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1) Above the Atmosphere, 2) Large Distances, 3) Remote Benchmarks  

 1976 radar transponder on Mars 

 1992 Gamma Ray Observatory 

 2016 LISA Pathfinder for LISA in 2034 
  

4) Varying Gravitational Potential φ 5)Varying Gravitational Acceleration g,                                         
  6) Rapid Modulation of Velocity Vector 
1979 Gravity Probe A 

2017 mSTAR  space-time asymmetry test 

2024 STEP 

          

7) Reduced Gravity, 8) Quieter Seismically, 9) Separation of Effects  

2004 Gravity Probe B 

2015 DLR/NASA Cold Atom Laboratory 

2024 STEP 

 

9 Ways Space Opens New Physics 
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NASA Gravity Probe A 
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Vessot-Levine H-maser ‘redshift’  1979 
  

• 100kg spin stabilized rocket to 10,000km 
• Two ground based, one vehicle-borne H2 masers 
• Mission duration 113 mins 
• Relativistic frequency shift confirmed to 70 parts in 106 

x1000 more accurate than Pound-Rebka 1959 



NASA Gravity Probe B: Gyroscopes & GR 

Geodetic Effect Ωg 
Ø  Space-time curvature 

Frame-dragging Effect Ωfd 
Ø  Rotating matter drags space-time 
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Mach 

Thirring 

Schiff 

+ 3 lesser GR terms 
- solar geodetic: 18.8 marc-s/yr 
- Earth oblateness correction to Ωg: 7 marc-s/yr 
- starlight deflection by Sun: +14.4 marc-s/yr max 



The 4 Gravity Probe B Challenges 
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Gyroscope (G)      107 times better than best 'modeled' inertial navigation gyros 
Telescope (T)        103 times better than best prior star trackers 
G – T                              <1 milliarcsecond subtraction within pointing range 
Gyro Readout                 calibrated to parts in 105 
 
 

Basis for 107 advance 
in gyro performance 

Space   
      -  reduced support force drag-free  

-  S/C roll about line to star 

Cryogenics   
     -  magnetic readout & shielding 

-  thermal & mechanical stability 
-  ultra-high vacuum technology 



The GP-B Instrument  
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Cryogenic Operation (1.9K) & Superconductivity  
•  extreme mechanical stability 
•  10-7 gauss ambient field  
•  10-14 gauss field stability 
•  10-14 torr operating pressure   

 



 Instrument Flight Hardware 
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The GP-B Telescope  
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Don Davidson 

Dual Si Diode 
Detector   



The GP-B Gyroscope   
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•   Electrical Suspension  

•   Gas Spin-up   

•   Magnetic Readout 

•   Cryogenic Operation 



Gyroscope 1: Electrical Suspension 
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9 orders of magnitude of g-levels 
 
Range within cavity (15,000 nm) 

science (centered in cavity) 
spin-up  (offset to spin channel ~ 11,000 nm) 
 

Alignment (roll phased voltage variation) 

Ground-based version: analog  

   
Flight version: digital  
(Joint Stanford - Lockheed Martin team) 

   Student participation:  
   3 Aero/Astro, 2 EE PhDs, 6 undergraduates 

Commanded sine-wave 
position of Gyro 

Hardware Simulator 
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Gyroscope 2: Gas Spin-up 
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Torque-switching   1 

Tr/Ts < Ω0 ts ~ 10-14
 

Ts, Tr - spin & residual cross-track torques 
  ts - spin time; Ω0 - drift requirement 

Differential-pumping 2 

spin channel ~ 10 torr (sonic velocity) 
electrode area < 10-3 torr 

"Any fool can get the steam into the cylinders; it takes a clever 
man to get it out again afterwards."  -- G. J. Churchward, ~ 1895 

3 Pumpout through entire 10in (0.25m) diameter Probe 



Gyroscope 3: Magnetic Readout 
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Noise < 190 milliarcseconds/Hz1/2 
Centering stability < 50 nm  
DC trapped flux < 10-6 gauss 
AC shielding > 240 dB 

 Requirement 

The London Moment 



Ultra-low Magnetic Field Technology 
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Space & Cryogenics 
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Space   
Ø  reduced support force, "drag-free"  
Ø  separation of effects 
Ø  S/C roll about line of sight to star 

Cryogenics 
Ø  magnetic readout & shielding 
Ø  thermal & mechanical stability 
Ø  ultra-high vacuum technology 



View into the Probe 
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Gravity Probe B Space Vehicle 

Page 16      Frame-Dragging, Cryogenics & Space: The Gravity Probe B Experiment 
                  School of Physics & Astronomy, University of Minnesota – Jan 25, 2012 

♠  Redundant spacecraft 
processors, transponders.  

♠  16 He gas thrusters (0-10 mN) 
for fine 6 DOF control. 

♠  Roll star sensors for fine pointing. 

♠  Magnetometers for coarse 
attitude determination. 

♠  Tertiary sun sensors for very 
coarse attitude determination. 

♠  Magnetic torque rods for coarse 
orientation control. 

♠  Mass trim to tune moments of 
inertia. 

♠  Dual transponders for TDRSS & 
ground station communications. 

♠  Stanford-modified GPS receiver 
for precise orbit information.   

♠  Solar arrays + 70 A-hr batteries. 



Launch:  April 20, 2004 – 09:57:24 
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On the Tower at Vandenberg 
Air Force Base 

 Launch 

Launch Control Center 



On-Orbit: Ultra-low Pressure & Spin-down 
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Low Temperature Bakeout 

Gyro spindown periods on-orbit  

 Gyro #1               ~ 50               15,800 yr 

 Gyro #2               ~ 40               13,400 yr 

 Gyro #3               ~ 40                 7,000 yr 

 Gyro #4               ~ 40               25,700 yr 

before bakeout       after bakeout 

He adsorption isotherms at low temperature 

The Cryopump 

pressure < 10-14 torr: 

        implies minute patch effect dampings 
 

Gas spin down @ 10-14 torr 300,000 yr 
 



Countering Spacecraft Drag 
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Proportional thruster 
He boil off gas – Reynolds number ~ 10 !!  
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3 Unexpected On-Orbit ‘Gremlins’ 

20 

Polhode-rate variation & Cg calibration 

Roll-polhode resonance displacements 

100× larger-than-expected misalignment torques 

§  All due to electrical out-of-roundness of housings & rotors 
§  Calibrated by the magnetic out-of-roundness (i.e. trapped flux) 
§  3 stages of correction & cross-checks 



Roll-Polhode Resonance  
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Example:  Gyro 2, Resonance 277 – Oct 25, ’04  
                      



Gravity Probe B Result 
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rNS (geodetic) – 6,606.1 – 6,601.8 ± 18.3 
rWE (frame-dragging) – 39.2 – 37.2 ± 7.2 

GR Predictions GP-B Results 

May 2011 result 

Within experimental limit all 4 gyros agree with each other, 



The 7 Measured Gyro Parameters 
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1.  Misalignment torque drift   

2.  Roll polhode resonances  

3.  Polhode damping 

4.  Rotor spin down rate  

5.  Rotor charge  

6.  Control effort @ spin-rate  

7.  Acceleration     IM Pegasi 

Used in 2011 analysis 

GP-B team advanced analysis   
- open for DLR participation. 

Potential gains 
x6 in geodetic measurement   
x2 in frame-dragging  

Continued Advanced Analysis 



5 Offshoots of GP-B’s 13 New Technologies  

																						Roundness									NIST	redetermina.on	of		Avogadro's	#	
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                     Porous	Plug										essen.al	to	IRAS,	COBE,	Spitzer	&	ISO	missions	

                   Submillarc-s	Star	Tracker										100x	finer	poin.ng	than	Hubble	

                   Drag-Free	Technology									crucial	to	LISA	

																				GP-B’s	GPS	Vehicle	orienta?on									24	hr	automated	farming	

  

  

  

  

  

 

 

 



Four Different Drag-Free Worlds 
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thrusters contributing techniques  performance 

DISCOS bang-bang N2    sub-m gravitational orbit  5×10-12 g 

GP-B proportional He rolling spacecraft < 3×10-12 g 

STEP 
 
proportional He 
 

aerogel He tide control narrow-band 10-14 g 

 
 
LISA FEEP  

 
thermal, magnetic, charge control  
 

 
broad-band 10-16 g 

 

Note: g-attraction between two adjacent human bodies ~ 10-8 g 



The Equivalence ‘Principle’ 

•  Mass enters physics in two radically different ways 
–  inertial mass mi                        F = mia 
–  gravitational mass mg              F = mg[GM/r2] 
 

•  Ground based tests from Galileo on make mi/mg constant 
for all materials to ~10-12  

•  A cryogenic ‘dragfree’ space mission could reach ~10-18 

•  Theoretical arguments by Damour & others for possible 
breakdown at ~10-15 
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Satellite Test of  Equivalence 

“Orbiting drop 
tower” 

* More time for separation to build 
* Periodic signal { 

Dz 
time 

Dz 

Dz 
time 
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P. Worden et. al. 
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MICROSCOPE goal 

Space > 5 Orders of Magnitude Leap 



STEP Mission 
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  8 Month Lifetime 
§   Sun synchronous 550km orbit, I=97o 
§   Drag-free control w/ He thrusters 
 
 
 

Cryogenic Experiment 
§   Superfluid He flight dewar 
§   Aerogel He confinement 
§   Superconducting shielding 
   
 
 

4 Differential Accelerometers 
§   Test mass pairs of different materials 
§   Electrostatic positioning system 
§   DC SQUID acceleration sensors 
§   Superconducting bearings  
§   µm tolerances 
 

 
 
 
 
 
 

Goal:  EP measurement to 1 part in 1018



Flight Engineering Unit Inner Accelerometer 

coils for SQUID readout 

electrodes for centering/ 
charge control 
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STEP:  Credibility & Impact 
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Robust Equivalence Principle data 
Ø  4 accelerometers, each         η to 10 –18 in 20 orbits 

Positive result (violation of EP) 
Ø  Discovery of new interaction in Nature 
Ø  Strong marker for unified theories 
Ø  Implications for dark energy 

Negative result (no violation) 
Ø  Severely limits approaches to  

problems of unification & dark energy 
Ø  Strongly constrains supersymmetric &  

quintessence theories 

“Improvement by a factor of around 105 could come from an equivalence principle test in space 
. … at these levels, null experimental results provide important constraints on existing theories,  
and a positive signal would make for a scientific revolution.” (p. 162) 
Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century  (2003)    

-- National Academies Press, the National Academy of Sciences 


