

Data analysis, orbit propagation, and the future of MICROSCOPE

Meike List, Stefanie Bremer, Benny Rievers, Hanns Selig Oct 23rd 2017 656th WE-Heraeus Seminar "Fundamental Physics in Space"

CENTER OF APPLIED SPACE TECHNOLOGY AND MICROGRAVITY

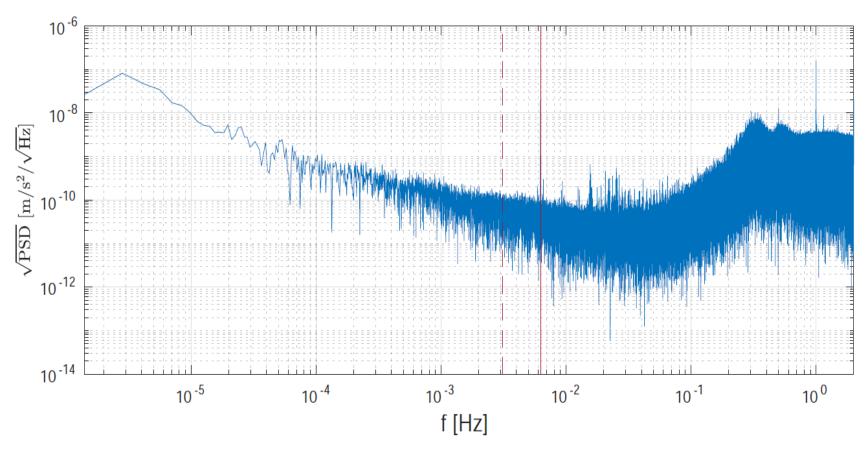
Contents

Mission data analysis:
 Time-dependent frequency analysis by using wavelets

Modeling of non-gravitational disturbances Motivation SPD/TPD modeling approach

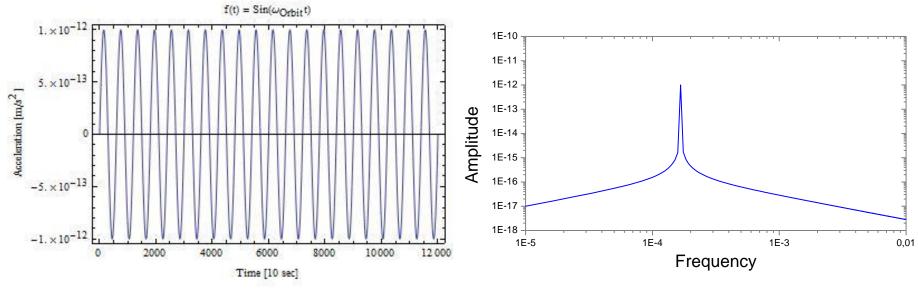
- ✓ SRP/TRP modeling approach
- ✓ Example: MICROSCOPE
- ✓ Outlook: post WEP test mission goals

✓ Conclusion


Contents

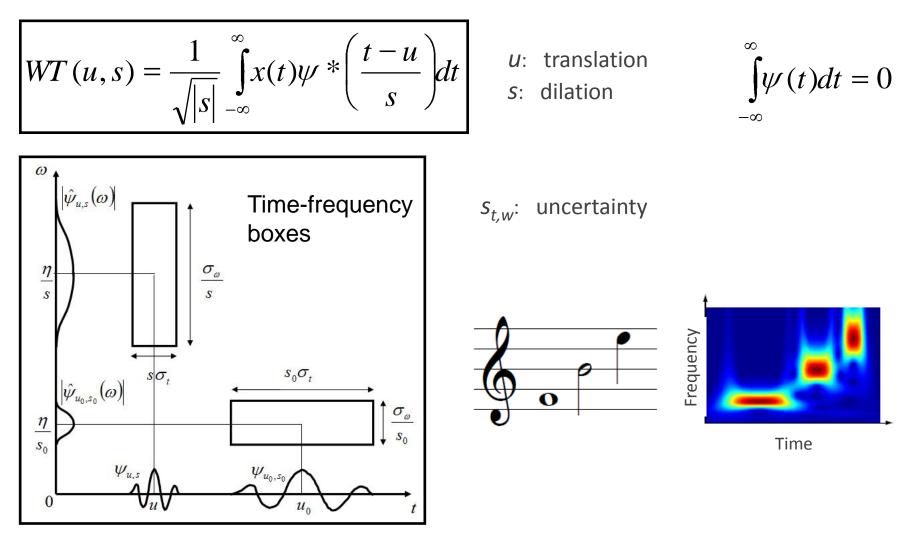
- Mission data analysis:
 Time-dependent frequency analysis by using wavelets
- ✓ Modeling of non-gravitational disturbances
 ✓ Motivation
 ✓ SRP/TRP modeling approach
 - ✓ Example: MICROSCOPE
- ✓ Outlook: post WEP test mission goals

✓ Conclusion



Typical MICROSCOPE acceleration spectrum Session with 120 orbits

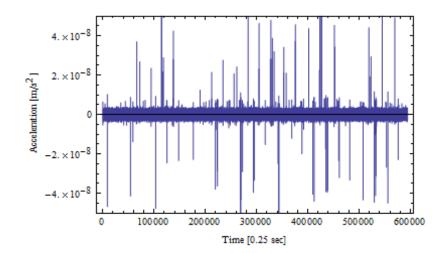
Classical frequency analysis


Limitation

The classical frequency analysis (FT of the complete time signal) shows the best possible frequency resolution

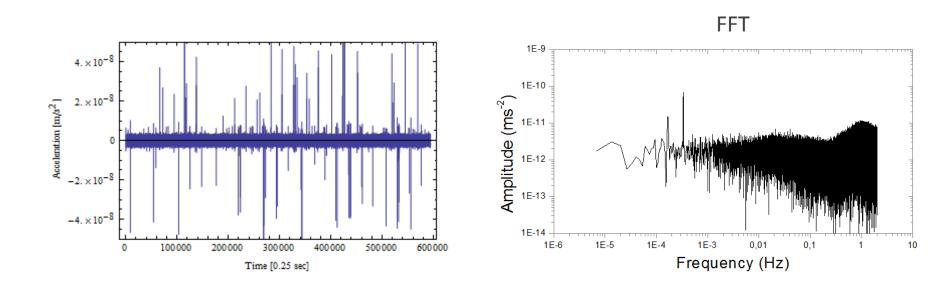
but masks any temporal information→ best for stationary signals

Wavelet analysis

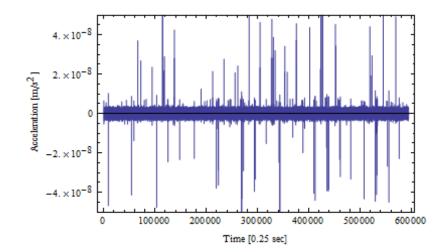


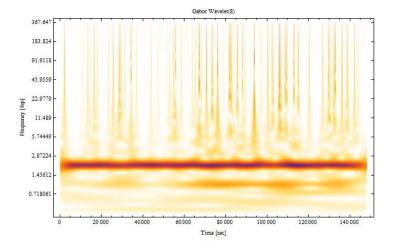
recommended Literature: S. Mallet A wavelet tour of signal processing Academic Press (1998)

Example with simulated data set

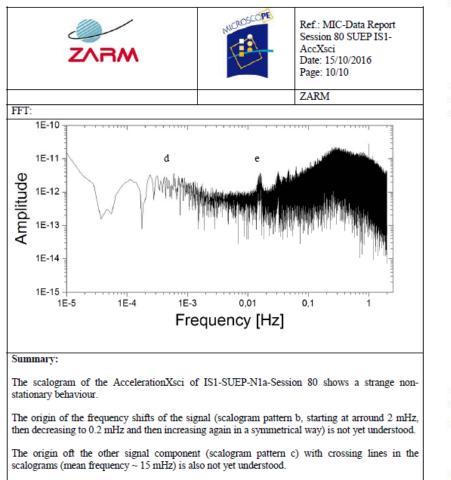

Simulation: differential acceleration with noise and short time disturbances (spikes)

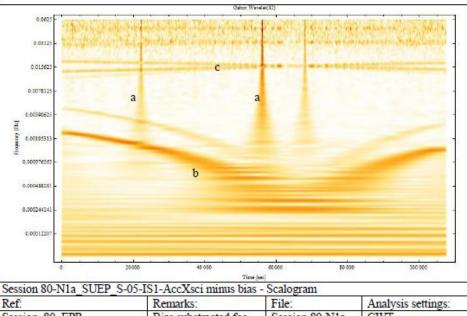
Example with simulated data set


Simulation: differential acceleration with noise and short time disturbances (spikes)



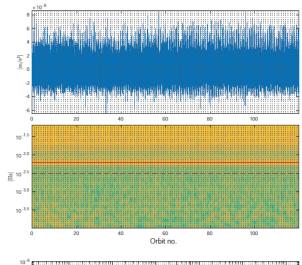
Example with simulated data set


Simulation: differential acceleration with noise and short time disturbances (spikes)



MICROSCOPE data report example (1st version)

It is not yet clear whether the frequency behaviour is based on a real physical effect or on an effect caused by the measurement system (electronics).


Ref:	Remarks:	File:	Analysis settings:
Session 80 EPR	Bias substracted for	Session 80-N1a	CWT
V2DFIS1_01_SUEP	the Wavelet analysis	SUEP-S-05-IS1	Gabor (32)
/N1a S 05/SUEP/IS1/	to reduce border	-AccXsci-minus	Padding -> 0.0
AccelerationXsci	effects	bias.dat	
Description:		100 C 10 D 10 D	•

Same scalogram but with another setting for frequency/time resolution (Mother wavelet: Gabor(32) -> better frequency resolution, worse time resolution)

MICROSCOPE data report example (2nd version)

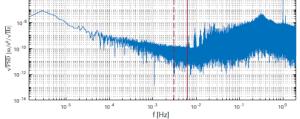
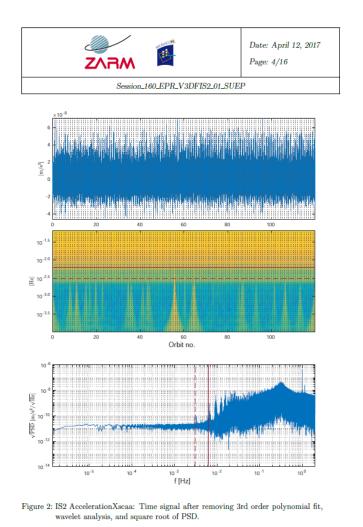



Figure 1: IS1 AccelerationXscaa: Time signal after removing 3rd order polynomial fit, wavelet analysis, and square root of PSD.

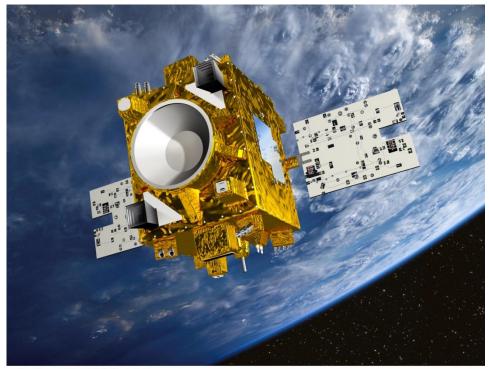
3

ZARM - Center of Applied Space Technology and Microgravity

ZARM - Center of Applied Space Technology and Microgravity

PAGE 11

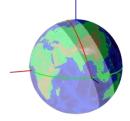
Contents

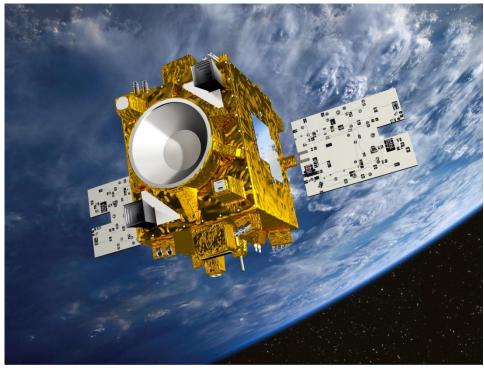

Mission data analysis:
 Time-dependent frequency analysis by using wavelets

Modeling of non-gravitational disturbances Motivation

- ✓ SRP/TRP modeling approach
- ✓ Example: MICROSCOPE
- ✓ Outlook: post WEP test mission goals

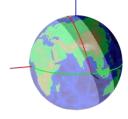
✓ Conclusion

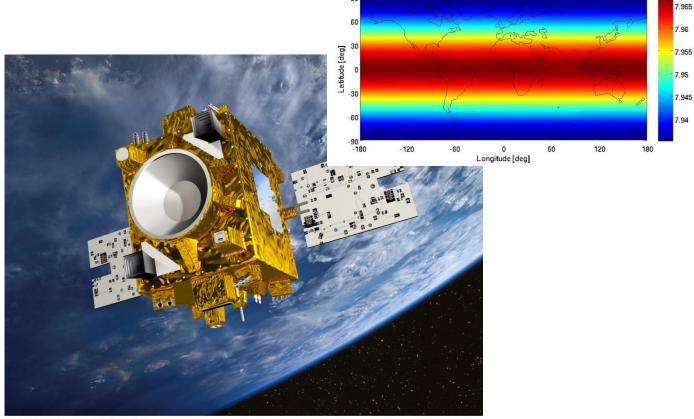




CNES - Juillet 2012 / Illust. D. Ducros

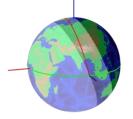
Orbit dynamics



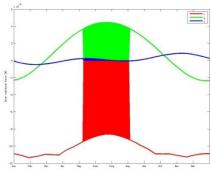

CNES - Juillet 2012 / Illust. D. Ducros

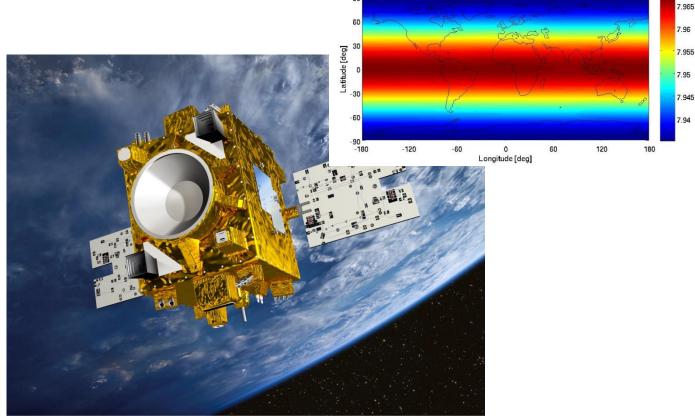
Gravity field of the Earth

Orbit dynamics


90

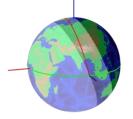
© CNES - Juillet 2012 / Illust. D. Ducros



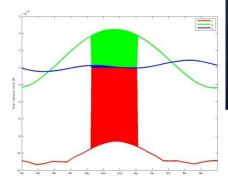

Gravity field of the Earth

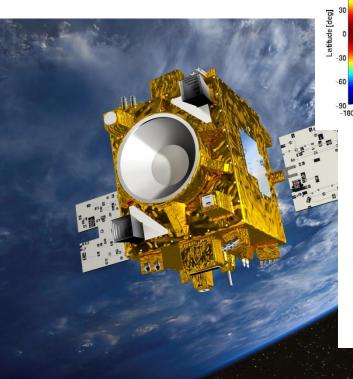
Orbit dynamics

Solar radiation pressure and eclipse

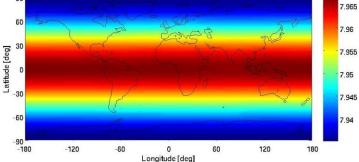

90

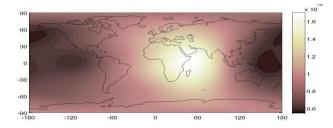
© CNES - Juillet 2012 / Illust. D. Ducros




90

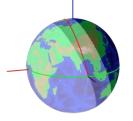
Orbit dynamics

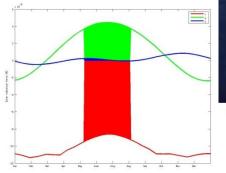

Solar radiation pressure and eclipse



CNES - Juillet 2012 / Illust. D. Ducros

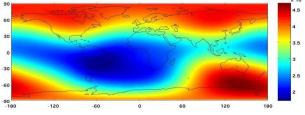
Gravity field of the Earth

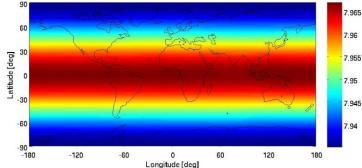


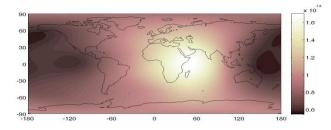


Motivation: Simulation of satellite missions Gravity field of the Earth

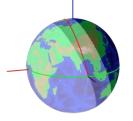
Orbit dynamics

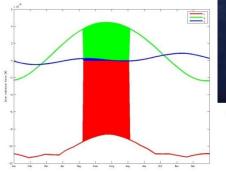


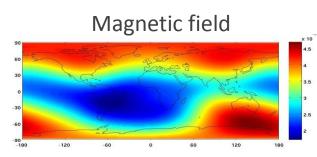

Solar radiation pressure and eclipse

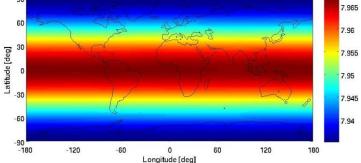


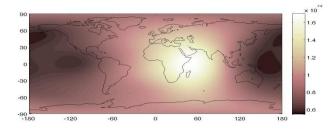
Magnetic field



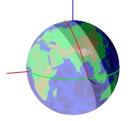


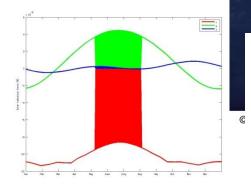

Orbit dynamics

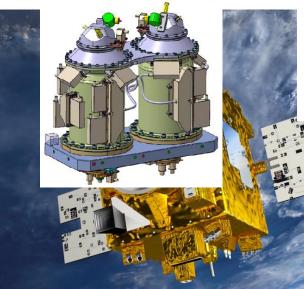

Solar radiation pressure and eclipse



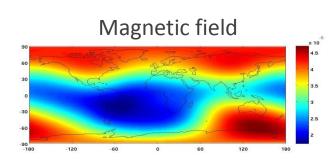
Gravity field of the Earth

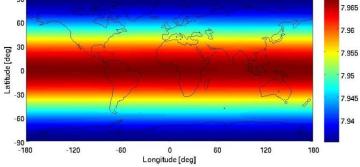


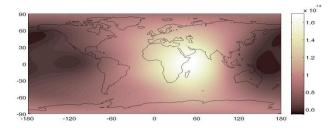

- ✓ Albedo radiation
- ✓ Earth infrared radiation
- ✓ Space debris
- ✓ Ephemerides



Orbit dynamics


Solar radiation pressure and eclipse



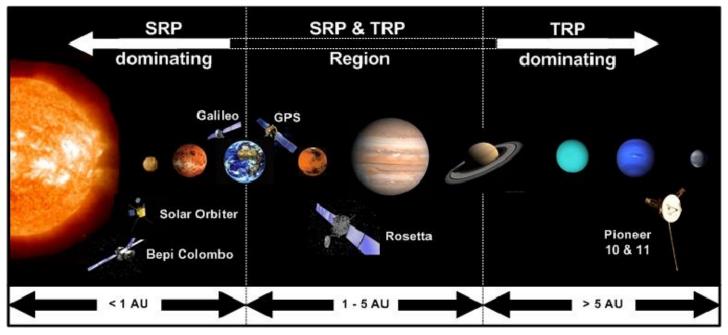

Special requirement of mission:

Payload

Gravity field of the Earth

- ✓ Albedo radiation
- ✓ Earth infrared radiation
- ✓ Space debris
- ✓ Ephemerides

Motivation


✓ Central task for mission analysis:

Modeling and propagation of the real mission orbit

- ightarrow initial conditions and modeling of space environment
- Satellite motion in the gravitational field of the Earth non-uniform mass distribution (zonal and tesseral variations), Earth oblateness
 - → non-spherically symmetric Earth gravitational field results in "gravitational disturbances" of the pure Keplerian orbit
- "Non-gravitational disturbances" have a large effect on satellite motion and its attitude
 - \rightarrow Atmospheric drag due to residual atmosphere
 - T. Kato, B. Rievers, M. List, Trans. JSASS Aerospace Tech. Japan Vol. 14, No. ists30, 2016
 - \rightarrow Solar radiation pressure (SRP) and Thermal radiation pressure (TRP)
 - M. List, S. Bremer, B. Rievers, H. Selig, Int. Journal Aerospace Eng., Vol. 2015, 928206, 2015
 - B. Rievers, M. List and S. Bremer, Adv. Astro. Sci. 158, 2997 3012, 2016

Motivation

 ✓ Implementation of TRP model in ESOC Orbit Determination Software based on study of method for modeling satellite surface forces with application to Rosetta
 → Correction of implemented SRP model

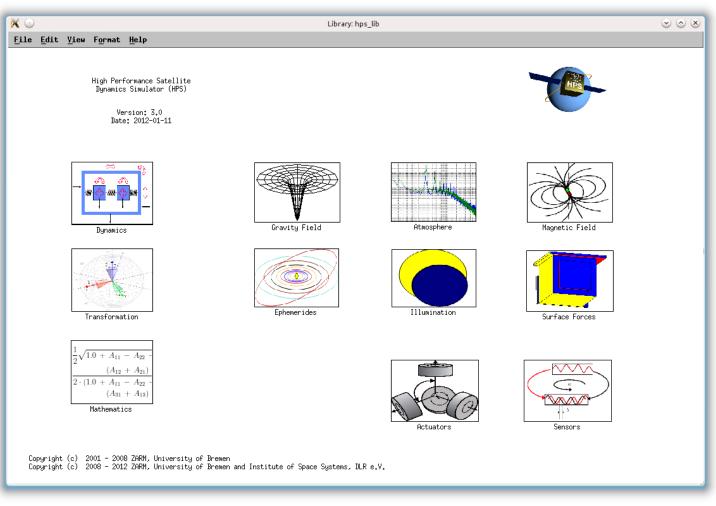
B. Rievers, T. Kato, J. C. van der Ha, and C. Lämmerzahl, Adv. Astro. Sci. 143 1123-1142, 2012

✓ Pioneer Anomaly: TRP effect

B. Rievers, C. Lämmerzahl, Ann. Phys. 523 (6), 439-449, 2011

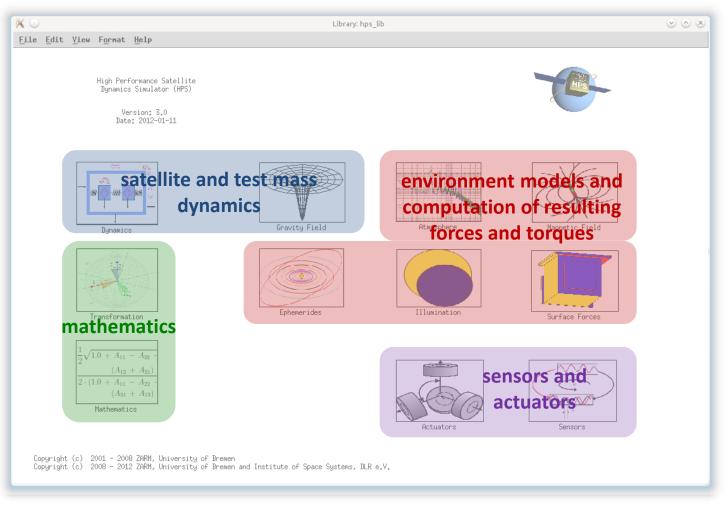
B. Rievers, S. Bremer, M. List, C. Lämmerzahl, H. Dittus, Acta. Astro. 66 (3-4), 467-476, 2010 B. Rievers, C. Lämmerzahl, M. List, S. Bremer, and H. Dittus, New J. Phys. 11 113032, 2009

Contents


Mission data analysis:
 Time-dependent frequency analysis by using wavelets

- ✓ Modeling of non-gravitational disturbances
 - ✓ Motivation
 - ✓ SRP/TRP modeling approach
 - ✓ Example: MICROSCOPE
- ✓ Outlook: post WEP test mission goals

✓ Conclusion



High Performance Satellite Dynamics Simulator

High Performance Satellite Dynamics Simulator

Differential radiation force due to

$$\checkmark$$
 Absorption: $d\vec{F}_{\alpha}=-P\alpha\cos(\theta)\vec{e}_{\mathrm{Sun}}dA$

 \checkmark Specular reflection: $d\vec{F}_{\gamma_S}=-2P\gamma_S\cos^2(\theta)\vec{e}_{\rm N}dA$

$$\checkmark \text{ Diffuse reflection: } d\vec{F}_{\gamma_D} = P\gamma_D \left(-\frac{2}{3}\cos(\theta)\vec{e}_N - \cos(\theta)\vec{e}_{\mathrm{Sun}} \right) dA$$

Resulting force:
$$\vec{F}_{solar} = \sum_i \vec{F}_i$$

with

$$\vec{F}_i = \int d\vec{F}_{\text{total}} = -P \int \left[(1 - \gamma_S) \,\vec{e}_{\text{Sun}} + 2 \left(\gamma_S \cos(\theta) + \frac{1}{3} \gamma_D \right) \vec{e}_N \right] \cos(\theta) dA$$

Differential radiation force due to

$$\checkmark$$
 Absorption: $d\vec{F}_{\alpha}=-P\alpha\cos(\theta)\vec{e}_{\mathrm{Sun}}dA$

 \checkmark Specular reflection: $d\vec{F}_{\gamma_S}=-2P\gamma_S\cos^2(\theta)\vec{e}_{\rm N}dA$

$$\checkmark \text{ Diffuse reflection: } d\vec{F}_{\gamma_D} = P\gamma_D \left(-\frac{2}{3}\cos(\theta)\vec{e}_N - \cos(\theta)\vec{e}_{\mathrm{Sun}} \right) dA$$
Resulting force: $\vec{F}_{\mathrm{solar}} = \chi_i \vec{F}_i$
with

$$\vec{F_i} = \int d\vec{F}_{\text{total}} = -P \int \left[(1 - \gamma_S) \, \vec{e}_{\text{Sun}} + 2 \left(\gamma_S \cos(\theta) + \frac{1}{3} \gamma_D \right) \vec{e}_N \right] \cos(\theta) dA$$

Differential radiation force due to

✓ Absorption:
$$d\vec{F}_{\alpha} = -P\alpha\cos(\theta)\vec{e}_{\mathrm{Sun}}dA$$

✓ Specular reflection: $d\vec{F}_{\gamma_S} = -2P\gamma_S\cos^2(\theta)\vec{e}_{\rm N}dA$

$$\checkmark \text{ Diffuse reflection: } d\vec{F}_{\gamma_D} = P\gamma_D \left(-\frac{2}{3}\cos(\theta)\vec{e}_N - \cos(\theta)\vec{e}_{\mathrm{Sun}} \right) dA$$
Resulting force: $\vec{F}_{\mathrm{solar}} = \chi_i \vec{F}_i$
with

$$\vec{F_i} = \int d\vec{F}_{\text{total}} = -P \int \left[(1 - \gamma_S) \,\vec{e}_{\text{Sun}} + 2 \left(\gamma_S \cos(\theta) + \frac{1}{3} \gamma_D \right) \vec{e}_N \right] \cos(\theta) dA$$

Geometry

Differential radiation force due to

✓ Absorption:
$$d\vec{F}_{\alpha} = -P\alpha\cos(\theta)\vec{e}_{\mathrm{Sun}}dA$$

 $\checkmark\,$ Specular reflection: $\,d\vec{F}_{\gamma_S}=-2P\gamma_S\cos^2(\theta)\vec{e}_{\rm N}dA$

$$\checkmark \text{ Diffuse reflection: } d\vec{F}_{\gamma_D} = P\gamma_D \left(-\frac{2}{3}\cos(\theta)\vec{e}_N - \cos(\theta)\vec{e}_{\mathrm{Sun}} \right) dA$$
Resulting force: $\vec{F}_{\mathrm{solar}} = \sum_i \vec{F}_i$
with Material degradation (BOL $\leftrightarrow \neq$ EOL) Geometry
$$\vec{F}_i = \int d\vec{F}_{\mathrm{total}} = -P \int \left[(1 - \gamma_S)\vec{e}_{\mathrm{Sun}} + 2 \left(\gamma_S \cos(\theta) + \frac{1}{3}\gamma_D \right) \vec{e}_N \right] \cos(\theta) dA$$

Resulting surface temperature:
$$T_i$$

$$T_i = \sqrt[4]{\frac{P_{\odot,i}P_i}{\sigma A_i\varepsilon_i}}$$

- ✓ Actual mean solar constant: $P_{\odot,i} = \frac{P_{\odot,1AU}}{r^2} \alpha_i \cos(\xi_i)$
- ✓ Actual orientation angle: $\xi_i = \arccos(\vec{e}_{N,i} \cdot \vec{e}_{Sun})$

Resulting TRP force vector of each cell:

$$\vec{F}_{\mathrm{TRP,i}} = -\frac{2}{3}\vec{e}_{\mathrm{N,i}}A_i \frac{P_{\odot,i} + P_i}{c}$$

✓ Resulting surface temperature:

$$T_i = \sqrt[4]{\frac{P_{\odot,i}P_i}{\sigma A_i \varepsilon_i}}$$

- ✓ Actual mean solar constant: $P_{\odot,i} = \frac{P_{\odot,1AU}}{r^2} \alpha_i \cos(\xi_i)$
- ✓ Actual orientation angle: $\xi_i = \arccos(\vec{e}_{N,i} \cdot \vec{e}_{Sun})$

Resulting TRP force vector of each cell:

$$\vec{F}_{\text{TRP},i} = -\frac{2}{3}\vec{e}_{\text{N},i}A_i \frac{P_{\odot,i} + P_i}{c}$$

✓ Resulting surface temperature:

$$T_i = \sqrt[4]{\frac{P_{\odot,i}P_i}{\sigma A_i \varepsilon_i}}$$

- ✓ Actual mean solar constant: $P_{\odot,i} = \frac{P_{\odot,1AU}}{r^2} \alpha_i \cos(\xi_i)$
- ✓ Actual orientation angle: $\xi_i = \arccos(\vec{e}_{N,i} \cdot \vec{e}_{Sun})$

Resulting TRP force vector of each cell:

Geometry

$$\vec{F}_{\text{TRP},i} = -\frac{2}{3}\vec{e}_{\text{N},i}A_i \frac{P_{\odot,i} + P_i}{c}$$

✓ Resulting surface temperature:

$$T_i = \sqrt[4]{\frac{P_{\odot,i}P_i}{\sigma A_i \varepsilon_i}}$$

✓ Actual mean solar constant:

✓ Actual orientation angle:

$$P_{\odot,i} = \frac{P_{\odot,1}AU}{r^2} \alpha_i \cos(\xi_i)$$

Material degradation (BOL $\leftarrow \rightarrow$ EOL)

$$\xi_i = \arccos(\vec{e}_{\mathrm{N,i}} \cdot \vec{e}_{\mathrm{Sun}})$$

Resulting TRP force vector of each cell:

Geometry $\vec{F}_{\text{TRP},i} = -\frac{2}{3}\vec{e}_{\text{IV},i}A_i \frac{P_{\odot,i} + P_i}{c}$

Material degradation influence

✓ Assumption: surface degradation leads to microscopic cratering

→ increase of absorptivity due to increase of surface area (resulting from roughened surface)

$$\frac{d\alpha}{dt} = p\frac{1}{t} \implies \alpha = \alpha_{\rm BOL} + \frac{p}{\ln(t)} , \ p = \frac{\alpha_{\rm EOL} - \alpha_{\rm BOL}}{\ln(T_{\rm lifetime})}$$

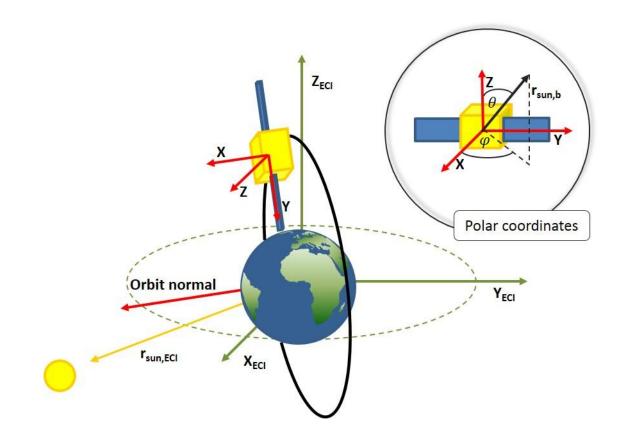
 \checkmark Roughening of surfaces changes ratio between spectral and diffuse reflectivity

$$\mu_{SD}(t) = \frac{\gamma_{S,\text{BOL}}}{\gamma_{D,\text{BOL}}} e^{-\lambda t}$$

$$\gamma_S(t) = (1 - \alpha) \frac{\mu_{SD}(t)}{\mu_{SD,BOL} + 1}$$
 $\gamma_D(t) = \frac{1 - \alpha}{1 + \mu_{SD}(t)}$

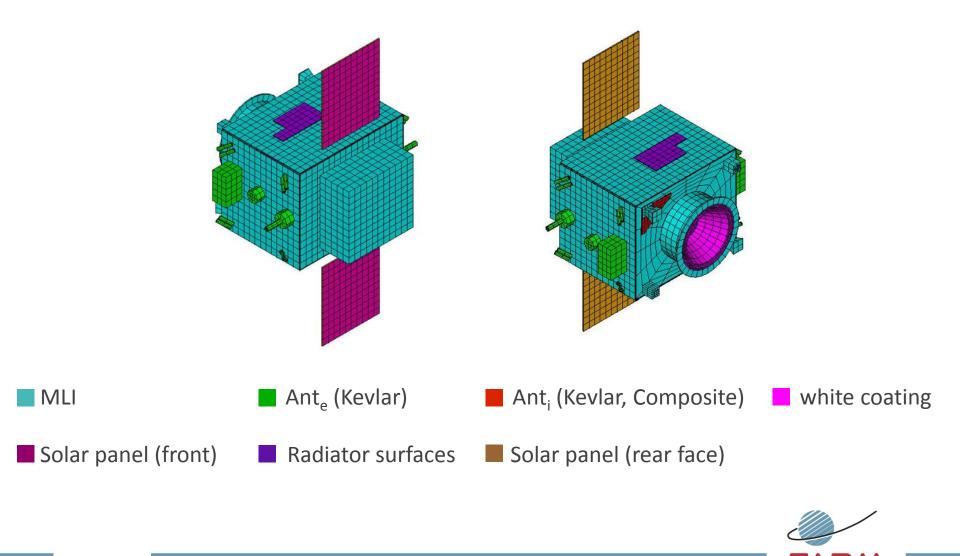
Contents

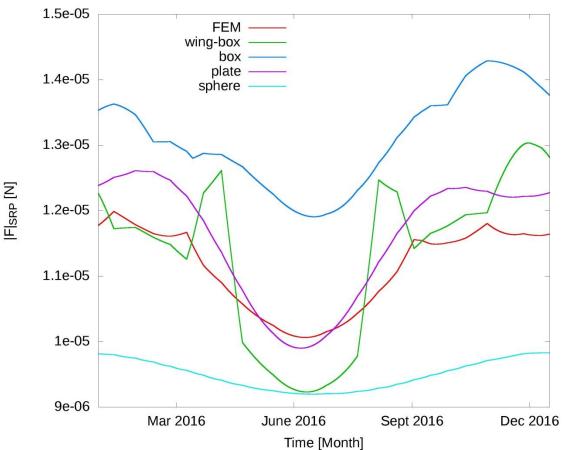
Mission data analysis:
 Time-dependent frequency analysis by using wavelets


✓ Modeling of non-gravitational disturbances

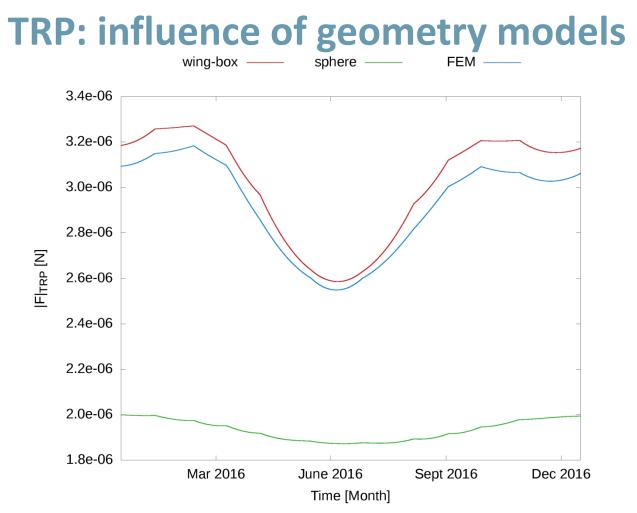
- ✓ Motivation
- ✓ SRP/TRP modeling approach
- ✓ Example: MICROSCOPE
- ✓ Outlook: post WEP test mission goals

✓ Conclusion

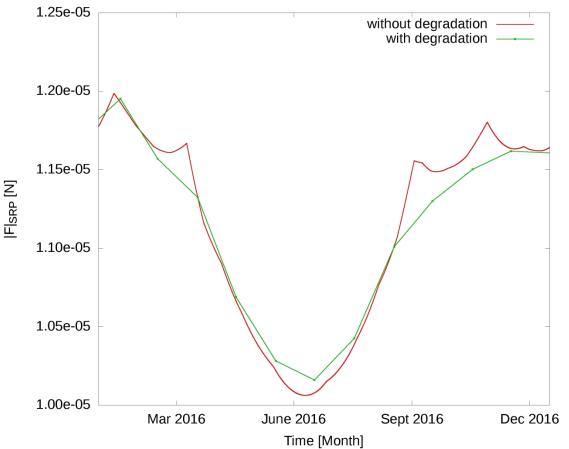

MICROSCOPE: orbit


✓ MICROSCOPE orbit: altitude 710 km, circular and polar orbit (SSO)

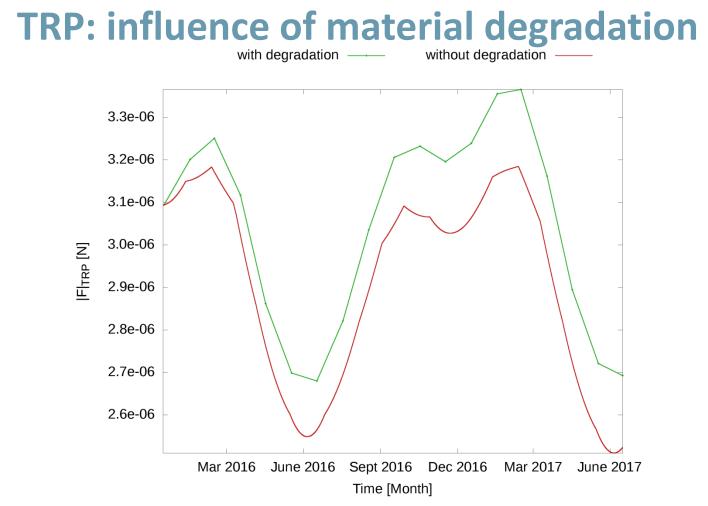
MICROSCOPE: detailed geometry model



SRP: influence of geometry models


 ✓ Magnitude of the computed SRP force (simulated period of time: one year)
 → different geometry models, const. material coefficients for absorptivity and reflectivity, variation of angle between sun vector and orbit normal

 ✓ Magnitude of the computed TRP force (simulated period of time: one year)
 → different geometry models, const. material coefficients for absorptivity and reflectivity, variation of angle between sun vector and orbit normal


SRP: influence of material degradation

 ✓ Magnitude of the computed SRP force (simulated period of time: one year)
 → detailed geometry model, degradation of material properties → coefficients for absorptivity and reflectivity are time-dependent,

variation angle between sun vector and orbit normal

- ✓ Magnitude of the computed TRP force (simulated period of time: one year)
 - → detailed geometry model, degradation of material properties → coefficients for absorptivity and reflectivity are time-dependent, variation angle between sun vector and orbit normal

Contents

Mission data analysis:
 Time-dependent frequency analysis by using wavelets

Modeling of non-gravitational disturbances Motivation SDD/TDD modeling engrases

- ✓ SRP/TRP modeling approach
- ✓ Example: MICROSCOPE

✓ Outlook: post WEP test mission goals

✓ Conclusion

Outlook: post WEP test mission goals

- ➔ Data collection in most critical altitude range for spacecraft conjunction assessment and collision avoidance
- → Evaluation and improvement of existing thermosphere models, e.g. NRLMSIS, JB2008
- → Improvement and evaluation of satellite non-gravitational force modeling including disentanglement of different effects (SRP/TRP/drag etc.) by collecting unique data in non-drag-free mode
- → Proposal for a technological experiment : CNES / TU Delft / ZARM

Proposed mission details (measurement modes, duration, etc.)

- ✓ Measurement without drag-free control
- ✓ If possible variation/modulation of pitch angles
- ✓ In addition measurement during eclipse encounter
- ightarrow As many orbits as feasible
- \rightarrow **Optimal**: 1 year to cover seasonal effects

Needed data, support

- ✓ Accelerometer data (MNOG/FRM) in non-drag free mode, full set of housekeeping data (→ N_0 data sets)
- ✓ Operations by CNES
- $\checkmark\,$ Data evaluation and modeling: funding by national agencies

- → Disturbances are directly visible in accelerometer axis
- → Changing cross-sectional drag surface
- → Resolution of transient thermal effects and SRP evolution

Contents

Mission data analysis:
 Time-dependent frequency analysis by using wavelets

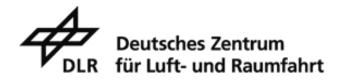
Modeling of non-gravitational disturbances Motivation SPD/TPD modeling approach

- ✓ SRP/TRP modeling approach
- ✓ Example: MICROSCOPE
- ✓ Outlook: post WEP test mission goals

✓ Conclusion

Conclusion

- ZARM data report: focusing on time-dependent frequency analysis based on wavelet analyis of the time signals
- ✓ With the help of standard cannonball and Box-And-Wing models it is not possible to diagnose and identify SRP/TRP disturbance effects with highest precision.
- Material degradation effects cannot be neglected for determining a complete "disturbance force and torque budget"
- ✓ Post mission goals: measurement of non-gravitational forces in non-drag free mode → new for field of research which has been nearly stagnant for decades



Thank you for your attention.

Supported by:

on the basis of a decision by the German Bundestag

This work is supported by the German Space Agency of DLR with funds of the BMWi (FKZ 50 OY 1305).

