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1. Introduction

• In the case of spherical symmetry, an “unstoppable gravitational collapse” (resulting

in a spacetime singularity – within classical general relativity) necessarily leads to a

Schwarzschild black hole (cf. Oppenheimer & Snyder 1939) or, if there is some electric

charge, to a Reissner–Nordstrøm–Weyl black hole.

• Without spherical symmetry, for example in the case of a collapsing rotating star,

the result of a complete collapse is much more difficult to predict. The (weak)

cosmic censorship conjecture (Penrose 1969), combined with (i) the assumption that

the exterior gravitational field settles down to a stationary state and (ii) the black

hole uniqueness (“no-hair theorem”: Israel, Carter, Hawking, Robinson, Mazur, . . . ),

predicts the formation of a Kerr (or Kerr–Newman) black hole.

• With rotation (and/or electric charge), quasi-stationary collapse scenarios, described

by sequences of equilibrium configurations becoming more and more compact, are

possible. Do they lead to black holes or to naked singularities?



• A continuous sequence of stationary and axisymmetric, uniformly rotating perfect

fluid bodies reaches a black hole limit if and only if

M − 2ΩJ → 0 (G = c = 1)

in the limit (Meinel 2006). The limit leads to an extreme Kerr black hole.

• The existence of such a limit was first demonstrated for rotating discs of dust,

numerically by Bardeen & Wagoner (1971) and analytically by Neugebauer & M.

(1995).

• The fact that the quasi-stationary collapse of a rotating disc of dust leads to the

formation of a black hole and not to a naked singularity is in remarkable agreement

with the cosmic censorship conjecture.

• Further numerical examples, for genuine fluid bodies, were provided by the

“relativistic Dyson rings” (Ansorg et al. 2003) and their generalizations.



• Examples for parametric transitions to black holes have also been found in the

context of the static Einstein-Yang-Mills-Higgs equations (Breitenlohner et al. 1995,

Lue & Weinberg 2000).

• Simplest possibility: The parametric compression of static configurations of

“electrically counterpoised dust”, also called “Bonnor stars”, leads to an extreme

Reissner–Nordstrøm–Weyl black hole (Bonnor & Wickramasuriya 1975, Lemos &

Weinberg 2004, Bonnor 2010, M. & Hütten 2011). [Corresponding solution class:

Papapetrou-Majumdar solutions]

• The quasi-stationary collapse of a rotating disc of electrically charged dust leads to

the formation of an extreme Kerr-Newman black hole (Breithaupt et al. 2015).



2. Black hole limit of relativistic figures of equilibrium

(a) Necessary and sufficient conditions

Four-velocity of the fluid:

ui = e−V (ξi + Ω ηi), Ω = constant

with Killing vectors: ξ = ∂/∂t, η = ∂/∂ϕ

[ξiξi → −1 at spatial infinity. We assume asymptotic flatness; the spacetime

signature is chosen to be (+ + + −). The orbits of the spacelike Killing vector η

are closed and η is zero on the axis of symmetry.]

Ω = uϕ/ut, e−V = ut

uiui = −1 ⇒ (ξi + Ω ηi)(ξi + Ω ηi) = −e2V

Energy-momentum tensor: Tik = (µ + p)uiuk + p gik



“Cold” equation of state, µ = µ(p), following from

p = p(µb, T ), µ = µ(µb, T )

for T = 0, where µb is the “baryonic mass-density” [with (µbu
i);i = 0] and T the

temperature. The specific enthalpy

h =
µ + p

µb

can be calculated from µ(p) via the thermodynamic relation

dh =
1

µb

dp (T = 0)

leading to

dh

h
=

dp

µ + p
⇒ h(p) = h(0) exp





p
∫

0

dp′

µ(p′) + p′



 .



[h(0) = 1 in most cases.]

T ik
;k = 0 ⇒ h(p) eV = h(0) eV0 = constant

Relative redshift z of zero angular momentum photons emitted from the surface of the

fluid and received at infinity:

z = e
−V0 − 1

Equilibrium models, for a given equation of state, are fixed by two parameters, for

example Ω and V0. (When we discuss a “sequence” of solutions, what is meant is a

curve in the two-dimensional parameter space.)

Baryonic mass Mb, gravitational mass M and angular momentum J :

Mb = −
∫

Σ

µb ui n
idV, M = 2

∫

Σ

(Tik−
1

2
T j
j gik)n

iξkdV, J = −
∫

Σ

Tik n
iηkdV,

where Σ is a spacelike hypersurface (t = constant) with the volume element dV =
√

(3)g d3x and the future pointing unit normal ni.



A combination of the previous relations leads to the formula

M = 2ΩJ + h(0) eV0
∫

µ + 3p

µ + p
dMb .

We assume µ and p to be non-negative and 0 < Mb < ∞, 0 < h(0) < ∞.

⇒ 1 ≤ (µ + 3p)/(µ + p) ≤ 3 ⇒

M = 2ΩJ ⇔ V0 → −∞ (z → ∞)

This condition is necessary and sufficient for approaching a black hole limit

(Meinel 2006).

Surface of the fluid: (ξi + Ω ηi)(ξi + Ω ηi) = −e2V0

Black hole horizon: (ξi + Ωh η
i)(ξi + Ωh ηi) = 0

Ωh : “angular velocity of the horizon” ; V0 → −∞ : Ω → Ωh



M = 2ΩJ ⇒ Impossibility of black hole limits of non-rotating (uncharged)

equilibrium configurations, cf. “Buchdahl’s inequality”.

Together with

Ω = Ωh =
J

2M2
[

M +
√

M2 − (J/M)2
]

⇒ J = M2 (extreme Kerr black hole).

Note: The last conclusion makes use of the Kerr black hole uniqueness including the

extreme case.



(b) Extreme Kerr uniqueness

In Weyl’s canonical coordinates, the stationary and axisymmetric vacuum line element

takes the form

ds
2
= e

2α
(d̺

2
+ dζ

2
) + ̺

2
e
−2ν

(dϕ − ω dt)
2 − e

2ν
dt

2
,

where

̺2 = (ξiηi)
2 − ξiξiη

kηk = (χiηi)
2 − χiχiη

kηk.

⇒ ̺ = 0 on the horizon (H: χiχi = 0, χiηi = 0 with χi ≡ ξi + Ωhη
i)

Therefore, the t = constant, ϕ = constant slice of the horizon of a single stationary

and axisymmetric black hole surrounded by a vacuum can only be a finite intervall or

a single point on the ζ-axis. In both cases, the corresponding boundary value problem

can uniquely be solved by means of the “inverse scattering method” .



✲

✻

ζ

̺

l

−l

HH: ̺ = 0,

|ζ| ≤ l
✲

✻

ζ

̺①
H

̺ = R sinϑ

ζ = R cosϑ

(0 ≤ ϑ ≤ π)

H: R = 0,

0 ≤ ϑ ≤ π

Result: Kerr with J < M2 Kerr with J = M2

[ l =
√

M2 − (J/M)2 ]

• The Kerr (-Newman) black holes – including the extreme case – are the only

stationary and axisymmetric black holes (with a single connected horizon) surrounded

by an asymptotically flat (electro-) vacuum (Meinel et al. 2008, Meinel 2012).

Other proofs of the extreme Kerr (-Newman) uniqueness have been published by

Amsel et al. (2010), Figueras & Lucietti (2010) and Chrusciel & Nguyen (2010).



3. Rigorous results for discs of dust

Two parameters: ̺o, Ω

The exact solution to this problem has been found in terms of hyperelliptic theta

functions by solving the corresponding boundary value problem via the “inverse

scattering method” (Neugebauer & M. 1995). It depends on the normalized

coordinates ̺/̺o, ζ/̺o or ̺/M , ζ/M and the previously introduced parameter eV0,

which is given here by

e
2V0 = −(ξ

i
+ Ω η

i
)(ξi + Ω ηi)

∣

∣

∣

S
= constant.



Newtonian limit: |V0| ≪ 1, Black hole limit: V0 → −∞
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In the black hole limit, the disc shrinks to the origin of the ̺/M , ζ/M coordinate

system, since ̺o/M → 0; and the solution becomes precisely the extreme Kerr

solution (outside the horizon).

(Note that the limit in the ̺/̺o, ζ/̺o coordinates is different: It gives a non-

asymptotically flat solution with the extreme Kerr “throat geometry” at spatial infinity!)



4. Numerical results for fluid rings with various equations of state

ds
2
= e

2α
(d̺

2
+ dζ

2
) + W

2
e
−2ν

(dϕ − ω dt)
2 − e

2ν
dt

2
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Ansorg et al. (2003), Fischer et al. (2005), Labranche et al. (2007)
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2π
√

gϕϕ(̺, 0) = 2πW (̺, 0)e−ν(̺,0) :

proper circumference of a circle ̺ = constant

in the “equatorial plane” (ζ = 0, t = constant)

δ =
∫̺

0

eα(̺
′,0)d̺′ : proper radius of that circle

∆ =
∫̺

M

eα(̺
′,0)d̺′



5. Electrically counterpoised dust (ECD) configurations

ds2 = S2(dx2 + dy2 + dz2) − S−2dt2

Energy-momentum tensor:

Tik = ρuiuk + T
(em)
ik , ui = δi4 S, ρ ≥ 0, S > 0

with T
(em)
ik =

1

4π
(FijFk

j − 1

4
FmnFmngik), Fik = Ak,i − Ai,k

Ai = −δ
4
i φ, φ = −ǫ(S

−1 − 1), ǫ = ±1

Einstein-Maxwell equations for the ECD case (J i = σui, σ = ǫρ):

Rik−
1

2
Rgik = 8πTik, F

ik
;k = 4πJ

i ⇐⇒ ∆S ≡ ∂2S

∂x2
+

∂2S

∂y2
+

∂2S

∂z2
= −4πS

3
ρ

⇐⇒ ∆V = 4πµ with S = 1 − V, ρ =
µ

S3



General solution with a localized ECD distribution:

V = −
∫

µ(r′)d3
r
′

|r − r
′| , r = (x, y, z).

Asymptotic behaviour:

r ≡ |r| → ∞ : V → −M

r
, g44 = −S

−2 → −
(

1 − 2M

r

)

with M =

∫

µ(r)d3
r Note: Q ≡

∫

σS3d3
r = ǫM

Any ECD distribution of finite extent: µ(r) = f(r) with f(r) ≡ 0 for r > R

Corresponding one-parameter family of solutions: µ(r) = α3f(αr) (α > 0)

i.e. µ(r) ≡ 0 for r >
R

α
Note: M independent of α

Sufficiently small α : Newtonian limit (|V | ≪ 1) α → ∞ : black hole limit



(a) The exterior point of view

α → ∞ ⇒ µ(r) = Mδ(r) ⇒ r > 0 : V = −M

r
, S = 1 +

M

r

⇒ ds2 =

(

1 +
M

r

)2

(dx2 + dy2 + dz2) −
(

1 +
M

r

)−2

dt2

• metric of an extremal Reissner-Nordström black hole outside the event horizon

Note: horizon at r = 0 in the isotropic coordinates used here

(relation to radial Schwarzschild coordinate rS : rS = r + M )

(b) The interior point of view

Limit α → ∞ after the coordinate transformation

x̃ = αx, ỹ = αy, z̃ = αz, t̃ = α
−1

t

⇒ ds
2
= S̃

2
(dx̃

2
+ dỹ

2
+ dz̃

2
) − S̃

−2
dt̃

2
(S̃ = α

−1
S)



α → ∞ ⇒ S̃ = α
−1

S
∣

∣

∣

α→∞
= α

−1
(1 − V )

∣

∣

∣

α→∞
= −α

−1
V
∣

∣

∣

α→∞

⇒ S̃ =

∫

f(r̃′)d3
r̃
′

|r̃ − r̃
′|

, r̃ = (x̃, ỹ, z̃)

Note: Finite values of r̃ ≡ |r̃| correspond to r = 0 in the limit!

Asymptotic behaviour:

r̃ → ∞ : S̃ → M

r̃
⇒ ds2 =

M2

r̃2
(dx̃2 + dỹ2 + dz̃2) − r̃2

M2
dt̃2

• extreme Reissner-Nordström “near-horizon geometry” (also known as the Bertotti-

Robinson metric or AdS2 × S2 spacetime, in fact going back to Levi-Civita 1917)

• Spherically symmetric case: AdS2 × S2 not only asymptotically, but for all r̃ > R



(c) A generic example

f(r) =







µ0 for x2/a2 + y2/b2 + z2/c2 ≤ 1

0 elsewhere

with µ0 = constant

⇒ M =
4π

3
abc µ0

Visualization of the limit α → ∞ :

F ≡







r̃S̃ for r̃ < ∞ (“inner world”)

rS for r > 0 (“outer world”)

Note: r̃S̃ = rS for finite α

Plot of F/M for b = 0.8 a, c = 0.5 a :



L =

r̃
∫

0

S̃(r̃′)dr̃′ ∆L =

r
∫

M

S(r′)dr′



6. Rotating discs of electrically charged dust

Palenta & M. (2013)

Breithaupt et al. (2015)

Liu Pynn et al. (2016)
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Conclusion

All considered quasi-stationary collapse scenarios lead to black holes, and not to

naked singularities.

• These results, which are highly non-trivial because of the absence of spherical

symmetry, are in remarkable agreement with the cosmic censorship conjecture.
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