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THE SOLAR GRAVITATIONAL LENS

Original gravity lens derivation (Einstein c.1911) 

Precision alignment between a Lens and the Earth is very unlikely…



The First Test of  
General Theory of  Relativity

Einstein and Eddington, Cambridge, 1930

Gravitational Deflection of  Light:

Campbell’s telegram to Einstein, 1923 

Deflection = 0;
Newton =  0.87 arcsec;   
Einstein = 2 x Newton = 1.75 arcsec 

Solar Eclipse 1919:
possible outcomes



Gravitational Deflection of Light
is a Well-Known Effect Today

THE SOLAR GRAVITATIONAL LENS



THE SOLAR GRAVITATIONAL LENS

Our solar system and tests of gravity



THE SOLAR GRAVITATIONAL LENS

40+ Years of Solar System Gravity Tests

General relativity is now well tested. Can we use it to build something?

New Engineering Discipline –
Applied General Relativity:

Radar Ranging:
−Planets:  Mercury, Venus, Mars
−s/c: Mariners, Vikings, Pioneers, 

Cassini, Mars Global Surveyor, 
Mars Orbiter, etc.
−VLBI, GPS, etc.

Laser:
−SLR, LLR, interplanetary, etc.

Techniques for Gravity Tests:

Dedicated Gravity Missions:

Non-linearity
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Cassini	‘03

LLR	’04
g -- £ ± ´ 51 (2.1 2.3) 10

General	Relativity

Mars	Ranging	‘76 g -- £ ´ 31 2 10

Astrometric	VLBI	‘09
g -- £ ´ 41 3 10

b g -- £ ´- 43 4.3 104

Spacecraft	tracking	‘10
𝛽 − 1 ≤ 8×10()

"for decisive contributions to the LIGO detector 
and the observation of gravitational waves"

− LLR (1969 - on-going!!)
− GP-A,’76; LAGEOS,’76,’92; GP-B,’04; 

LARES,’12; MicroSCOPE,’16, ACES, 
‘18; LIGO,’16; eLISA, 2030+(?)

− Daily life: GPS, geodesy, time transfer; 
− Precision measurements, deep-space navigation & µas-astrometry (Gaia)
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Mission to the Gravity Lens of the Sun
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THE SOLAR GRAVITATIONAL LENS

SGL enables direct multipixel imaging 

• Overcoming the issue of a small target size:
– Consider an exo-Earth @ 30pc (100 l.y.) is ~1.4×10-11 rad; 
– A diffraction-limited telescope needed to resolve an object with this size at 

such distance must have a diameter of ~76 km; 
• But, even this telescope would barely resolve the disk of the planet. 

– To resolve the planet with 1,000 pixels one needs a telescope with a 
diameter of 7.6×104 km (or ~12 R⊕), which is impractical... 

• An imaging interferometer with a set of such baselines - not feasible. 
– Even more challenging is the integration time needed to reach SNR=10: 

• a 50m telescope would need an integration time of t ~ 106 years (zodi);
• with SGL’s light amplification (~2×1011) we could do the job in ~5 weeks.

• Solving the parent start light contamination issue:
– Current exoplanet-imaging concepts detect light of a planet as a single pixel. 

Contamination from the parent star (~0.1" off the planet) is a major problem;
• Due to the high angular resolution of the SGL (~0.5 nas), the parent star 

is resolved from the planet with its light amplified 0.01 AU away from the 
optical axis, making the parent star contamination issue negligible. 



THE SOLAR GRAVITATIONAL LENS

The Solar Gravitational Lens (KISS study, 2015)



THE SOLAR GRAVITATIONAL LENS

Focal beam of extreme intensity

• Major brightness increase:                    
– For small departures from the 

optical axis, 𝜌, magnification  
of the SGL is:

– Max value of             is on axis:

– The gain is very sensitive to 
• motion in the image plane 
• along the optical axis

– If 𝜌 increases, gain decreases 
(while oscillating)

– For a fixed 𝜌, the gain slowly 
increases (while oscillating), 
while F is increasing Gain of the SGL as seen in the image plane as 

a function of possible observational wavelength

focal beam of 
extreme intensity
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FIG. 6: Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric
distance of z = 600 AU. The solid line represents λ = 1.0 µm, the dotted line is for λ = 2.0 µm. Right: a three-dimensional
representation of the Airy pattern in the image plane of the SGL for λ = 1.0 µm with the peak corresponding to direction
along the optical axis.

Given the fact that in the focal region of the SGL, the ratio rg/r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:
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, (134)

with S̄ρ = S̄φ = 0 for any practical purposes. Note that in the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 = (0, 0, (c/8π)E2

0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL TELESCOPE

We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

⊙/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by

µz =
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z
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. (135)

As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern

(i.e., the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.
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Point-spread 
function of 
the SGL
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gravity field. This bending effect (towards the body) depend on the mass of the body M

and the light’s impact parameter b relative to the deflector. For the Sun this effect may be

expressed as:
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≈ 2.95 km (8)
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Turyshev	&	Toth,	Phys.	Rev.	D	96,	024008		(2017)

Herlt &	Stephani,	IJMP	15,	45 (1976)
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The image in a form of the Einstein ring

Credit: ESA, Hubble & NASA Wikimedia
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Properties of the Solar Gravity Lens

• Important features of the SGL (for 𝜆 = 1 𝜇m):
– Major brightness magnification: a factor of 1011 (on the optical axis);
– High angular resolution:  ~0.5 nano-arcsec. A 1-m telescope at the SGL 

collects light from a ~(10km × 10km) spot on the surface of the planet, 
bringing this light to one 1-m size pixel in the image plane of the SGL;

– Extremely narrow “pencil” beam: entire image of an exo-Earth (~13,000 km) 
at 100 l.y. is included within a cylinder with a diameter of ~1.3 km.

• Collecting area of a 1-m telescope at the SGL’s focus:
– Telescope with diameter d0 collects light with impact parameters 𝛿b≃d0;
– For a 1-m telescope at 750AU, the total collecting area is: 4.37×109 m2, 

which is equivalent to a telescope with a diameter of ~80 km… 

telescope
image

Sun

impact 
parameter



THE SOLAR GRAVITATIONAL LENS

Imaging Exoplanets with the Solar Gravitational Lens

Credit: J. DeLuca

Please watch the movie at:

https://www.youtube.com/watch?v=Hjaj-Ig9jBs



THE SOLAR GRAVITATIONAL LENS

Exploring optical properties of the SGL

• Significant potential for high-resolution spectroscopy:
– Spectroscopic signal is high: SNR~106 in 1 sec (broadband);
– Splitting this signal in ~106 bands would yield high-resolution spectra.

• Although very powerful, the Sun is not a very good lens: 
– Magnified images will be highly blurred, with any given pixel containing 

light reflected from adjacent regions on the surface of the exoplanet. 
– Would require correction with modern image reconstruction techniques: 

• Planetary rotation would provide periodic changes. Rotational 
deconvolution (aka tomography): ~250-300 pixel images in ~1 year;

• Direct deconvolution: SNR reduction because of blurring, leading to 
longer integration times to reach ~800 pixel (study is ongoing). 

• Observing on the background of the solar corona:
– Corona pushes us to higher heliocentric distances ~650-850 AU;  
– Required chronographic performance 10-6 (WFIRST needs 10-9);

• Internal coronagraph that has ~2×10-7 attenuation, 15% throughput, 
but pushes to larger apertures 1.5-2.2m;

• External coronagraph (i.e., starshade) allows for smaller aperture(s). 
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Point spread function & gain of the SGL
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FIG. 8: Gain of the solar gravitational lens as seen in the image plane as a function of the optical distance z and observational
wavelength λ. On both plots, the solid line represents gain for z = 600 AU, the dotted line is that for z = 1, 000 AU.

Across the image plane, the amplification oscillates quite rapidly. For small deviations from the optical axis, θ ≈ ρ/z.
Using this relation in (140), we see that the first zero occurs quite close to the optical axis:

ρSGL0 ≃ 4.5
( λ

1 µm

)

√

z

z0
cm, or, equivalently, ρSGL0 ≃ 4.5

( λ

1 µm

) b0
R⊙

cm. (142)

(Note in (142) the inverse ratio of z vs. z0 and b0 vs R⊙.) Equation (142) favors larger wavelengths and larger
heliocentric distances or, similarly, impact parameters.
Thus, we have established the basic optical properties of the solar gravitational lens. By achromatically focusing

light from a distant source [17, 34], the SGL provides a major brightness amplification and extreme angular resolution.
Specifically, from (135) for λ = 1 µm, we get a light amplification of the SGL of µ ≃ 1.2 × 1011, corresponding to a
brightness increase by δmag = 2.5 lnµ = 27.67 stellar magnitudes in case of perfect alignment. Furthermore, (140)
gives us the angular resolution of the SGL of θSGL ≃ 1.1× 10−10 arc seconds.
We note that if the diameter of the telescope d0 is larger than the diffraction limit of the SGL (i.e., larger than the

diameter of the first zero of the Airy pattern), it would average the light amplification over the full aperture. Such
an averaging will result in the reduction of the total light amplification. To estimate the impact of the large aperture
on light amplification, we average the result (135) over the aperture of the telescope:
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. (143)

For an aperture of d0 = 1 m at z = 600 AU, this results in the reduction in light amplification by a factor of 0.025,
leading to the effective light amplification of µ̄z = 2.87 × 109 (i.e., 23.65 mag), which is still quite significant. The
effect of the large aperture is captured in Fig. 9, where we plot the behavior of each of the two terms in curly braces
in (143) and also their sum. Although each term oscillates and reaches zero, their sum never becomes zero.
As seen from a telescope at the SGL, light from a distant target fills an annulus at the edge of the Sun, forming the

Einstein ring. At a distance z on the focal line, an observer looking back at the Sun will see the Einstein ring with an
angular size that is given by αER = 2b0/z = 4rg/b0. Using this equation, we determine the angular size of the ring as

αER ≃ 3.50′′
√

z0
z
, or, equivalently, αER ≃ 3.50′′

R⊙

b0
. (144)

A telescope with aperture d0, placed at the heliocentric distance z on the optical axis, receives light from a family of
rays with different impact parameters with respect to the Sun, ranging from b0 to b0 + δb0. Using (144), these rays
are deflected by different amounts given as α1 = (b0+

1
2d0)/z = α0R⊙/(b0+

1
2d0), for one edge of the aperture, where

α0 = 2rg/R⊙, and α2 = (b0 + δb0 − 1
2d0)/z = α0R⊙/(b0 + δb0 − 1

2d0), for the other edge. Taking the ratio of α2/α1,
we can determine the relation between δb0 and the telescope diameter, d0, which, to first order, is given as δb0 = d0.
As a result, the area of the Einstein ring that is seen by the telescope with aperture d0, to first order, is given by

AER = π((b0 + δb0)2 − b20) ≃ 2πb0d0. For different impact parameters the area behaves as

AER ≃ 4.37× 109
( d0
1 m

) b0
R⊙

m2. (145)
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α0 = 2rg/R⊙, and α2 = (b0 + δb0 − 1
2d0)/z = α0R⊙/(b0 + δb0 − 1

2d0), for the other edge. Taking the ratio of α2/α1,
we can determine the relation between δb0 and the telescope diameter, d0, which, to first order, is given as δb0 = d0.
As a result, the area of the Einstein ring that is seen by the telescope with aperture d0, to first order, is given by

AER = π((b0 + δb0)2 − b20) ≃ 2πb0d0. For different impact parameters the area behaves as

AER ≃ 4.37× 109
( d0
1 m

) b0
R⊙

m2. (145)
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FIG. 6: Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric
distance of z = 600 AU. The solid line represents λ = 1.0 µm, the dotted line is for λ = 2.0 µm. Right: a three-dimensional
representation of the Airy pattern in the image plane of the SGL for λ = 1.0 µm with the peak corresponding to direction
along the optical axis.

Given the fact that in the focal region of the SGL, the ratio rg/r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:

S̄z =
c

8π
E2

0
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

, (134)

with S̄ρ = S̄φ = 0 for any practical purposes. Note that in the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 = (0, 0, (c/8π)E2

0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL TELESCOPE

We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

⊙/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by

µz =
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

. (135)

As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern

(i.e., the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.
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Given the fact that in the focal region of the SGL, the ratio rg/r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:
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0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.
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We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

⊙/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by
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As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern

(i.e., the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.

3-D Airy pattern of the SGL

Turyshev	&	Toth,	Phys.	Rev.	D	96,	024008		(2017)



THE SOLAR GRAVITATIONAL LENS

Image formation by the SGL

• – impact parameter, 
• – – distance in the image plane, 
• – 2D convolution operator.Accretion disk around a black hole as a test 

object for convolution by the PSF of the SGL.

Image obtained after convolution. Photon 
noise is added, corresponding to 100 ph/pixel

De-convolved image using the SGL’ PSF. Low-
pass filtering in spatial frequencies is applied

L. Koechlin et al., Exp Astron (2005) 20:307–315



THE SOLAR GRAVITATIONAL LENS

The a priori properties of the target

• We want to image Earth 2.0, around a G star, which is not transiting: 
– Once habitability is confirmed (“big TPF” for spectra), the next step is to image it. 

• We will rely on astrometry, RV, spectroscopy, and direct imaging to obtain: 
– orbital ephemeris: to ~mas accuracy and precision; 
– rotation: from temporal monitoring of the spectroscopy;
– atmosphere: temperature, structure, chemical composition, and albedo, from non-

spatially-resolved spectroscopy; 
– understanding of cloud & surface properties from Doppler imaging. 

• This information will help us to point the s/c: 
– Time to reach 550 AU ~10 years, enough to observe the parent star’s location 

~100 times with 1 𝜇as precision, so that its position would be known to 0.1 𝜇as;
– The parent star’s position would be known to ~45 km at a distance of 30 pc;
– Orbital period to <1%  ⇒ the semi-major axis is known to ~0.7% (~1 million km);  
– If face-on, the radial distance to ~1 million km, with tangential error ~6 larger;
– Earth’s diameter is 13,000 km, so we will search the (80 × 500) grid on the sky; 
– Once SGLFM detects the planet ⇒ scan a smaller area to define the “edges”. 



THE SOLAR GRAVITATIONAL LENS

The solar wobble

Astrometric displacement of the 
Sun due to Jupiter as at it would 
be observed from 10 parsecs, 
or about 33 light-years.

Center of the Sun shown as dots monthly from 
1944 to 2020 with actual size of the sun shown 
at its average position, during this time period



Direct	Multipixel Imaging	and	Spectroscopy	of	an	Exoplanet	
with	a	Solar	Gravity	Lens	Focus	(SGLF)	Mission

Concept
• SGLF provides a major gain (~1011 at 1um), 

resolution of 10-9 arcsec in a narrow FOV; 
• A 1-m telescope at ~750AU has a collecting 

area equivalent ~80 km aperture in space;
• A mission to the SGLF could image Earth 2.0 

up to 30pc away with resolution to ~10km to 
see surface features; 

• A small s/c with electric propulsion (or solar 
sails) can reach the SGLF in <35-40 yrs.

Proposed Study and Approach
• Define baseline design, sub-syst components;
• Define mission science goals & requirements;
• Develop system and subsystem requirements;
• Study mission architecture and con-ops;
• Assessment of feasibility (cluster) small-sats; 
• Identify technology development needs; 
• Study instruments & systems: power, comm, 

pointing, s/c, autonomy, coronagraph, nav, 
propulsion, raster scan in the image plane, etc.

Benefits
• A breakthrough mission concept to resolve a 

habitable exoplanet at modest cost/time;
• Could find seasonal changes, oceans, 

continents, life signatures on an exo-Earth;
• Small-sat & fast exit from the solar system;
• Electric propulsion for raster-scanning the 

image using tethered s/c (or cluster); 
• SLGF is valuable for other astrophysics and 

cosmology targets. Earth	with	resolution	of	(1000	× 1000)	pixels.

An	imaging	mission	to	SGLF	appears	to	be	feasible,	but	needs	further	study


