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Where do black holes come from?

At the end of a star’s lifetime, its internal pressure from
nucleosynthesis is insufficient to prevent the star from collapsing
under its own gravity
The collapse may be stopped by the degeneracy pressure of
electrons (→ white dwarf) or neutrons (→ neutron star)
If the mass of the remnant star exceeds the Tolman-
Oppenheimer-Volkoff limit (∼ 3M�), no known mechanism is able
to halt the collapse and a black hole is expected to form

Primordial black holes may have formed shortly after the big bang
from gravitational collapse of density fluctuations
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Gravitational collapse

This talk is concerned with fundamental aspects of gravitational
collapse in classical general relativity
A proper mathematical understanding requires the notion of an
initial value problem
Einstein’s equations are known to form singularities under quite
general circumstances (Hawking-Penrose singularity theorems)
In the standard picture of gravitational collapse, a black hole with
event horizon forms that makes the singularity invisible to distant
observers
The weak cosmic censorship conjecture asserts that this happens
for generic initial data, i.e. no naked singularities exist
A related questions is how small a black hole one can make by
tuning the initial data, leading to Choptuik’s discovery of critical
phenomena via numerical simulations
While much is understood in spherical symmetry for simple matter
models, little is known in axisymmetry or beyond

Oliver Rinne (HTW / AEI) Gravitational collapse Bad Honnef 24/04/2017 3 / 44



Outline of the talk

1 Introduction

2 Fundamental concepts

3 The spherically symmetric Einstein-Klein-Gordon system
Weak cosmic censorship
Critical collapse

4 Beyond spherical symmetry
Brill waves
Collisionless matter

5 Conclusions

Oliver Rinne (HTW / AEI) Gravitational collapse Bad Honnef 24/04/2017 4 / 44



Outline of the talk

1 Introduction

2 Fundamental concepts

3 The spherically symmetric Einstein-Klein-Gordon system
Weak cosmic censorship
Critical collapse

4 Beyond spherical symmetry
Brill waves
Collisionless matter

5 Conclusions

Oliver Rinne (HTW / AEI) Gravitational collapse Bad Honnef 24/04/2017 5 / 44



Causal structure of spacetime

Spacetime is a four-dimensional, smooth, connected Lorentzian
manifold (M,g)

Consider a spacelike hypersurface Σ ⊂ M
Future domain of dependence D+(Σ) := {p ∈ M : Every past
inextendible causal (timelike or null) curve through p intersects Σ}
Past domain of dependence D−(Σ) := {p ∈ M : Every future
inextendible causal curve through p intersects Σ}
If D(Σ) := D+(Σ) ∪ D−(Σ) = M then M is globally hyperbolic and
Σ is a Cauchy surface
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Initial value problem

Given a spacetime (M,gab) solving Einstein’s equations

Gab[g] = κTab,

the induced data on a given spacelike hypersurface Σ
(the intrinsic metric hab and extrinsic curvature Kab of Σ in M)
must satisfy the constraint equations

R[h] + K 2 − KijK ij = 2κρ,

Db(K ab − habK ) = κJa

Conversely, given (Σ,hab,Kab) satifying the constraints, is there a
unique spacetime (M,gab) that induces these data?
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Initial value problem

Theorem (Fourès-Bruhat 1952, Choquet-Bruhat & Geroch 1969)
Let Σ be a smooth 3D manifold with smooth Riemannian metric hab,
and let Kab be a smooth symmetric tensor field on Σ, such that
(hab,Kab) satisfy the vacuum constraint equations.
Then there exists a unique spacetime (M,gab)—the maximal Cauchy
development of (Σ,hab,Kab)—such that

(M,gab) is a solution to the vacuum Einstein equations
(M,gab) is globally hyperbolic with Cauchy surface Σ

hab is the induced metric and Kab the extrinsic curvature of Σ

Every other spacetime satisfying the above can be mapped
isometrically into a subset of (M,gab)

Diffeomorphic initial data give rise to isometric maximal Cauchy
developments
The solution gab depends continuously on the initial data (hab,Kab)
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Singularities

Singularities are by definition not part of the manifold M that is
determined by Einstein’s equations
Unlike any other field theory!
Coordinate descriptions are problematic because a mere
breakdown of the coordinate chart might be mistaken for a
singularity
Often some curvature invariant (e.g. R, RabRab, RabcdRabcd ) blows
up as a singularity is approached but not all singularities are of
this type
E.g. remove a wedge from Minkowski spacetime⇒ conical
singularity
Most robust definition of a singularity: existence of
incomplete geodesics, i.e. inextendible in at least one direction but
only finite range of affine parameter
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Trapped surfaces

Consider a 2D compact, smooth, spacelike submanifold S ⊂ M,
e.g. a closed 2-surface in a spacelike 3-slice Σ of M
Consider the outgoing (tangent ka) and ingoing (tangent la) null
geodesics emanating from S
Define the expansions of the null geodesic congruences

Θ+ := mab∇akb, Θ− := mab∇alb,

where mab = gab + kalb + lakb is the induced 2-metric on S
S is a trapped surface if Θ± < 0 everywhere on S
Marginally trapped if Θ± 6 0
The outermost marginally trapped surface is the apparent horizon
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Singularity theorems

Theorem (Penrose 1965)
Let (M,gab) be a connected, globally hyperbolic spacetime with a
non-compact Cauchy surface Σ. Suppose that the null energy
condition holds:

Tabkakb > 0

for all null vector fields ka. Suppose further that M contains a trapped
surface S, and let Θ0 < 0 be the maximum of Θ± on S.
Then at least one inextendible future directed orthogonal null geodesic
from S has affine length no greater than 2/|Θ0|.

Remarks:
The null energy condition follows from the weak energy condition:
ρ = Tabubub > 0 for all timelike ua, where ρ is the energy density
measured by an observer with 4-velocity ua

Similar theorems in a cosmological context
(Hawking & Penrose 1965–70)
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Asymptotic flatness

We need to clarify what we mean by saying “a singularity is
(in)visible to distant observers”
Restrict to asymptotically flat spacetimes

Definition (Penrose 1963–5)
A vacuum spacetime (M,gab) is asymptotically simple if there is a
conformally isometric spacetime (M̃, g̃ab) with g̃ab = Ω2gab such that
the conformal factor Ω is smooth up to ∂M̃, with Ω = 0 and ∇̃aΩ 6= 0 on
∂M̃, and such that every null geodesic in M has future and past
endpoints on ∂M̃.

This is too strong really as it excludes black holes
(M,gab) is weakly asymptotically simple if it has an open set
U ⊂ M isometric to the neighbourhood of ∂M̃ of some
asymptotically simple spacetime
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Conformal infinity

Identify different parts of the
conformal boundary:

Future (past) directed
timelike geodesics approach
future (past) timelike infinity
i+ (i−)
Future (past) directed null
geodesics approach future
(past) null infinity I + (I −)
Spacelike geodesics
approach spatial infinity i0

Example: Penrose diagram of
flat (Minkowski) spacetime

From Hawking & Ellis (1973)
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Event horizons

An event horizon is the boundary of the causal past of future null
infinity: H = ∂J−(I +)

The black hole region is B = M \ J−(I +)

Example: Penrose diagram of Schwarzschild spacetime

From Hawking & Ellis (1973)
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Trapped surfaces lie inside event horizons

Assume spacetime M is strongly asymptotically predictable from a
Cauchy surface Σ, i.e. J−(I +) is contained in D+(Σ).

Theorem (cf. Hawking and Ellis 1973)
Let S be a marginally trapped surface in a strongly asymptotically
predictable spacetime satisfying the null energy condition.
Then S lies inside the black hole region, S ⊂ B.

In numerical simulations, apparent horizons are much easier to
detect than event horizons because they only depend on the
geometry on the slice Σ at a given instant of time
The absence of an apparent horizon does not imply the absence
of an event horizon: time slices Σ of Schwarzschild spacetime
exist that come arbitrarily close to the singularity but do not
contain any trapped surfaces (Iyer & Wald 1991)
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Weak cosmic censorship

Conjecture (weak cosmic censorship, Penrose 1969)

Let Σ be a 3-manifold which is topologically R3 outside a compact
submanifold. Specify non-singular, asymptotically flat (hab,Kab)
as well as initial data for suitable matter on Σ.
Then, generically, the maximal Cauchy development of this data is a
spacetime (M,gab) which is asymptotically flat with geodesically
complete I +.

Remarks:
Essentially says there are no naked singularities visible from I +

The emphasised properties are somewhat vaguely defined
Easy to construct counterexamples but these usually have
“unphysical” matter
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Example of a naked singularity

from Gundlach & Martín-García, Living Rev. Relativity 10, 5 (2007)
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The bet

John Preskill, Kip Thorne, Stephen Hawking (1991)
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The bet

Whereas Stephen W. Hawking firmly believes that naked singularities are an
anathema and should be prohibited by the laws of classical physics,
And whereas John Preskill and Kip Thorne regard naked singularities as
quantum gravitational objects that might exist unclothed by horizons, for all
the Universe to see,
Therefore Hawking offers and Preskill/Thorne accept, a wager with odds of
100 pounds sterling to 50 pounds sterling, that
When any form of classical matter or field that is incapable of becoming
singular in flat spacetime is coupled to general relativity via the classical
Einstein equations, the result can never be a naked singularity.

The loser will reward the winner with clothing to cover the winner’s nakedness.
The clothing is to be embroidered with a suitable concessionary message.

Stephen W. Hawking, John P. Preskill, Kip S. Thorne
Pasadena, California, 24 September 1991
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Gravitational collapse in spherical symmetry

Assumption of spherical symmetry simplifies analysis (1 + 1
effective dimensions)
Birkhoff’s theorem⇒ gravitational field has no dynamical degrees
of freedom in spherical symmetry, need matter

Dust (perfect fluid with zero pressure, T ab = ρuaub) has been
widely studied (Eardley & Smarr 1979, . . .)
Naked singularities can occur but these typically arise from shell
crossing singularities already present in flat spacetime

Better matter model: massless scalar field

∇a∇aφ = 0
Gab = κ

(
∇aφ∇bφ− 1

2gab∇cφ∇cφ
)

Rare example for which we have an essentially complete
understanding of weak cosmic censorship, restricted to spherical
symmetry (Christodoulou 1987–97)
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Characteristic initial value problem

Specify initial data on a future null cone C+
0 with vertex at r = 0

Initial data characterised by function

α :=
d
dr

(rφ),

where r is areal radius
If α has bounded variation on C+

0 then a unique solution to the
Einstein-Klein-Gordon equations with bounded variation exists
(Christodoulou 1993)
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Naked singularities

Consider solutions with the additional symmetry

gab → λ2gab, r → λr , φ→ φ− k lnλ (1)

These can be truncated to yield asymptotically flat data
Choices of initial data exist which evolve to naked singularities
(Christodoulou 1994)
Singularity propagates out along null cone, reaching I + at finite
retarded time (I + incomplete)
Curvature remains bounded on the singular null cone
The corresponding initial data are not smooth
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Non-genericity of naked singularities

Three classes of evolutions:
1 No singularities at all occur, I + is complete (small initial data)
2 A singularity forms within the black hole region (bounded by a

non-singular event horizon), I + is complete
3 Neither of the above two cases holds

Theorem (Christodoulou 1997)
Consider any initial data characterised by α0 that evolve to a
spacetime in class 3 above.
Then there exists a smooth function f such that for any c ∈ R, the initial
data characterised by α = α0 + c f evolve to a spacetime in class 2.

Naked singularities are non-generic in this precise sense

Oliver Rinne (HTW / AEI) Gravitational collapse Bad Honnef 24/04/2017 25 / 44



Outline of the talk

1 Introduction

2 Fundamental concepts

3 The spherically symmetric Einstein-Klein-Gordon system
Weak cosmic censorship
Critical collapse

4 Beyond spherical symmetry
Brill waves
Collisionless matter

5 Conclusions

Oliver Rinne (HTW / AEI) Gravitational collapse Bad Honnef 24/04/2017 26 / 44



Critical collapse

Consider one-parameter (p) family of smooth Cauchy initial data
and evolve them numerically (Choptuik 1993)
Dispersal for p < p∗, black hole formation fo p > p∗

The black hole mass scales as

M ∼ (p − p∗)γ

with a universal critical exponent γ
In particular, one can make arbitrarily small black holes
The critical solution as p → p∗ is discretely self-similar
(cf. (1) for a fixed λ)
It has a naked singularity (Hamadé & Stewart 1996)
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Critical collapse: dynamical systems picture

from Gundlach & Martín-García, Living Rev. Relativity 10, 5 (2007)
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Critical collapse: two types

Similar phenomena found in a variety of other matter models
Two different types of critical behaviour:

Type II infinitesimal black hole mass at threshold
self-similar critical solution
mass scaling M ∼ (p − p∗)γ

Type I finite black hole mass at threshold
static (or time-periodic) critical solution
time spent near critical solution T ∼ −λ ln |p − p∗|

Example of Type I: Einstein-Yang-Mills system, critical solution is
Bartnik-McKinnon soliton (Movie)
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The bet

Whereas Stephen W. Hawking firmly believes that naked singularities are an
anathema and should be prohibited by the laws of classical physics,
And whereas John Preskill and Kip Thorne regard naked singularities as
quantum gravitational objects that might exist unclothed by horizons, for all
the Universe to see,
Therefore Hawking offers and Preskill/Thorne accept, a wager with odds of
100 pounds sterling to 50 pounds sterling, that
When any form of classical matter or field that is incapable of becoming
singular in flat spacetime is coupled to general relativity via the classical
Einstein equations, the result can never be a naked singularity.

The loser will reward the winner with clothing to cover the winner’s nakedness.
The clothing is to be embroidered with a suitable concessionary message.

Stephen W. Hawking, John P. Preskill, Kip S. Thorne
Pasadena, California, 24 September 1991

Conceded on a technicality by Stephen W. Hawking, 5 February 1997
Message printed on T-shirts: Nature Abhors a Naked Singularity
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The revised bet
Whereas Stephen W. Hawking (having lost a previous bet on this subject by
not demanding genericity) still firmly believes that naked singularities are an
anathema and should be prohibited by the laws of classical physics,
And whereas John Preskill and Kip Thorne (having won the previous bet) still
regard naked singularities as quantum gravitational objects that might exist,
unclothed by horizons, for all the Universe to see,
Therefore Hawking offers, and Preskill/Thorne accept, a wager that

When any form of classical matter or field that is incapable of becoming
singular in flat spacetime is coupled to general relativity via the classical
Einstein equations, then
A dynamical evolution from generic initial conditions (i.e., from an open set of
initial data) can never produce a naked singularity (a past-incomplete null
geodesic from scri-plus).

The loser will reward the winner with clothing to cover the winner’s
nakedness. The clothing is to be embroidered with a suitable, truly
concessionary message.

Stephen W. Hawking, John P. Preskill, Kip S. Thorne
Pasadena, California, 5 February 1997
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The hoop conjecture

Conjecture (Thorne 1972)
Black holes with event horizons form when and only
when a mass m gets compacted into a region whose
circumference in every direction is C 6 4πm.

If gravitational collapse occurs in less than 3 spatial dimensions
(to a 2D “pancake” or 1D “spindle”), the idea is that a naked
singularity will form
“Mass” or gravitational energy is ill defined (how about collapse of
vacuum gravitational waves?)
Formulation depends on spacetime slicing (hoop can always be
distorted in null directions to decrease the circumference)
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Brill waves

Vacuum Einstein equations
Axisymmetry: spacelike Killing vector field ξ = ∂/∂φ,
assumed here to be hypersurface orthogonal
Metric in cylindrical polar coordinates t , r , z, φ,
quasi-isotropic gauge:

ds2 = −α2dt2 + ψ4{e2rS[(dr + βr dt)2 + (dz + βzdt)2] + r2dφ2}

Evolve on maximal slices (trK = 0)
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Naked spindle singularities?

Abrahams et al. (1992) constructed families of prolate initial data
with arbitrarily large Kretschmann scalar I := RabcdRabcd but
without apparent horizons
Conjectured that these would collapse to naked singularities
Garfinkle & Duncan (2001) evolved these data and found that I
decreased and that an apparent horizon might form
An apparent horizon was eventually found using an improved
formulation and code (O.R. 2006)
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Naked spindle singularities?

Left: Evolution of Kretschmann scalar
Right: ADM mass (solid) and apparent horizon mass (dashed)
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Critical collapse

Abrahams & Evans (1993) found evidence of Type II critical
behaviour
Despite several attempts (Alcubierre et al., Choptuik et al.,
O.R., Sorkin, Hilditch et al., . . .), this important result has not been
reproduced yet
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Collisionless matter: the Einstein-Vlasov system

Vlasov distribution function f (xa,pa)

f is conserved along spacetime geodesics: Vlasov equation

pa ∂f
∂xa − Γa

bcpbpc ∂f
∂pa = 0

Energy-momentum tensor

Tab =

∫
f

papb

m
1√
−g

dp0dp1dp2dp3

Evolve using particle-in-cell method: ensemble of particles
travelling along geodesics, each carrying its own conserved
phase-space volume element
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Naked spindle singularities? Collisionless gas

Numerical simulations of highly prolate axisymmetric collisionless
gas spheroids (Shapiro & Teukolsky 1991)
Singularity formed just outside the ends of the spheroid but no
trapped surfaces were found
They conjectured that the singularity is naked
Inconclusive because an event horizon might still exist
Unclear if the matter model used is physically reasonable (no
velocity dispersion / dust?)

Simulations recently repeated by Yoo, Harada & Okawa (2016)
Similar results, but singularities just within support of matter
Apparent horizons formed for different initial data
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Einstein-Vlasov revisited

Ellery Ames, Håkan Andréasson & O.R. are developing a new
axisymmetric code based on a symmetry reduction of the Einstein
equations ((2+1)+1 formalism)
Applications:

Revisit cosmic censorship using more reasonable initial data
Critical collapse
Stability of new stationary solutions

Preliminary results: gravitational collapse simulations with
apparent horizon formation

Movie: α,ψ, ρ̃H , J̃φ

Movie: apparent horizon
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Conclusions

In the standard picture of gravitational collapse, the formation of a
spacetime singularity is accompanied by the formation of an event
horizon
The genericity of this picture is still an open problem (weak cosmic
censorship conjecture)
Weak cosmic censorship proven for the spherically symmetric
Einstein-Klein-Gordon system (Christodoulou)
Discovery of critical phenomena (Choptuik) showed that smooth
but non-generic initial data can evolve to a naked singularity
Cosmic censorship in axisymmetry (naked spindle singularities)
still controversial, e.g.

prolate Brill waves
collisionless matter (Einstein-Vlasov)

Numerical simulations can probe these systems
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