Compensation of gravity gradients and rotations in precision atom interferometry

Albert Roura

partly based on Phys. Rev. Lett. 118, 160401 (2017)

Bremen, 25 October 2017

Motivation

 m_{i}

- Central to Einstein's equivalence principle.
- Tests of UFF with macroscopic masses:
 - ▶ free fall, lunar laser ranging (LLR)

• torsion balance (Ëotvös)
=
$$m_{\rm g}$$

Why atoms?

$$\eta_{AB} = 2 \frac{|g_A - g_B|}{g_A + g_B} \lesssim 10^{-13} \dots 10^{-15}$$

Measurement of Newton's gravitational constant G

• By far the less accurately determined of all fundamental constants (using *macroscopic* masses).

Earth observations: mapping Earth's gravitational field

- Gravity gradiometry from space (spatial resoultion $\geq 100 \, \mathrm{km}$)
- Observing time evolution of mass distribution with applications to geophysics, hydrology, oceanography ...

Example: ground water depletion and stressed aquifers

Atom interferometry can make a significant contribution in all these cases

BUT

Gravity gradients (and *rotations*) pose a major challenge due to the dependence on the *initial position* and *velocity* of the atomic wave packets.

Outline

- I. Motivation
- 2. Precise gravitational measurements with atom interferometry:
 - atom-interferometry-based gravimeters
 - long-time interferometry (& microgravity platforms)
- 3. Challenges in UFF tests due to gravity gradients
- 4. Overcoming loss of contrast and initial co-location problem
- 5. Compensation of large *rotation* rates

Precise gravitational measurements with atom interferometry (AI)

Al-based gravimeters

 $\mathbf{k}_{\mathrm{eff}} = \mathbf{k}_1 - \mathbf{k}_2$

$$\delta \phi = - k_{\rm eff} \ g \, T^2$$

 $\int_{0}^{\frac{1}{2}} \int_{\pi} \int_{2\pi} \int_{3\pi} \delta\phi$

 $N_{{\rm g}_1}/(N_{{\rm g}_1}+N_{{\rm g}_2})$

The evolution of the wave packets can be decomposed into two independent aspects:

expansion dynamics of a centered wave packet

central position and momentum which follow classical trajectories including the kicks from the laser pulses

Al-based gravimeters

 $\mathbf{k}_{\mathrm{eff}} = \mathbf{k}_1 - \mathbf{k}_2$

$$\delta \phi = - k_{\rm eff} \ g \, T^2$$

 $\int_{0}^{\frac{1}{2}} \int_{\pi} \int_{2\pi} \int_{3\pi} \delta\phi$

 $N_{{\rm g}_1}/(N_{{\rm g}_1}+N_{{\rm g}_2})$

Gradiometry and measurements of G

Fixler et al., Science **315**, 74 (2007)

- differential measurement
- common-mode noise suppression
- determination of the gravity gradient

$$\Gamma_{zz} = -\frac{\partial^2 U}{\partial z \, \partial z} \approx -\frac{g_2 - g_1}{z_2 - z_1}$$

- changing position of well-characterized source mass \longrightarrow measurement of G

 $\Delta G/G \approx 1.5 \times 10^{-4}$

Rosi et al., Nature **510**, 518 (2014)

Higher sensitivity --> long-time interferometry

 $\delta \phi = k_{\rm eff} \, a \, T^2$

- Natural compact set-ups in microgravity platforms (freely falling frame)
- Challenges:
 - ▶ growing size of atom cloud → BECs, atomic lensing
 - rotations
 - gravity gradients (effects grow cubically with time)

Microgravity platforms

 $\delta g \sim 10^{-5} g - 10^{-6} g$

drop tower in Bremen (> 500 drops) sounding rocket (23 Jan 2017) International Space Station (late 2017-)

QUANTUS (5-10s)

MAIUS (6 min)

CAL / BECCAL (several years)

Higher sensitivity --> long-time interferometry

 $\delta \phi = k_{\rm eff} \, a \, T^2$

- Natural compact set-ups in microgravity platforms (freely falling frame)
- Challenges:
 - ▶ growing size of atom cloud → BECs, atomic lensing
 - rotations
 - gravity gradients (effects grow cubically with time)

• Higher sensitivity \rightarrow long-time interferometry

 $\delta\phi = k_{\rm eff} \, a \, T^2$

- Natural compact set-ups in microgravity platforms (freely falling frame)
- Challenges:
 - ▶ growing size of atom cloud → BECs, atomic lensing
 - rotations
 - gravity gradients (effects grow cubically with time)

• Higher sensitivity \rightarrow long-time interferometry

 $\delta\phi = k_{\rm eff} \, a \, T^2$

- Natural compact set-ups in microgravity platforms (freely falling frame)
- Challenges:
 - ▶ growing size of atom cloud → BECs, atomic lensing
 - rotations
 - gravity gradients (effects grow cubically with time)

Challenges in UFF tests due to gravity gradients

Initial co-location

• Systematics associated with initial central position & momentum of the two species can a *mimic violation* of UFF:

No limitation in principle, but challenging in practice.
Minimum time for verification set by Heisenberg's uncertainty principle.

Minimum time for verification set by Heisenberg's uncertainty princip $n N \sigma_p \sigma_z \ge \hbar/2$ (time required may exceed

entire mission lifetime)

Loss of contrast

• Gravity gradients (*tidal forces*) lead to open interferometers:

Relative displacement between interfering wave packets at exit port
fringe pattern in density profile -> loss of contrast

 $\delta z \neq 0, \ \delta p \neq 0$

Overcoming loss of contrast and initial co-location problem

• Phase shift contribution connected with initial co-location directly related to δz , δp :

$$\delta\phi = \frac{1}{\hbar}\,\delta\mathbf{p}\cdot\left(\mathbf{x}_0 + 2\,\mathbf{v}_0T\right) - \frac{1}{\hbar}\,\delta\mathbf{x}\cdot m\mathbf{v}_0 + \dots$$

• Suitable adjustment of laser wavelength of 2nd pulse $\longrightarrow \delta z = \delta p = 0$

A. Roura, *Phys. Rev. Lett.* **118**, 160401 (2017)

Initial co-location as well as loss of contrast

are simultaneously taken care of.

- Required single-photon frequency change:
 - for longer times in space

 $T = 5 \,\mathrm{s} \longrightarrow \Delta \nu \sim 14 \,\mathrm{GHz}$

• for moderate times (and higher $k_{eff} = 2n k_{ph}$) AOMs may be sufficient

2n = 50 $T = 1 \,\mathrm{s} \longrightarrow \Delta \nu \sim 0.6 \,\mathrm{GHz}$

• Dependence on the mirror position, but highly suppressed in the differential measurement.

PRL 118, 160401 (2017)

Circumventing Heisenberg's Uncertainty Principle in Atom Interferometry Tests of the Equivalence Principle

Albert Roura Institut für Quantenphysik, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany

- Besides tests of UFF, application to gradiometry measurements: (relaxing coupling of static Γ to initial-position/velocity jitter & bias)
 - mapping of Earth's gravitational field from space
 - accurate measurements of G
 - gravitational antennas

- Several other groups have also expressed great interest: Stanford, Florence, SYRTE and LKB/ENS (Paris)
- Atomic fountain experiments in Stanford's 10-meter tower

- gravity-gradient compensation scheme successfully implemented
- very effective in overcoming the initial-colocation problem
- key ingredient in efforts to test UFF with atom interferometry at 10⁻¹⁴ level

Gradiometry & determination of G

- One can use the technique to cancel the effect of static gravity gradients in measurement of time-dependent ones.
- Also for measurements of static gravity gradients insensitive to initial position & velocity:

vanishing gradiometry phase for

$$\Delta \nu = \frac{c}{4\pi} \left(\Gamma_{zz} T^2 / 2 \right) k_{\text{eff}}$$

G. D'Amico et al. (submitted)

(application to determination of G)

Compensation of large rotation rates • Compensation of rotations with a tip-tilt mirror as seen from a *non-rotating frame*:

• Tip-tilt mirror leads to change in k_{eff} along the *longitudinal* direction:

 $k_{\rm eff} \rightarrow k'_{\rm eff} = \cos(\Omega T) k_{\rm eff}$

• It can be compensated with following change for the second pulse:

 $\Delta k_{\rm eff} \approx -(1/2)(\Omega T)^2 k_{\rm eff}$

• Compensation of rotations with a tip-tilt mirror as seen from a *non-rotating frame*:

• Tip-tilt mirror leads to change in k_{eff} along the *longitudinal* direction:

 $k_{\rm eff} \rightarrow k'_{\rm eff} = \cos(\Omega T) k_{\rm eff}$

• It can be compensated with following change for the second pulse:

 $\Delta k_{\rm eff} \approx -(1/2)(\Omega T)^2 k_{\rm eff}$

• Simultaneous compensation of gravity gradients and large rotation rates:

$$\Delta k_{\rm eff} \,=\, \left(\Gamma_{zz} \,T^2/2\right) k_{\rm eff} \,-\, (1/2) (\Omega \,T)^2 \,k_{\rm eff}$$

- Quantitative example for BECCAL
 - ► ISS's angular velocity and gravity gradient:

 $\Omega_{\rm ISS} \approx 1.13 \,\rm mrad/s$

 $\Gamma \approx 2.5 \times 10^{-6} \mathrm{s}^{-2}$

• required frequency change for $T = 2.6 \,\mathrm{s}$:

 $\Delta \nu \approx 1.5 \,\mathrm{GHz}$

(partial cancellation)

Conclusion

- Gradiometry and tests of UFF based on AI can provide a useful complement to those based on macroscopic masses.
- Gravity gradients pose a great challenge in practice as well as an ultimate limitation from HUP due to:
 - initial co-location of the two species
 - loss of contrast
- I have presented a novel scheme that can simultaneously overcome both difficulties.
- It can be combined with a *tip-tilt mirror* to compensate large rotation rates.

Thank you for your attention.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

QUANTUS group @ Ulm University

Wolfgang Schleich

Albert Roura

Wolfgang Zeller

Christian Ufrecht

Stephan Kleinert

Jens Jenewein

Matthias Meister

Raoul Heese