Critical Velocities in Open Capillary Channel Flows (CCF): Groove

Dennis Haake, Antje Ohlhoff, Michael E. Dreyer, Hans J. Rath

Center of Applied Space Technology and Microgravity University of Bremen

Drop Tower Days 2004

Support for the research project by the German Aerospace Center (DLR) is gratefully acknowledged

Introduction

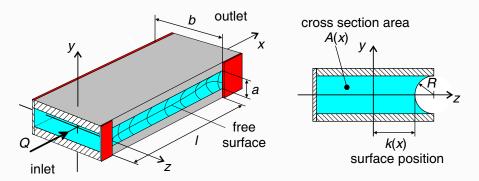
The Groove and Governing Equations Theoretical Model Motivation

Experimental Setup Drop Tower

Streamline Model Experiment Overview Setup Groove

Results

Experimental Results Comparison Experiment and Theoretical Model


D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

Introduction

The Groove and Governing Equations

Bernoulli equation

$$\blacktriangleright$$
 dp + ρ vdv + dw_f = 0

Conservation of mass

$$\bullet \ dA/A + dv/v = 0$$

D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

(日) (周) (日) (日)

Scaling and Characteristic Numbers

$$\blacktriangleright$$
 length with $d_h/4$, area with $A_0=ab$ and velocity with $v_c=\sqrt{4\sigma/\rho d_h}$

•
$$\Lambda = b/a$$
; $d_h = rac{4ab}{2b+a}$; $\mathrm{Oh} = \sqrt{rac{
ho
u^2}{\sigma d_h}}$ and $ilde{l} = rac{\mathrm{Oh}l}{2d_h}$

Non Dimensional Equations

Boundary Conditions

►
$$k(x = 0) = k(x = l) = \frac{2\Lambda + 1}{2}$$
; $2h(x = 0) = 2h_0$

D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

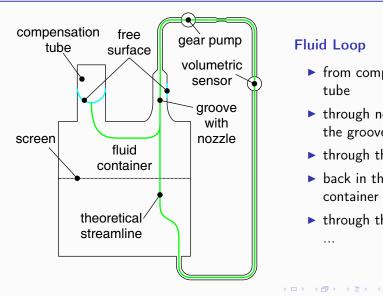
イロト イロト イヨト イヨト

Seeking for Solution of

- ► $k(x) = f(\Lambda, Oh, \tilde{l}, Q)$
- $Q_{krit} = g(\Lambda, Oh, \tilde{l})$

Motivation

- Capillary vanes and grooves in surface tension tanks
- Withdrawal of propellants directly through the capillary channels
- Gas ingestion should be avoided


D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

Experimental Setup Drop Tower

Streamline Model

Fluid Loop

- from compensation tube
- through nozzle to the groove
- through the pump
- back in the fluid container
- through the screen

D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

. . .

Experimental Setup Drop Tower

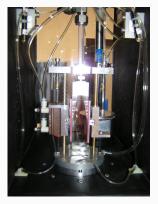
Experiment Overview

Experiment Overview

CCD-camera and optics

Illumination and pump

A (10) A (10)


D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

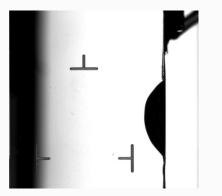
Experimental Setup Drop Tower

Setup Groove

First Experiment Groove (convection dominated)

- ∧ = 2.5
- ▶ Oh = 1.89 · 10⁻³

•
$$\tilde{l} = 6.79 \cdot 10^{-4}$$


$$\blacktriangleright \operatorname{Re}_{c} = \frac{d_{h}v_{c}}{\nu} = 1.06 \cdot 10^{3}$$

D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

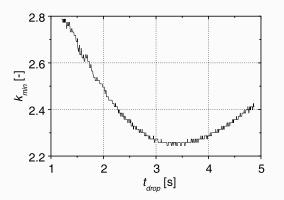
Results Experimental Results

Flowrate

• Steady: $Q < Q_{krit}$

• Unsteady: $Q > Q_{krit}$

D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath


4

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

イロト イロト イヨト イヨト

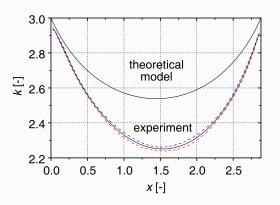
Results Experimental Results

Time Depence of free Surface (steady)

- Flowrate: Q = 0.74
- t_{drop} is the experimental time
- k_{min} is the minimum of the surface position k(x) at t_{drop}

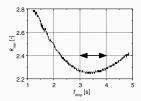
Meniscus does not reach steady state

D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath


Critical Velocities in Open Capillary Channel Flows (CCF): Groove

▲ @ ▶ ▲ ∃ ▶ ▲

Results


Comparison Experiment and Theoretical Model

Comparison of Surface Position

- Flowrate: Q = 0.74
- Experiment: Average surface position over a period of 3s ≤ t_{drop} ≤ 4s

- Only qualitativ comparison possible
- Both show convection dominated behavior

D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

A (1) > A (1) > A

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

Critical Flowrate Qkrit

- Experiment: $0.74 < Q_{krit} < 0.77$
- Model: $Q_{krit} = 0.99$

Deviation of 25 %

- The pressure loss due to the profile change is not yet integrated
- Deviation of boundary condition h₀

D. Haake, A. Ohlhoff, M. E. Dreyer, H. J. Rath

Critical Velocities in Open Capillary Channel Flows (CCF): Groove

イロト イロト イヨト イヨト

- Theoretical model
- Experimental setup for the Drop Tower
- Experimental results for steady and unsteady flows
- Comparison of the experiment with the theoretical model

Critical Velocities in Open Capillary Channel Flows (CCF): Groove