

Time in the vicinity of black holes

Eva Hackmann

April 27th, 2017 641. WE-Heraeus-Seminar on "Do Black Holes Exist? The Physics and Philosophy of Black Holes"

geo

Bad Honnef 2017

CENTER OF APPLIED SPACE TECHNOLOGY AND MICROGRAVITY

Contents

Introduction

The propagation delay

- Post-Newtonian Shapiro delay
- Exact delay in Schwarzschild spacetime

The gravitomagnetic clock effect

- Fundamental frequencies in Kerr spacetime
- Generalised gravitomagnetic clock effect

Contents

Introduction

The propagation delay

- Post-Newtonian Shapiro delay
- Exact delay in Schwarzschild spacetime

The gravitomagnetic clock effect

- Fundamental frequencies in Kerr spacetime
- Generalised gravitomagnetic clock effect

Introduction

Notion of time

- In Newtonian theory time is absolute; all clocks tick at the same rate
- In Special Relativity we have to distinguish between coordinate time and proper time; different standard clocks tick with different rates if they are in relative motion
- In General Relativity proper time does in addition depend on the gravitational field

Clock effects in General Relativity (not complete)

- Gravitational redshift
- Shapiro delay
- Gravitomagnetic clock effect

Gravitational redshift

Schwarzschild solution (G = 1 and c = 1)

$$g = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Difference between proper time and coordinate time

• Proper time of an observer at rest at radius r_1 with proper time τ_1 , from $g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = -1$

$$\frac{dt}{d\tau_1} = \frac{1}{\sqrt{1 - \frac{2M}{r_1}}}$$

Gravitational redshift

Consider another observer at rest at radius r_2 with proper time τ_2 ,

$$\frac{d\tau_2}{d\tau_1} = \frac{\sqrt{1 - \frac{2M}{r_2}}}{\sqrt{1 - \frac{2M}{r_1}}} = \frac{\nu_1}{\nu_2}$$

- The above formula is the redshift between two clocks at rest
- For $r_1 \rightarrow 2M$ the redshift becomes infinitely large
- An object falling onto r = 2M slows down ('freezes') and redshifts out of detectable frequency range

Crossing the horizon

However, an observer takes only finite proper time to reach r = 2M

- Killing vector ∂_t gives $g_{tt} \frac{dt}{d\tau} = E$
- Radial free fall: $\left(\frac{dr}{d\tau}\right)^2 = E^2 \left(1 \frac{2M}{r}\right)$
- Starting from $r_0: E^2 = \left(1 \frac{2M}{r_0}\right)$
- Leads to $\left(\frac{dr}{d\tau}\right)^2 = \frac{2M}{r} \frac{2M}{r_0}$
- Integration gives a finite result

See Kassner 2016 for a discussion of two infalling observers

Shapiro delay

Consider a photon moving radially in a Schwarzschild spacetime

$$0 = g_{\mu\nu} \frac{dx^{\mu}}{ds} \frac{dx^{\nu}}{ds}$$
$$\Rightarrow \quad \frac{dr}{dt} = \left(1 - \frac{2M}{r}\right)$$

This can be easily integrated to

$$t = r - r_0 + 2M \ln \frac{r - 2M}{r_0 - 2M}$$

- Newtonian travel time: $ct = r r_0$
- In addition there appears a logarithmic term
- This is the Shapiro delay

Observation of clock effects

These effects can and have been measured in the weak field regime What about the strong field regime?

- We can not place a man-made clock near a back hole to observe these effects
- But: there are 'astronomical clocks': Some pulsars rotate so regularly that they rival the accuracy of the best man-made clocks!
- There is an ongoing search for pulsars orbiting a black hole
- Pulsars closely orbiting Sgr A* are the ideal laboratory to explore the supermassive black hole

Pulsar timing - introduction

10

Introduction

- rapidly rotating neutron stars
- radio emission
- stable rotation
- \blacktriangleright ca. 10% with a companion
- emission encodes information about the gravitational field near the pulsar
- reconstruction of the emission time from the arrival time
- phase-connected solutions: up to 100 nanoseconds post-fit accuracy
- pulsar around a black hole: the holy grail

Image: commons.wikimedia.org/wiki/File:Pulsar_schematic.svg by Use

Pulsar timing - clock effects

Regarding clock effects there are two delays which are relevant

- Einstein delay
 - difference between coordinate time of the binary barycenter and the proper time of the pulsar
 - changing gravitational redshift and Doppler effect along pulsar orbit
 - gravitomagnetic clock effect!?
- Shapiro delay
 - propagation delay of photons due to the gravitational field
 - with respect to a reference orbit and an observer at infinity

Contents

Introduction

The propagation delay

- Post-Newtonian Shapiro delay
- Exact delay in Schwarzschild spacetime

The gravitomagnetic clock effect

- Fundamental frequencies in Kerr spacetime
- Generalised gravitomagnetic clock effect

Standard Shapiro delay

In pulsar timing the Shapiro delay is modelled in the post-Newtonian framework

- Is this approximation still valid in the strong gravitational field near a supermassive black hole?
- In the case of a pulsar orbiting Sgr A* (extreme mass ratio) we can find an exact expression
- Test the accuracy of the pN approximation!

Standard propagation delay

$$t_{\rm arr} - t_{\rm em} \approx |\vec{r}_{\rm E}(t_{\rm arr}) - \vec{r}(t_{\rm em})| + 2M \ln\left(\frac{2r_{\rm E}}{r + \vec{r} \cdot \vec{n}}\right)$$
$$= (\Delta t)_{\rm Roemer} + \text{const} \cdot \underbrace{2M \ln\left(\frac{1 + e\cos\phi}{1 - \sin i\sin(\omega + \phi)}\right)}_{=:(\Delta t)_{\rm Shap}}$$

Standard Shapiro delay

Standard Shapiro delay

$$(\Delta t)_{\text{Shap}} = 2M \ln\left(\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right) = 2M \ln\left(\frac{a(1-e^2)}{r-r_{||}}\right)$$

where $r_{||} = r \sin i \sin(\omega + \phi)$

- does not take into account the bending of the path
- ► edge-on orbits ($i = \pi/2$), superior conjunction ($\omega + \phi = \pi/2$): expression diverges
- is independent of the semi major axis of the pulsar

Bent path

Shapiro delay taking lensing into account Lai & Rafikov 2005

$$(\Delta t)_{\text{lens}} = 2M \ln \left(\frac{a(1-e^2)}{\sqrt{r_{||}^2 + R_{\pm}^2} - r_{||}} \right)$$

where
$$R_{\pm}=rac{1}{2}\left(R_s\pm\sqrt{R_s^2+4R_E^2}
ight)$$
, $R_s^2=r^2-r_{||}^2$, $R_E^2=4Ma_{||}$ the Einstein radius.

Geometric delay

$$(\Delta t)_{\text{geom}} = 2M \left(\frac{|R_{\pm} - R_s|}{R_E}\right)^2$$

Schwarzschild spacetime

Schwarzschild black hole spacetime

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

- Constants of motion: specific energy E, specific angular momentum L, $\theta \equiv \pi/2$, normalisation $g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = 0$
- Equations of motion for photons

$$\left(\frac{dr}{d\phi}\right)^2 = \frac{r^4}{b^2} - r^2 + 2Mr =: b^{-2}R(r)$$
$$\left(\frac{dr}{dt}\right)^2 = \left(1 - \frac{2M}{r}\right)^2 \frac{R}{r^4}$$

Here b = L/E is the impact parameter

Exact Shapiro delay

From radial geodesics (b = 0)

- expect a linear and a logarithmic divergence for an observer at infinity
- linear corresponds to Roemer delay

In general Dhani, Master thesis 2017

• Emitter-observer problem: for given emitter at (r_e, ϕ_e) find b from

$$\phi_e = \int_{r_e}^{\infty} \frac{dr}{\sqrt{\frac{r^4}{b^2} - r^2 + 2Mr}} = b \int_{r_e}^{\infty} \frac{dr}{\sqrt{R}}$$

• solve for
$$t = \int_{r_e}^{\infty} \frac{r^3}{r - 2M} \frac{dr}{\sqrt{R}}$$

- exact expression in terms of elliptic integrals
- identify logarithmic divergence for observer at infinity
- find Δt with respect to a reference orbit ightarrow get rid of infinities

Comparison

Propagation delay (in s) as function of the angle along a circular edge-on orbit of radius R (in units of M)

Comparison

Propagation delay (in s) as function of the angle along a circular edge-on orbit of radius R (in units of M)

Conclusions

In the considered setting

- the lensed Shapiro delay + the geometric delay fits the exact delay best
- the usual first order Shapiro delay quickly deviates from the exact expression by several seconds
- $ightarrow\,$ also applies to less inclined orbits
 - the geometric delay should only be used together with the lensed Shapiro delay
 - for 'good' pulsars closely orbiting Sgr A* at least the second order post-Newtonian approximation should be used

Introduction

The propagation delay

- Post-Newtonian Shapiro delay
- Exact delay in Schwarzschild spacetime

The gravitomagnetic clock effect

- Fundamental frequencies in Kerr spacetime
- Generalised gravitomagnetic clock effect

The gravitomagnetic clock effect

The setup

- Two clocks on circular orbits in the equatorial plane of a rotating astronomical object
- One clock on prograde orbit, one on retrograde orbit
- Compare the measured time after a full revolution of 2π

Also called observer-dependent two-clock clock effect

Cohen and Mashhoon (Phys. Lett. A, 181:353, 1993)

$$\quad \bullet \quad \tau_+ - \tau_- \approx \frac{4\pi J}{mc^2}$$

- > For the Earth: time difference of about $10^{-7} sec$ per revolution
- ightarrow Large effect!?

Problems

- Identical initial conditions required
- Identical orbits required
- Idealized circular orbits required
- $ightarrow\,$ Generalisations to eccentric and inclined orbits exist

Problems

- Identical initial conditions required
- Identical orbits required
- Idealized circular orbits required
- $ightarrow\,$ Generalisations to eccentric and inclined orbits exist

Problems

- Identical initial conditions required
- Identical orbits required
- Idealized circular orbits required
- $ightarrow\,$ Generalisations to eccentric and inclined orbits exist

Problems

- Identical initial conditions required
- Identical orbits required
- Idealized circular orbits required
- $ightarrow\,$ Generalisations to eccentric and inclined orbits exist

Generalisation: Fully general relativistic definition

- → Consider bound geodesic orbits in Kerr spacetime
- $ightarrow \,$ Derive an expression for $au(\pm 2\pi)$, au proper time
- ightarrow Use fundamental frequencies

Kerr spacetime

in Boyer-Lindquist (BL) coordinates

$$ds^{2} = -\frac{\Delta}{\rho^{2}} \left(dt - a \sin^{2} \theta d\varphi \right)^{2} + \frac{\rho^{2}}{\Delta} dr^{2} + \frac{\sin^{2} \theta}{\rho^{2}} (a dt - (r^{2} + a^{2}) d\varphi)^{2} + \rho^{2} d\theta^{2}$$

where
$$\Delta = r^2 + a^2 - 2Mr$$
, $\rho^2 = r^2 + a^2 \cos^2 \theta$, $M = \frac{Gm}{c^2}$ the mass, $a = J/(mc)$ the spin.

Equations of motion (using $d au=
ho^2d\lambda$)

$$\left(\frac{dr}{d\lambda}\right)^2 = R(r), \quad \frac{d\varphi}{d\lambda} = \Phi_r(r) + \Phi_\theta(\theta),$$
$$\left(\frac{d\theta}{d\lambda}\right)^2 = \Theta(\theta), \quad \frac{dt}{d\lambda} = T_r(r) + T_\theta(\theta)$$

Periodic motion

For bound orbits outside the horizons:

- The radial motion is periodic, $r \in [r_{\mathrm{p}}, r_{\mathrm{a}}]$
- ► The polar motion is periodic, $\theta \in [\theta_{\min}, \theta_{\max}]$

From
$$\left(rac{dr}{d\lambda}
ight)^2=R$$
, $\left(rac{d heta}{d\lambda}
ight)^2=\Theta$

► Radial period Λ_r : $r(\lambda + \Lambda_r) = r(\lambda)$, $\Lambda_r = 2 \int_{r_p}^{r_a} \frac{dr}{\sqrt{R}}$, $\Upsilon_r = \frac{2\pi}{\Lambda_r}$

▶ Polar period Λ_{θ} : $\theta(\lambda + \Lambda_{\theta}) = \theta(\lambda)$, $\Lambda_{\theta} = 2 \int_{\theta_{\min}}^{\theta_{\max}} \frac{d\theta}{\sqrt{\Theta}}$, $\Upsilon_{\theta} = \frac{2\pi}{\Lambda_{\theta}}$

Fundamental Frequencies

- φ , t, and au are not periodic
- can be expressed as a linear function in λ + periodic oscillations
- Ansatz: $\varphi(\lambda) = \Upsilon_{\varphi}\lambda + \Phi_{osc}^r + \Phi_{osc}^{\theta}$ Υ_{φ} infinite λ -average
- Analogously: $\tau(\lambda) = \Upsilon_{\tau}\lambda + \text{osc.};$ $t(\lambda) = \Upsilon_{t}\lambda + \text{osc.}$

Proper time as function of φ :

- $\blacktriangleright \ \ {\rm Use \ averaged} \ {} \tau = \Upsilon_{\tau} \lambda \ {\rm and} \ \varphi = \Upsilon_{\varphi} \lambda$
- $\rightarrow \ \tau: \varphi \mapsto \tau(\lambda(\varphi)) = \Upsilon_\tau \Upsilon_\varphi^{-1} \varphi$
 - In the Newtonian limit we obtain from this the Keplerian time of revolution

Periapsis precession and Lense-Thirring effect

Periapsis precession

 mismatch of radial and angular frequency wrt coordinate time

$$\dot{\omega} = \Omega_r - \Omega_{\varphi} = \frac{\Upsilon_r}{\Upsilon_t} - \frac{\Upsilon_{\varphi}}{\Upsilon_t} \\ = (2\pi - \Lambda_r \Upsilon_{\varphi})/P_r$$

• $P_r = \Lambda_r \Upsilon_t$ anomalistic period

Lense-Thirring effect

- mismatch of polar and angular frequency wrt coordinate time
- $\blacktriangleright \dot{\Omega} = \Omega_{\theta} \Omega_{\varphi} = (2\pi \Lambda_{\theta}\Upsilon_{\varphi})/P_{\theta}$
- $P_{ heta} = \Lambda_{ heta} \Upsilon_t$ draconitic period

The gravitomagnetic clock effect

Consider two clocks on arbitrary geodesics

- Orbital parameters $r_{p,n}$, $r_{a,n}$, $\theta_{\max,n}$, n = 1, 2
- Proper time of a full revolution: $\tau_n(\pm 2\pi, J)$

Generalised definition

Gravitomagnetic clock effect:

$$\Delta \tau_{\rm gm} = \tau_1(\pm 2\pi, J) + \alpha \tau_2(\pm 2\pi, J)$$

• with α such that *gravitoelectric* effects cancel: $\Delta \tau_{\rm gm} = 0$ for J = 0, i.e. $\alpha = -\frac{\tau_1(\pm 2\pi, 0)}{\tau_2(\pm 2\pi, 0)}$

Post-Newtonian expansion

For a one-year orbit around Sgr A*: $a/r \leq M/r \lesssim 5 imes 10^{-4}$

• Expansion for small $\frac{a}{r} = \frac{J}{mcr}$ and small $\frac{M}{r} = \frac{Gm}{c^2 r}$

$$\begin{split} \tau(\pm 2\pi) &\approx 2\pi \sqrt{\frac{\mathrm{a}^3}{Gm} \left(1 - \frac{3(1+e^2)}{2(1-e^2)} \frac{M}{\mathrm{a}}\right)} \\ &\pm \frac{2\pi (\cos i(3e^2 + 2e + 3) - 2e - 2)}{(1-e^2)^{\frac{3}{2}}} \frac{J}{mc^2} \,, \end{split}$$

• a semimajor axis, e eccentricity, and i inclination

-
$$r_{
m p}={
m a}(1-e)$$
, $r_{
m a}={
m a}(1+e)$, and $heta_{
m max}=\pi/2+i$

Astronomical object orbiting Sgr A*

Clock effect for general orbits

For two clocks with arbitrary orbital parameters $a_{1,2}$, $e_{1,2}$, $i_{1,2}$:

$$\Delta \tau_{\rm gm} \approx \frac{2\pi J}{mc^2} \left[s_1 \frac{\cos i_1 (3e_1^2 + 2e_1 + 3) - 2e_1 - 2}{(1 - e_1^2)^{\frac{3}{2}}} - s_2 \sqrt{\frac{a_1^3}{a_2^3}} \frac{\cos i_2 (3e_2^2 + 2e_2 + 3) - 2e_2 - 2}{(1 - e_2^2)^{\frac{3}{2}}} \right]$$

▶ $s_{1,2} = +1$ for prograde motion, $s_{1,2} = -1$ for retrograde

• In particular: $s_1 = s_2$ possible!

• Identical orbital parameters: $\tau_+ - \tau_- \approx \frac{4\pi J}{mc^2} \frac{\cos i(3e^2 + 2e + 3) - 2e - 2)}{(1 - e^2)^{\frac{3}{2}}}$

Two examples

First example

- Sgr A* rotates with J/(mc) = 0.9M
- First pulsar: 0.5-year orbit, nearly equatorial and circular
- Second pulsar: 1-year orbit, quite eccentric and highly inclined
- $\blacktriangleright \text{ Result: } \Delta \tau_{\rm gm} \approx 297 {\rm s} \approx 2 \times 10^{-5} \, \tau(2\pi; {\rm J}=0)$

Second example

- Sgr A* rotates with J/(mc) = 0.5M
- First pulsar: 1-year orbit, nearly equatorial and circular
- Second pulsar: 2-year orbit, a bit eccentric and quite inclined
- Result: $\Delta \tau_{\rm gm} \approx 59 {\rm s} \approx 2 \times 10^{-6} \, \tau(2\pi; {\rm J}=0)$

Summary

The gravitomagnetic clock effect for Earth satellites

- $\blacktriangleright\,$ satellites orbiting the Earth: effect $\sim 10^{-8} 10^{-7}\,{\rm s}$
- but ultra precise tracking necessary: semi major axis to at least mm accuracy!

The gravitomagnetic clock effect for general astronomical objects

- for arbitrary bound geodesic orbits in Kerr spacetime
- definition via fundamental frequencies
- $\blacktriangleright\,$ objects orbiting Sgr A*: effect up to $\sim 10^2 s$
- detectable by pulsars?

Thank you for your attention!

