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Introduction
Notion of time

I In Newtonian theory time is absolute; all clocks tick at the same rate

I In Special Relativity we have to distinguish between coordinate time

and proper time; different standard clocks tick with different rates if

they are in relative motion

I In General Relativity proper time does in addition depend on the

gravitational field

Clock effects in General Relativity (not complete)

I Gravitational redshift

I Shapiro delay

I Gravitomagnetic clock effect
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Gravitational redshift
Schwarzschild solution (G = 1 and c = 1)

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

Difference between proper time and coordinate time

I Proper time of an observer at rest at radius r1 with proper time τ1,

from gµν ẋ
µẋν = −1

dt

dτ1
=

1√
1− 2M

r1
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Gravitational redshift
Consider another observer at rest at radius r2 with proper time τ2,

dτ2

dτ1
=

√
1− 2M

r2√
1− 2M

r1

=
ν1

ν2

I The above formula is the redshift between two clocks at rest

I For r1 → 2M the redshift becomes infinitely large

I An object falling onto r = 2M slows down (’freezes’) and redshifts out

of detectable frequency range
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Crossing the horizon

However, an observer takes only finite proper time to reach r = 2M

I Killing vector ∂t gives gtt
dt
dτ = E

I Radial free fall:
(
dr
dτ

)2
= E2 −

(
1− 2M

r

)
I Starting from r0: E

2 =
(

1− 2M
r0

)
I Leads to

(
dr
dτ

)2
= 2M

r −
2M
r0

I Integration gives a finite result

See Kassner 2016 for a discussion of two infalling observers
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Shapiro delay
Consider a photon moving radially in a Schwarzschild spacetime

0 = gµν
dxµ

ds

dxν

ds

⇒ dr

dt
=

(
1− 2M

r

)

I This can be easily integrated to

t = r − r0 + 2M ln
r − 2M

r0 − 2M

I Newtonian travel time: ct = r − r0

I In addition there appears a logarithmic term

I This is the Shapiro delay
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Observation of clock effects

These effects can and have been measured in the weak field regime

What about the strong field regime?

I We can not place a man-made clock near a back hole to observe these

effects

I But: there are ’astronomical clocks’: Some pulsars rotate so regularly

that they rival the accuracy of the best man-made clocks!

I There is an ongoing search for pulsars orbiting a black hole

I Pulsars closely orbiting Sgr A* are the ideal laboratory to explore the

supermassive black hole
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Pulsar timing - introduction
I rapidly rotating neutron stars

I radio emission

I stable rotation

I ca. 10% with a companion

I emission encodes information about the gravitational field near the

pulsar

I reconstruction of the emission time from the arrival time

I phase–connected solutions: up to 100 nanoseconds post-fit accuracy

I pulsar around a black hole: the holy grail

Image: commons.wikimedia.org/wiki/File:Pulsar_schematic.svg by User:Mysid
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Pulsar timing - clock effects

Regarding clock effects there are two delays which are relevant

I Einstein delay

I difference between coordinate time of the binary barycenter and the

proper time of the pulsar

I changing gravitational redshift and Doppler effect along pulsar orbit

I gravitomagnetic clock effect!?

I Shapiro delay

I propagation delay of photons due to the gravitational field

I with respect to a reference orbit and an observer at infinity
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Standard Shapiro delay
In pulsar timing the Shapiro delay is modelled in the post-Newtonian

framework

I Is this approximation still valid in the strong gravitational field near a

supermassive black hole?

I In the case of a pulsar orbiting Sgr A* (extreme mass ratio) we can

find an exact expression

I Test the accuracy of the pN approximation!

Standard propagation delay

tarr − tem ≈ |~rE(tarr)− ~r(tem)|+ 2M ln

(
2rE

r + ~r · ~n

)
= (∆t)Roemer + const · 2M ln

(
1 + e cosφ

1− sin i sin(ω + φ)

)
︸ ︷︷ ︸

=:(∆t)Shap
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Standard Shapiro delay
Standard Shapiro delay

(∆t)Shap = 2M ln

(
1 + e cosφ

1− sin i sin(ω + φ)

)
= 2M ln

(
a(1− e2)

r − r||

)
where r|| = r sin i sin(ω + φ)

I does not take into account the bending of the path

I edge-on orbits (i = π/2), superior conjunction (ω + φ = π/2):
expression diverges

I is independent of the semi major axis of the pulsar
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Bent path
Shapiro delay taking lensing into account Lai & Rafikov 2005

(∆t)lens = 2M ln

 a(1− e2)√
r2
|| +R2

± − r||


where R± = 1

2

(
Rs ±

√
R2
s + 4R2

E

)
, R2

s = r2 − r2
||,

R2
E = 4Ma|| the Einstein radius.

Geometric delay

(∆t)geom = 2M

(
|R± −Rs|

RE

)2
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Schwarzschild spacetime
I Schwarzschild black hole spacetime

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

I Constants of motion: specific energy E, specific angular momentum
L, θ ≡ π/2, normalisation gµν ẋµẋν = 0

I Equations of motion for photons(
dr

dφ

)2

=
r4

b2
− r2 + 2Mr =: b−2R(r)(

dr

dt

)2

=

(
1− 2M

r

)2 R

r4

Here b = L/E is the impact parameter
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Exact Shapiro delay
From radial geodesics (b = 0)

I expect a linear and a logarithmic divergence for an observer at infinity

I linear corresponds to Roemer delay

In general Dhani, Master thesis 2017

I Emitter-observer problem: for given emitter at (re, φe) find b from

φe =

∫ ∞
re

dr√
r4

b2
− r2 + 2Mr

= b

∫ ∞
re

dr√
R

I solve for t =
∫∞
re

r3

r−2M
dr√
R

I exact expression in terms of elliptic integrals

I identify logarithmic divergence for observer at infinity

I find∆t with respect to a reference orbit→ get rid of infinities
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Comparison
I Propagation delay (in s) as function of the angle along a circular
edge-on orbit of radius R (in units ofM )
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Comparison
I Propagation delay (in s) as function of the angle along a circular
edge-on orbit of radius R (in units ofM )
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Conclusions
In the considered setting

I the lensed Shapiro delay + the geometric delay fits the exact delay

best

I the usual first order Shapiro delay quickly deviates from the exact

expression by several seconds

→ also applies to less inclined orbits

I the geometric delay should only be used together with the lensed

Shapiro delay

I for ’good’ pulsars closely orbiting Sgr A* at least the second order

post-Newtonian approximation should be used
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The gravitomagnetic clock effect
The setup

I Two clocks on circular orbits in the

equatorial plane of a rotating

astronomical object

I One clock on prograde orbit, one on

retrograde orbit

I Compare the measured time after a full

revolution of 2π

Also called observer-dependent two-clock clock effect

Cohen and Mashhoon (Phys. Lett. A, 181:353, 1993)

I τ+ − τ− ≈ 4πJ
mc2

I For the Earth: time difference of about 10−7sec per revolution

→ Large effect!?
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Problems and Goals
Problems

I Identical initial conditions required

I Identical orbits required

I Idealized circular orbits required

→ Generalisations to eccentric and inclined orbits exist

Generalisation: Fully general relativistic

definition

→ Consider bound geodesic orbits in Kerr

spacetime

→ Derive an expression for τ(±2π),
τ proper time

→ Use fundamental frequencies
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Kerr spacetime
in Boyer-Lindquist (BL) coordinates

ds2 = −∆

ρ2

(
dt− a sin2 θdϕ

)2
+
ρ2

∆
dr2

+
sin2 θ

ρ2
(adt− (r2 + a2)dϕ)2 + ρ2dθ2

where∆ = r2 + a2 − 2Mr, ρ2 = r2 + a2 cos2 θ,
M = Gm

c2
the mass, a = J/(mc) the spin.

Equations of motion (using dτ = ρ2dλ)(
dr

dλ

)2

= R(r) ,
dϕ

dλ
= Φr(r) + Φθ(θ) ,(

dθ

dλ

)2

= Θ(θ) ,
dt

dλ
= Tr(r) + Tθ(θ)
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Periodic motion
For bound orbits outside the horizons:

I The radial motion is periodic,

r ∈ [rp, ra]

I The polar motion is periodic,

θ ∈ [θmin, θmax]

From

(
dr

dλ

)2

= R,

(
dθ

dλ

)2

= Θ:

I Radial period Λr: r(λ+ Λr) = r(λ) , Λr = 2
∫ ra
rp

dr√
R
,Υr = 2π

Λr

I Polar period Λθ: θ(λ+ Λθ) = θ(λ) , Λθ = 2
∫ θmax

θmin

dθ√
Θ
,Υθ = 2π

Λθ
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Fundamental Frequencies
I ϕ, t, and τ are not periodic

I can be expressed as a linear function

in λ + periodic oscillations

I Ansatz: ϕ(λ) = Υϕλ+ Φr
osc + Φθ

osc

Υϕ infinite λ−average
I Analogously: τ(λ) = Υτλ+ osc.;
t(λ) = Υtλ+ osc.

Proper time as function of ϕ:

I Use averaged τ = Υτλ and ϕ = Υϕλ

→ τ : ϕ 7→ τ(λ(ϕ)) = ΥτΥ−1
ϕ ϕ

I In the Newtonian limit we obtain from this the Keplerian time of

revolution
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Periapsis precession and Lense-Thirring effect
Periapsis precession

I mismatch of radial and angular

frequency wrt coordinate time

I ω̇ = Ωr − Ωϕ = Υr
Υt
− Υϕ

Υt
= (2π − ΛrΥϕ)/Pr

I Pr = ΛrΥt anomalistic period

Lense-Thirring effect

I mismatch of polar and angular

frequency wrt coordinate time

I Ω̇ = Ωθ − Ωϕ = (2π − ΛθΥϕ)/Pθ
I Pθ = ΛθΥt draconitic period
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The gravitomagnetic clock effect
Consider two clocks on arbitrary geodesics

I Orbital parameters rp,n, ra,n, θmax,n,

n = 1, 2

I Proper time of a full revolution:

τn(±2π, J)

Generalised definition

I Gravitomagnetic clock effect:

∆τgm = τ1(±2π, J) + ατ2(±2π, J)

I with α such that gravitoelectric effects cancel:
∆τgm = 0 for J = 0, i.e. α = − τ1(±2π,0)

τ2(±2π,0)
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Post-Newtonian expansion
For a one-year orbit around Sgr A*: a/r ≤M/r . 5× 10−4

I Expansion for small
a
r = J

mcr and small
M
r = Gm

c2r

τ(±2π) ≈ 2π

√
a3

Gm

(
1− 3(1 + e2)

2(1− e2)

M

a

)
± 2π(cos i(3e2 + 2e+ 3)− 2e− 2)

(1− e2)
3
2

J

mc2
,

I a semimajor axis, e eccentricity, and i inclination

I rp = a(1− e), ra = a(1 + e), and θmax = π/2 + i
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Astronomical object orbiting Sgr A*
Correction to proper orbital period due to frame dragging:

τcorr ≈ 2πJ
mc2

cos i(3e2+2e+3)−2e−2)

(1−e2)
3
2
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Clock effect for general orbits
For two clocks with arbitrary orbital parameters a1,2, e1,2, i1,2:

∆τgm ≈
2πJ

mc2

[
s1

cos i1(3e2
1 + 2e1 + 3)− 2e1 − 2

(1− e2
1)

3
2

− s2

√
a3

1

a3
2

cos i2(3e2
2 + 2e2 + 3)− 2e2 − 2

(1− e2
2)

3
2

]

I s1,2 = +1 for prograde motion, s1,2 = −1 for retrograde

I In particular: s1 = s2 possible!

I Identical orbital parameters: τ+ − τ− ≈ 4πJ
mc2

cos i(3e2+2e+3)−2e−2)

(1−e2)
3
2
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Two examples
First example

I Sgr A* rotates with J/(mc) = 0.9M

I First pulsar: 0.5-year orbit, nearly equatorial and circular

I Second pulsar: 1-year orbit, quite eccentric and highly inclined

I Result: ∆τgm ≈ 297s ≈ 2× 10−5 τ(2π; J = 0)

Second example

I Sgr A* rotates with J/(mc) = 0.5M

I First pulsar: 1-year orbit, nearly equatorial and circular

I Second pulsar: 2-year orbit, a bit eccentric and quite inclined

I Result: ∆τgm ≈ 59s ≈ 2× 10−6 τ(2π; J = 0)
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Summary
The gravitomagnetic clock effect for Earth satellites

I satellites orbiting the Earth: effect∼ 10−8 − 10−7 s

I but ultra precise tracking necessary: semi major axis to at least mm

accuracy!

The gravitomagnetic clock effect for general astronomical objects

I for arbitrary bound geodesic orbits in Kerr spacetime

I definition via fundamental frequencies

I objects orbiting Sgr A*: effect up to∼ 102s

I detectable by pulsars?
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Thank you for your attention!
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