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Abstract  

Quantum mechanically described test particles enable a local measurement of the Riemann 
tensor via the interaction with the elementary particle spin. The corresponding procedure is 
discussed in detail. It is compared with three nonlocal methods, which are based on the be- 
havior of classical macroscopic test particles. A central question thereby is if the complete 
set of components of the Riemann tensor can be determined. 

w Introduction 

The inclusion of  quantum mechanically described matter  into the classical 

theory of  general relativity offers, already on the level of  first quantization, 
several new answers to old questions. One of  these fundamental  questions is: 
how can the basic quantities of  a metric theory of  gravitation be measured at 
least in principle? 

To measure the torsion of space-time, it seems to be inevitable to base the 
respective experiment on the elementary particle spin (Audretsch [ 1 ]). The 
other fundamental  quanti ty of  space geometry is the curvature as described by 
the Riemann tensor. And it is again the inclusion of  quantum mechanically de- 
scribed particles with spin which enables a new type of  measurement of  the Rie- 
mann tensor with the important  proper ty  of  being a local one. 

In the following we describe this method and compare  it with three nonlocal 
methods,  which are based on the behavior of  classical test particles. To do so, all 
four methods will be presented in detail. In each case the central question will 
be, can the complete set of  components  of  the Riemann tensor be determined? 
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w Four Methods 

In a space- t ime theory  o f  gravi ta t ion fo rmula ted  in a R iemann  space, 1 t idal  
gravi ta t ional  fields are represented by  the curvature of  space-t ime.  Mathemat i -  
cally,  curvature  is descr ibed by  the R iemann  tensor  2 Raflv~.  It manifests  i tself  
in proper t ies  of  the parallel  t ranspor t  which differ  f rom those  in flat  space-t ime.  
Among  others  these are the following: (i)  The failure o f  parallel  geodesics to  re- 
main  equidis tant :  the relative accelera t ion b a of  two neighbor  t imel ike  geodesics 
wi th  tangent  vector  o ~ and or thogona l  connect ing  vector  3 r a is (geodesic  devia- 
t ion)  

b ~ = -RC~fl.rsv#rq'v~ (1) 

(ii)  the failure o f  a vector ,  when  paral lely t r anspor t ed  a round  a closed loop,  to 
re turn  to  its original d i rec t ion  (nonin tegrabi t i ty  o f  the affine connec t ion) ;  (iii) 
the  failure of  the covariant  derivative to  co mmu te  (Ricci  iden t i ty )  

1 a 
AfllllTtl61 = ~ R  f178Ac~ (2) 

Each o f  these proper t ies  can be t aken  as basis for a measurement  o f  the  Riemann  

tensor .  
The mathemat ica l  concepts  of  (i) and (ii) can be most  d i rec t ly  in te rpre ted  in 

te rms o f  classical test  part icle  pa ths  wi th  tangent  vector  v a and in the part ic les '  
classical in ternal  angular m o m e n t u m  per proper  mass S a wi th  S a r a  = 0 and 

S~Sa  = const  so tha t  the angular m o m e n t u m  is Fe rmi  propagated:  

v v s  = - (a.S") v (3) 

The 4-accelerat ion a s o f  such a gyroscope  is given by  

a c~ = Vv va = - R  *c~3, ~ v(JS'ro~ (4) 

where  

R,af t ' r5  = �89 "r~ (s) 

1 We assume vanishing torsion. 
2We use the following conventions: Signature of the metric tensor gc~#: (+, - - - ) .  ~x, fl . . . .  = 

0, 1, 2, 3 are tensor indices raised and lowered with gaff. a, b . . .  = 0, 1, 2, 3 and ~', ~ . . . .  = 
1, 2, 3 are tetrad indices raised and lowered with "Oab = diag(+l, -1,  -1, -1). The corre- 
sponding object is a Riemann scalar with regard to a, b , . . . .  Particular values of a, b . . . .  
are denoted by brackets: A (~ = A a=O, r~ (~ = -1. Velocity of light: c = 1. 

3 See the theory of timelike congruences for details of the definition_ 
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is the right dual of  the Riemann tensor and Vv denotes the directional derivative 
along v a (Papapetrou [2]).4 

Classical test particles with vanishing internal angular momentum (S a = 0) 
move on geodesics (a a = 0). It has been suggested by Pirani [5] to use the ob- 
servation of  the relative acceleration of  two such particles to measure compo- 
nents o f  the Riemann tensor on the basis of  Eq. (1). A convenient device to do 
so is the gravity gradiometer [6] and the gravitational compass [7]. We will in- 
dicate below how the complete set of  components  of  the Riemann tensor can be 
measured this way. Because two distinct particles at a distance r ~ are used, the 
method is essentially nonlocal. 

A second method is based on the comparison of  two gyroscopes. According 
to (3 ) - (5 )  the angular momentum vector S ~ of  a test gyroscope with 4-velocity 
v a is parallely propagated along its world line up to terms of  second order in S '~. 
This behavior can be used to give a physical demonstrat ion of  the mathematical  
proper ty  (ii) above: 

To introduce the closed loop, we take a pair of  neighboring gyroscopes, dis- 
place at two different times the angular momentum of  the second parallely along 
the orthogonal connecting vector r a with r%,~ = 0 to the world line of  the first 
one, and compare it with the angular momentum there. Projection of  the result- 
ing difference vector - Vr S c~ into the local rest space of  the observer accompany- 
ing the first gyroscope by means o f  the projection tensor 

pc~  =g ,~  _ v%~  (6) 
V 

gives the difference of  the directions of  the two gyroscopes 

a s  s = e :vrs (7) 

as seen by this observer. The change in time of  this difference, again as registered 
by this observer, is then finally the measured quantity.  It is given by  

( a S S )  . = e ~ v v ( a S  ~) (8) 

To work out  the quantities above, it is easier to use instead o f r  ~ the con- 
necting vector n ~ which is Lie transferred along the v c~ world line 

s  c~ = 0 (9) 
U 

Accordingly we have 

(VnVv - VoVn)S ~ = R~:37sS~nTv 8 (10) 

4This paper is more of a formal than experimental character. We are not discussing the de- 
tails of the experimental realizations of the procedures in Sections 4-6. The equations 
(3)-(4) have up to now no experimental justification. For the current status of gyro- 
satellite experiments see [3] and [4]. 
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which implies with (3) and (4) 

V~VnS a = -RS~7~ S~nVv ~ + O(S 2) (11) 

We introduce this into (8) and obtain with (7) and (4) 

(ASS) .= -PSeRe~7~S~r~v8 + O(S  ~) (12) 

The replacement of n s by r s = Pa~n ~ amounts thereby to corrections of the 
order S z. 

Using the left dual of the Riemann tensor 

*RS~'y8 = 1 rls~uvRUVT~ (13) 

and introducing 

H 7 = *RTxxuVXrXv  u (14) 

Eq. (12) can be given the form 

(ASS) . = rls~q'Svr + O(S 2) (15) 

This represents the 3-equation 

(AS)" : H • S (16) 

which refers to the rest space of the observer. Equation (16) can be found with a 
misprint in the Appendix of a paper of Sachs [8]. This second method, which is 
based on the comparison of two gyroscopes, is again explicitly a nonlocal one. 

A third approach to measure the Riemann tensor can be based on the influ- 
ence of the quantum mechanical spin on the trajectory v s of a Dirac particle in 
curved space-time. It has been worked out by Audretsch [9], that in a WKB ap- 
proximation after a Gordon decomposition the generalized "force equation" for 
the v a congruence is given by 

a s = Vov s = Xc�88 76 + O(h 2) (17) 

where Xc = h i m  is the Compton wavelength of the particle and 

s (18) 

is the tensor of the spin density. 
The Riemann tensor causes via the quantum mechanical spin a nongeodesic 

behavior of the Dirac particle streamlines. This is essentially the case, because 
the convection current of the Gordon decomposition (as the SchrSdinger current 
in the nonrelativistic limit) contains already a first derivative of the Dirac field 
ft. Accordingly, a force equation (nongeodesic behavior) contains for a single 
world line second derivatives, and a Ricci identity for spinor fields can be ap- 
plied. Because of this structure it is possible to measure components of the Rie- 
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mann tensor in observing the influence of  the spin on the bending of  one world 
line only. We call this a local measurement. Substituting into (17) the normal- 
ized spin S ~ by means of  

S ~ = Ba~SvvS  8 (19) 

the acceleration which is to be measured may be rewritten as 

a s Xc 
= - T -  R * ~t~v8 v~SVv8 (20) 

Finally a fourth method can be based on the interaction of curvature with 
the classical internal angular momentum of  a gyroscope as described by (4). 
Although a corresponding measurement uses one test object only, the classi- 
cal angular momentum makes this method a nonlocal macroscopic one. Be- 
cause Eqs. (4) and (20) essentially agree, the respective results can simply be 
transcribed. 

w (3): Six-DimensionalNotation 

To visualize the 20 independent components of  the full Riemann tensor, we 
introduce a six-dimensional notation which directly represents the respective 
symmetry properties. With regard to a timelike normalized vector u c~ we define 
the tensors 

with the properties 

X~g = *R*~xp, uXu x (21 a) 

Y~r = R~x~xuXu x (21b) 

Z ~  = -R * x p ,  uXu x (21c) 

Z t = _*R~x~xuXu x (21d) 

Xc~e =Xs,~ (22a) 

Y,~ = Y~,~ (22b) 

Z~a =Zt~ ~ (22c) 

Z% = 0 (22d) 

We complete u s to an orthonormal tetrad 

hahbga~ = Tab, h~0 ) = u a (23) 

and introduce the following notation for the components gabcd of the Riemann 
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tensor with regard to this tetrad: each index pair ab is replaced by a single index 
~2 running from 1 to 6, according to the scheme, 

ab 
~2 

10 20 30 23 31 12 

1 2 3 4 5 6 
(24) 

The full Riemann tensor and its right and left dual can then be represented by 
the matrices 

[ Yah Zab ] (25a) 
(Raz )=  [ z t g  -gab 

(R,a~)=[Zab Y~g ] (25b) 
xaF, zta~, 

[ Zt~b Xfib ] (25c) 
(*Rax) = Yah Zab J 

where the first index denotes the row and the second the column. For example, 
R lOa2 = -Ra=l, ~=4 = - Z n .  Indices ~, ~ . . . .  = 1,2, 3 refer to the three-dimen- 
sional spatial tetrad indices, i.e., to the contractions with the tetrad vector h a, 

Ot 

h b . . . . .  
We note that in vacuum, assuming Einstein's field equations, the Riemann 

tensor reduces to the Weyl tensor. In this special case we have additionally 

and therefore 

Arab = - Yah (26a) 
^ 

ya = 0 (26b) 

Zha = Za~ (26c) 

[Yab Zab I (27) 
(Caz) = Za b _yah 

Below we will make use of the measurements of different observers in one 
space-time point. The respective tetrads (frames of reference) are related by 
Lorentz transformations. We restrict to the boosts in the three direction h~ of a 

the original tetrad with h~o ) = u a. Let i be the number of the respective boosted 
tetrad (i = 1, 2, 3), then the nonvanishing components of the transformations 

ha ~ = L bhC~ (28) . a  . b  
1 l 
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are given by 

L o  ~ = L i  i = (1 - viZ) -1/2 
i i 

(29) 
Lo i = Li ~ = O i ( l  - 0 i 2 ) - 1 / 2  
i i 

(no summation convention, tetrad indices), where v i are the respective relative 
velocities measured by the original observer. 

The components of  the Riemann tensor in the different tetrads are then re- 
lated according to 

_ k l m n Rabcd - La Lb Lc La Rklmn 
i i i t i 

o r  

(30) 

R a ~  = .Aan .Az*Rn.  (31) 
l l l 

in the six-dimensional notation, respectively. For the boosts, the nonvanishing 
components of the symmetric 6 • 6 matrices A.~ n are explicitly given by (no 
summation convention) 

. m ~ = i  Z = i  = A ~ 2 = i + 3  s  = 1 
l l 

A~zS~=Lo ~ for ~2:~i, ~ 4 : i + 3  
t i 

A35 = -A26 =Lot (32) 
1 I 1 

A I  6 = - A 3  4 = L o  2 
2 2 2 

-AI s = A 2  4 =Lo 3 
3 3 3 

w (4): Local Experiments Using the Elementary Particle Spin 

4.1. One Observer. The local experiment is based on the curvature-induced 
acceleration (20), as measured in a coinciding reference system h~ of an observer 
with 4-velocity u s = h~o ). The measured components of a quantity are obtained 
by projection onto one of the spacelike vectors. The three components of the 
quantum mechanical spin are, for example, 

S ~ a = S ha (33) 
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In the various experiments the orientations of  the spin and the particle velocity 
parallel to the different directions h5 are fixed by the preparation, and particular 

a 

components of  the resulting acceleration of the particle are measured. To sim- 
plify the description of  the experiments we introduce the set of  numbers (V, S, 
A) with V , S  . . . .  = 0, 1, 2, 3 and the notation 

v ~ = Vv5 ~ (34a) 

S ~ = SsS~s (34b) 

a a = a A 5~A (34c) 

(no summation convention for the capital letters). The combination (V = 1, 
S = 2, A = 3), for example, then means: Prepare an experiment with a particle 
flying parallel to h~= 1 with velocity vl (i.e., v v = vl~i~) and having a spin parallel 

h a (i.e., S s = $25~). Measure under these conditions the component  a3 of to fi=2 
the acceleration in the direction h a = 3" This example is a particular measurement 
of  type 5 of  Table I. 

Writing (20) with respect to components,  we obtain as a relation which is to 
be evaluated 

= -  [_~ b~av ~ v + (R*fibb(o)V tv +R*a(o)y(o))(Sev (~ v@ (~ 

+ R * ~(o)~ S~v~v (~ (35) 

By always using the results of  the previous measurements, the components of  
the Riemann tensor can successfully be obtained by performing the experiments 
in the following order (cf. Table I): 

1. T y p e  o f  measurements." For particles at rest we have u ~ = v a and accord- 
ingly v v = 0 and V = 0. This implies with (35) 

a~ Xc ,~ 
= - - ~ R  (0)~(o)S (36) 

The measured components of  the Riemann tensor for all orientations of  the spin 
(S = 1,2,  3) are therefore the complete matrix Z~t ;, 

In all other cases, i.e., V @ 0, (35) reduces to 

a ~ Xe = - ~ -  [R*a~(o)v~(S~v (~ - v@ (o)) + R *a(o)~S~v~v (~ + known terms 

(37) 

To obtain this, we have used the fact that the components R*abb2t agree accord- 
ing to (24) and (25b) with the components z t ~ ,  which are already determined 
in measurement 1. Note that because o fSeSe  = - 1 the factor Seue = S (~ is 
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Table I. Local Measurements of the Riemann Tensor Using the Elementary Particle Spin. 
(Components of the Particle Velocity: v v, of the particle spin: S s, of the measured acceler- 

ation or force: a a) 

Prepare suc- Measure for each (Additionally) 
Measurement cessively the combination the measured 

type combinations components Symbolically components 

= VvSiz ^ 
SS 6"~- -S a~ =aA8 ~ , prepared 

S ~ = - - - ,  measured 

V=O 
R *a ++ A = 1 , 2 , 3  J ) S  , (o)~(o) Za~ 1 S = 1, 2, 3 ~" - - - ~ a ' "  

~ ' a "  

i ,~t 
V = 1 , 2 , 3  ~ ) S R 8?J(o) +-~ XFn~' 

2 S = V  A = 1 , 2 , 3  t 
/ . - - - - ~  a m 

k a 

T S' ,3 

V= 1 ' 2 ' 3  A = V  -----~v R (o) ?~, +--~ Y~th, 
3 S4=V - - - + a  9 4 : 9 v  a ' "  /~ rrl va o 

S = 1, 2, 3 A =S -----~ S Already obtained 
4 Vv aS ~ - - - + a  above 

T S Six linear dependent 
V = 1, 2, 3 equations for the 

5 S :/: V A @ V r S . ,,~ v six components 
/ 

~:a X~;l, Yhh 

known  when  the S a are specified. Similarly, veue = v (~ is known when  the v a 

are fixed. 

2. T y p e  o f  m e a s u r e m e n t :  The spin is di rected parallely to the veloci ty  

(S = V). This implies wi th  (34)  and (37)  

aa Xe A 
= - ~ -  R * a v v ( o ) v v ( S v  v(~ - Vv  S ( ~  + known  terms (38) 

The accelerat ion is measured or thogonal  to the di rect ion o f  the veloci ty  (A ~ V). 

All this can be done  for three direct ions o f  the veloci ty  ( V - -  1, 2, 3). The mea- 
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sured components of the Riemann tensor are R*AVV(o), or according to our 
scheme (25) the terms XMV with V :# A ~ M :# V. The case A = V leads to terms 
which are already known. 

3. Type of  measurement: Now the spin is orthogonally oriented to the ve- 
locity (S ~ V), and for all orientations of the velocity (V = 1,2, 3) the compo- 
nent of the acceleration parallel to the velocity (A = V) measured. In this case 
(37) reduces to 

~c 
a ~ = - ~ R*~(o)~;S~vbv (~ + known terms (39) 

It follows that the components R* v(o)sv or correspondingly YVM with S 4= V 4= 
M ~ S are measured. Note that because of Vq:M the diagonal terms of YVM re- 
main undetermined. 

4. Type of  measurement: Now conversely the velocity orthogonally oriented 
to the spin (V v e S), and for orientations of the spin (S = 1,2, 3) the component 
of the acceleration parallel to the spin (A = S) is observed. Equation (37) then 
reads 

aa ?tc 
= - ~ -  {R*a~$(o)vbS~v (~ - R*~;3(o)V;v6S (~ + R*a(o)~S~v;v (~ 

+ known terms (40) 

Because ofA = S the first term has already been obtained in measurement 2, and 
the second term as well. The third term was the result of measurement 3. There- 
fore these types of measurements, although they have been tabulated to show 
the completeness of the whole scheme, do not lead to any new information. 

5. Type of  measurement: The only remaining case is that all three vectors 
are orthogonal with V = 1,2, 3. Again going back to (37) and making use of the 
results of measurement 2 we find 

a ~ =--~-3"c (R*fi;~(o) + R*fi(o)~;) v;S~v(~ + known terms (41) 

According to (24) and (25) these are six equations for the still unknown compo- 
nents X11, X22, X33, Y1 a, Ym, Y33 (tetrad indices): 

X33 + Yll =AI,  

Xll  + Y22 =As, 

X22 + Y33 =As, 

X22 + Yll =A2 

X33 + Y22 =A4 

X~I + Y33 =Ae 

(42) 
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where the right-hand sides are fixed in the experiment.  Because the determinant 

o f  this system of  equations vanishes, the diagonal elements o f  the matrices X and 

Y remain undetermined.  These are the following components  of  R * a  ~ and R a ~: 

(R*a  ~) = (43) - -  - - - -  

If we restrict ourselves to the vacuum space-times of  the Einstein theory 
where the Riemann tensor agrees with the Weyl tensor, we have in addit ion to 
(42) the relations (26a, b). This system of  equations can now be solved, s 

For the vacuum space-times of  Einstein theory the local method of  the ele- 
mentary particle spin enables a complete determination of the Riemann tensor. 

4.2. Several Observers. The measurements o f  one single observer have 
turned out to be incomplete.  It is therefore natural to ask if it is possible to 
close the gap in combining the information of  several observers with different 

velocities. 
We introduce three addit ional observers. As seen by the first observer, they 

Ot 
move along the three directions h~. All three observers measure within their co- 
moving frame of  reference h~ of  (28) all components  of  R a z  apart from the 

t i 

diagonal ones. In addit ion all three observers determine the right-hand side of  
six equations corresponding to (42): 

X33+YII=A1,  X 2 2 + Y l l = A 2  and so on 
i i i i i i 

(44) 

Together with (42) these are 4 X 6 equations. Taking all this information as 
given, we have to check if Lorentz transformations to the oriRinal frame accord- 
ing to (28) - (32)  fix the diagonal components of  ( R a z ) .  

SThe system (42) represents five independent equations for the six unknown diagonal com- 
ponents X11, - �9 - Y11, �9 - �9 - Therefore, assuming Einstein's field equations, the additional 
knowledge of the energy density Ta~uC~u ~ or one of the diagonal components T3~ of the 
energy momentum tensor is already sufficient to make the system (42) solvable. Vacuum 
is a special case of this. 
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With regard to the first moving observer we obtain with (31), (32) and taking 
into account (25a) 

Y*I = Y l l  
1 

Y22 = (Lo~ Y22 + (Lo1)2X33 "1" known terms 
1 1 1 1 

Y33 = (Zo~ 2 Y33 + (Lol)2x22 + known terms 
1 i I i 

Xll =Xl l  
1 

X22 = (L01)2 Y33 + (Lo~ + known terms 
1 1 1 1 

(45) 

X33 = (Lol) 2 Y22 + (L~ + known terms 
1 1 1 1 

With regard to the second and third moving observer we find similar sets of six 
equations. 

Taking all equations together, we have 42 (= 4 X 6 + 3 X 6) equations for 
the 24 (= 4 X 6) unknown terms diag(Ra~) and diag(Ra~), which must be 

! 

solved with regard to diag(Raz). An analysis (we omit the details) shows that 
such a solution of this system of equations is impossible. 

Accordingly, apart from vacuum space-times 6 o f  Einstein theory, the Rie- 
mann tensor cannot be determined completely by the local method o f  the ele- 
mentary particle spin. 

w Nonlocal Experiments Based on the Geodesic Deviation 

In an appropriate device, for example, particles connected by springs, the 
relative acceleration b ~ of (1) manifests itself as a force. We assume that the 
components of this force with regard to a reference system ha ~ of an observer 
with 4-velocity u s = h~o ) can be measured: 

b b = b ~ h ~ = b B S ~  (46) 

The initial situations in the various measurements are characterized by the non- 
vanishing components of velocity and orthogonal connecting vector 

v f = VVS~V (47) 

r ~ = r R 8,~ (48) 

6 Compare footnote 4. 
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Decompos i t i on  o f  (1) leads to 

b ~ -  ~ .~ rL~  ^ - - K  b~yv v - R b ( o ) ; ~ r ; v V v  (~ 
^ ^ 

- (Rbb~(o)v ~ +Rb(o)Y(o )V(~  (~ - vYr (~ (49) 

Per forming successively the  measurements  o f  type  1 to type  5 as described in 

Table II (and always making use o f  the  informat ions  obta ined  in the  previous 

measurements )  one is able to de termine  direct ly  all componen t s  of  R a x  apart 

Table II. Nonlocal Measurements of the Riemann Tensor Based on the Geodesic Deviation. ^ 
(Components of the Particle Velocity: u v, of the Orthogoanl Connecting Vector: r r, of the 

Measured Relative Acceleration or Force: b b) 

Prepare suc- Measure for each (Additionally) 
Measurement cessively the combination the measured 

type combinations components Symbolically components 

u?J = OV63V b~ ) = bBS~ B , prepared 
r~ = r R 8~R - - - ,  measured 

'l 'b' 

V = 0 L ) r b ^ +-~ Yb? 
1 R = 1, 2, 3 B = 1, 2, 3 . /  - - - - ~  b"  R (o)r(o) 

k: b" 

V = 1 , 2 , 3  
2 R =  V B = 1 , 2 , 3  

V = 1, 2, 3 
3 R ~ V  

R = I ,  2,3 
4 V4=R 

V--- 1, 2, 3 
R r  

for Vr andV r, 
v~ ~ v~ 

B = V  

B = R  

B~a V 
B q : R  

~b'  ^ 

t 

i - - - -~r  Rb~,~(o) Z ~ ,  

Tr' ) u Already obtained 
-----~ b above 

T o '  r ^ ^  ^ <--+ ^ 
} r R vrv Xmm,  

A A A 
- - . -~b  m ~ r ,  m 4 ~  U 

I v, o Seven equations 
for the six compo- 

/ ) r ~ n t s Z & ~ ,  Xr~h, 
b /  m 4 : n  
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A /x 
from Zaa and XB3 with b v ~ c. The measurements of  type 5 allow only to fix the 
right-hand sides B1, B2, B3 of the equations (tetrad indices) 

X3201 + (Z33 - Z 2 2 ) ( 1  - v12) - i /2  = B  1 

X31u2 + ( Z l l  - Z 3 3 ) ( 1  - 022) -1/2 =B2 

X1203 + (222  - Z l l ) ( 1  - v32) -1/2 =Ba 

(50) 

Together with the cyclic identity (22d) we have four equations for the six un- 
known components. But, as compared with system (42), adjustable velocities 
vv with V = 1,2, 3 still appear. Repetition of the experiments with different 
values b" v of the velocities and measurement of the quantities B1, B2, B3 adds 
to (50) three corresponding equations. The total system of equations now turns 
out to be solvable. This completes the proof that measurements based on the 
geodesic deviation enable the determination o fall components o f  the Riemann 
tensor. 

w Nonlocal Experiments Using Two Gyroscopes 

Equation (12) describes the change in time of the difference between the 
angular momenta of two neighboring gyroscopes as registered in the rest space 
of one of the gyroscopes. We assume that this quantity (ASS) . , which is pri- 
marily defined in a kinematical way according to (8) and (7), can be measured 
dynamically. By this we mean that it is possible to construct in the rest space of 
the gyroscope a device which represents (A SS) �9 as a force, expanding for exam- 
ple a spring. We assume additionally that the experimental setup makes it possi- 
ble that the corresponding quantity, e.g., the resulting length of the spring, can 
be measured by an observer with 4-velocity u s which is not necessarily comov- 
ing. The observed quantity will then be 

f s  = puS (A S~)., fSu  s = 0 (51) 

We want to show that by these measurements using two gyroscopes, the 
Riemann tensor cannot be determined completely. To do so we make first of  all 
use of the fact that according to (15) measurements o f f  a are essentially mea- 
surements o f H  ~. Decomposing again with regard to the tetrad h~ with h~o ) = u s, 
we obtain from (51) and (15) 

f7  = ~7(o)h}H~S]v(O) + ~f6{O)}v~S]H(O) + r/6~(O)v~H~S(O) (52) 
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Because the Riemann tensor will afterwards be worked out using (14), we have 
to find all components H~ for all given combinations v~ and r~. Vectors will al- 
ways be prepared parallel to one of the tetrad vectors. We introduce again the 
notation of (34) and 

H s =HHShH (53a) 

f ]  =fpS~ (53b) 

(H, F = 1, 2, 3 ; no summation convention.) 
For a comoving observer, V = 0, we get H~ directly f r o m f  f according to 

(52). For the other cases, we begin with a measurement of the component of  
f f  parallel to v ~ (i.e., V-- F )  

f~ = r{'(~176 (54) 

For given V we choose S vs V and obtain in this way the components Hfi with 
H--/: V. 

To determine H~ with H = V we choose S 4= V and measure the components 
o f f / ,  with F r S, F r V. Because Sc~Vc~ = 0 and ~" 4: ~ we have S (~ = 0 so that 
(52) reduces to 

f f  = r~f(~176 + rj~(~ (~ (55) 

Accordingly, this type of experiment allows us to fix 

-v(~ + vp, H (~ = X~, (56) 

where X~ is a known quantity. Because ofH%c~ = 0, this can be completed by 

H(~ (~ -H~v~ = 0 (57) 

(no summation convention). The equations (56) and (57) can then be solved 
with regard to Hp,. This completes the measurement of all components H~ for 
any given combination of components v 9 and r ~. 

The final step is now based on Eq. (14). A comparison with (20) shows that 
all the remaining measurements and calculations are completely analogous to 
those treated in Section 4. The only difference is that now the components of 
*Rax  instead of R * a x  are determined. The respective values of ~2 and Z in the 
measurements of  type 1-5 (cf. Table I) are thereby unchanged. This implies that 
we can easily transcribe the results of Section 4: For example, R'14 -- Y11 re- 
maining undetermined there means that *R 14 = Xa 1 remains undetermined here, 
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and so on. Because of  (43) and (25) these are the following elements of  * R a ~  
and R a ~ :  

* R a z  = f2 '~ ~~ 9 

Accordingly, at least the diagonal elements of  the matrices X and Y cannot be 
observed. The method o f  the two gyroscopes is as incomplete as the one using 

the elementary particle spin. 

(ss) 

w Conclusion 

The inclusion of  quantum mechanically described test particles into general 
relativity enables via the interaction with the elementary particles spin an ex- 
tremely local measurement (using one particle only) of  certain components of  
the Riemann tensor. The locality of  this measurement is only limited by quan- 
tum mechanical restrictions: Particle production prevents extensions smaller 
than Compton wavelength. Related to this is that the WKB approximation used 
above would not be applicable furthermore, 

With quantum mechanical measurements one can completely get the Rie- 
mann tensor of  the Einstein vacuum which agrees with the Weyl tensor. But in 
the nonvacuum case the method remains incomplete. The same is the case for 
the nonlocal macroscopic method measuring the influence of  the Riemann 
tensor on one or two gyroscopes. Only the nonlocal macroscopic measurement 
based on the geodesic deviation makes it possible to determine all components 
of  the Riemann tensor. 
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