
Testing General Relativity with clocks in space

Eva Hackmann
in collaboration with C. Lämmerzahl

Bremen, October 25th, 2017656. WE-Heraeus-Seminar on“Fundamental Physics in Space”



Contents

Introduction
The gravitomagnetic clock effect
Fundamental frequencies in Kerr spacetime
Generalised gravitomagnetic clock effect
Conclusions

2



Contents

Introduction
The gravitomagnetic clock effect
Fundamental frequencies in Kerr spacetime
Generalised gravitomagnetic clock effect
Conclusions

3 Introduction



Introduction
Notion of time

I In Newtonian theory time is absolute; all clocks tick at the same rate

I In Special Relativity we have to distinguish between coordinate time

and proper time; different standard clocks tick with different rates if

they are in relative motion

I In General Relativity proper time does in addition depend on the

gravitational field

Clock effects in General Relativity (not complete)

I Gravitational redshift

I Shapiro delay

I Gravitomagnetic clock effect
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Shapiro delay
Consider a photon moving radially in a Schwarzschild spacetime

0 = gµν
dxµ

ds

dxν

ds

⇒ dr

dt
=

(
1− 2M

r

)

I This can be easily integrated to

t = r − r0 + 2M ln
r − 2M

r0 − 2M

I Newtonian travel time: t = r − r0

I In addition there appears a logarithmic term

I This is the Shapiro delay
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Observation of clock effects
In the weak field regime

I The gravitational redshift has been measured on Earth by GPA

→ talk by S. Herrmann on a new test of the redshift

I The gravitational redshift can be used to define and determine the

Earth’s geoid

→ talk by D. Philipp

I The Shapiro delay has been measured in the Solar System

I There is an additional temporal effect (due to frame dragging) which

has never been tested in the weak field: the gravitomagnetic clock

effect
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Observation of clock effects
In the strong field regime

I The Shapiro delay and the redshift (encoded in the "Einstein delay")

have been tested to first post–Newtonian order by observing pulsars

in binary systems

I There is an ongoing search for pulsars orbiting a black hole

But:

I Is the 1st order PN approximation still valid in the strong gravitational

field of a black hole?

I In the case of a pulsar orbiting Sgr A* (extreme mass ratio) we can

find an exact expression

I Dhani, Master thesis 2017: At least 2nd order PN should be used

The gravitomagnetic clock effect has never been tested in the strong field

regime
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The gravitomagnetic clock effect
The setup

I Two clocks on circular orbits in the

equatorial plane of a rotating

astronomical object

I One clock on prograde orbit, one on

retrograde orbit

I Compare the measured time after a full

revolution of 2π

Also called observer-dependent two-clock clock effect

Cohen and Mashhoon 1993 (Phys. Lett. A, 181:353)

I τ+ − τ− ≈ 4πJ
mc2

I For the Earth: time difference of about 10−7sec per revolution

→ Large effect!?
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Problems and Goals
Problems

I Identical initial conditions required

I Identical orbits required

I Idealized circular orbits required

→ Generalisations to eccentric and inclined orbits exist

Generalisation: Fully general relativistic

definition

→ Consider bound geodesic orbits in Kerr

spacetime

→ Derive an expression for τ(±2π),
τ proper time

→ Use fundamental frequencies
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Kerr spacetime
in Boyer-Lindquist (BL) coordinates

ds2 = −∆

ρ2

(
dt− a sin2 θdϕ

)2
+
ρ2

∆
dr2

+
sin2 θ

ρ2
(adt− (r2 + a2)dϕ)2 + ρ2dθ2

where∆ = r2 + a2 − 2Mr, ρ2 = r2 + a2 cos2 θ,
M = Gm

c2
the mass, a = J/(mc) the spin.

Equations of motion (using dτ = ρ2dλ)(
dr

dλ

)2

= R(r) ,
dϕ

dλ
= Φr(r) + Φθ(θ) ,(

dθ

dλ

)2

= Θ(θ) ,
dt

dλ
= Tr(r) + Tθ(θ)
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Periodic motion
For bound orbits outside the horizons:

I The radial motion is periodic,

r ∈ [rp, ra]

I The θ motion is periodic,
θ ∈ [θmin, θmax]

From

(
dr

dλ

)2

= R,

(
dθ

dλ

)2

= Θ:

I Radial period Λr: r(λ+ Λr) = r(λ), Λr = 2
∫ ra
rp

dr√
R
, Υr = 2π

Λr

I θ period Λθ: θ(λ+ Λθ) = θ(λ), Λθ = 2
∫ θmax

θmin

dθ√
Θ
, Υθ = 2π

Λθ
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Fundamental Frequencies
I ϕ, t, and τ are not periodic

I can be expressed as a linear function

in λ + periodic oscillations

I Ansatz: ϕ(λ) = Υϕλ+ Φr
osc + Φθ

osc

Υϕ infinite λ−average
I Analogously: τ(λ) = Υτλ+ osc.;
t(λ) = Υtλ+ osc.

Proper time as function of ϕ:

I Use averaged τ = Υτλ and ϕ = Υϕλ

→ τ : ϕ 7→ τ(λ(ϕ)) = ΥτΥ−1
ϕ ϕ

I In the Newtonian limit we obtain from this the Keplerian time of

revolution
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Periapsis precession and Lense-Thirring effect
Periapsis precession

I mismatch of radial and angular

frequency wrt coordinate time

I ω̇ = Ωr − Ωϕ = Υr
Υt
− Υϕ

Υt
= (2π − ΛrΥϕ)/Pr

I Pr = ΛrΥt anomalistic period

Lense-Thirring effect

I mismatch of polar and angular

frequency wrt coordinate time

I Ω̇ = Ωθ − Ωϕ = (2π − ΛθΥϕ)/Pθ
I Pθ = ΛθΥt draconitic period
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The gravitomagnetic clock effect
Consider two clocks on arbitrary geodesics

I Orbital parameters rp,n, ra,n, θmax,n,

n = 1, 2

I Proper time of a full revolution:

τn(±2π, J)

Generalised definition

I Gravitomagnetic clock effect:

∆τgm = τ1(±2π, J) + ατ2(±2π, J)

I with α such that gravitoelectric effects cancel:
∆τgm = 0 for J = 0, i.e. α = − τ1(±2π,0)

τ2(±2π,0)
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Post-Newtonian expansion
For a one-year orbit around Sgr A*: a/r ≤M/r . 5× 10−4

I Expansion for small
a
r = J

mcr and small
M
r = Gm

c2r

τ(±2π) ≈ 2π

√
a3

Gm

(
1− 3(1 + e2)

2(1− e2)

M

a

)
± 2π(cos i(3e2 + 2e+ 3)− 2e− 2)

(1− e2)
3
2

J

mc2
,

I a semimajor axis, e eccentricity, and i inclination

I rp = a(1− e), ra = a(1 + e), and θmax = π/2 + i
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Astronomical object orbiting Sgr A*
Correction to proper orbital period due to frame dragging:

τcorr ≈ 2πJ
mc2

cos i(3e2+2e+3)−2e−2)

(1−e2)
3
2
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Clock effect for general orbits
For two clocks with arbitrary orbital parameters a1,2, e1,2, i1,2:

∆τgm ≈
2πJ

mc2

[
s1

cos i1(3e2
1 + 2e1 + 3)− 2e1 − 2

(1− e2
1)

3
2

− s2

√
a3

1

a3
2

cos i2(3e2
2 + 2e2 + 3)− 2e2 − 2

(1− e2
2)

3
2

]

I s1,2 = +1 for prograde motion, s1,2 = −1 for retrograde

I In particular: s1 = s2 possible!

I Identical orbital parameters: τ+ − τ− ≈ 4πJ
mc2

cos i(3e2+2e+3)−2e−2)

(1−e2)
3
2
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Two examples
First example

I Sgr A* rotates with J/(mc) = 0.9M

I First pulsar: 0.5-year orbit, nearly equatorial and circular

I Second pulsar: 1-year orbit, very eccentric and highly inclined

I Result: ∆τgm ≈ 297s ≈ 2× 10−5 τ(2π; J = 0)

Second example

I Sgr A* rotates with J/(mc) = 0.5M

I First pulsar: 1-year orbit, nearly equatorial and circular

I Second pulsar: 2-year orbit, a bit eccentric and quite inclined

I Result: ∆τgm ≈ 59s ≈ 2× 10−6 τ(2π; J = 0)
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Summary
The gravitomagnetic clock effect for Earth satellites

I satellites orbiting the Earth: effect∼ 10−8 − 10−7 s

I but ultra precise tracking necessary: semi major axis to at least mm

accuracy!

The gravitomagnetic clock effect for general astronomical objects

I for arbitrary bound geodesic orbits in Kerr spacetime

I definition via fundamental frequencies

I objects orbiting Sgr A*: effect up to∼ 102s

I detectable by pulsars?
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Thank you for your attention!
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