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Black holes and thermodynamics

Table: Analogies between the laws of thermodynamics and the laws
of black-hole mechanics

Law Thermodynamics Stationary black holes

Zeroth T constant on a body
in thermal equilibrium

κ constant on the
horizon of a black hole

First dE = TdS − pdV + µdN dM =
κ

8πG
dA+ ΩHdJ + Φdq

Second dS ≥ 0 dA ≥ 0

Third T = 0 cannot be reached κ = 0 cannot be reached

κ is the surface gravity of the black hole.



Compare dE = TdS with dM = κ
8πGdA. Write

T =
κ

Gζ
, S =

ζA

8π
.

For dimensional reasons, kB/ζ must have the dimension of a
length squared. A universal length is not available in the
classical theory, but if ~ is taken into account, one can use the
Planck length

lP =

√
~G
c3
≈ 1.62× 10−33 cm.



Hawking radiation and black-hole entropy

I Black holes radiate with a temperature proportional to ~,
the “Hawking temperature” (Stephen Hawking 1974)

TBH =
~c3

8πGkBM
≈ 6.2× 10−8

M�
M

K

I They therefore have a finite lifetime: the black hole Cygnus
X-1, for example, evaporates after 1068 years, which is
about 1058 times the age of the Universe!



Entropy of black holes

With the above result for the Hawking temperature, one finds
the following expression for the black-hole entropy:

SBH = kB
Ac3

4~G
Schwarzschild≈ 1.07× 1077kB

(
M

M�

)2

“Bekenstein–Hawking entropy”

For the collapse of a solar-mass star, this corresponds to an
increase in entropy of about 20 orders of magnitude!



Main open problems

I Final evaporation phase
I Fate of black-hole singularity in quantum gravity
I Microscopic derivation of black-hole entropy
I Astrophysical relevance (primordial black holes)



Microscopic explanation of SBH?

Cf. John Wheeler’s “It from Bit”

SBH = −kBtr (ρ ln ρ)

Quantum gravity?



Black-hole spectroscopy

Bekenstein and Mukhanov (1995) assume a quantization condition
for the area:

AN = αl2PN

with some undetermined constant α. The energy level N will be
degenerate with multiplicity g(N), so one would expect

S =
A

4l2P
+ constant = ln g(n).

With g(1) = 1 one gets

g(n) = eα(n−1)/4 .

Since this must be an integer, one has the options

α = 4 ln k , k = 2, 3, . . .

For information-theoretic reasons (‘it from bit’), k = 2 seems to be
preferred.



Logarithmic corrections

N spin-1/2 particles out of which n point up and N − n point down:

S = ln

(
N

N − n

)
= ln

(
N
n

)
For the ‘equilibrium case’ n = N/2, using Stirling’s formula, one gets,
neglecting terms of order 1/N ,

S = N ln 2− 1

2
lnN +

1

2
ln

2

π

With S0 := N ln 2, one can write

S ≈ S0 −
1

2
lnS0



In the Bekenstein–Mukhanov model, we have

AN = (4 ln k)l2PN

For k = 2 (‘it from bit’) and using the spin model from above, one gets

S =
AN
4l2P
− 1

2
ln
AN
4l2P

+
1

2
ln

2

π
+

1

2
ln(ln 2)

(Loop quantum gravity predicts the same logarithmic correction term.)

Except for very small black holes, this yields almost the same result
as the exact expression

S = ln

(
AN

4l2P ln 2

)
![(

AN

8l2P ln 2

)
!
]2 .

C. K. and G. Kolland (2008)



Information-loss problem

I Black holes have a finite lifetime:

τBH ≈ 8895

(
M0

mP

)3

tP ≈ 1.159× 1067
(
M0

M�

)3

yr

from the emission of gravitons and photons (D. Page 1976)

I The semiclassical approximation breaks down if the black
hole approaches the Planck mass mP.

I If the black hole left only thermal radiation behind, a pure
state for a closed system would evolve into a mixed system
(information-loss problem)

I This would be in contradiction to ordinary quantum theory
where the entropy

S = −kBTr(ρ ln ρ)

is conserved for a closed system (unitary evolution); the
problem would more properly be called the “unitarity
problem”.



Options

I Information is lost during the evaporation,

ρ→ $ρ 6= SρS†

(Hawking’s original opinion (1976))
I The full evolution is unitary, but this cannot be seen in the

semiclassical approximation (now the most popular option)
I The black hole leaves a remnant carrying all the

information

Final answer only within quantum gravity!



I At no point in the calculation by Hawking (and others) is an exact
mixed (canonical) state used in the formalism.

I The coherent superposition used by Hawking is
indistinguishable from a local thermal mixture (L. Parker 1975).

I The reduced state of each mode in a two-mode squeezed state
is a thermal state (canonical ensemble); in the special case of a
black hole, the temperature is independent of k (universality).



I Squeezed states are very sensitive to decoherence.

I This sensitivity is responsible, for example, for the
quantum-to-classical transition for the primordial
fluctuations in the early Universe. (During inflation, the
Wigner ellipse becomes frozen.)

I The degree of decoherence can conveniently be studied
with the Wigner function (C.K. 2001)



Main Approaches to Quantum Gravity

No question about quantum gravity is more difficult
than the question, “What is the question?”
(John Wheeler 1984)

I Quantum general relativity
I Covariant approaches (perturbation theory, path integrals,

spin foam, . . . )
I Canonical approaches (geometrodynamics, connection

dynamics, loop dynamics, . . . )

I String theory
I Other approaches

(Causal sets, group field theory, . . . )

Approach used here: Canonical quantum geometrodynamics
(For more details on all approaches, see e.g. C.K., Quantum Gravity, 3rd ed.,

Oxford 2012)



Black-hole entropy and quantum gravity

Microscopic explanation of entropy?

SBH = kB
A
4l2P

I Loop quantum gravity: microscopic degrees of freedom
are the spin networks; SBH only follows under certain
assumptions

I String theory: microscopic degrees of freedom are the
“D-branes”; SBH only follows for special (extremal or
near-extremal) black holes

I Quantum geometrodynamics: one can find S ∝ A in
particular models



Singularity avoidance: an exact model

I Spherically-symmetric thin shell consisting of particles with
zero rest mass (“null dust shell”);

I Classical theory: collapse to a black hole, or expansion
from a white hole (usually excluded for thermodynamical
reasons)

I Our quantization will lead to a singularity-free quantum
state (“superposition of black and white hole”)

(P. Hájı́ček and C.K. 2001)
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Figure: Penrose diagram for the outgoing shell in the classical theory.
The shell is at U = u.



Wave packets

Represent the shell by a narrow wave packet; start at t = 0 with

ψκλ(p) :=
(2λ)κ+1/2√

(2κ)!
pκ+1/2e−λp

Expectation value for the energy and variance:

〈E〉κλ :=

∫ ∞
0

dp

p
pψ2

κλ(p) =
κ+ 1/2

λ
,

∆Eκλ =

√
2κ+ 1

2λ

Since the time evolution of the packet is generated by −p̂t, one
has

ψκλ(t, p) = ψκλ(p)e−ipt



Exact time evolution in the r-representation:

Ψκλ(t, r) =
1√
2π

κ!(2λ)κ+1/2√
(2κ)!

[
i

(λ+ it+ ir)κ+1
− i

(λ+ it− ir)κ+1

]
Important consequence:

lim
r→0

Ψκλ(t, r) = 0

This means that the probability of finding the shell at vanishing
radius is zero! In this sense, the singularity is avoided in the
quantum theory. The quantum shell bounces and re-expands,
and no event horizon forms.



Expectation value and variance of the shell radius:

〈R0〉κλ := 2G〈E〉κλ = (2κ+ 1)
l2P
λ
,

∆(R0)κλ = 2G∆Eκλ =
√

2κ+ 1
l2P
λ

It turns out that the wave packet can be squeezed below its
Schwarzschild radius if its energy is greater than the Planck
energy—a genuine quantum effect!

“Superposition of black and white hole”



More complicated models

Lemaı̂tre–Tolman–Bondi (LTB) model:
self-gravitating dust cloud with Tµν = ε(τ, ρ)uµuν

ds2 = −dτ2 +
(∂ρR)2

1 + 2E(ρ)
dρ2 +R2(ρ)(dθ2 + sin2 θdφ2)

I exact quantum states of a particular type (cloud consists of
decoupled shells)

I Hawking radiation and greybody factors
I BTZ black hole: Hawking radiation as well as microscopic

derivation of black-hole entropy (next slide)

(S. Gutti, C. K., J. Müller-Hill, T. P. Singh, C. Vaz, L. C. R. Wijewardhana,
L. Witten in various combinations 2003–2008)



Entropy of the BTZ black hole

Jacob Bekenstein 1973:
It is then natural to introduce the concept of black-hole entropy as the
measure of the inaccessibility of information (to an exterior observer)
as to which particular internal configuration of the black hole is
actually realized in a given case.

I Discrete mass spectrum for the shells collapsing to the black
hole;

I black-hole entropy is number of possible distributions of N
identical shells between these levels;

S ≈ 2π

√(
1− 48lM0

~

)
lM

6~

with l = |Λ|−1/2;
I this is equal to the Bekenstein–Hawking entropy for

M0 = − 1

16G
+

~
48l

Vaz et al. (2008)



A simple model of black-hole evaporation

Quantum black hole (Wheeler–DeWitt Hamiltonian) embedded
into a semiclassical Universe with WKB time t:

i~
∂

∂t
Ψ(x, y, z, t) =

(
~2

2mP

∂2

∂x2
− ~2

2my

∂2

∂y2
− ~2

2mz

∂2

∂z2

+
mPω

2
x

2
x2 +

myω
2
y

2
y2 +

mzω
2
z

2
z2

)
Ψ(x, y, z, t)

I x: mimics Schwarzschild radius of the black hole
I y: mimics Hawking radiation
I z: mimics further quantum degrees of freedom (will be

neglected in the following)

(C.K., Marto, Moniz 2009)



Solving the Schrödinger equation

Separation ansatz:

Ψ(x, y, t) = ψx(x, t)ψy(y, t)

i~ψ̇x(x, t) =

(
~2

2mP

∂2

∂x2
+
mPω

2
x

2
x2
)
ψx(x, t) ,

i~ψ̇y(y, t) =

(
− ~2

2my

∂2

∂y2
+
myω

2
y

2
y2

)
ψy(y, t) .

We see that ψ∗x obeys a Schrödinger equation with standard
kinetic term, but with the sign of the potential being reversed
(“upside-down oscillator”).



Squeezed ground state

For an initial ground state

ψgx0(x
′, 0) =

(mPωx
π~

)1/4
exp

(
−mPωx

2~
x2
)

we find

ψgx(x, t) =

(
mPωx

π~(1− i sinh 2ωxt)

)1/4

exp

(
− mPωx

2~ cosh 2ωxt
(1 + i sinh 2ωxt)x

2

)

This is a squeezed ground state with φ = π/4 and r = ωxt.
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Figure: Evolution of a Gaussian state under the inverted oscillator

propagator. We depict |ψgx(x, t)|2 with mP = ~ = ωx = 1 for simplicity. In the

contour plot the brighter areas correspond to higher values for |ψgx(x, t)|2.



Squeezed coherent state

-4
-2

0

2

4

1

2

3

0

0.5

1

-4
-2

0

2

4

xx

t

|ψα
x (x, t)|2

-4 -2 0 2 4

0

0.5

1

1.5

2

2.5

3

x

t

Figure: Evolution of |ψαx (x, t)|2 under the inverted oscillator propagator,

where mP = ~ = ωx = x0 = 1 for simplicity and with p0 = −1.



Hawking radiation

For the y-part (“Hawking radiation”), one obtains the standard
result for the time-dependent coherent state:

-4
-2

0
2

4
y

2

4

6

8

10

0
0.2
0.4
0.6
0.8

1

-4
-2

0
2

4
y

t

|ψα
y (y, t)|2

-4 -2 0 2 4

0

2

4

6

8

10

y

t

Figure: Evolution of |ψαy (y, t)|2 under the ordinary oscillator propagator, with

my = ~ = ωy = y0 = p0y = 1 for simplicity.

In fact, a slight squeezing occurs, cf. Demers and C.K. (1996)



Inclusion of back reaction

i~
∂

∂t
Ψ(x, y, t) =

(
~2

2mP

∂2

∂x2
− ~2

2my

∂2

∂y2

+
mPω

2
x

2
x2 +

myω
2
y

2
y2 + µxy

)
Ψ(x, y, t)

Initial state?

I x-part: again, a coherent state
I y-part:

ψHy0(y, t0) ∝ exp

(
−myωy

2~
coth

[
2πωyGM

c3
+ iωyt0

]
y2
)
,

where M is the original mass of the (Schwarzschild) black hole,
which corresponds to the initial value x0 of the x-part of the
quantum state.



Solution of Schrödinger equation

With the above initial states, the solution reads as

ψ(x, y, t) = F (t) exp

(
A(t)x2 +B(t)x+ C(t)y2 +D(x, t)y

)
,

with explicit (complicated) expressions for the time-dependent
functions

Entangled state between the quantum black hole and its
Hawking radiation

(recall that the black hole is an open quantum system)



Density matrix for the black hole

Restrict to diagonal elements (“probabilities”)

ρxx = tryρ =

∫
|〈x, y|x, y〉|2dy
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Figure: Time evolution of ρxx, with mP = ~ = ωx = x0 = 1; t0 = 0 and p0 = −1 for

simplicity, and µ (graphics from left to right and top to bottom) assuming the values of

the set {0, 0.5, 1, 5, 10, 20, 50, 100} , ωy = ωx × 105/2, my = mP × 10−5.



Density matrix for the Hawking radiation

Restrict again to diagonal elements (“probabilities”)

ρyy = trxρ =

∫
|〈x, y|x, y〉|2dx
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Figure: Time evolution of ρyy , with mP = ~ = ωx = x0 = 1 and p0 = −1; t0 = 0 for

simplicity, and µ (graphics from left to right) assuming the values of the set {0, 1, 5, 10},

ωy = ωx × 105/2, my = mP × 10−5. For large values of µ the results look qualitatively

similar to the results for ρxx. If the back reaction is large, the difference between the

black hole and the Hawking radiation begins to disappear.



Quantum black holes and cosmology
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Big Bang

Big Crunch

black
holes

Hawking radiation

black holes

Radius zero

Radius zero

Hawking radiation

Hawking radiation

maximal extension

(C.K. and Zeh 1995)



Conclusion

I Strong indications that black holes are genuine quantum
objects;

I black-hole horizon is a classical concept;
I interpretation of black-hole entropy and black-hole

evaporation can be studied in approaches to quantum
gravity.
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