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1975: Hawking derives a semi-classical result associating a
radiative flux to black hole event horizons: black holes are
hot!



Testing this prediction of gravitational Hawking radiation is virtually
impossible – the temperature is of the order of billionths of a kelvin.



1981: Inspired by the analogy with sound waves in a waterfall, Unruh
shows that Hawking’s semi-classical arguments can be applied to sonic
horizons in fluids: ‘dumb holes’ are hot!
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Fig. 1 The sound waves emitted
by a yelling fish as it goes over a
waterfall which goes supersonic
at the red line. Just as for a black
hole, beyond the sonic horizon,
the sound waves are swept over
the falls with the fish. (Note that
the appendages on the heads of
the fish are ears, not fins, since
these fish experience the world
through sound, not sight

By following Hawking’s derivation, line by line, for a fluid flow which accelerates
to create such a “horizon”, one predicts that the quantum sound waves in such a fluid
flow should also create quantum particles around the horizon, which should again have
a temperature, in this case proportional to

T = h̄
kB

1
2πc

∂(c2 − v2)

∂r
(4)

evaluated on the surface where c2 = v2 [4][9].
Again, if one remains in the hydrodynamic approximation, the derivation suffers

from the same difficulties as does that for the black hole radiation, namely that the
radiation appears to depend on absurdly high frequencies and short wavelengths in
the initial state of the system.

Unlike for gravity, however, for fluids we understand the short wavelength, high
frequency physics, at least in principle. Fluids are made of molecules, and once
the wavelength of the sound waves becomes comparable to the distance between
the molecules, the hydrodynamic approximation fails. The equation of motion of the
fluid particles are no longer continuum equations, but become finite difference type
equations (assuming we can neglect special relativistic effects). While at wavelengths
much longer than the inter-atomic spacing, continuum, field theory type approaches
are valid, at short wavelengths they no longer suffice. It was recognized by Jacobson
[7] that one of the key effects that this atomicity had was on the dispersion relation of
the small fluctuations about some equilibrium flow of the fluid. In a fluid at rest, the
relation between the frequency and wavelength was no longer the simple

νλ = c (5)

where ν is the frequency and λ the wavelength, but ν has a much more complex relation
to λ.

ν = F
(

1
λ

)
(6)

where F is some potentially complicated function of 1
λ such that at large λ F becomes a

linear funtion with slope c. The phase velocity Fλ and group velocity −λ2 ∂ F
∂λ both will
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From the outset such analog models were constructed with the idea of
experimental testing of Hawking’s prediction. However, water proved too
noisy a medium to detect quantum effects.
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2016: Jeff Steinhauer reported the experimental observation of Hawking
radiation in a Bose-Einstein condensate acoustic analog black hole.

ARTICLES
PUBLISHED ONLINE: 15 AUGUST 2016 | DOI: 10.1038/NPHYS3863

Observation of quantum Hawking radiation and
its entanglement in an analogue black hole
Je� Steinhauer

We observe spontaneous Hawking radiation, stimulated by quantum vacuum fluctuations, emanating from an analogue black
hole in an atomic Bose–Einstein condensate. Correlations are observed between the Hawking particles outside the black hole
and the partner particles inside. These correlations indicate an approximately thermal distribution of Hawking radiation. We
find that the high-energy pairs are entangled, while the low-energy pairs are not, within the reasonable assumption that
excitations with di�erent frequencies are not correlated. The entanglement verifies the quantum nature of the Hawking
radiation. The results are consistent with a driven oscillation experiment and a numerical simulation.

F ifty years ago, Bekenstein discovered the field of black hole
thermodynamics1. This field has vast and deep implications,
far beyond the physics of black holes themselves. The most

important prediction of the field is that of Hawking radiation2,3. By
making an approximation to the still-unknown laws of quantum
gravity, Hawking predicted that the horizon of the black hole should
emit a thermal distribution of particles. Furthermore, eachHawking
particle should be entangled with a partner particle falling into the
black hole. This presents a puzzle of information loss, and even the
unitarity of quantum mechanics falls into question4–6.

Despite the importance of black hole thermodynamics, there
were no experimental results to provide guidance. The problem is
that the Hawking radiation emanating from a real black hole should
be exceedinglyweak. To facilitate observation, Unruh suggested that
an analogue black hole can be created in the laboratory, where sound
plays the role of light, and the local flow velocity and speed of sound
determine themetric of the analogue spacetime7. Nevertheless, ther-
mal Hawking radiation had never been observed before this work.

Since the idea of analogue Hawking radiation was presented7,
there has been a vast theoretical investigation of a variety of possible
analogue black holes8–21. It was predicted that theHawking radiation
could be observed by the density correlations between the Hawking
and partner particles9,10. The entanglement of theHawking pairs has
also been studied theoretically22–28. Recently, we explained that the
density correlations could be used to observe the entanglement24,
and we have implemented our technique here.

Over the past several years, we have systematically prepared for
the observation of thermal Hawking radiation by studying analogue
black hole creation29, phonon propagation30, thermal distributions
of phonons31, and self-amplifying Hawking radiation32. Our
observation of Hawking radiation is performed in a Bose–Einstein
condensate, a system in which the quantum vacuum fluctuations
are guaranteed by the underlying pointlike atoms composing
the condensate. There are experiments in several other systems
underway at present with the hopes of observing Hawking
radiation33–37. Furthermore, stimulated classical mode mixing at a
white hole horizon has been observed38,39.

It has been suggested that the Hawking and partner particles can
be observed by studying the two-body correlation function between
points on opposite sides of the horizon9,10,12,40. The correlation func-
tion is given by G(2)(x , x 0) = p

noutnin⇠out⇠inh�n(x)�n(x 0)i/noutnin,

where n(x) is the one-dimensional (1D) density of the condensate
forming the black hole, and nout and nin are the average densities
outside and inside the black hole, respectively. The position x is
in units of the shortest length scale of the condensate ⇠ ⌘p

⇠out⇠in,
where ⇠out and ⇠in are the healing lengths outside and inside the
black hole, respectively, and ⇠i = h̄/mci, where ci is the speed
of sound and m is the mass of an atom in the condensate.
The strength of the fluctuations are characterized by the pref-
actor

p
noutnin⇠out⇠in; the lower the number, the larger the signal

of Hawking radiation10. Figure 1a shows the theoretical G(2) in
vacuum, in the hydrodynamic limit of low Hawking temperature
in which dispersion can be neglected, in strict analogy with real
gravity9. Correlations are seen along the line of equal propagation
times from the horizon, outside and inside the black hole. These
are the correlations between the Hawking and partner particles.
Such correlations should also exist in a real black hole, within
Hawking’s approximation40.

We find that much insight can be gained by considering the
Fourier transform of individual quadrants of G(2) (ref. 24). Most
importantly, the Fourier transform of the correlations between
points outside and inside the black hole (the quadrant outlined
with dotted lines in Fig. 1a) gives the k-space correlation spectrum
hb̂kHR b̂kPi, where b̂kHR is the annihilation operator for a Hawking
particle with wavenumber kHR localized outside the black hole, and
b̂kP is the annihilation operator for a partner particle localized inside
the black hole24. Specifically,

S0hb̂kHR b̂kPi=
s

⇠out⇠in

LoutLin

Z
dx dx 0 eikHRxeikPx 0G(2)(x ,x 0) (1)

where S0 ⌘ (UkHR + VkHR)(UkP + VkP) and Ui and Vi are the
Bogoliubov coe�cients for the phonons, which are completely
determined by ⇠iki. The length of each region is given by Li. The
coordinates x and x 0 are integrated over the intervals [�Lout, 0] and
[0, Lin], respectively. If the correlation feature is elongated with a
constant cross-section, as in Fig. 1a, then (1) reduces to

S0hb̂kHR b̂kPi=
p� tan✓ �cot✓

Z
dx 00 eikx 00G(2)(x ,x 0) (2)

where x 00 is the coordinate perpendicular to the feature in units of ⇠ ,
✓ is the angle of the correlation feature in the x–x 0 plane as in Fig. 1a,
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Figure 4 | Observation of Hawking/partner pairs. a, Two-body correlation function. The horizon is at the origin. The dark bands emanating from the
horizon are the correlations between the Hawking and partner particles. The green line indicates the angle found in the inset to b. b, Profile of the
Hawking–partner correlations. The Fourier transform of this curve measures the entanglement of the Hawking pairs. The error bars indicate the standard
error of the mean. The inset shows the angular profile of a. c, Numerical simulation. The fringes marked ‘A’ are an artefact of the creation of the
fluctuations. d, Profile of the simulation.
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Figure 5 | The measured population of the Hawking radiation. a, Power spectrum of the real and virtual fluctuations. The solid curve is the measurement.
The dashed curve is the best-fit theoretical spectrum at kBTH =0.36mc2

out. The dotted curves show other temperatures for comparison. The vertical line
is the measured kout

peak from Fig. 3d. The error bars indicate the standard error of the mean. b, Phonon population derived from a. The dashed curve indicates
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out. The inset shows the Planck distribution (dashed curve) brought linearly to zero at !peak. The point P is chosen to give a continuous
first derivative.

k-values, this observed spectrum is in agreement with the light grey
S20|�|2(|�|2 +1) curve, which indicates that the Hawking radiation
is thermal at these high energies. The theoretical curve has been
convolved with the k-distribution of the outgoing modes near kpeak,

which is indicated in Fig. 3c by a thick line. The components
above kpeak in the observed spectrum cause a narrowing of the
correlation feature in Fig. 4a,b. For lower k, however, the observed
spectrum is far below the theoretical curve. This implies that the

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 5



The Steinhauer result was met with worldwide press excitement, with
newspaper reports (of varying quality) in many countries and even
speculation that Hawking would be awarded the Nobel prize on the basis of
the Steinhauer experiments.





The response of physicists was more mixed, with excitement about the
technical achievement of the dumb hole experiment tempered by scepticism
as to the consequences for black holes.



“...an amusing feat of engineering that won’t teach us anything
about black holes”

–Daniel Harlow (Harvard)



What can we learn from such analog experiments?



Can they provide us with evidence of a similar type to that provided by
conventional experiments?



In particular, are there circumstances in which they be taken to provide
inductive support for conclusions about astrophysical black holes?



Plan of Talk

1 Bayesian Confirmation Theory
2 Hawking Radiation and Multiple Realiziablity
3 Validating Analog Experiments
4 Bayesian Analysis



1. Bayesian Confirmation Theory



Confirmation and Corroboration

• Empirical data are relevant for the assessment of scientific theories and
scientific theories should account for the empirical phenomena in their
domain. After all, they are empirical theories, and not just pieces of
mathematics.

• Empirical data E (“evidence”) confirm or disconfirm a given theory H.
This means that we have a good reason to belief in the truth of
H and therefore a good reason to apply the theory in the future.

• But what does it exactly mean that E confirms H? How can this
relation be explicated? To address this question, we will look at two
confirmation theories developed by philosophers of science.

• Before, however, we consider Popper’s falsificationism. Popper was an
anti-inductivist: For him, a theory can never be confirmed. It can only
be corroborated which – importantly – has no implications for our
beliefs in the theory’s expected future performance.



Theory Assessment I: Popper’s
Falsificationism

• According to naive falsificationism, a theory or hypothesis H is
corroborated if an empirically testable prediction of H obtains.
Otherwise it is falsified and should be rejected and replaced by an
alternative theory.

• N.B.: More sophisticated versions of falsificationism have the same
problem as naive falsificationism, and so I won’t discuss them here.

• It is important to note that, according to falsificationism, a theory can
only be corroborated empirically. Hence, a Popperian cannot make
sense out of analog corraboration (at least not in a straight
forward way). It is not an acceptable way to empirically justify a
theory.



Theory Assessment II: The
Hypothetico-Deductive Model

• According to the hypothetico-deductive model, a theory or
hypothesis H is confirmed by a piece of evidence E iff E is predicted by
H (i.e. if E is a deductive consequence of H) and if E is observed.

• Also here, a theory or hypothesis can only be confirmed empirically
and it is hard to imagine how a defender of the hypothetico-deductive
model can make sense out of analog confirmation.

• The HD-model has a number of other well-known problems, e.g.
1 The Tacking Problem: If E confirms H, then it also confirms H∧X.

Note that X can be a completely irrelevant proposition. This is
counter-intuitive.

2 Degrees of confirmation: Some evidence confirms a theory or
hypothesis more than other evidence. However, according to the
hypothetico-deductive model, we can only make the qualitative inference
that E confirms H (or not).



Theory Assessment III: Bayesian
Confirmation Theory

• According to Bayesian Confirmation Theory, a theory or
hypothesis H is confirmed by a piece of evidence E iff the observation
of E raises the (subjective) probability of H.

• Scientists attach a degree of belief (= a probability) to a theory or
hypothesis and change (“update”) it in the light of new evidence.

• Reasons are provided why this is a rational procedure (e.g. Dutch
Book arguments).

• What evidence? An observed instance of a law, testimony,. . .
• How should one update? Conditionalization (at least in many
cases): The posterior probability of H (i.e. P ′(H)) follows from the
prior probability of H (i.e. P(H)), the likelihood of the evidence
(i.e. P(E|H)) and the expectancy of the evidence (i.e. P(E)):

Bayes Theorem

P ′(H) := P(H|E) = P(E|H) ·P(H)
P(E)



Discussion

• Bayesian Confirmation Theory can be applied in a straightforward way
to empirical testing, i.e. to the case where a direct deductive or
inductive consequence E of H is observed.

• Note that Bayesian Confirmation Theory accounts for the fact that
some evidence confirms a hypothesis better than another piece of
evidence. One way to measure the degree of confirmation is by using
the difference measure d(H,E) := P(H|E)−P(H).

• What is more, it turns out that the Bayesian machinery is flexible
enough to also model indirect ways of confirming theories and we will
later see how this works for analog confirmation.



Bayesian Networks

1 Direct confirmation

H E

• Specify the prior P(H) and the likelihoods P(E|H) and P(E|¬H).

2 Indirect confirmation

CC

EH

• Specify the prior P(CC) and the likelihoods P(E|CC), P(E|¬CC),
P(H |CC) and P(H |¬CC).

• The “common cause” CC shields off H from E: Learning E if CC is
known does not change the probability of H.



2. Hawking Radiation and Multiple Realiziablity



Gravitational Hawking Effect

– In the semi-classical approach to gravity that Hawking’s original
calculation takes place we consider a quantum field propagating within
a classical spacetime and assume there is no backreaction.

– For this modelling framework to be valid it is assumed that we are
considering quanta of wavelengths much larger than the Planck length.
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only in the region outside the collapsing matter and only in the asymptotic future. 
In the case of exactly spherical collapse, which I shall consider for simplicity, the 
metric is exactly the Schwarzchild metric everywhere outside the surface of the 
collapsing object which is represented by a timelike geodesic in the Penrose 
diagram (Fig. 2). Inside the object the metric is completely different, the past 
event horizon, the past r=  0 singularity and the other asymptotically flat region 
do not exist and are replaced by a time-like curve representing the origin of polar 
coordinates. The appropriate Penrose diagram is shown in Fig. 3 where the con- 
formal freedom has been used to make the origin of polar coordinates into a 
vertical line. 

In this space-time consider (again for simplicity) a massless Hermitian scalar 
field operator ~ obeying the wave equation 

~;~bgab=0. (2.2) 



Gravitational Hawking Effect

Semi-Classical Gravity
———————–
Quantum Gravity



Gravitational Hawking Effect

Long Wavelength
———————–
Planck Wavelength



The Fluid Mechanical Hawking Effect

– Sound is a small vibratory or wavelike disturbance in a medium. The
classical acoustic model of a fluid is as a continuous, compressible,
inviscid medium. Sound is then a longitudinal oscillatory motion with
small amplitude within the medium.

– Propagation of sound in a fluid can be understood as being governed
by an effective acoustic spacetime: acoustic perturbations couple only
to the effective acoustic spacetime and not to the physical spacetime
within which the fluid exists.



The Fluid Mechanical Hawking Effect

– One is able to stretch the fluid/gravity connection even further and
consider both classical and quantum mechanical acoustic phenomena
within the fluid using the same equations as for radiative phenomena
within a black hole spacetime.

– The relevant calculation for the acoustic case proceeds in precisely the
same manner as the Hawking calculation only with the quantum field
corresponding to sound, and late time flux from the ‘dumb hole’ being
made up of phonons (the quanta of sound).



Hydrodynamic Hawking Effect

Continuum Hydrodynamics
———————–

Molecular Hydrodynamics



Hydrodynamic Hawking Effect

Long Wavelength
———————–

Molecular Wavelength



Bose-Einstein Condensation

– A Bose-Einstein condensate (BEC) is an exotic form of matter that
Bose (1924) and Einstein (1924,1925) predicted to exist for a gas of
atoms when cooled to a sufficiently low temperature.

– In 1995, the experimental demonstration of the existence of a BEC was
provided using supercooled dilute gases of alkali atoms.

– The crucial observation was a sharp increase in the density of the gas
at a characteristic frequency of the lasers used for cooling.



The BEC Hawking Effect
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Observation of quantum Hawking radiation and
its entanglement in an analogue black hole
Je� Steinhauer

We observe spontaneous Hawking radiation, stimulated by quantum vacuum fluctuations, emanating from an analogue black
hole in an atomic Bose–Einstein condensate. Correlations are observed between the Hawking particles outside the black hole
and the partner particles inside. These correlations indicate an approximately thermal distribution of Hawking radiation. We
find that the high-energy pairs are entangled, while the low-energy pairs are not, within the reasonable assumption that
excitations with di�erent frequencies are not correlated. The entanglement verifies the quantum nature of the Hawking
radiation. The results are consistent with a driven oscillation experiment and a numerical simulation.

F ifty years ago, Bekenstein discovered the field of black hole
thermodynamics1. This field has vast and deep implications,
far beyond the physics of black holes themselves. The most

important prediction of the field is that of Hawking radiation2,3. By
making an approximation to the still-unknown laws of quantum
gravity, Hawking predicted that the horizon of the black hole should
emit a thermal distribution of particles. Furthermore, eachHawking
particle should be entangled with a partner particle falling into the
black hole. This presents a puzzle of information loss, and even the
unitarity of quantum mechanics falls into question4–6.

Despite the importance of black hole thermodynamics, there
were no experimental results to provide guidance. The problem is
that the Hawking radiation emanating from a real black hole should
be exceedinglyweak. To facilitate observation, Unruh suggested that
an analogue black hole can be created in the laboratory, where sound
plays the role of light, and the local flow velocity and speed of sound
determine themetric of the analogue spacetime7. Nevertheless, ther-
mal Hawking radiation had never been observed before this work.

Since the idea of analogue Hawking radiation was presented7,
there has been a vast theoretical investigation of a variety of possible
analogue black holes8–21. It was predicted that theHawking radiation
could be observed by the density correlations between the Hawking
and partner particles9,10. The entanglement of theHawking pairs has
also been studied theoretically22–28. Recently, we explained that the
density correlations could be used to observe the entanglement24,
and we have implemented our technique here.

Over the past several years, we have systematically prepared for
the observation of thermal Hawking radiation by studying analogue
black hole creation29, phonon propagation30, thermal distributions
of phonons31, and self-amplifying Hawking radiation32. Our
observation of Hawking radiation is performed in a Bose–Einstein
condensate, a system in which the quantum vacuum fluctuations
are guaranteed by the underlying pointlike atoms composing
the condensate. There are experiments in several other systems
underway at present with the hopes of observing Hawking
radiation33–37. Furthermore, stimulated classical mode mixing at a
white hole horizon has been observed38,39.

It has been suggested that the Hawking and partner particles can
be observed by studying the two-body correlation function between
points on opposite sides of the horizon9,10,12,40. The correlation func-
tion is given by G(2)(x , x 0) = p

noutnin⇠out⇠inh�n(x)�n(x 0)i/noutnin,

where n(x) is the one-dimensional (1D) density of the condensate
forming the black hole, and nout and nin are the average densities
outside and inside the black hole, respectively. The position x is
in units of the shortest length scale of the condensate ⇠ ⌘p

⇠out⇠in,
where ⇠out and ⇠in are the healing lengths outside and inside the
black hole, respectively, and ⇠i = h̄/mci, where ci is the speed
of sound and m is the mass of an atom in the condensate.
The strength of the fluctuations are characterized by the pref-
actor

p
noutnin⇠out⇠in; the lower the number, the larger the signal

of Hawking radiation10. Figure 1a shows the theoretical G(2) in
vacuum, in the hydrodynamic limit of low Hawking temperature
in which dispersion can be neglected, in strict analogy with real
gravity9. Correlations are seen along the line of equal propagation
times from the horizon, outside and inside the black hole. These
are the correlations between the Hawking and partner particles.
Such correlations should also exist in a real black hole, within
Hawking’s approximation40.

We find that much insight can be gained by considering the
Fourier transform of individual quadrants of G(2) (ref. 24). Most
importantly, the Fourier transform of the correlations between
points outside and inside the black hole (the quadrant outlined
with dotted lines in Fig. 1a) gives the k-space correlation spectrum
hb̂kHR b̂kPi, where b̂kHR is the annihilation operator for a Hawking
particle with wavenumber kHR localized outside the black hole, and
b̂kP is the annihilation operator for a partner particle localized inside
the black hole24. Specifically,

S0hb̂kHR b̂kPi=
s

⇠out⇠in

LoutLin

Z
dx dx 0 eikHRxeikPx 0G(2)(x ,x 0) (1)

where S0 ⌘ (UkHR + VkHR)(UkP + VkP) and Ui and Vi are the
Bogoliubov coe�cients for the phonons, which are completely
determined by ⇠iki. The length of each region is given by Li. The
coordinates x and x 0 are integrated over the intervals [�Lout, 0] and
[0, Lin], respectively. If the correlation feature is elongated with a
constant cross-section, as in Fig. 1a, then (1) reduces to

S0hb̂kHR b̂kPi=
p� tan✓ �cot✓

Z
dx 00 eikx 00G(2)(x ,x 0) (2)

where x 00 is the coordinate perpendicular to the feature in units of ⇠ ,
✓ is the angle of the correlation feature in the x–x 0 plane as in Fig. 1a,
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– Doing quantum analog experiments on sound in a fluid has proved
impossible in practice. Rather in the Steinhauer experiments a
Bose-Einstein condensate (BEC) was used.

– The key point is that the theoretical model of the BEC has the same
syntactic form as that used by Hawking: in particular we have an
effective spacetime, an acoustic horizon and a late time phonon flux.



Multiple Realizability?

– There are now a huge number of potential analog realisations of the
Hawking effect: phonons in superfluid liquid helium, ‘slow light’ in
moving media, traveling refractive index interfaces in nonlinear optical
media, laser pulses in nonlinear dielectric medium. . .

– To realize the Hawking effect it seems it is sufficient to have: i) a
classical (effective) background with quantum fields living on it; and ii)
an (effective) geometry with an (effective) causal horizon.



‘Trans-Planckian’ Problem

In the standard calculation of the Hawking temperature exponential
gravitational red-shift means that the black hole radiation detected at late
times (i.e. the outgoing particles) must be taken to correspond to extremely
high frequency radiation at the horizon.



‘Trans-Planckian’ Problem

Such a ‘trans-Planckian’ regime is the dominion of theories of quantum
gravity, and is thus well beyond the domain of applicability of the
modelling framework we are using.



‘Trans-Planckian’ Problem

– This problem with ‘trans-Planckian’ modes has a direct analog in the
BEC case.

– There will be a similar trans-Planckian regime in which the Hawking
type model breaks down for any other analog realisation: condensed
matter models are never valid to arbitrarily small length scales!
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I. INTRODUCTION

The striking similarity between the laws of black hole
physics and the (zeroth till third) law of thermodynamics
motivated the idea to assign thermodynamic properties
such as temperature and entropy to black holes [1].
Hawking’s prediction [2] that black holes should emit
thermal radiation with the temperature being consistent
with the thermodynamic interpretation strongly supported
this idea. As a consequence, the concept of black hole
entropy as given by the surface (horizon) area of the black
hole in Planckian units (instead of the volume, for ex-
ample) is now used in many ways to estimate the total
entropy of other objects—which is expected to be a mea-
sure of the number of fundamental degrees of freedom of
the underlying theory (including quantum gravity).

However, in view of the (exponential) gravitational red-
shift near the horizon, the outgoing particles of the
Hawking radiation originate from modes with extremely
large (e.g., trans-Planckian) wavenumbers. As the known
equations of quantum fields in curved space-times are
expected to break down at such wavenumbers, the deriva-
tion of the Hawking radiation has the flaw that it applies a
theory beyond its region of validity. This observation poses
the question of whether the Hawking effect is independent
of Planckian physics or not.

One way to address this question is to model the break-
down of the (usual) local Lorentz invariance (to be ex-
pected at the Planck scale) by a (nonlinear) deviation from
the linear dispersion relation at high wavenumbers, see,
e.g., [3,4]. This method is inspired by the black hole
analogues which exploit the analogy between the propa-
gation of excitations (e.g., sound waves) in laboratory-
physics systems and quantum fields in curved space-times,
see, e.g., [5–7].

In Secs. II, III, IV, and V we generalize and simplify the
model and the results presented by Corley in [3] (see also
[4]) trying to identify and to present the crucial points.

Section VI is devoted to the question of which conditions
and assumptions regarding Planckian physics are needed to
reproduce Hawking’s result—together with some counter-
examples.

II. LINEAR MODEL

At first we consider a subluminal dispersion relation cf.
Fig. 1, which is in some sense conceptually more clear
because the in-modes generating the Hawking radiation
come from outside the black hole. The horizon acts as a
classical turning point where the JWKB (geometric optics)
approximation breaks down allowing phenomena like par-
ticle creation. In contrast to Ref. [3], we shall not specify
the shape of the dispersion relation apart from some rather
general assumptions.

A. Wave Equation

The geometry as seen by the low-energy particles is
described in terms of the 1! 1 dimensional Painlevé-
Gullstrand-Lemaı̂tre [8] metric ( !h " c " 1 throughout)

ds2 " dt2 # $dx# v%x&dt'2

" $1# v2'dt2 ! 2vdtdx# dx2: (1)

The quantity v%x& can be interpreted as the local velocity of
the freely falling frames measured with respect to the time
t corresponding to the Killing vector @t of that stationary
metric. In terms of the sonic black hole analogues, t is the
laboratory time and v is just the position-dependent veloc-
ity of the fluid with the (assumed to be constant) speed of
sound being absorbed by a redefinition of the coordinates.
Since the behavior near the horizon in arbitrary dimensions
is essentially 1! 1 dimensional for each mode, we restrict
ourselves to 1! 1 dimensions. Furthermore, we neglect
backscattering (as induced by the angular-momentum bar-
rier, for example).
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This is where the ‘universality’ results of Unruh and Schützhold are crucial:
they show that the Hawking effect does not, to lowest order, depend on the
details of underlying physics, given certain modelling assumptions.
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Universality as Multiple Realizability

– Batterman (2000) influentially argued that we can understand the
universality of critical phenomena in condensed matter systems as an
instance of multiple realizability.

– Although his analysis focuses upon asymptotics/RG techniques there is
no obvious necessary connection between such techniques and the
general features characteristic of ‘universality as multiple realizability’
that he isolates (cf. Butterfield 2011).



Universality as Multiple Realizability

Following Batterman (2000, p.123) the two characteristic features of
universality (as multiple realizability) are:

1 Details of microstructure of a given token system are largely irrelevant
for describing behaviour generically exhibited by members of the
system type.

2 Many different system types, with physically distinct microstructure
(e.g. fluids and magnets), exhibit the same behaviour.



Universality as Multiple Realizability

Adapting this account to the case in hand, the universality of the Hawking
Effect is established by the Unruh and Schützhold result, in that:

1 Details of ‘trans-Planckian’ structure of a given (analog) black hole
system are largely irrelevant for describing thermal behaviour
generically exhibited by the associated causal horizons – i.e. Hawking
radiation.

2 Many different realisations of the (analog) black hole system, with
distinct ‘trans-Planckian’ structure (e.g. black holes and BECs), have
causal horizons that exhibit Hawking radiation.



Universality as Multiple Realizability

In this precise sense we can say that, provided the conditions of Unruh and
Schützhold universality argument are satisfied, the Hawking effect is an
example of universality as multiple realizability.



3. Validating Analog Experiments



Validating Experiments

We can make an important distinction between two different types of
validation in the context of experimental science:
– An experimental result is internally valid when the experimenter is

genuinely learning about the actual system they are manipulating –
when, that is, the system is not being unduly disturbed by outside
interferences.

– An experimental result is externally valid when the information
learned about the system being manipulated is relevantly probative
about the class of systems that are of interest to the experimenters.



Bose-Einstein Condensation

– A Bose-Einstein condensate (BEC) is an exotic form of matter the
existence of which was first experimentally demonstrated in 1995 using
a supercooled dilute gas of Alkali atoms.1

– In the experiment of Anderson et al. (1995) a sample of 87Rb atoms
was cooled in a magneto-optical trap. It was then loaded into a
magnetic trap and further cooled by evaporation.

1Here we are following the excellent discussion of Franklin,
https://plato.stanford.edu/entries/physics-experiment/app3.html



Bose-Einstein Condensation

– The trap was then removed and the sample was illuminated with laser
light and the resulting shadow of the cloud was imaged, digitized, and
stored.

– The crucial observation, that confirmed the sample to be in a
Bose-Einstein condensate phase, was a sharp increase in density at a
characteristic frequency of the lasers used to assist cooling.



Validating Experiments

– The internal validity of the experiments relates to the question of
whether or not the results obtained genuinely reflect the fact that the
particular supercooled dilute gases of alkali atoms experimented upon
were behaving as a BEC.

– The external validity of the experiments relates to the question of
whether or not the inferences regarding the particular source systems
experimented upon (particular supercooled dilute gases of alkali
atoms) can be reliably generalised to the wide class of target systems
that the theory of BECs refers to.



The Technion Experiments
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k-values, this observed spectrum is in agreement with the light grey
S20|�|2(|�|2 +1) curve, which indicates that the Hawking radiation
is thermal at these high energies. The theoretical curve has been
convolved with the k-distribution of the outgoing modes near kpeak,

which is indicated in Fig. 3c by a thick line. The components
above kpeak in the observed spectrum cause a narrowing of the
correlation feature in Fig. 4a,b. For lower k, however, the observed
spectrum is far below the theoretical curve. This implies that the
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– In his landmark experiment Steinhauer used a BEC of 87Rb atoms
confined radially by a narrow laser beam.

– The horizon was created by a very sharp potential step which is swept
along the BEC at a constant speed.

– Significantly the length scales are such that the hydrodynamic
description of a BEC is appropriate: the width of the horizon is of the
order or a few times bigger than the healing length.



The Technion Experiments
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k-values, this observed spectrum is in agreement with the light grey
S20|�|2(|�|2 +1) curve, which indicates that the Hawking radiation
is thermal at these high energies. The theoretical curve has been
convolved with the k-distribution of the outgoing modes near kpeak,

which is indicated in Fig. 3c by a thick line. The components
above kpeak in the observed spectrum cause a narrowing of the
correlation feature in Fig. 4a,b. For lower k, however, the observed
spectrum is far below the theoretical curve. This implies that the
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– The main experimental result consists of an aggregate correlation
function computed based upon an ensemble of 4,600 repeated
experiments which were conducted over six days.

– Given some reasonable assumptions (for example modes at different
frequency are assumed to be independent of each other) the
experiments can be interpreted as establishing an ‘entanglement
witness’ to Hawking radiation in BEC.



Internal Validation

– Was Steinhauer genuinely learning about the physics of the particular
sonic horizon within the particular 87Rb BEC that he was
manipulating?

– Various sources of internal validation are apparent from the description
of the experimental set up given, not least the repetition of the
experimental procedure nearly five thousand times.

– Given this, the evidence gained from the experiments conducted can be
categorised as of the appropriate epistemic type to be used to confirm
specific statements regarding the particular BEC that was
experimented upon.



External Validation (Conventional)

– Can the particular sonic horizon that was constructed, within the
particular 87Rb BEC, stand in for a wider class of BEC systems?

– For example, all BEC sonic horizons within the realm of validity of the
hydrodynamic approximation to the Gross-Pitaevskii equation,
regardless of whether the relevant systems have been (or even could
be) constructed on earth.

– Given this set of systems obeys the ‘reasonable assumptions’ of the
Steinhauer experiments, such as modes at different frequency are
assumed to be independent of each other, then we can also externally
validate the experiments in the conventional sense.



External Validation (Analogue)

– We claim that theoretical arguments for the universality of Hawking
radiation can function as external validation for the Steinhauer
experiments.

– That is, such arguments give us a theoretical basis to take the source
system of the Technion experiments to stand in for a wider class of
target systems, including astrophysical black holes.

– We then claim, that given such external validation, analogue
experiments can confer inductive support to hypotheses regarding
target systems that we are not directly manipulating such as
astrophysical black holes.



Validating Analog Experiments

– The key question in the epistemology of analog experimentation is then
whether there are arguments that can provide external validation of
the analog experiments qua analog experiments.

– By this I mean in addition to the necessary conventional external
validation, can we provide arguments that the relevant source systems
‘stand-in’ for the target systems to which the analogical relationship
refers.

– In our case, can we provide arguments that dumb holes can ‘stand-in’
for astrophysical black holes?



Validating Analog Experiments

– If accepted, the theoretical universality arguments of Unruh and
Schützhold would function as external validation for the Steinhauer
experiments, given we interpret them as establishing Hawking
radiation as multiple realizable.

– That is, they give us a theoretical basis to take the source system of the
Steinhauer experiments to stand in for a wider class of target systems,
including astrophysical black holes.



4. Bayesian Analysis



Analogy and Confirmation

– Some authors suggest that arguments by analogy can only establish
the plausibility of a conclusion, and with it grounds for further
investigation (Salmon 1990, Bartha (2010).

– Hesse (1964), on the other hand, suggests that we can incorporate
confirmatory arguments by analogy within Carnap’s confirmation
theory.



Analogy and Confirmation

– From a Bayesian perspective, however, conventional arguments by
analogy seem to fall foul of the old evidence problem: information
encapsulated in an analogical argument must reasonably be taken to
be part of the background knowledge, and thus cannot be confirmatory
in Bayesian terms (Bartha 2010, 2013).

– This point is simply irrelevant to the case of analog
experimentation since the evidence we gain is new empirical
evidence.



Confirmation via Analog Experimentation

We can model confirmation via (externally validated) analog
experimentation in Bayesian confirmation theory as follows:
– Call E the proposition that BEC Hawking radiation is detected.
– Call A the proposition that the hydrodynamic BEC model is

empirically adequate.
– Call M the proposition that the semi-classical gravitational model is

empirically adequate.
– Call X the proposition that Unruh and Schützhold arguments establish

the Hawking effect as an example of universality as multiple
realizability (as defined earlier).
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Figure 3: Simplified one source system with meega.

3.2 Analogue Simulation With Confirmation

The key idea behind analogue simulation supported by meega is that there ex-
ists empirically grounded arguments that function as part of the background
assumptions for both the model of the source system and the model of the
target system. These might be arguments that: i) were originally considered
elements of xM and were later discover to also be able to serve as elements
of xA; or ii) were originally considered elements of xA and were later dis-
cover to also be able to serve as elements of xM; or iii) were originally neither
elements of xM nor xA, but are introduced based upon new empirical or the-
oretical considerations. In all such circumstances we can think about meega
as some set of arguments constituted by the intersection of the two sets of
background assumptions, i.e. meega = xM \ xN. We will assume the existence
of such arguments and focus our attention on the inferential relationship that
obtains between E and M. For this purpose it will not be important to consider
elements that are in the complement of the intersection of the two sets of back-
ground assumptions. We will therefore simplify our network by exchanging
the two binary variables XM and XA for a new binary variable X with values:

X : The background assumptions in the set xM \ xN are satisfied for systems
S and T.

¬X : The background assumptions in the set xM \ xN are not satisfied for
systems S and T.

The simplified Bayesian network is shown in Figure 3. We would like to show
that E confirms M within a Bayesian theory of confirmation. This requires
that one proves that P(M|E) > P(M). For this purpose we need to specify all
prior probabilities of the ‘parent node’ in the Bayesian network (i.e., X) and the
conditional probabilities for the other ‘child nodes’, given their parents.

Let us simplify our notation by using the following shorthand:

P(X) = x P(M|X) = mx

P(A|X) = ax P(E|A) = ea.

The probabilities of the corresponding negated propositions are denoted with
a bar, viz. P(A|X̄) = ax̄, P(Ā|X) = āx and P(Ā|X̄) = āx̄.

8

The inferential relationships between universality, the two models, and the
evidence allows us to draw the Bayesian network above. That
P(E |A) > P(E |Ā) is true by definition.
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8

Universality as multiple realizability directly implies P(M |X) > P(M |X̄)
and P(A|X) > P(A|X̄) since, for each model, it establishes the empirical
irrelevance of the trans-Planckian physics not modelled.



Confirmation via Analog Experimentation

– Given the structure of this network, it is straight-forward to prove that
P(M |E) > P(M ) provided 0 < P(X) < 1.

– Provided we assign a non-zero (or one) prior probability to
universality, evidence for BEC Hawking radiation confirms
gravitational Hawking radiation in a Bayesian sense.
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Figure 4: n-source system.

strong evidence in favour of a hypotheses of regarding analogue behaviour in
the target system.

Consider a Bayesian network for an n-source system (Figure 4). The ques-
tion we would like to answer is how does the confirmation measure change
as one increases the number of different analogue systems providing us with
evidence. Following the same line of reasoning as the last section we assume:

a0x > a0x̄ (5)
e0a0 > e0ā0 . (6)

... >
...

a(n)
x > a(n)

x̄ (7)

e(n)

a(n) > e(n)

ā(n) . (8)

Given this, one obtains (see Appendix B):

D(n) = P(M|E, E0, ..., E(n)) � P(M) > 0 (9)

It can further be shown that:

Theorem 2: D(n) is a strictly increasing function of the number of
source systems.

This theorem implies that as the number of different analogue systems provid-
ing evidence increases so does the degree of confirmation. Again, this is not a
particularly surprising result. Given that confirmation via analogue simulation
obtains for a single source system, one would expect that adding in more and
more (independent) source systems would allow one to increase the degree
of confirmation. The feature that is most interesting is not the fact that D(n) is
strictly increasing, but rather functional form of this increase. In particular, the
natural intuition is that as the number of source systems increases the increase
the degree of confirmation would eventually saturate. One of the chief virtues
of the Bayesian model for analogue simulation with multiple source systems
is that it allows to give an analytical expression for such a saturation point.

First, let us consider how D(n) changes in the large n limit. A little analytical
work (again see Appendix B) allows us to show that:

lim
n!+•

D(n) ! x̄(mx � mx̄) = Nsat.. (10)

11

The network can be generalised to the case of an arbitrary number of
independent analog systems.



Saturation of Confirmation

0 2 4 6 8 10 12 14
n

0.1

0.2

0.3

0.4

0.5
Δ

P(X)=0.5

P(X)=0.1

P(X)=0.01

We can then model the process of gaining more and more evidence from
independent analog systems up to a saturation point where the quantity
∆(n) = P(M |E ,E ′, ...,E(n))−P(M ) stops growing.
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A further interesting feature that we can examine is the speed with which
the saturation point is approached. The higher the prior probability of X ,
the quicker the saturation point is reached.



Saturation of Confirmation

– This result is in tune with scientific intuitions. At the moment we have
only one implementation of a source system for the Hawking effect: the
BEC in the Steinhauer experiments.

– Given initial confidence in the universality arguments, if another
different implementation of a source system displaying the Hawking
effect was achieved, that should surely radically increase the belief in
the astrophysical Hawking effect.

– However, once a few such examples were constructed, one would
quickly stop gaining new insight.



Saturation of Confirmation

– Conversely, given initial skepticism regarding the universality
arguments, a second implementation of the dumb hole source system
would not radically increase the belief in the astrophysical Hawking
effect.

– Furthermore, in such circumstances it would only be after a diverse
and extensive range of implementations of source systems that one
would stop believing that new examples gave new information.



Epistemology of Analog Experimentation

– We intend these results to be the steps in an ‘epistemology of analog
experimentation’.

– We think that the evaluation of analog experimentation is dependent
upon the availability of arguments for external validation.

– We are planning to consider further detailed case studies of analog
experimentation with a view to finding whether there are arguments
for external validation (or not).



For more details see:
1 Radin Dardashti, Stephan Hartmann, Karim Thébault, and Eric
Winsberg: Confirmation via Analog Simulation: A Bayesian Analysis,
http://philsci-archive.pitt.edu/12221/.

2 Karim Thébault: What Can We Learn From Analog Experiments?,
http://philsci-archive.pitt.edu/12484/.

3 Radin Dardashti, Karim Thébault, and Eric Winsberg: Confirmation
via Analog Simulation: What Dumb Holes Could Tell us about Gravity,
The British Journal for the Philosophy of Science (2017).



Thanks!



Universality of the Hawking Effect

In more general terms, Unruh and Schützhold suggest that the Hawking
effect will be insensitive to the details of the trans-Planckian physics
provided the following three conditions obtain:

a. Local Lorentz invariance is broken at the Planck scale via the
introduction of the freely falling preferred frame.

b. The Planckian excitations are assumed to start off in their ground
state with respect to the freely falling frame.

c. The evolution of the modes is assumed to be adiabatic (i.e. the
Planckian dynamics is supposed to be much faster than all external
(sub-Planckian) variations)


