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Abstract An open capillary channel is a structure that
establishes a liquid flow path when the capillary pres-
sure caused by surface tension forces dominates in com-
parison to the hydrostatic pressure induced by gravita-
tional or residual accelerations. To maintain a steady
flow through the channel the capillary pressure of the
free surface has to balance the pressure difference be-
tween the liquid and the surrounding constant pressure
gas phase. Due to convective and viscous momentum
transport the pressure along the flow path of the liquid
decreases and causes the free surface to bend inwards.
The maximum flow rate through the channel is reached
when the free surface collapses and gas ingestion occurs
near the outlet. This stability limit depends on the ge-
ometry of the channel and the properties of the liquid.
In this paper we present an experimental setup which
is used in the low-gravity environment of the Bremen
Drop Tower. Experiments with convective dominated
systems have been performed where the flow rate was
increased up to the maximum value. In comparison to
this we present a one-dimensional theoretical model to
determine important characteristics of the flow, such as
the free surface shape and the limiting flow rate. Fur-
thermore we present an explanation for the mechanism
of flow rate limitation for these flow conditions which
is similar to the choking problem for compressible gas
flows.
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Fig. 1 Schematic drawing of the flow with a constant flow rate

Q through a groove of width a, depth b and length l.

1 Introduction

Open capillary channels are used in a number of ap-
plications related to space liquid management, i.e. heat
pipes in the thermal systems and propellant manage-
ment devices (PMD) in surface tension tanks of satel-
lites. Concerning the latter, open channels are often
used for transport and positioning of liquid propellants
(see e.g. in [1] or [2]).

Rosendahl et al. (2004) [3] found a flow limitation
in open capillary channels which is similar to choking in
compressible duct flows and open channel flows under
gravity. In this work we want to expand this theory to
other channel geometries.

In our investigation the capillary channel consists
of two parallel glass plates with a free surface at one
side and a closed plate at the other side (see Fig. 1),
hereinafter referred to as groove. The liquid flows along
the x-axis from the inlet to the outlet and forms a free
surface at the open side between the plates. The flow is
maintained by an external pump while the free surface
deforms corresponding to the pressure along the flow
path.
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For an internal pressure p lower than the ambient
pressure pa, the free liquid surface is concave at any
cross section, as shown in Fig. 1. The pressure decreases
in flow direction due to convective and viscous momen-
tum transport so that the curvature of the surface in-
creases and the flow path constricts. A steady flow is
obtained only for a flow rate Q below a critical value
Qcrit. For Q > Qcrit the liquid surface collapses at the
channel outlet and the flow changes from steady single-
phase flow to unsteady two-phase flow.

To minimize the influence of the hydrostatic pres-
sure on the capillary channel the experiments have been
performed in the microgravity environment of the Bre-
men Drop Tower.

2 Theoretical model

For the theoretical model the flow is considered as in-
compressible and laminar with a Newtonian, perfectly
wetting liquid. The gap distance, the width of the par-
allel plates and the length of the open channel are de-
noted by a, b and l, respectively. The model is restricted
to steady single-phase flow conditions with subcritical
flow rates (Q < Qcrit). The flow along the channel axis
x is assumed to be one-dimensional and is characterized
by the mean velocity v and the liquid pressure p.

2.1 Scaling and characteristic numbers

Here and in the following all variables are considered
non-dimensional. In our model all lengths are scaled
with a quarter of the hydraulic diameter of the open
channel, except the x-direction, which is scaled with
the channel length l. The hydraulic diameter dh of the
groove is defined as [4]

dh =
4ab

2b+ a
. (1)

The curvature of the free surface h is scaled by 4/dh and
the pressure p by 4σ/dh, where σ is the surface tension
of the fluid. The cross section area of the groove A,
which is shown in Fig. 2, is scaled by the inlet cross
section area A0 = ab and velocities are scaled with the
characteristic velocity (see Dreyer (2007) [5])

vc =
√

4σ
ρdh

, (2)

whereas ρ denotes the fluid density. The flow rate Q is
scaled with A0vc.

The describing characteristic numbers are the Ohne-
sorge number

Oh =

√
ρν2

σdh
, (3)
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Fig. 2 Cross section of the capillary channel in the (y, z)-plane

at constant x.

the dimensionless channel length

l̃ =
Oh l
2dh

, (4)

and the aspect ratio

Λ =
b

a
. (5)

The Ohnesorge number can be expressed as a Reynolds
number, based on the characteristic velocity vc, thus

Oh =
2

Rec
with Rec =

dhvc

ν
, (6)

whereas ν denotes the kinematic viscosity.

2.2 Governing equations

The first equation is the dimensionless Bernoulli equa-
tion [6] including a friction term wf , differentiated in
flow direction x

dp
dx

+ v
dv
dx

+
dwf

dx
= 0. (7)

The first term is the pressure gradient in x-direction,
the second term specifies the convective acceleration
due to area changes, and the third term is the irre-
versible pressure loss due to viscous forces which is for
a fully developed flow

dwf

dx
=
Kpf

2
l̃v. (8)

Therein, Kpf is the laminar friction factor for rectan-
gular ducts, which is a function of the channel gap ratio
Λ [6].

The second equation is the dimensionless conserva-
tion of mass for an incompressible fluid

dQ
dx

= A
dv
dx

+ v
dA
dx

= 0. (9)

To calculate the cross-sectional area A in the (y, z)-
plane a constant radius R is assumed at each cross-
section (Fig. 2). Therefore the cross-section area is a
function of the minimal contour value k, one of the main
variables of the following differential equation system.
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The detailed derviation of the goverining equation for
A(k) can be found in Haake et al. (2006) [7].

The convective term of the Bernoulli equation [Eq.
(7)] can be rewritten as

v
dv
dx

= −Q
2

A3

dA
dx

, (10)

applying the conservation of mass [Eq. (9)].
Assuming zero normal and tangential stresses at the

free surface and a passive overlaying gas, the capillary
pressure

p− pa = −h = −
(

1
R1

+
1
R2

)
(11)

is related to the curvature of the free surface by the
Gauss-Laplace equation [8], where h/2 is the mean cur-
vature of the liquid surface. Here, R1 and R2 are the
principal radii of the free surface curvature. R1 is the ra-
dius of curvature in a plane perpendicular to the (x, z)-
plane containing the normal of the free surface at y = 0.
R2 is the radius of curvature in the (x, z)-plane [3].
Since the ambient pressure pa is constant, the pressure
gradient reads
dp
dx

= −dh
dx
. (12)

To solve the differential equation, the mean curva-
ture h must be defined as a function of the surface
position k and its derivatives in x-direction. The as-
sumption of symmetry with respect to the (x, z)-plane
reduces the general form of the mean surface [9] to

h(x, y = 0) =
1
R1

+
Γ 2 d2k/dx2[

1 + Γ 2 (dk/dx)2
]3/2

(13)

with the coefficient

Γ =
dh

4l
. (14)

Again, if a constant radius at the mean curvature plane
for R1 is assumed, the principal radius of surface cur-
vature R1 is a function of k only [7]. This assumption
disagrees with the earlier assumption of a constant ra-
dius in the (y, z)-plane, but reduces the complexities of
this problem from 3-D to 1-D. Anyway, in this context
the accuracy has been proved by 3-D solutions of the
mean surface curvature equations (Klatte et al. [10]).

Substituting the capillary pressure (Eq. (12)), the
convective term (Eq. (10)) and the pressure loss (Eq.
(8)) into the Bernoulli equation (Eq. (7)), and applying
Eq. (13) yields the final equations

dh
dx

+
Q2

A3

dA
dk

dk
dx

− Kpf

2
l̃
Q

A
= 0 (15)

and

Γ 2 d2k

dx2
+
(

1
R1

− h

)[
1 + Γ 2

(
dk
dx

)2
]3/2

= 0. (16)

Together with the equations for A(k) and R1(k), this
differential equation system can evaluate the contour
function k(x) and the mean curvature pressure h(x).

2.3 Boundary conditions

The boundary conditions are given by the pinned sur-
face at the edges of the channel inlet and outlet

k(x = 0) = k(x = 1) =
2Λ+ 1

2
(17)

and the surface curvature at the channel inlet

h(x = 0) = h0. (18)

The exact determination of the channel inlet curvature
h0 is described in Sec. 3.1.

2.4 Numerical procedure

For the numerical solution of the coupled nonlinear
system (Eq. (15) and Eq. (16)) we treat h and k as
variables and use second order central differences. The
steady flow solution is solved with a damped Newton
method and yields the liquid surface position k(x) =
f(Oh, Λ, l̃, Q) as well as the velocity v(x), the cross-
section A(x), and the curvature h(x) with the same de-
pendence. As the numerical critical flow rate Qnum

crit , we
define the maximum flow rate Q leading to the conver-
gence of the numerical algorithm with a relative error
of 10−8 [see also Grah et al. (2008)] [11].

3 Experimental setup

The experimental setup has been developed to operate
with the new catapult system within a drop capsule at
the Bremen Drop Tower which is presented in Fig. 3.
With the catapult system the free fall time can be dou-
bled and provides a microgravity time of about 9.35 s
with a residual acceleration less than 10−5 g.

Fig. 4 shows a schematic drawing of the experimen-
tal setup. The experimental setup consists of a fluid
container filled with test liquid and the groove which is
fixed upright on the reservoir. A pump enables a closed
fluid circuit. The pump withdraws the liquid at the out-
let of the groove and feeds it into the fluid container.
Before entering the groove, the flow is accelerated and
rectified by a nozzle. Differences in volume after gas
ingestion are balanced by the compensation tube.

To guarantee gas-free liquid supply to the groove a
screen is installed in the fluid container for the case that
the setup is running at supercritical conditions with gas
ingestion.
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Fig. 4 Schematic drawing of the experimental setup with the test channel (dashed), the compensation tube, and the fluid circuit.

Fig. 3 Drop capsule with integrated experimental setup.

In the fluid container the pressure is predetermined
by the curvature of the free surface in the compensation
tube and the ambient pressure pa. The boundary con-
dition of the inlet curvature of the groove h0 depends

on the pressure in the fluid container, the convective
and the frictional flow losses in the nozzle.

3.1 Channel inlet boundary condition

Due to the complex geometry, no analytical data for the
determination of the boundary condition h0 are avail-
able in sufficient accuracy and a direct measurement
was not possible. For this reason, we performed three-
dimensional model computations using the volume of
fluid code FLOW-3D (TM) (Version 8.1.1, Flow Sci-
ence Inc.).

The curvature at the channel inlet h0 is defined by
the capillary pressure of the meniscus in the compen-
sation tube pct including convective and frictional flow
losses inside the liquid reservoir and the nozzle. The
pressure loss is linear versus the Reynolds number [6]
and the regression of the numerical data yields the re-
lation

h0 =
K1

2
Q2 +

K2Oh
4

Q+K3 (19)

with

K3 =
2
Rct

. (20)

Therein Rct is the dimensionless radius of the com-
pensation tube. The values of K1,2,3 are K1 = 1.49,
K2 = 383 and K3 = 0.159.

In order to obtain the best approximation to the
one-dimensional model assumption, the flow path from
the fluid container to inlet of the open capillary chan-
nel was optimized. The three-dimensional model com-
putations led to a nozzle with a rectangular inlet cross
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Fig. 5 Schematic drawing of the groove channel with the pneu-

matic slide.

section (30 × 50 mm2) that converges to the channel
cross section. The nozzle has an elliptical shape in the
(x, y)-plane but no constriction in the (x, z)-plane and
a length of 40 mm. With this shape, the lateral veloc-
ity components in the channel entrance cross section
are minimized to less than 2% of the longitudinal com-
ponent.

3.2 Experiment procedure

In Fig. 5 a detailed sketch of the capillary groove chan-
nel is presented. The three closed sides of the groove
consist of three quarz glass plates which are glued to-
gether. Beyond the free surface area the open side is
covered by a thin wettable tape of the company 3M
(TM). This tape provides a well-defined open length l

and sharp pinning edges for the free surface at the in-
and outlet (Fig. 7b)). The pneumatic slide is mounted
above the tape and is able to open and close the free
surface area by a fast lateral motion.

In the initial configuration the channel is closed by
the pneumatic slide and the flow is established through
the closed channel with the desired constant volumet-
ric flow rate Q. The channel is closed to minimize the
perturbation on the fluid flow due to the initial acceler-
ation of the drop capsule with the catapult system. At
the beginning of the free fall period of the capsule the
pneumatic slide moves away. Within the 9 s of free fall
time the reorientation of the free surface and the fluid
flow in microgravity conditions can be observed.

To determine the experimental critical flow rateQexp
crit,

several experiments at different flow rates must be per-
formed. The experimental critical flow rate Qexp

crit is de-
fined by

Qexp
crit = 1

2

(
Qst

max +Qunst
min

)
, (21)

where Qst
max is the highest flow rate with steady flow

and Qunst
min the lowest flow rate leading to the collapse

of the free surface.
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Fig. 6 Schematic drawing of the groove channel and optics.

Table 1 Experiment parameters with channel width a, channel

depth b, aspect ratio Λ, dimensionless channel length l̃ and Ohne-
sorge number Oh. The laminar friction factor for both channels

reads Kpf = 78.81 [6].

No. a [mm] b [mm] l [mm] Λ [-] l̃ [-] Oh [-]

1 5 30 47.5 6.0 4.17 × 10−3 1.62 × 10−3

2 5 30 28.9 6.0 2.54 × 10−3 1.62 × 10−3

Table 2 Properties of test liquid FC-72 at 25◦C [13]. The static

contact angle is γstat = 0 on glass.

Liquid ρ [kg m−3] ν [m2 s−1] σ [N m−1]

FC-72 1680.0 0.380 × 10−6 0.010

3.3 Flow observation and image processing

For flow observation a high speed CCD camera with
250 frames per second and a resolution of 512 × 480
pixel is used. The optical axis of the camera is aligned
normal to the glass plates (see Fig. 6). For comparison
with the numerical data, the surface profiles k(x) were
detected with a 5 × 5 Sobel technique [12] using the
maximal gradient.

3.4 Parameters and experiments

Table 1 shows the parameters for the experiment cam-
paigns. The properties of the test liquid FC-72 is pro-
vided in Table 2.

The low Ohnesorge numbers are typical for short
length convection-dominated flows. For the shorter di-
mensionless channel length l̃, viscous effects are negli-
gible. The longer channel is affected by viscous effects
but remains convective dominated (see also Sec. 4.2).

To determine the critical flow rate Qcrit 12 drop ex-
periments with different flow rates have been performed
for each channel geometry.
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Fig. 7 (a) Detailed view of the groove at initial condition with
closed pneumatic slide and developed flow. The flow direction is

from left to right. (b) Experimental result of a subcritical flow

rate in microgravity with a stable free surface. (c) In contrary a
supercritical flow rate with an unstable free surface.

4 Results and discussion

In the following video images of the experimental ob-
servation with different flow conditions in the capillary
channel are presented. Later the experimental data and
the theoretical model are compared. Finally, the princi-
ple mechanism of flow rate limitation will be explained.

Fig. 7a shows a video image of the initial config-
uration. The suction device at the lower side is placed
outside the channel to remove surplus liquid. The chan-
nel is closed by the pneumatic slide but the flow is al-
ready established. At the beginning of the microgravity
condition the slide opens the channel and the free sur-
face is established as shown in Fig. 7b. The experiment

Fig. 8 Surface profile of the shorter channel at flow rate Q =

0.827 which is 90% of the numerical critical flow rate for this

channel geometry.

Fig. 9 Surface profile of the longer channel at flow rate Q =

0.814 which is 93% of the numerical critical flow rate for this
channel geometry.

with a subcritical flow rate has a stable free surface and
no gas ingestion at the channel outlet. In contrast Fig.
7c shows a supercritical system with an unstable free
surface draining a gas bubble into the channel.

4.1 Comparison of experiment and theory

Fig. 8 shows the comparison for the short channel (l =
28.9 mm). For this case the wall shear stress is almost
negligible (Sec. 4.2). The surface contour is plotted ver-
sus the flow direction x from the channel inlet x = 0
to the channel outlet x = 1. The contour plots corre-
spond to a high flow rate (Q = 0.827) which is about
90% of the numerical critical flow rate for this channel
geometry. Due to pressure pertubations from the gear
pump small fluctuations can be observed at the free
surface. To eliminate this dynamic effect the time aver-
aged value over 250 video images (1 s) has been taken
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Fig. 10 Comparison of the experimental and numerical mini-

mum contour position k∗ for the shorter channel.

to get a steady surface contour. The experimental er-
ror shows the limits of the free surface within these 250
images. Fig. 8 shows a good agreement of the experi-
mental and the numerical surface profile. The numeri-
cal surface contour is always bounded between the error
lines of the experimental data. The maximum relative
difference

∆krel = max
∣∣∣∣kexp

aver(x) − knum(x)
knum(x)

∣∣∣∣ (22)

between the average experimental contour kexp
aver(x) and

the numerical solution knum(x) is smaller than 1%. For
this short length l the convective term dominates and
the contour is nearly symmetric to the middle of the
channel.

For the longer channel (l = 47.5 mm), again at a
high flow rate (Q = 0.814) which is about 93% of the
numerical critical flow rate for this channel geometry,
a good agreement of the experimental and numerical
surface contour (Fig. 9) can be observed. According to
the longer channel, the influence of friction increases
(see Sec. 4.2). Therefore the innermost points are lower
and the contours are not as symmetric as for the short
channel. The deviation near the innermost point of the
free surface is induced by the two radii-approximation.
For high curvature deformation the assumption of the
constant first principle radius R1 is not exact. How-
ever, the accuracy is still good. The maximum relative
difference Eq. (22) is smaller than 1.5%.

In Fig. 10 and 11 we compare the minimum contour
point k∗ versus the established flow rate Q. For increas-
ing flow rates the surface bends inwards and collapses
at the critical flow rate.

In Fig. 10, the results of the shorter channel are
shown. The numerical and the experimental minimum
contour points are in good agreement. Again, the er-
ror bars are influenced by the fluctuation of the free
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Fig. 11 Comparison of the experimental and numerical mini-

mum contour position k∗ for the longer channel.

surface. The experimental critical flow rate is shown
as a single point. Here we get a critical flow rate area
which is between the maximum stable Qst

max = 0.853
and the minimum unstable case Qunst

min = 0.866. This
yields an experimental critical flow rate according to
Eq. (21) as Qexp

crit = 0.86. The numerical critical flow
rate for this case is Qnum

crit = 0.88. The lower exper-
imental critical flow rate is linked to the determina-
tion of this value. The experimental microgravity time
is limited and the initial reorientation of the free sur-
face cannot be avoided. Close to the critical flow rate
a collapse of the free surface can occur during the dy-
namic reorientation. This is not captured by the nu-
merical steady-state analysis. Anyway, the numerical
value is in good agreement to the experimental flow
rate. Also the results for the longer channel (Fig. 11)
show good agreement for the minimum contour point
versus the established flow rate and for the critical flow
rate (Qexp

crit = 0.826 and Qnum
crit = 0.84). The influence

of friction increases for the long channel and the initial
dynamic of the reorientation is damped faster. There-
fore the numerical and experimental flow rates are in
better agreement.

4.2 Classification of flow regime

To study the influence of the channel length l a para-
metric study of l̃ for Oh = 1.62 × 10−3, Λ = 6.0 and
fixed boundary conditions according to Eq. (19) has
been done numerically. For each l̃ the maximum flow
rate Qnum

crit and the corresponding mean curvature dif-
ference between the channel inlet and outlet

∆h = h(x = 1)− h(x = 1) (23)

were determined. The result is plotted in Fig. 12. Since
the convective momentum transport in the channel is
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Fig. 12 Parametric study of the influence of the dimensionless

channel length l̃ on the irreversible pressure loss ∆h (solid line)
at the critical flow rate Qnum

crit (dashed line). The solutions for the

channel geometry (Tab. 1) are denoted as exp.no.1 and exp.no.2.
The Ohnesorge number is constant (Oh = 1.62 × 10−3) as well

as the aspect ratio (Λ = 6.0).

reversible, it does not affect the pressure difference be-
tween the channel inlet and outlet, so ∆h is a direct
indicator for the influence of the irreversible, viscous
pressure loss. For small channel lengths (l̃ < 10−3) the
flow is dominated by convective momentum transport
so the irreversible pressure loss ∆h is small and the
maximum flow rate is Qnum

crit is high. For long channels
(l̃ > 10−1) the flow is dominated by viscous momentum
transport. The reversible pressure loss due to convective
momentum transport becomes negligible and the maxi-
mum flow rate Qnum

crit decreases to small values. Between
these regimes the flow is controlled by both convective
and viscous pressure losses.

As mentioned before both investigated channel types
(see Tab. 1) are near the convective dominated domain.
For this regime we present in the following the deter-
mining effect for the collapse of the free surface.

4.3 Mechanism of flow rate limitation

To describe the mechanism of flow rate limitation the
numerical solutions of the capillary pressure and the lo-
cal pressure at the smallest cross section (characterized
with an asterisk) are compared. The capillary pressure
is defined in Eq. (11)

h∗ =
1
R1

+
1
R2

(24)

Fig. 13 Comparison of the numerical minimum solution for the

capillary pressure h∗ and local pressure p∗ = p∗conv + ∆pirr of
the shorter channel in dependence on k∗.

Substituting Eq. (12) and Eq. (8) in Eq. (7) and in-
tegration from the channel inlet to the smallest cross
section yields

1
R1

+
1
R2︸ ︷︷ ︸

h∗

= 1
2

(
v∗2 − v2

0

)︸ ︷︷ ︸
p∗conv

+h0 +
Kpf

2
l̃

x∗∫
0

v dx

︸ ︷︷ ︸
∆pirr

, (25)

with the average velocity v0 at the channel inlet. The
capillary pressure h∗ on the left hand side of Eq. (25)
stabilizes the free surface. The convective pressure p∗conv

and the irreversible pressure loss ∆pirr with initial pres-
sure h0 on the right hand side destabilize the system.

In dependence on the minimum contour point k∗ the
capillary h∗ and local pressure p∗ = p∗conv+∆pirr can be
plotted for each channel geometry. In Fig. 13 the values
for the shorter channel are applied. The local pressure
p∗ is dependent on the flow rate Q and is plotted for
different established flow rates.

When the local pressure p∗ and the capillary pres-
sures h∗ are equal a stationary solution is found. For
flow rates lower than Qcrit subcritical and supercriti-
cal solutions exist. In the experiment only the subcrit-
ical solution can be reached because the supercritical
solution is instable, but the numerical algorithm can
calculate these points.

At the critical flow rate Qcrit we obtain only one
solution. At this point the derivatives of the capillary
and the convective pressure with respect to k∗ are equal

dh∗

dk∗
=

dp∗

dk∗
. (26)

Due to the small frictional pressure loss for these chan-
nel types, the irreversible pressure loss ∆pirr is assumed
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no. 2 versus the flow rate.

as independent of k∗ and the derivative with respect to
k∗ is equal to zero. With v∗ = Q/A∗ it follows

dh∗

dk∗
=

d
[
1
2 (Qcrit/A

∗)2
]

dk∗
. (27)

Only A∗ and h∗ are functions of k∗ and the gradient of
the convective pressure yields

dh∗

dk∗
= −Q

2
crit

A∗3
dA∗

dk∗
. (28)

Re-substitution of the mean velocity in the smallest
cross section at the critical point v∗crit reaches

Q2
crit

A∗2
= v∗2crit = −A∗ dh∗

dA∗
. (29)

The term on the right hand side of Eq. (29), formerly
known as the small amplitude longitudinal wave speed
vca defined by Rosendahl et al. [3], is

v∗2crit = v2
ca = −A∗ dh∗

dA∗
. (30)

This means that the limiting value of the flow through
an open capillary groove is the average flow velocity
at the smallest cross section. If the value reaches the
small amplitude longitudinal wave speed the free sur-
face collapses and the system becomes unstable. This
phenomenon is similar to the choking problem for com-
pressible gas flows, where the maximum mass flow is
reached when the average flow velocity reaches the speed
of sound [6].

Fig. 14 shows the numerical solution for the mean
flow velocity and the calculated wave speed which is
dependent on the flow rate. At the critical flow rate
both velocities are equal and the flow is choked.

4.4 Comparison to other open channels

As mentioned before Rosendahl et al. [3] examined open
channel flows between parallel plates. There two oppo-
site aligned free surfaces constrict the cross-sectional
area A∗ and the local mean velocity at the smallest
cross-section is higher than in a similar groove chan-
nel with only one free surface. For convective domi-
nated flows the critical flow rate is therefore signifi-
cantly lower. In contrary for friction dominated flows
the local pressure is not dominated by inertia effects
and friction losses are greater in groove channels. There-
fore the critical flow rate for a parallel plate channel is
higher than for a similar groove channel.

5 Summary

In this work we investigated experimentally and numer-
ically forced liquid flows through open capillary grooves
under microgravity conditions. The experimental inves-
tigations focused on the profile lines of the free surface
contour and the maximum flow rate through the chan-
nel without a collapse of the free surface which is de-
fined as the critical flow rate.

An one-dimensional flow model is presented in which
the liquid pressure is related to the capillary pressure at
the free surface including both principal radii of curva-
ture. The flow model considers also the convective and
viscous pressure losses. In the comparison of experimen-
tal and numerical data we focused our investigations on
convective dominated capillary channel flows. For this
regime we obtain a good agreement of our experimental
and numerical data. So we are able to simulate these
types of flow with our theoretical model numerically.

Furthermore we presented a derivation of the mech-
anism of flow rate limitation for these flow conditions
which is similar to the Mach-Number problem for com-
pressible gas flows. If the average flow velocity through
the channel reaches the capillary wave speed the flow
is choked and it is not possible to increase the volume
flow through the channel. If this occurs, the free sur-
face of the liquid collapses and gas is ingested into the
channel.
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