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The four classical tests 

Ø  Note:	All	four	classical	tests	only	need	solutions	to	the	
vacuum	Einstein	equations.	(3	not	even	that.)	

1.  Deriving	the	perhihelion	of	
Mercury	

2.  Light	bending	by	the	Sun	
3.  Gravitational	redshift	
4.  Gravitational	waves	



Question of the talk 

•  Given	that	all	four	classical	tests	involve	material	systems,	it	is	
prima	facie	surprising	that	we	need	only	solutions	to	the	
vacuum	field	equations	to	predict	what	is	confirmed	in	these	
tests.		

•  Question:	how	do	we	need	to	use	and	interpret	these	vacuum	
solutions	to	make	this	possible?	



Standard Interpreter vs. Practice Interpreter 

•  Standard	Interpreter:	Interpret	by	asking	yourself	what	the	world	
would	be	like	if	a	given	theory	were	exactly	true.	

•  Here:	Ask	yourself	what	the	universe	would	be	like	if	a	given	solution	
to	the	vacuum	field	equations	were	to	describe	it	exactly.		

•  Practice	Interpreter:	Interpret	by	asking	yourself	how	a	given	theory	
is	used	to	describe	(parts	of)	the	actual	world.	

•  Here:	Ask	yourself	in	which	different	ways	a	given	solution	to	the	
vacuum	field	equations	can	be	used	to	describe	(parts	of)	the	actual	
world.	



Outline 

1.  Introduction:	Different	ways	of	interpreting	solutions	
2.  The	Schwarzschild	solution:	spherically	symmetric,	static	
3.  The	Weyl	class	of	solutions:	axially	symmetric,	static	
4.  Einstein’s	reinterpretation	of	Weyl’s	results	
5.  Conclusion	
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The Schwarzschild solution: spherically symmetric, 
 static, asymptotically flat 

ds2 = �(1� 2m
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The Schwarzschild solution: spherically symmetric symmetry, 
 static, asymptotically flat 

ds2 = �(1� 2m

r
)dt2 + (1� 2m

r
)�1dr2 + r2(d✓2 + sin2✓d�2)

•  Nothing	in	the	solution	itself	tells	you	what	the	parameter	m	means,	
or	even	how	the	coordinates	should	be	interpreted	(or	constrained).	

•  Different	applications	to	represent	different	systems	will	demand	
different	interpretations	and	constraints.	

•  One	question:		there	is	a	coordinate	singularity	at	r=2m,and	a	
genuine	singularity	at	r=0.	How	to	interpret	them	in	different	
applications?	

	



Application 1: Einstein’s 1915 derivation of Mercury’s 
perihelion 

d

Mercury	

Sun	

ds2 = �(1� 2m
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How	do	we	interpret	the	singularity	at	the	center	in	this	context?	



d

Mercury	

Sun	

The	Schwarzschild	metric	should	not	be	
interpreted	as	representing	the	Sun,	but	as	
representing	its	exterior	gravitational	field.	

The	singularity	at	the	center	of	the	
Schwarzschild	solution	can	be	interpreted	as	a	
place-holder	for	a	theory	of	matter.		
	

Application 1: Einstein’s 1915 derivation of Mercury’s 
perihelion 



Exterior solutions as guidelines for finding interior 
solutions 

•  The	standard	interpreter	would	focus	on	a	Schwarzschild	universe		and	
ask	how	we	should	interpret	the	Schwarzschild	metric	for	the	entire	range	
of	coordinates.		

•  In	applying	the	Schwarzschild	metric	to	calculate	the	perihelion	of	
Mercury,	one	can	restrict	the	r	coordinate	to	r	>	2m	and	thus	avoid	
thinking	about	singularities:	we	obtain	the	exterior	Schwarzschild	metric,	
and	more	is	not	needed	for	deriving	the	orbit	of	Mercury.	

•  Birkhoff’s	Theorem:	The	exterior	Schwarzschild	solution	is	the	unique	
spherically	symmetric	solution	to	the	vacuum	Einstein	equations.		

•  Still,	an	exterior	solution	can	be	used	as	a	guideline	to	find	a	more	
adequate	interior	solution	that	actually	describes	the	Sun:	
Schwarzschild’s	second	paper	of	1916.	Or:	Embrace	the	idea	by	Rainich	to	
represent	bodies	only	by	their	exterior	gravitational	fields.	



Application 2: A Schwarzschild Black Hole 

•  	 Even	 though	 the	first	 application	of	 the	Schwarzschild	metric	was	 to	
represent	 the	 exterior	 field	 of	 an	 active	 star,	 we	 now	 know	 that	 the	
solution	can	also	be	used	to	describe	the	final	state	of	a	collapsed	star:	a	
black	hole.	

•  In	 this	 context,	 it	 is	more	 conceivable	 that	 we	 should	 take	 the	 entire	
coordinate	 range	 of	 the	 r	 coordinate	 to	 represent	 the	 astrophysical	
object	and	take	the	singularity	at	the	center	seriously.	

•  But	still	note:	because	of	the	event	horizon	at	r=2m,	the	interior	of	the	
black	 hole	 is	 causally	 isolated	 from	 the	 rest	 of	 the	 universe.	Thus,	 for	
astrophysical	purposes,	we	can	easily	get	along	with	characterizing	the	
black	hole	by	the	exterior	Schwarzschild	solution.	

•  Indeed,	the	presence	of	an	event	horizon	gives	real	juice	to	the	Rainich	
approach	of	representing	bodies	only	by	their	exterior	fields.			



Interpreting solutions by looking at their 
Newtonian counterparts. Case 1: Schwarzschild 

The	geodesics	of	the	
Schwarschild	metric:	 ṙ2 + (1� 2m
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Equations	of	motion	
around	a	central	source	
in	Newtonian	theory:	

(Also:	both	the	Komar	mass	and	the	ADM	mass	of	a	Schwarzschild	
	spacetime	turn	out	to	be	m)	
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1917: The Weyl class of solutions: axially symmetric, static 

where	
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Peculiarities of the Weyl class of solutions 

where	
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•  The	latter	two	equations	are	equivalent	to	the	Einstein	equations	for	
axially	symmetric	fields.		

•  The	second	equation	is	Laplace’s	equation,	i.e.	Poisson’s	equation	for	
vanishing	mass	density.	It’s	a	linear	equation.	Link	to	Newtonian	gravity?	

•  The	third	equation	embodies	the	non-linearity.	



Special Case: Weyl’s static two-body solution 

•  In	1917,	1919	and	1922	(with	Bach),	Weyl	introduces	a	special	
member	of	the	Weyl	class	that	he	interprets	as	the	static,	exterior	
and	interior	gravitational	field	of	two	extended	dust	bodies.	

•  He	finds	that	in	order	to	remain	static	there	must	be	stresses	
between	the	two	bodies.			

“Weyl	strut”		

T 1
1 + T 2

2 = 0Weyl	makes	clear	that	the	introduction	of	a	“Weyl	strut”	
avoids	a	singularity	along	the	rotation	axis,	for	it	ensures	
that															along	the	axis.		� = 0
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The context: Einstein’s approach to the problem of motion 
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The	geodesic	
equation:	Ø  BUT	there	is	a	price	to	pay:	it	

seems	matter	is	represented	
by	singularities.	

The	Einstein	field	
equations:	

Rµ⌫ = 0



Einstein’s reinterpretation of Weyl’s two-body solution during his  
Correspondence with Yuri Rainich, 1925-1926 



Rainich on linear vs non-linear field equations 

•  Rainich	pointed	out	to	Einstein	that	in	a	linear	theory	the	
existence	of	 a	 solution	 representing	a	 static	 single-body	
solution	would	imply	a	static	two-body	solution.	

•  However,	in	a	non-linear	theory	like	GR,	the	existence	of	a	
two-body	solution	 is	not	 implied.	 	 In	a	 letter	 to	Einstein	
from	5	April	1926,	Rainich	adds	that	in	contrast	to	a	linear	
theory,	 in	 a	 non-linear	 theory	 the	 field	 of	 one	 particle	
may	heavily	constrain	the	properties	the	second	particle	
can	have.		

•  Rainich	 connects	 these	 remarks	 with	 his	 own	 research	
project:	 represent	 and	 investigate	 the	 behaviour	 of	
material	 bodies	 only	 in	 terms	 of	 their	 exterior	
gravitational	fields.	

		



Einstein on two-body solutions 

``I	 am	 convinced	 that	 one	 could	 find	 an	 exact	
solution	 on	 the	 basis	 of	 the	 gravitational	
equations	 +	 Maxwell	 equations,	 which	 would	
represent	 the	 case	 of	 two	 electrons	 at	 rest	 (as	
singularities).	For	the	case	in	which	the	particles	
in	 question	 have	 no	 electric	 charge	 this	 has	
already	 been	 shown	 by	 Weyl	 and	 Levi-Civita	
(special	 case	 of	 axial	 symmetry).	 	 This	 would	
show	 that	 your	 plan	 cannot	 be	 carried	 out.'’	
Einstein	to	Rainich,	18	April	1926.		

		



Rainich insists 

``I	cannot	tell	you	how	grateful	I	am	for	your	letters,	
which	give	me	the	feeling	that	I	am	not	working	in	a	
vaccuum.	-	But	I	have	to	say	that	your	last	letter	did	not	
convince	me...	.	[...]	'’	Rainich	to	Einstein,	23	May	1926.		

	
	
	

Ø  In	what	follows,	Rainich	insists	on	the	points	of	his	
previous	letter:	it	is	not	clear	that	GR	admits	a	
solution	that	should	be	interpreted	as	representing	
two	particles	(represented	as	singularities)	at	rest	
with	respect	to	one	another.	



Einstein to Rainich: the U turn 

``I	completely	agree	with	your	main	point.	If	a	
theory	has	a	solution	which	represents	two	
electrons	at	rest,	then	it	is	inadequate.	This	was	
indeed	the	reason	why	I	thought	that	I	had	to	
reject	a	theory	which	regards	electrons	as	
singularities.	For	I	had	thought	to	have	seen	that	
any	such	theory	would	have	solutions	with	
electrons	at	rest.	But	it	now	seems	that	I	was	
wrong	about	this.'’	Einstein	to	Rainich,	6	June	
1926	(emphasis	in	original).		

		



Between 23 May and 6 June 1926 

•  On	 18	 April	 1926,	 Einstein	 had	 pointed	 to	Weyl	 and	 Levi-Civta’s	
solutions	 as	 representing	 a	 static	 two-body	 solution.	 On	 6	 June	
1926	he	 agrees	with	Rainich	 that	 a	 static	 two-body	 solution	does	
not	exist.	What	happened?	

•  I	conjecture	that	between	Rainich's	 letter	of	23	May	and	Einstein’s	
answer	of	6	June,	Einstein	must	have	gone	back	 to	 the	papers	by	
Levi-Civita	 and	 Weyl	 (and	 Bach)	 that	 he	 had	 referred	 to	 in	 his	
previous	letter.	

•  He	 found	 reason	 to	 judge	 Wey’s	 two-body	 solution	 as	
unsatisfactory,	as	a	non-physical	two-body	solution.	



Special Case: Weyl’s static two-body solution 

“Weyl	strut”		

T 1
1 + T 2

2 = 0Weyl	makes	clear	that	the	introduction	of	a	“Weyl	strut”	is	
the	only	way	to	avoid	a	singularity	along	the	rotation	axis,	
for	it	ensures	that															along	the	axis.		� = 0



Weyl’s static two-body solution without “Weyl strut” 

Line	singularity	
along	the	z-axis.	



General Relativity as a hybrid theory à Good and bad singularities 

•  Einstein	regarded	general	relativity	as	what	I	would	call	a	hybrid	theory:	
•  fundamentally	 correct	 with	 regard	 to	 spacetime	 regions	 containing	
only	gravitational	fields,	and		

•  only	phenomenologically	correct	with	regard	to	spacetime	regions	in	
which	 matter	 is	 present.	The	 energy-momentum	 tensor	 in	GR	 was	
only	a	place-holder	for	an	adequate	(quantum)	theory	of	matter	not	
yet	found.		

•  Thus,	he	was	fine	with	introducing	singularities	to	stand	in	for	matter:	it	
just	meant	switching	one	placeholder	for	another.	

•  But	 in	 spacetime	 regions	 free	 of	matter	 no	 singularities	 where	 to	 be	
allowed.		

•  This	implied	a	selection	principle	for	physical	vs.	non-physical	solutions.	

	



In search for an acceptable solution 

•  Einstein	now	made	two	moves:		
1.  He	turned	Weyl’s	two-body	problem	into	the	problem	of	finding	

an	axially	symmetric	solution	capable	of	representing	one	body	
subject	to	an	external	gravitational	field.	

2.  He	chose	a	simpler	ansatz:	while	Weyl	aimed	to	find	a	solution	
capable	 of	 representing	 extended	 material	 bodies,	 Einstein	
wanted	an	axially	symmetric	solution	capable	of	representing	a	
point	mass	subject	to	an	external	field.	



Interpreting solutions by looking at their 
Newtonian counterpart. Case 2: Weyl 

•  As	we	saw,	the	Weyl	class	of	solution	includes	a	Poisson-like	equation:	

where	
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•  This	 suggest	 a	 solution-generating	 technique:	 start	 with	 the	 exact	
Newtonian	potential					for	some	classical	axially	symmetric	system	in	a	
flat	 space	 expressed	 in	 terms	 of	 standard	 cylindrical	 coordinates.	
Then...	

 



Interpreting solutions by looking at their 
Newtonian counterpart. Case 2: Weyl 

•  This	 suggest	 a	 solution-generating	 technique:	 start	 with	 the	 exact	
Newtonian	potential					for	some	classical	axially	symmetric	system	in	a	
flat	space	expressed	in	terms	of	standard	cylindrical	coordinates.		

•  Plug					into	the	Laplace-like	equation	of	the	Weyl	metric,	and	determine	
•  Together	 	 	 	and	 	 	 	 suffice	to	determine	a	particular	axially	symmetric	

solution,	a	specific	member	of	the	Weyl	class	of	solutions.		
•  Interpret	 	 the	 solution	 as	 the	 gravitational	 field	 of	 the	 analogous	

Newtonian	source.		
•  (This	is	what	Einstein	and	Grommer	did,	as	we	will	see	in	the	following.	

Note,	 however,	 that	 the	 last	 step	 can	 be	 treacherous,	 as	we	will	 also	
see.)	

 

 �
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From Newtonian point particle to the Curzon solution 
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From Curzon solution to a point particle subject to an 
external field 

 1 = � m

r2 + z2

Einstein	and	
Grommer’s	Ansatz:	

with	

 
total

=  1 +  ̂

•  Like	Weyl,	 Einstein	 and	 Grommer	 had	 argued	 that	 the	 only	 way	 to	
avoid	a	singularity	along	the	rotation	axis	is	to	ensure	that																along	
the	axis.	

•  They	find	that	the	only	way	to	do	this	without	introducing	stresses	is:	

� = 0

No line singularity along z-axis () � = 0 when r ! 0 ()
I

r!0
d� = 0 () ˆ = 0



From two-body vaccuum solution to problem of 
motion  

•  Einstein	 and	 Grommer	 conclude	 that	 in	 the	 full,	 non-
linear	theory,	there	is	no	physical	solution	of	a	particle	at	
rest	but	subject	to	an	external	gravitational	field.		

•  Thus,	they	say,	in	GR	it	follows	from	the	field	equations	
that	 a	 particle	 cannot	 be	 at	 rest	 when	 subject	 to	 a	
gravitational	field.	 (Big	difference	 to	Newtonian	 theory	
of	gravity	and	Maxwellian	theory	of	electrodynamics.)	

•  So	the	field	equations	predict	whether	a	particle	moves;	
they	predict	that	it	will	move.		

•  From	 here	 it	 is	 only	 a	 small	 step	 to	 expect	 the	 field	
equations	to	determine	how	the	particle	will	move.		

Ø  The	problem	of	motion.	



The perils of Newtonian starting points 
•  Einstein	 and	 Grommer’s	 ansatz	 was	 to	 start	 with	 the	 Newtonian	

potential	of	a	point	particle	and	plug	it	into	the	Weyl	metric.		
•  They	 interpreted	 the	 resulting	 Curzon	 metric	 as	 representing	 the	

axisymmetric	exterior	gravitational	field	of	a	point	particle	according	to	
GR.		

•  But	the	curvature	singularity	at	the	center	has	directional	dependence	
and	has	the	structure	of	a	ring	(Szekeres	1986).			

•  It	 is	 also	 a	 naked	 singularity;	 if	 we	 accept	 the	 cosmic	 censorship	
hypothesis	as	another	selection	principle,	 it	should	be	dismissed	as	an	
unphysical	solution	on	these	grounds	too.	

•  (Another	 point	 against	 trusting	 Newton:	 rewriting	 the	 Schwarzschild	
solution	in	Weyl	coordinates	gives	us	a				that	is	the	Newtonian	potential	
of	a	finite	rod,	rather	than	that	of	a	spherical	body.)		

 



Summary 

•  I	argued	that	 in	order	 to	understand	the	different	solutions	 to	 the	
Einstein	 equations,	 we	 should	 interpret	 how	 they	 can	 be	 used	 in	
practice	to	model	actual	systems	in	our	universe.			

•  I	 described	 how	 historically	 both	 the	Schwarzschild	 and	 the	Weyl	
solutions	 were	 used	 for	 very	 different	 representational	 purposes,	
and	have	to	be	interpreted	differently	in	different	contexts.		

•  I	showed	that	what	Weyl	took	for	an	existence	proof	of	static	two-
body	 solutions	was	 repurposed	 as	 a	 non-existence	 proof	 of	 static	
bodies	subject	to	exterior	fields	by	Einstein.		

•  I	showed	that	regularly	solutions	to	GR	are	interpreted	by	appeal	to	
their	Newtonian	counterparts,	which	can	be	misleading.	



The four classical tests 

Ø  Note:	All	four	classical	tests	need	only	solutions	to	the	
vacuum	Einstein	equations.		
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Thank	you!	



Thinking further along the Weyl-Rainich approach: 
Representing isolated bodies by vacuum spacetimes 

•  Ehlers	(1979)	suggested	that	for	something	to	be	“a	model	of	
an	 isolated	 system”	 in	 spacetime,	 the	 spacetime	 has	 to	 be	
asymptotically	flat.	

•  This	 allows	 for	 vacuum	 spacetimes	 in	which,	 as	Thorne	 and	
Hartle	(1985)	put	 it,	“one	can	separate	spacetime	into	a	part	
that	 represents	 the	 body	 and	 a	 part	 which	 represents	 the	
spacetime	of	the	external	universe”.	

•  Indeed,	as	we	learned	from	Arnowitt-Deser-Misner	(1960)	and	
Bondi	 (1962),	 we	 can	 define	mass,	momentum	 and	 angular	
momentum	 for	 the	 isolated	 body	 represented	 by	 such	 a	
vacuum	spacetime.		

•  But	vacuum	spacetimes	need	one	more	property	 in	addition	
to	be	capable	of	representing	material/astronomical	bodies.	



Note: Make sure that if your vacuum solution has 
a singularity, it’s not a naked one 

•  Naked	singularities	threaten	a	breakdown	of	determinism	but		
a	non-naked	singularity	is	“hidden”	behind	a	black-hole	event	
horizon:	it	is	causally	isolated	from	the	exterior.	

•  If	a	singularity	 is	non-naked,	then	for	astrophysical	purposes	
it	does	not	really	matter	if	it’s	there;	a	black	hole	is	then	just	a	
very	massive	body.		

•  The	Schwarzschild	metric	 has	 a	 non-naked	 singularity	 at	 its	
center.		

Ø  In	virtue	of	it	being	asymptotically	flat	and	involving	only	non-
naked	singularities,	we	are	able	to	represent	an	astronomical	
body	like	the	Sun	by	the	exterior	Schwarzschild	metric.	

	
		


