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The Schro¨dinger equation in higher dimensions is considered. It consists of the
kinetic energy part given by the corresponding Laplace operator, and a term de-
scribing the interaction with the electrostatic field of a point charge. From
Rutherford-type scattering experiments one can conclude that the potential of a
point charge is;1/r irrespective of the dimension of the space where the experi-
ment is carried through. Also the structure of the kinetic energy is unchanged in
higher dimensions so that one is lead to the result that there exist stable atoms in
higher spatial dimensionsd>4. The solutions and energy eigenvalues to this
Schrödinger equation in higher dimensions are presented. As a consequence, the
dimensionality of space can be read off from the spectral scheme of atoms: The
three-dimensionality of space is a consequence of the existence of the Lyman
series. Another consequence is that the Maxwell equations in higher dimensions
must be modified in order to have the 1/r -potential as solution for a point charge.
© 1999 American Institute of Physics.@S0022-2488~99!00502-2#

I. INTRODUCTION

The idea of extra space–time dimensions continues to pervade current attempts to un
fundamental forces, but in ways somewhat different from that originally envisaged. A mo
perspective on the role of internal dimensions in physics comes mainly from the super
theory, which is the most promising candidate for a unified field theory. The appearance of
space–time dimensions at high energy scales is a generic feature of string theory. Typicall
extra dimensions remain compactified at the Planck scale, but it is possible for new dimens
have an effect below the Planck scale. In particular, large-radius compactification scheme
recently been discussed in a number of theoretical and phenomenological contexts.1,2 Similarly,
the effects of extra dimensions below the Planck scale have played a role in understand
strong-coupling behavior of string theory.3 Even the old pioneer Kaluza–Klein theory is embe
ded in a super-string theory; their states persist as a subset of the full string spectrum. Ho
string theory comes to rescue and ensures correct high-energy behavior.4 Then, we can regard this
theory as an effective ‘‘medium’’ energy model coming from finite string field theories. There
the study of different higher-dimensional models is of importance for the understanding of
general theories.

One of the most interesting questions addressed to the higher-dimensional approach
cerns the stability of atoms in higher spatial dimensions, i.e.,d.3. These investigations starte

a!Electronic mail: frank.burgbacher@uni-konstanz.de
b!Electronic mail: claus.laemmerzahl@uni-konstanz.de
c!Electronic mail: amac@xanum.uam.mx
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with the well-known paper of Ehrenfest5 and has inspired many additional interesting investi
tions. For reviews see Refs. 6 and 7, and for a recent paper on this problem see Ref. 8 wh
dimensionality of space–time has been related to physical phenomena which are acces
experiment.

According to the analysis of Ehrenfest, see also Ref. 9, there are statements in all pape
in higher dimensions it is not possible to have stable atoms. It is one of our purposes in this
to show that it is indeed possible to havestable atoms in higher dimensions. The main point is that
first the kinetic energy in the Schro¨dinger has the usual form described by thed-dimensional
Laplacian and that the electrostatic interaction in the Schro¨dinger equation has the same for
irrespective of the spatial dimension. This of course leads to modified Maxwell equations in h
dimensions. While the main characteristics of these new Maxwell equations in higher dime
remains the same as compared with the Maxwell equations in three dimensions~the solutions have
the same structure and the force between charges is the same as in three dimensions!, these
modified Maxwell equations do not lead to a Gaussian law for charges. This may sound s
but the results of scattering experiments, the stability of atoms in higher dimensions, an
structure of the force between charges is certainly of more basic physical content.

A second point in our paper is that the spectra of atoms are influenced by the spatial d
sion. That means, as we shall show, that wecan decide from a spectroscopic experiment
dimension of our configuration space. To be more concrete, the ratio of the frequencies of t
distinguished spectral lines leads to a number from which we uniquely infer the t
dimensionality of our space. If this ratio gives a different number we would be led to fou
another number of spatial dimensions.

The most important starting point of our investigation is the structure of the Schro¨dinger
equation in higher dimensions. One way which fixes the kinetic part of the Schro¨dinger equation
is the quantization scheme arising from the Hamilton–Jacobi equation of a point mass whic
in higher dimensions has the usual formE5p2/2m1V, whereV is some potential energy. In
addition, also from a constructive axiomatic scheme~see, for example, Refs. 8 or 10! one gets a
Dirac equation in higher dimensions which nonrelativistic limit11 necessarily possesses a kine
term which is proportional to the Laplace operator. Therefore, any modification of this term w
need a modification of the quantization scheme as well as a violation of fundamental prop
~like unique evolution, superposition principle, finite propagation speed, etc., see, for exa
Ref. 10! of single particle quantum systems. Since these modifications obviously changes p
drastically we do not change the structure of the usual kinetic term.

As far as the potential energy term is concerned we use results from scattering experim
fix its form. Indeed, since the results of Rutherford-type scattering experiments are independ
the spatial dimension, we can unambiguously conclude from the experimental data, that
dimensiond the potential must be of the form;1/r . This is of course consistent with the analys
of Ref. 5 that atoms with the usual kinetic energy coupled to a modified potential of the
;/r d22 are not stable~the exponentd22 is due to the requirement that Gauss’ law should be
valid in higher dimensions!. Since our result for the electrostatic potential is not compatible w
a Gaussian law for electrostatics, we conclude that we have to modify the structure of Max
equations in higher dimensions.

Consequently, we take as general ansatz for the Hamilton operator for the hydrogen a
higher dimensions,

H5
p2

2m
1V~r !, ~1!

whereV(r ) is the spherically symmetric potential given by

V~r !5
a

r
. ~2!
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In comparison to other work on the problem of physics in higher dimensions, we do
consider the usual physical laws like the Maxwell equations~see, for example, Refs. 12 and 13! or
the Schro¨dinger equation or Newton’s field equations~see Ref. 5!, or the Einstein equations~see
Refs. 14–16! to be valid in higher dimensions and discuss physical implications of the solut
Instead, we start with generalphysicalproperties of the class of phenomena under considera
and then try to get information of the structure of the physical laws. In general, these equati
higher dimensions are very different from the equations in three dimensions describing the
effects. An interesting approach,17 which is in the line of our reasoning, is based on the cau
structure of space–time events. It deduces the four-dimensionality of space–time from a
axioms which do not use the notion of a differentiable manifold or of the dimensionality. Ano
approach having some similarities to our reasoning is given in Ref. 18 where it is shown th
a gravitational theory based on a quadratic Lagrangian the usual Newtonian limit and Huy
principle is valid only if this theory if formulated in six space–time dimensions. In Ref. 8, a
general approach to a generalized Dirac equation in arbitrary dimensions has been used
dimensions of space–time has been inferred from the propagation of helicity states and fro
validity of Huygen’s principle. In this work we do not consider the fractal dimension; see
example, Ref. 19.

In earlier work5–7 it has been shown that there are no stable hydrogen atoms in h
dimensions. Essential for that was the assumption that also in higher dimensions Max
equations were assumed to be valid leading to a potential of a point charge of the form;1/r d22

whered is the spatial dimension. In our approach we do not assume the usual Maxwell equ
to be valid. We only use the results of scattering experiments to get information about the po
of a point charge. We use this potential in Sec. III in order to solve the hydrogen atom and
show that even in higher dimensions there are stable atoms. However, from the comparison
calculated spectrum with the observational data we are able to determine in Sec. IV the d
sionality of our space. In Sec. V we present the full set of modified Maxwell equations in ord
show that even our potential violating Gauss’ law is part of a consistent set of equations gov
electrodynamical phenomena in a higher dimension. Though being nonlocal in general, th
still Lorentz-covariant.

II. THE POTENTIAL OF A POINT CHARGE IN HIGHER DIMENSIONS

The electrostatic potential of the atomic nucleus which we assume to be pointlike, c
determined by means of scattering processes. Indeed, using the scattering ofa-particles at gold
atoms, Rutherford was able to deduce that the electrostatic potential within an atom is the
lomb potential. We will show that this procedure and this result is true independent of the u
lying spatial dimensions. This can be seen already from the fact that the classical trajecto
point charge in a 1/r potential does not depend on the spatial dimension so that the rel
between the deflection angle and the potential also remains the same.

Starting with~1,2!, conventional quantum mechanics gives the asymptotics of scattered w
according to

u1~rW !5
1

~2p!d/2 S eikW rW1 f kW~eW !
eikr

r ~d21!/2D , ~3!

with eW5rW/r . This can be shown by calculating the Green’s function in the energy represen

G~rW,rW8!5
1

~2p\!d lim
e→01

E e~ i /\!~rW2rW8!•pW

E01 i e2p2/2m
ddp

which results in a position dependence of the form;urW2rW8u2(d22) with factors depending on the
dimensiond and an integration over a spherical Bessel function. The scattering amplitude is
given by
 23 Jan 2004 to 134.102.236.59. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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f kW~eW !;E e2 ikeW rW8V~rW8!u1~rW8!ddx8, ~4!

whereeW5rW/r . In the Born approximation we have

f kW~eW !;E ei ~kW2qW !rWV~rW !ddx. ~5!

In a scattering experiment the measured quantity is the differential cross sections(eW ,kW0)
which is related to the scattering amplitude by

s~eW ,kW0!5u f kW0
~eW !u2. ~6!

This is a relation which is independent of the dimension of the underlying space. In the
approximation there is a one-to-one correspondence between the differential cross section
potential V(rW). Therefore, by analyzing the standard Rutherford-type experiments we
uniquely conclude that a point charge, or the nucleus of a hydrogen atom, possess a pote
the form;r 21, independent of the spatial dimension.

III. THE HYDROGEN ATOM IN HIGHER DIMENSIONS

We start with the Hamilton operator~1! in the external spherically symmetric potential~2!
which gives, in position representation,

@D2f1e#c5c, ~7!

where we introduced the abbreviations

f~r !5
2m

\2 V~r !, ~8!

e5
2m

\2 E. ~9!

The following calculations are analogous to that in three dimensions. Also, in a higher dime
we can separate the Laplace operator into a radial and an angular part:

D5R̂2
1

r 2 L̂, ~10!

where we introduced

R̂5
]2

]r 2 1
d21

r

]

]r
,

~11!
L̂5L̂~Q2 ,...,Qn!.

With the corresponding ansatz,

c5R~r !Y~Q2 ,...,Qd!, ~12!

we get from the Schro¨dinger equation ind dimensions,
 23 Jan 2004 to 134.102.236.59. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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r 2

R
R̂R1r 2~e2f!5

1

Y
L̂Y5 l ~ l 1d22!. ~13!

Y(Q2 ,...,Qd) represents the spherical harmonics ind dimensions. They are eigenstates of t
angular momentum operatorL̂ with the eigenvaluesl ( l 1d22). Thus we get for the radial part o
the wave function,

F ]2

]r 2 1
d21

r

]

]r
1e2f2

l ~ l 1d22!

r 2 GR50. ~14!

We introduce

r 85
r

r 0
, 2e5

1

r 0
2 , a85

2ma

\2

r 0

2
, ~15!

and assume for the potential the form

f~r 8!r 0
252

a8

r 8
. ~16!

We also introduce a new variablef (r 8) through

R5e2~1/2!r 8r 8g f ~r 8!, ~17!

and get an equation for the functionf:

05r
d2f ~r 8!

dr82 1@2g1d212r #
d f~r 8!

dr8

1Fg~g1d22!2 l ~ l 1d22!

r 8
1

a8

r 8
2

2g1d21

2
G f ~r 8!. ~18!

This equation is valid for arbitraryd. In order to solve this equation we specify the value ofg by
the requirement that the term;1/r 8 should vanish:

g~g1d22!2 l ~ l 1d22!50. ~19!

This gives the two possibilities

g15 l , ~20!

g252~ l 1d22!, ~21!

and from~18!,

z f92@q2z# f 82b f 50, ~22!

with

qª6~2l 1d22!11, bª
6~2l 1d22!11

2
2a8. ~23!

Equation~22! is the confluent hypergeometric differential equation with the solution20
 23 Jan 2004 to 134.102.236.59. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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f ~b,q,z!5 (
n50

`
~b1n!!q!

b! ~q1n!!

zn

n!
, ~24!

which is appropriate for our problem.
It is clear that, in order to get no infinite terms,q is not allowed to be a negative intege

qÞ21,22,... . Therefore we cannot use the solution~21!. In addition, if the sum does no

terminate, then the solution diverges for larger faster than exp(12r8) which leads to non-
normalizable solutions. The condition for a termination of the sum isbPZ2, or

b5 l 1
d21

2
2a852k, kPN. ~25!

Here a8 is connected with the energy eigenvalues~1,8,15!. Therefore we get for the energ
eigenvaluesE,

E5
2ma2

\2

1

a82 52
2ma2

\2

1

„l 1@~d21!/2#1k…2
52Ry

1

n2 5:En , ~26!

where the principal quantum numbern is given by the series

n5
d21

2
,

d21

2
11,

d21

2
12,

d21

2
13,... . ~27!

We also introduced the Rydberg constantRy which, in general, may depend througha on the
dimensiond. In the cased53 we recover the usual expressions. Note that, in general, the
cipal quantum numbern must not be an integer.

Consequently, we have shown that for a potential of the form;1/r even in higher dimensions
there is a lowest energy level, that is, there are stable atoms.

IV. THE INFLUENCE OF THE DIMENSION ON THE SPECTRUM

We discuss now the spectrum of stable hydrogen atoms in higher dimensions. It is cle
the spectrum depends on the dimensiond. An interesting question is whether this dependence
accessible to observations. In an experiment only the difference of two energy eigenvalue

DEn8,n5En82En , n8.n, ~28!

can be measured. For a fixedn one gets an atomic series which now depends on the dimensid.
In three dimensionsd53 one gets forn51 the Lyman series, forn52 the Balmer series, for
n53 the Paschen series, etc. In 4 dimension, for example, according to~27! it is not possible to
haven51, so that in this case there is no Lyman series. Ind56 dimensions there is also n
Balmer series.

However, since the Rydberg constant Ry may depend on the dimensiond in an unknown way,
we are not able to draw any conclusions about the dimensionality of space from testing the
spectral series. Therefore we are forced to restrict ourselves to the ratio of two energy diffe
which is also independent of any unit conventions. In our case it is enough to take the ratio
difference between the three lowest energy levels of one series characterized byn:

D~n!5
DEn12,n

DEn11,n

5
4~11n!3

~21n!2~112n!
. ~29!
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Because this functionD(n) is one-to-one, the value ofD(n) uniquely characterizes the corre

sponding series. For the first few values we getD(0)51, D( 1
2)5 27

2551.08,D(1)5 32
2751.18519,

D( 3
2)5 125

98 51.275,D(2)5 27
2051.35,D( 5

2)5 343
24351.41152, etc.

Therefore we have the following experimental method at hand in order to determin
dimensionality of our space: We consider that series which belongs to the lowest energy
From this series we take the two highest frequency spectral lines and calculate the ratio. Thi
the valueD(nmin). From this value we can calculate the correspondingnmin and, using~27!, the
dimensiond52nmin11 of our space. Here we used that in each dimension the lowest s
contains only transitions withl 5k50.

We know from spectroscopy of the hydrogen atom that the two spectral lines coming
transitions to the lowest energy level have~see, for example, Ref. 21! 1215.67 Å and 1025.73 Å
so thatD(nmin)51216/102651.18518. A comparison with the values ofD(n) shows that this
implies nmin51, and from Eq.~27! that d53. Therefore we haveproven by a spectroscopi
experiment that our space is three-dimensional. In other words, because we know the spectrum
the hydrogen atom we are able to determine the dimensionality of space.

We want to stress once more that it is not the stability of the atom which one may u
argument in favor of three spatial dimensions. In our approach the stability of atoms is secu
any dimension. It is only the structure of the spectral series which leads us to the conclusio
space is three-dimensional.

V. MAXWELL EQUATIONS IN HIGHER DIMENSIONS

We have seen that the electric potential of a point charge in the Schro¨dinger equation in higher
dimensions must be of the formU;1/r independent of the dimensiond. Since the usual Laplacian
has the same form in any dimension, the above potential cannot be a solution of the P
equation ind.3 dimensions. However, we show that it is indeed possible to present a cons
set of equations governing the electromagnetic phenomena in higher dimensions which viol
fundamental principle of electrodynamics and, in addition, possesses the above electrostat
tions for a point charge. Of course, the structure of the Maxwell equations will be not the sa
in three dimensions.

In order to determine the structure of the stationary Maxwell equation for the electric field
use results of Riesz distributions, see, for example, Refs. 22, 23. In doing so we first defi
distribution

Glª

e2 iplG@~d/2!2l#r 2l2d

4lpd/2G~l!
, ~30!

wherer as usual is the distancer 25( i 51
d xi

2. The properties of these distributionsGl are given by
the composition law

Gm* Gl5Gl1m , ~31!

and an explicit representation in the case of negative integers,

Gk5D2kd, k50,21,22,..., ~32!

whereD is again the Laplace operator in an arbitrary dimension,d the usual Dirac delta distribu
tion, and the star* the convolution operation.

We formally introduce operatorsD̄l by

D̄l
ªG2l , ~33!

so that the following composition law holds:
 23 Jan 2004 to 134.102.236.59. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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D̄m* Gl5Gl2m . ~34!

An important special case is given bym5l:

D̄m* Gm5d. ~35!

This means thatGm is a Green’s function corresponding to the operatorD̄m* .
Now we come back to our problem of finding the field equations which are required to po

the solution;r 21 in any dimensiond. That means that we require in any dimensionGm;1/r
which impliesm5(d21)/2. Consequently,

D̄~d21!/2* G~d21!/25d, ~36!

or

D̄~d21!/2*
1

r
5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 D d. ~37!

This means that the equation for the electric potential, or the generalized Poisson equation
as

~D̄~d21!/2* f!~x!5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 D r~x!, ~38!

wherer(x) is the charge density ind dimensions. The operatorD̄ (d21)/2 replaces the Laplacian in
three dimensions. In general, this operator is no differential operator.

We briefly discuss this new form of the Poisson equation in electrostatics.

~1! It is possible to reformulate the field equation for the potentialf in terms of the electric field
strengthE52“f. For doing so we use~31! and ~32!:

D̄~d21!/2* f5~D̄* D̄~d23!/2!* f5Dd* ~D̄~d23!/2* f!5d* ~D̄~d23!/2* df!5~D̄~d23!/2*“•E!,
~39!

so that we get as field equation for the electric field strength,

~~D̄~d23!/2*“ !•E!~x!5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 D r~x!. ~40!

~2! The force between two charges still has the same form as in 3 dimensions, namf
;q1q2 /r 2.

~3! For all charge densitiesr(x) the solution for the potential looks as usual, i.e., 1/r * r.
~4! In odd dimensionsd51,3,5,..., the above equation reduces via~31! and~32! to a differential

equation:

D̄~d21!/2*
1

r
5d* D~d21!/2

1

r
5D~d21!/2

1

r
5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 D d. ~41!

For a three-dimensional space,d53, we get the usual Laplace equationDf(x)524pr(x)
and in a five-dimensional space we getD2f(x)5(4p)2r(x).

~5! In even dimensions, the operatorD̄ (d21)/2 is no differential operator but instead a pseud
differential operator. Therefore the corresponding field equations are pseudo-differenti
erator equations. These operators are nonlocal.~Indeed, differential operators are the on
local operators acting linearly and surjective onC`; see Ref. 24. For a physical discussio
see, for example, Ref. 25.!

~6! An essential difference to the usual properties of the electric field in 3 dimensions is tha
the Gauss’ law is no longer valid. This is easy to see by integrating the fundamental so
r 21 in an arbitrary dimension over the surface of a sphere with radiusR:

E E•dA5E
R
“

1

r
• r̂Rd21dV5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 DRd23, ~42!
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wherer̂ is the unit vector in radial direction anddV is the surface element ind dimensions.
The result depends on the radius of the sphere so that indeed Gauss’ law does not ho
only in three spatial dimensions that the quantityE which plays the role of a force on
charged particle, is also that quantity which integral over the area enclosing a volume
the total charge which acts as source ofE ~the field strengthE is defined by means of the forc
acting on a charged particle; whether this quantity obeys a law like Gauss’ law is a de
property which holds in three dimensions!.
However, Gauss’ law is valid for a quantity deduced fromE, namely forE5D̄ (d23)/2E:

“•E5~4p!~d21!/2eip@~d21!/2#GS d21

2 D r~x!⇔ R E•dA5~4p!~d21!/2eip@~d21!/2#Q,

~43!
whereQ5*Vr(x)ddx is the charge contained in the volumeV.

It is also straightforward to give the full set of Maxwell’s equations such that their static
give the Poisson equation discussed above: Since the covariant generalization of the L
operatorD is given by the d’Alambert operator , the covariant generalization of Poisson
equation is (d21)/2* f5(4p)(d21)/2eip@(d21)/2#G((d21)/2)r. We complete the quantities to co
variant 4-vectors, namely the 4-potentialAa and the 4-currentj a. Then we have, using the sam
methods as above,

j a5 ~d21!/2* Aa5~ * ~d23!/2!* Aa5 d* ~ ~d23!/2* Aa!5d* ~ ~d23!/2* Aa!

5 ~d23!/2* ]bFba5: ]̄bFba, ~44!

where we defined a generalized partial derivative]̄bª
(d23)/2* ]b and, as usual, the Maxwe

field strengthFab5]aAb2]bAa . We also used the Lorentz condition]aAa50. By construction,
these generalization of Maxwell’s equations is covariant. Also current conservation is fulfilled
even spatial dimensions these equations are nonlocal.

To sum up: despite the fact that the mathematical structure of the equation determini
electric potential from a given charge density changes dramatically when compared wi
three-dimensional case, the physical content does not change. The solution has the same f
the force between charges is the same as in three dimensions. Only Gauss’ law loses its m
However, we think that the specific expression for the force between charged particles a
stability of atoms are of more basic physical importance than the validity of Gauss’ law.

VI. SUMMARY AND DISCUSSION

To sum up, we have shown the following.

~1! From Rutherford-type experiments we can conclude that the potential of the point cha
any spatial dimension must be;1/r .

~2! This potential leads to stable atoms in higher dimensions.
~3! The dimensionality enters the atomic spectra thus making it possible to infer uniquely

atomic spectra the three dimensionality of space.
~4! That the Maxwell equations have to be modified in higher dimensions in order to a

solutions of the form 1/r , leading to nonlocal equations in even spatial dimensions.

In the case that one uses the usual Maxwell equations in higher dimensions the hydroge
is proven to be not stable. This has been related to the fact that orbits of classical bodie
potential derived from the usual Poisson equation in higher dimensions are not stable, a
small perturbations of the circular orbit leads the body to fall into the central body or to leav
system. Consequently, if one wants to enlarge the above reasoning to the case of New
mechanics, one has to require stable orbits, which gives the 1/r potential for gravity also in higher
dimensions. This forces one to modify the Poisson equation for the Newtonian potential
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same way as the Poisson equation for the electrostatic potential in Sec. V. That means, in
dimension d the field equation for the Newtonian potentialU(x) must be of the form
(D̄ (d21)/2* U)(x)5(4p)(d21)/2eip(d21)/2G((d21)/2)r(x), wherer(x) is the mass density. As a
consequence, also Einstein’s equations should be modified in higher dimensions.

In conclusion, we want to say that our or similar considerations do not rule out the poss
of unifying physics in higher dimensions; we just restrict, from observations, the direct phy
applicability of dynamical equations to three spatial dimensions.
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