathered}
I\left(\mathbf{x}_{2}, \lambda\right)=O(\mathbf{x}, \lambda) \otimes P S F_{\text {diff }}\left(\mathbf{x}_{2}, \lambda\right) \\
P S F_{\mathrm{diff}}\left(\mathbf{x}_{2}, \lambda\right) \simeq J_{0}\left(\frac{\pi|\mathbf{x}| r_{0}}{\lambda f}\right) \otimes \frac{r_{0}}{\left|\mathbf{x}_{2}\right|}
\end{gathered}
$$

- r_{0} - impact parameter,
- $\left|\mathbf{x}_{2}\right|$ - distance in the image plane,
- \otimes-2D convolution operator.

Image obtained after convolution. Photon noise is added, corresponding to $100 \mathrm{ph} / \mathrm{pixel}$

De-convolved image using the SGL' PSF. Lowpass filtering in spatial frequencies is applied

The a priori properties of the target

- We want to image Earth 2.0, around a G star, which is not transiting:
- Once habitability is confirmed ("big TPF" for spectra), the next step is to image it.
- We will rely on astrometry, RV, spectroscopy, and direct imaging to obtain:
- orbital ephemeris: to ~mas accuracy and precision;
- rotation: from temporal monitoring of the spectroscopy;
- atmosphere: temperature, structure, chemical composition, and albedo, from non-spatially-resolved spectroscopy;
- understanding of cloud \& surface properties from Doppler imaging.
- This information will help us to point the s/c:
- Time to reach $550 \mathrm{AU} \sim 10$ years, enough to observe the parent star's location ~ 100 times with 1μ as precision, so that its position would be known to $0.1 \mu \mathrm{as}$;
- The parent star's position would be known to $\sim 45 \mathrm{~km}$ at a distance of 30 pc ;
- Orbital period to $<1 \% \Rightarrow$ the semi-major axis is known to $\sim 0.7 \%$ (~ 1 million km);
- If face-on, the radial distance to ~ 1 million km , with tangential error ~ 6 larger;
- Earth's diameter is $13,000 \mathrm{~km}$, so we will search the (80×500) grid on the sky;
- Once SGLFM detects the planet \Rightarrow scan a smaller area to define the "edges".

Center of the Sun shown as dots monthly from 1944 to 2020 with actual size of the sun shown at its average position, during this time period

Astrometric displacement of the Sun due to Jupiter as at it would be observed from 10 parsecs, or about 33 light-years.

Direct Multipixel Imaging and Spectroscopy of an Exoplanet with a Solar Gravity Lens Focus (SGLF) Mission

An imaging mission to SGLF appears to be feasible, but needs further study

Concept

- SGLF provides a major gain ($\sim 10^{11}$ at $1 u m$), resolution of 10^{-9} arcsec in a narrow FOV;
- A 1-m telescope at ~750AU has a collecting area equivalent $\sim 80 \mathrm{~km}$ aperture in space;
- A mission to the SGLF could image Earth 2.0 up to 30 pc away with resolution to $\sim 10 \mathrm{~km}$ to see surface features;
- A small s/c with electric propulsion (or solar sails) can reach the SGLF in <35-40 yrs.

Proposed Study and Approach

- Define baseline design, sub-syst components;
- Define mission science goals \& requirements;
- Develop system and subsystem requirements;
- Study mission architecture and con-ops;
- Assessment of feasibility (cluster) small-sats;
- Identify technology development needs;
- Study instruments \& systems: power, comm, pointing, s/c, autonomy, coronagraph, nav, propulsion, raster scan in the image plane, etc.

Benefits

- A breakthrough mission concept to resolve a habitable exoplanet at modest cost/time;
- Could find seasonal changes, oceans, continents, life signatures on an exo-Earth;
- Small-sat \& fast exit from the solar system;
- Electric propulsion for raster-scanning the image using tethered s/c (or cluster);
- SLGF is valuable for other astrophysics and cosmology targets.

Earth with resolution of (1000×1000) pixels.

