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Introduction

Notion of time
» In Newtonian theory time is absolute; all clocks tick at the same rate

» In Special Relativity we have to distinguish between coordinate time
and proper time; different standard clocks tick with different rates if
they are in relative motion

» In General Relativity proper time does in addition depend on the
gravitational field

Clock effects in General Relativity (not complete)
» Gravitational redshift

» Shapiro delay

» Gravitomagnetic clock effect

%
—
B 4 Introduction [T ZABM e



Gravitational redshift

Schwarzschild solution (G =1andc = 1)

oM oM\ !
g=- (1— —) dt* + (1—7) dr? + r2d0?
T

Difference between proper time and coordinate time

» Proper time of an observer at rest at radius r; with proper time 7,
from g, ata" = —1

dt 1

dr  [{ _2M
T1

()
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Gravitational redshift

Consider another observer at rest at radius ro with proper time 7o,

1— 2M
dT2 T2 %41
dm 1 - 2M Vv

1

» The above formula is the redshift between two clocks at rest
» For r; — 2M the redshift becomes infinitely large

> An object falling onto » = 2M slows down (‘freezes’) and redshifts out
of detectable frequency range
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Crossing the horizon

However, an observer takes only finite proper time to reach » = 2M

» Killing vector 0, gives gttg—ﬁ =F

> Radial free fall: ((‘f—:)2 =E%— (1-2M)
> Starting from ro: E2 = <1 — %)

> Leads to (j—:)2 =2M _ 2

» Integration gives a finite result

See Kassner 2076 for a discussion of two infalling observers
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Shapiro delay
Consider a photon moving radially in a Schwarzschild spacetime

N
= G ds ds

dr_ 1_2M
dt T

This can be easily integrated to

v

r—2M

=r— 2MIn ————
t=r—1r9+ nr0—2M

v

Newtonian travel time: ¢t = r — g

v

In addition there appears a logarithmic term

v

This is the Shapiro delay 2
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Observation of clock effects

These effects can and have been measured in the weak field regime

What about the strong field regime?

» We can not place a man-made clock near a back hole to observe these
effects

» But: there are 'astronomical clocks’: Some pulsars rotate so regularly
that they rival the accuracy of the best man-made clocks!

» There is an ongoing search for pulsars orbiting a black hole

> Pulsars closely orbiting Sgr A* are the ideal laboratory to explore the
supermassive black hole

%
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Pulsar timing - introduction

v

rapidly rotating neutron stars
radio emission

v

stable rotation

v

v

ca. 10% with a companion

» emission encodes information about the gravitational field near the
pulsar

» reconstruction of the emission time from the arrival time
» phase-connected solutions: up to 100 nanoseconds post-fit accuracy
» pulsar around a black hole: the holy grail

Image: commons.wikimedia.org/wiki/File:Pulsar_schematic.svg by Use y 'vd
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Pulsar timing - clock effects

Regarding clock effects there are two delays which are relevant

» Einstein delay
» difference between coordinate time of the binary barycenter and the
proper time of the pulsar
» changing gravitational redshift and Doppler effect along pulsar orbit
» gravitomagnetic clock effect!?

» Shapiro delay

» propagation delay of photons due to the gravitational field
» with respect to a reference orbit and an observer at infinity

%
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The propagation delay
> Post-Newtonian Shapiro delay
» Exact delay in Schwarzschild spacetime
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Standard Shapiro delay

In pulsar timing the Shapiro delay is modelled in the post-Newtonian
framework

» Is this approximation still valid in the strong gravitational field near a
supermassive black hole?

» In the case of a pulsar orbiting Sgr A* (extreme mass ratio) we can
find an exact expression

» Test the accuracy of the pN approximation!

Standard propagation delay

B B 2r
tarr — tem = [TE(tarr) — T(tem)| +2M In (7“ + 1;: ﬁ)
1+ ecoso
— (At t-2M 1
( )Roemer + cons n (1 — sinisin(w + ¢))

2

::(At)shap
2
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Standard Shapiro delay

Standard Shapiro delay

(At)Shap:2M1n( 1+ecosg )>:2M1n(a(1—_e2))

1 —sinisin(w + ¢ =T

where r|| = rsinisin(w + ¢)

» does not take into account the bending of the path

» edge-on orbits (: = 7/2), superior conjunction (w + ¢ = 7 /2):
expression diverges

> is independent of the semi major axis of the pulsar

Z
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Bent path
Shapiro delay taking lensing into account Lai & Rafikov 2005

a(l —€?)

”Tﬁ +R3|: -7

R%, = 4Ma| the Einstein radius.

(At)jens = 2M In

Geometric delay

|Ri _Rs,)2

At)geom = 2M
( )g < RE

%
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Schwarzschild spacetime

» Schwarzschild black hole spacetime
2M oM\ !
d52::—-(1—-———)cﬁ2+-(1—-———) dr? + r?dQ?
r r

» Constants of motion: specific energy F, specific angular momentum
L, 0 = 7/2, normalisation g, &"%" = 0

» Equations of motion for photons

dr\? 4 9 9
% =27 +2Mr =:b""R(r)

dr\* _(, _2M\’R
at) r r4
Here b = L/E is the impact parameter

Y
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Exact Shapiro delay

From radial geodesics (b = 0)

> expect a linear and a logarithmic divergence for an observer at infinity
» linear corresponds to Roemer delay

In general Dhani, Master thesis 2017
» Emitter-observer problem: for given emitter at (7., ¢.) find b from

o0 dr oe dr
¢e:/ /
Te ——r2+2M7’

oo 3 dr

solve fort = [ Lo 7=
€
> exact expression in terms of elliptic integrals

v

v

identify logarithmic divergence for observer at infinity

v

find At with respect to a reference orbit — get rid of infinitiec

=
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Comparison

» Propagation delay (in s) as function of the angle along a circular
edge-on orbit of radius R (in units of M)

R =100.0 R =50.0
« full delay « + full delay
80 -~ 1PN shapiro+geometric 80 -~ 1PN shapiro+geometric
— 1PN shapiro — 1PN shapiro
— 1PN shapiro no-lens — 1PN shapiro no-lens
60
PN =
o N 2
Za0f 7 40[
K} K
s S
20 0 o
A T 0 B
3.0 28 2.6 2.4 22 2.0 18 16 3.0 28 2.6 2.4 22 2.0 18 16

angle (radians) angle (radians)
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Comparison

» Propagation delay (in s) as function of the angle along a circular
edge-on orbit of radius R (in units of M)

R =20.0 R =10.0
« full delay « + full delay
80 -~ 1PN shapiro+geometric 80 -~ 1PN shapiro+geometric
— 1PN shapiro — 1PN shapiro
— 1PN shapiro no-lens — 1PN shapiro no-lens

60

delay (s)
5
8
delay (s)
=
8

3.0 28 2.6 2.4 22 2.0 18 16
angle (radians)

3.0 28 26 2.4 22 2.0 18 16

angle (radians) //
=
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Conclusions

In the considered setting

» the lensed Shapiro delay + the geometric delay fits the exact delay
best

» the usual first order Shapiro delay quickly deviates from the exact
expression by several seconds

— also applies to less inclined orbits

» the geometric delay should only be used together with the lensed
Shapiro delay

» for 'good’ pulsars closely orbiting Sgr A* at least the second order
post-Newtonian approximation should be used

%
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The gravitomagnetic clock effect
The setup
» Two clocks on circular orbits in the

equatorial plane of a rotating
astronomical object

» One clock on prograde orbit, one on
retrograde orbit

» Compare the measured time after a full
revolution of 27

Also called observer-dependent two-clock clock effect

Cohen and Mashhoon (Phys. Lett. A, 181:353, 1993)
4nJ

PTE TR S
> For the Earth: time difference of about 10~ "sec per revolution
— Large effect!?
%
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Problems and Goals

Problems
» Identical initial conditions required
» Identical orbits required
» Idealized circular orbits required
— Generalisations to eccentric and inclined orbits exist

%
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Problems and Goals

Problems
» Identical initial conditions required
» Identical orbits required
» Idealized circular orbits required
— Generalisations to eccentric and inclined orbits exist

Generalisation: Fully general relativistic

definition
— Consider bound geodesic orbits in Kerr

spacetime

— Derive an expression for 7(£27),
T proper time

— Use fundamental frequencies
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Kerr spacetime

in Boyer-Lindquist (BL) coordinates

2
ds?® = —% (dt — a sin® Hdgo)z + pZdr2
p

sin? 6

+ —5—(adt — (r* + a®)dp)* + p*dh?
p

where A = 72 4+ % — 2Mr, p2 =72 4+ a2 cos? ¥,
M = Ci—Qm the mass, a = J/(mc) the spin.
Equations of motion (using dr = p?d)\)

2

(Z—:) = R(T’) s Z_f = (I)T(T) + (1)0(9) )
2

(%) =0(0), j—i =T (r) + Tp(0)

Y
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Periodic motion

For bound orbits outside the horizons:
» The radial motion is periodic,

T € [rp, Ta)
» The polar motion is periodic,

0 € [Omin, Omax]

dr\” A%
From <ﬁ) =R, (5) = 0O:
> Radial period A,: r(A + Ay) =r(\), 4, =2 [ dr v, = 12{:

» Polar period Ag: O(\+ Ag) = 0(N\), Ap=2 fo "‘:" 49 v, = Ae

Y =
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Fundamental Frequencies

> ¢, t, and T are not periodic

> can be expressed as a linear function
in \ 4 periodic oscillations

> Ansatz: () = ToA + @7, + 00
T, infinite \—average

» Analogously: 7(\) = T, A+ osc.;
= t(A) = TiA+ osc.
Proper time as function of ¢:
» Useaveraged 7 = Y, Aand ¢ = T A\
— 7= T(AMp)) = T{f;lgo
» In the Newtonian limit we obtain from this the Keplerian time of
revolution
%
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Periapsis precession and Lense-Thirring effect

Periapsis precession

» mismatch of radial and angular
o frequency wrt coordinate time
400 . T T

s00 >w:QT_Q@:T_:_T_f

- — (27 — A,T,)/P,

R » P, = A, Y, anomalistic period

Lense-Thirring effect

» mismatch of polar and angular
frequency wrt coordinate time

> Q=Qp— Q= (21— AgY,)/ Py
» Py = Ay, draconitic period

%
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The gravitomagnetic clock effect

Consider two clocks on arbitrary geodesics
' » Orbital parameters rp ., 7'a.n, Omax,ns

n=172
‘ » Proper time of a full revolution:
Tn (27, J)

Generalised definition

» Gravitomagnetic clock effect:
ATem = T1(£27, J) + an (27, J)

» with a such that gravitoelectric effects cancel:

Ay = 0for J =0, ie. o = — 2273

%
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Post-Newtonian expansion

For a one-year orbit around Sgr A*: a/r < M/r <5 x 1074

» Expansion for small ¢ = - and small £ = ¢m
T mcr T c°r

+27) ~ 2 -
7(&2m) & 2 Gm 2(1—¢€2?) a
2m(cosi(3e? +2e +3) — 2 —2) J

(1—e2)3 me?’

a3 (1_3(1+e2)M)

+

> a semimajor axis, e eccentricity, and ¢ inclination
»rp=a(l —e),ry=a(l+e),and Opax = 7/2 4+

%
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Astronomical object orbiting Sgr A*

Correction to proper orbital period due to frame dragging:

_ 2nJ cosi(3e?+2e+3)—2e—2)
Teorr ~ 2

2 3
mc (1—62)7
[—i=0 i=45 i=90] [ e=0 =03 e=0.6
400 400
200 200
- =
P)
— & 0
b -
v
-200
-200
-400
-400
M ® 3n m Sk 3m7m m
0 02 04 06 0.8 1 16 8 16 4 16 8 16 2
e i
%
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Clock effect for general orbits

For two clocks with arbitrary orbital parameters a1 o, €12, i1 2:

27 [ cosii(3e? + 2e1 +3) — 2e1 — 2

me? (1—e2)3
a3 cosiz(3€3 + 2e2 + 3) — 2e9 — 2
a3 (1-e2)3
» 51,2 = +1 for prograde motion, s; 2 = —1 for retrograde

» In particular: s; = so possible!

. 2 _ _
» Identical orbital parameters; 7, — 7_ as dmJ cosi(3eTt2e+3)-2e=2)
me (1—e2)2

%
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Two examples

First example
» Sgr A* rotates with J/(mc) = 0.9M
First pulsar: 0.5-year orbit, nearly equatorial and circular

v

v

Second pulsar: 1-year orbit, quite eccentric and highly inclined
Result: ATy &~ 297s ~ 2 x 107° 7(2m; J = 0)

v

Second example

» Sgr A* rotates with J/(mc) = 0.5M

» First pulsar: 1-year orbit, nearly equatorial and circular

» Second pulsar: 2-year orbit, a bit eccentric and quite inclined
> Result: ATy &~ 59s ~ 2 x 1076 7(2m;J = 0)

%
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Summary

The gravitomagnetic clock effect for Earth satellites
» satellites orbiting the Earth: effect ~ 1078 — 10~ "s

> but ultra precise tracking necessary: semi major axis to at least mm
accuracy!

The gravitomagnetic clock effect for general astronomical objects
» for arbitrary bound geodesic orbits in Kerr spacetime

v

definition via fundamental frequencies

v

objects orbiting Sgr A*: effect up to ~ 10%s

v

detectable by pulsars?
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