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1.1 A long-standing conjecture

Thorne’s Hoop Conjecture (1972): If sufficient mass/energy is
concentrated in a region U of a Cauchy surface S then a black
hole forms.

O’Murchadha et al. 2010: Hoop conjecture holds in spherically
symmetric and time-symmetric case for k = 2π and Brown-York
mass.
Extended by Malec-Xie (2015) to non-spherically symmetric but
still time-symmetric case, with stronger geometric conditions.
But: General case open for almost 50 years!
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1.2 Our choice of matter model

Usually, Hoop Conjecture independent of specific matter model.
Here: focus on Einstein-Maxwell, mass=rest mass of Maxwell
field.

Einstein theory (gravity) and Maxwell theory (electromagnetism):
the only long-range fundamental interactions well-tested as
classical field theories.

Lagrangian density: L(g ,A) := scalg + F (A) ∧ F (A) for
F (A) = dA.
Euler-Lagrange equations: d∗dA = 0,Eing = T (g ,A)
where T (g ,A)(ei , ej) = 1

4π
(∑

a(Fai F a
j )− 1

4
∑

ab(F abFab)gij
)
.
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1.3 Schoen-Yau radius

For an open set U of a Riemannian manifold S, denote by KU the
space of simple closed curves in U that are contractible in U, and
for k ∈ KU define

Rad(U, k) := sup{r > 0|d(k, ∂U) > r , k /∈ KBr (k)},

Rad(U) := sup{Rad(U, k)|k ∈ KU}.

Examples:

Rad(BR3

r (p)) = r/2

Rad(S2
round(r)× (−L, L)) = min{πr

2 , L}
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1.4 Schoen-Yau concentration result
Let an initial hypersurface (S, g , h) be given and let U ⊂ S be
open in S. Define µ ∈ S resp. J ∈ Ω1(S) by

µ := 1
2(scal−

∑
i ,j

hijhij + (
∑

i
hi

i )2), J i =
∑

j
∇j(hij − (

∑
k

hk
k )g ij).

We say that the Schoen-Yau concentration condition is satisfied iff

SY(g , h,U) := Rad(U) ·
(

min{µ(q)− ||J(q)||︸ ︷︷ ︸
≥0∀q(D.E.C.)

: q ∈ U}
)1/2 ≥

√
3
2π.

Schoen-Yau (1981) show that the concentration condition implies
the existence of an ’marginally outer trapped surface’.
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1.5 The main result
We call a point in (M, g) black iff there is no future timelike curve
of infinite length starting at p. The black hole BH(M, g) of
(M, g) is the subset of all black points (can be empty!).

Theorem (M. 2016)
Let (S, g0,K0,A0, Ȧ0) be Zipser-asymptotically flat initial values
for four-dimensional Einstein-Maxwell theory. Let U ⊂ S be an
open precompact subset of S and V an open neighborhood of
∂U satisfying the Schoen-Yau concentration condition, then U
is black.

Einstein-Maxwell initial values (S, g0,K0,A0, Ȧ0) are called
Zipser-asymptotically flat (of mass m) iff trg0 (K0) = 0 and

(g0)ij ∈ (1 + 2m/r)∂ij + o4(r −3/2),
(k0)ij ∈ o3(r −5/2),
(F (A0, Ȧ0))ij ∈ o3(r −5/2).
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2.1 Lorentzian geometry: Basics

Lorentzian metric: nondegenerate symmetric bilinear form of
signature (1, n) on tangential bundle τM : TM → M
(Obstructed ionly on compact M, by Euler characteristic

Ip := {v ∈ TpM|g(v , v) < 0} = I+
p ∪̇I−

p : timelike vectors

Jp := {... ≤ 0} = Ip: causal, Jp \ Ip: null vectors

(M, g) time-oriented :⇔ Ig :=
⋃

p∈M Ip has 2 components.
A C1-curve c : I → M is called
future/past causal ⇔ c ′(t) ∈ J±c(t) \ {0} ∀t ∈ I,
future/past timelike ⇔ c ′(t) ∈ I±c(t) ∀t ∈ I.
J±(x) := {y ∈ M| ∃ zukunfts/vergangenheitskausale c : x  y}
- correspondingly I±(x) with timelike curves.
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2.2 Causality conditions
A time-oriented Lorentzian manifold is called

causal ⇔ (M, g) has no closed causal curves. (Counterexample:
R1,n/Zn)

diamond compact ⇔ J+(p) ∩ J−(q) compact ∀p, q ∈ M.
(Counterexample: R1,n \ {0}, {x ∈ R1,n|xn ∈ [−1, 1]})

globally hyperbolic(g.h.)⇔ M causal & diamond compact.

Examples of globally hyperbolic manifolds:

(R× N, g = −dt2 + h) for (N, h) complete

causally convex subsets of g.h. manifolds

(M, g), if (M, k) g.h. and Ig ⊂ Ik

( ’g.h.’ is conformally invariant notion)
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2.3 Geodesics and Cauchy sets

If (M, g) g.h., p ∈ M and q ∈ J+(p), then there is a maximal (!)
causal geodesic from p to q.

Cauchy set := Subset of (M, g) intersected by every causal
C0-inextendible curve in M exactly once. Each Cauchy set is a C0

hypersurface ( ”Cauchy surface”)
(M, g) g.h. ⇔ M contains a Cauchy surface.

Theorem (Bernal-Sánchez 2005, M.-Sánchez 2009)
Let (M, g) globally hyperbolic. Then (M, g) is isometric to (R×
N,−f 2dt2 + gt), where f ∈ C∞(M) bounded and
gt a smooth one-parameter family of Riemannian metrics on N.
Levelset t−1(x) is Cauchy surface for all x ∈ R.
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2.4 Analytic Relevance

(M, g) g.h. An ord(1)-differential operator P : C∞(π)→ C∞(π)
on a vector bundle π over M with BLF h
is called symmetric-hyperbolic (s.h.) ⇔

1 The image of symbP : τ∗M → End(π) consists of h-symmetric
endomorphisms,

2 symbP(g(v , ·)) is h-positive definite for all v ∈ Jg .

Examples of s.h. operators: Dirac operator, (canonical prolongation
of) Lorentzian Laplace operator (wave operator), of the Yang-Mills
operator...

Cauchy problem of linear s.h. PDE is well-posed, i.e., restriction
of solutions to a Cauchy surface has a smooth inverse.
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2.5 Cauchy development

Maxwell-Einstein Equations: Metric is now a dynamical variable!
A Cauchy development of an initial datum I = (S, g0,K ,A0, Ȧ0)
is (M, g ,A, J), where

(M, g) g.h. manifold,

(g ,A) solves the Maxwell-Einstein equation,

J : S → M embedding as Cauchy surface of M inducing the initial
datum I: J∗A = A0, (∂tJ)∗A = Ȧ0,
g0 resp. K first resp. second fundamental form of (J , g).

[Choquet-Bruhat, Geroch]: For each initial datum I there is
exactly one maximal Cauchy development MCD(I).
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3.1 Conformal compactifications

Definition
Let (M, g) be a g.h. spacetime. A conformal compactification
of (M, g) (of regularity Ck) is an open conformal embedding I
of (M, g) into a g.h. spacetime (N, h) (with I and h of regularity
Ck) such that F (M) is causally convex and compact.

Conformal compactifications can also be used to construct
Hadamard states for Maxwell theory (Dappiaggi-Siemssen 2011)
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3.2 The standard example

Abbildung: Left: stereographic projection Rn → Sn, right: its unique
Lor4entzian extension to the Penrose compactification
R1,n → (R× Sn,−dt2 + grund )
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3.3 Conformal extensions

Necessity of generalization of ’conformal compactification’:

Theorem (M. 2016)
Let (S, g0,K0,A0, Ȧ0) be asymptotically flat initial values for
matter-Einstein equations obeying the dominant energy conditi-
on, S spin or of dimension ≤ 7 and with not identically vanishing
matter fields A0, then for any open conformal embedding with
precompact image, the metric h on N is not C2 at spatial infinity.
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3.4 Definition of ’conformal extension’
A subset of a spacetime is called future compact iff it is
contained in the past of a compact subset.

Definition
A conformal extension of order k is an open conformal em-
bedding I into another globally hyperbolic manifold (N, h) with
I and h of regularity Ck such that the closure of I(M) is causally
convex and future compact. A strong conformal extension is a
conformal extension with the property that the inverse ω of the
conformal factor, as a function on I(M), has a Ck extension.

Introduced as central tool for small-initial value well-posedness of
Dirac-Higgs-Yang-Mills theory in Ginoux - M. (2014)
Conformal extensions can still be used to construct Hadamard
states!
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3.5 Abundance of strong conformal extensions

Zipser’s stability theorem for Einstein-Maxwell theory (2009)  
maximal Cauchy developments of initial values contained in a
neighborhood of trivial initial values are future causally complete.

Theorem (M. 2016)
If I := (ψ0,Φ0,A0,A1, g0, h0) are Zipser-asymptotically flat va-
lues of order k for Einstein-Maxwell theory then the maximal
Cauchy development M of I

admits a strong conformal extension of order k,

has ’standard’ spatial ends: If for a future curve c in M we have
J−(c(R)) spatially noncompact, then J−(c(R)) contains
timelike curves of arbitrary length and all M-inextendible null
geodesics in J−(c(R)) are of infinite affine length.
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4.1 Singularity theorems
A submanifold N is called trapped iff its mean curvature vector
HN is past and if there is a > 0 such that for all p ∈ N:
〈HN ,HN〉 < −a2.
Penrose’s singularity theorem (1966): If (M, g)

1 satisfies the null convergence condition (NCC)
ric(v , v) ≥ 0 for all v ∈ TM null,

2 has a noncompact Cauchy surface and a trapped compact spacelike
codimension-2 submanifold N.

then some C0-inextendible future null geodesic from N is
incomplete.

Problems:
Are there also complete null geodesics from N?
Massive observers follow timelike, not null curves.
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4.2 Singularity theorems, ctd.

Hawking’s singularity theorem (1965): If (M, g)

1 satisfies the timelike convergence condition (TCC) ric(v , v) ≥ 0 for
all v ∈ TM timelike,

2 has a trapped, compact or noncompact Cauchy surface (which is a
codimension-1 submanifold) N.

then any C0-inextendible future timelike geodesic from N is
incomplete.

Problem: In asymptotically flat case, we can’t find Cauchy surface
N with HN uniformally past!

Question: Is there a synthesis between Penrose and Hawking?
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4.3 Variants of singularity theorems
The proof includes a new variant of Hawking’s theorem...

Theorem (Compact Umbrella Theorem, M. 2016)
Let (M, g) be g.h. with timelike convergence condition. If
∃S Cauchy surface: J−(J+(p)) ∩ S compact, then p black.

... and a slight generalization of Penrose’s singularity theorem:

Theorem (M. 2016)
If (M, g) satisfies the null energy condition, has a noncompact
Cauchy surface S and if there is a compact set U in (M, g)
whose boundary is an outer trapped surface, then there is a C0-
inextendible incomplete null geodesic starting at ∂U.

Kodim.-2-Untermf. S outer trapped :⇔ g(HS , ν+) < C < 0 für äußere
Licht-Vergangenheits-Normale ν+ von S (trapped⇔ g(HS , ν±) < C < 0).
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4.4 Synthesis, main proof

Theorem (Penrose-Hawking synthesis, M. 2016)
Let dim(S) = 3, I := (S, g0,K0,A0, Ȧ0) Zipser-asymptotic flat
Maxwell-Einstein initial data, U open in S and precompact, ∂U
an OTS. Then U is black in MCD(I).

Sketch of proof: OTS =========⇒
Penrose variant

ring of incompl. null geos c
=========⇒
Hawking variant

BH or i0 ∈ J−(c) for one of those c
conformal extension &==================⇒

Analysis of symm.-hyperb. eq.
exclude option 2

Main proof: SY Concentration =======⇒
Schoen-Yau

MOTS ==========⇒
Galloway rigidity

OTS ================⇒
Penrose-Hawking Synthesis

BH
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4.5 Result, Perspectives

Theorem (Main result as above, M. 2016)
Let (S, g0,K0,A0, Ȧ0) be Zipser-asymptotically flat initial values
for four-dimensional Einstein-Maxwell theory. Let U ⊂ S be an
open precompact subset of S and V an open neighborhood of
∂U satisfying the Schoen-Yau concentration condition, then U
is black.

Ansatz for falsification of Cosmic Censorship Conjecture (”For
opn and dense subset I of initial values, MCD(I) is maximal as
Lorentzian manifold”)
NB: Completeness ⇒: Maximality
Kruskal spacetime is maximal, Kerr spacetime is not.
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5 By-product: Decision of a weak cosmic
censorship bet

Whereas Stephen W. Hawking [...] believes that naked singularities are an anathema
and should be prohibited by the laws of classical physics,
And whereas John Preskill and Kip Thorne [...] regard naked singularities as quantum
gravitational objects that might exist, unclothed by horizons, for all the Universe to see,
Therefore Hawking offers, and Preskill/Thorne accept, a wager that
When any form of classical matter or field that is incapable of becoming singular in flat
spacetime is coupled to general relativity via the classical Einstein equations, then
A dynamical evolution from generic initial conditions (i.e., from an open set of initial
data) can never produce a naked singularity [...]
The loser will reward the winner with clothing to cover the winner’s nakedness. [...]
Stephen W. Hawking, John P. Preskill, Kip S. Thorne Pasadena, CA, 5 February 1997

Conclusion from another step of the proof: Hawking wins the
bet, even without genericity, for Einstein-Maxwell Theory and
Zipser-asymptotically flat initial values!
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