

The Meissner Effect for Weakly Isolated Horizons

Martin Scholtz and Norman Gürlebeck

641. WEH Seminar, Bad Honnef | April 27, 2017

NG & Martin Scholtz, Phys. Rev. D 95, 064010, 2017

CENTER OF APPLIED SPACE TECHNOLOGY AND MICROGRAVITY

Motivation

The Meissner Effect

Jet creation

Motivation

The Meissner Effect

Jet creation

The Meissner effect

- Meissner Ochsenfeld effect for superconductors
 - expulsion of the magnetic field from the interior of the superconductor for $T < T_{\rm C}$
- Meissner effect for black holes
 - black hole thermodynamics: surface gravity $\kappa \propto T$
 - expulsion of the magnetic field from extremal horizons

The Meissner effect

- Meissner Ochsenfeld effect for superconductors
 - expulsion of the magnetic field from the interior of the superconductor for $T < T_{\rm C}$
- Meissner effect for black holes
 - black hole thermodynamics: surface gravity $\kappa \propto T$
 - expulsion of the magnetic field from extremal horizons

gravitational wave signals of binaries

- motion of stars
- accretion disks
- gravitational lensing, shadows
- $\Rightarrow~$ additional sources of the gravitational field required

- gravitational wave signals of binaries
- motion of stars
- accretion disks
- gravitational lensing, shadows
- $\Rightarrow~$ additional sources of the gravitational field required

- gravitational wave signals of binaries
- motion of stars
- accretion disks
- gravitational lensing, shadows
- $\Rightarrow~$ additional sources of the gravitational field required

- gravitational wave signals of binaries
- motion of stars
- accretion disks
- gravitational lensing, shadows
- $\Rightarrow~$ additional sources of the gravitational field required

- gravitational wave signals of binaries
- motion of stars
- accretion disks
- gravitational lensing, shadows
- \Rightarrow additional sources of the gravitational field required

- gravitational wave signals of binaries
- motion of stars
- accretion disks
- gravitational lensing, shadows
- \Rightarrow additional sources of the gravitational field required

Could deformations of black holes yield observational signatures?

no-hair theorem \rightarrow Kerr black holes

- laws of black hole mechanics
- hidden symmetries
- Meissner effect

• • • •

- no-hair theorem \rightarrow Kerr black holes
- laws of black hole mechanics
- hidden symmetries
- Meissner effect

• • •

- no-hair theorem \rightarrow Kerr black holes
- laws of black hole mechanics
- hidden symmetries
- Meissner effect

- no-hair theorem \rightarrow Kerr black holes
- laws of black hole mechanics
- hidden symmetries
- Meissner effect

. . .

ZVHW

- no-hair theorem \rightarrow Kerr black holes
- laws of black hole mechanics
- hidden symmetries
- Meissner effect

. . .

Which properties are universal for black holes and which are particular to Kerr?

- \checkmark no-hair theorem \rightarrow tidal Love number vanish
- ✓ laws of black hole mechanics
- \times hidden symmetries
- ? Meissner effect

Which properties are universal for black holes and which are particular to Kerr?

Motivation

The Meissner Effect

Jet creation

 electromagnetic test fields: [Wald 1974; Bičák et al. 1980; 1985; 2004; Penna 2014, Gralla et al. 2016], ...

 electromagnetic test fields: [Wald 1974; Bičák et al. 1980; 1985; 2004; Penna 2014, Gralla et al. 2016], ...

- electromagnetic test fields: [Wald 1974; Bičák et al. 1980; 1985; 2004; Penna 2014, Gralla et al. 2016], ...
- strong electromagnetic fields for special solutions (magnetized Kerr-Newmann): [Karas et al. 1991; 2000; Bičák, Heijda 2015],...
- higher dimensions: [Chamblin et al. 1998]
- but: no Meissner effect for split monopoles, conducting matter near the horizon [Komissarov et al. 2007, Takamori et al. 2011]

- electromagnetic test fields: [Wald 1974; Bičák et al. 1980; 1985; 2004; Penna 2014, Gralla et al. 2016], ...
- strong electromagnetic fields for special solutions (magnetized Kerr-Newmann): [Karas et al. 1991; 2000; Bičák, Heijda 2015],...
- higher dimensions: [Chamblin et al. 1998]
- but: no Meissner effect for split monopoles, conducting matter near the horizon [Komissarov et al. 2007, Takamori et al. 2011]

- electromagnetic test fields: [Wald 1974; Bičák et al. 1980; 1985; 2004; Penna 2014, Gralla et al. 2016], ...
- strong electromagnetic fields for special solutions (magnetized Kerr-Newmann): [Karas et al. 1991; 2000; Bičák, Heijda 2015],...
- higher dimensions: [Chamblin et al. 1998]
- but: no Meissner effect for split monopoles, conducting matter near the horizon [Komissarov et al. 2007, Takamori et al. 2011]

here:

- Arbitrarily strong electromagnetic field
- generic uncharged black hole in equilibrium (deformations allowed)

Generic black holes: Non-Expanding Horizons

Idea: Quasi-local description of black holes [Ashtekar, Lewandowski 2002].

- ► Non-expanding horizons *H*:
 - null hypersurface $\mathcal{H} = \mathbb{R} \times S^2$
 - null normal ℓ^a with vanishing expansion
 - outgoing null vector n^a has negative expansion
 - energy conditions: $T_{ab}k^b$ is future pointing
 - Einstein equation holds
- \Rightarrow \blacktriangleright ℓ^a non-shearing, non-twisting
 - ∃ preferred intrinsic connection
 - $\blacktriangleright \ \ell^a \mathcal{D}_a \ell^b = \ell^a \omega_a \ell^b$
 - ℓ^a not unique (no zeroth law of thermodynamics)

Generic black holes: Non-Expanding Horizons

Idea: Quasi-local description of black holes [Ashtekar, Lewandowski 2002].

- Non-expanding horizons \mathcal{H} :
 - null hypersurface $\mathcal{H} = \mathbb{R} \times S^2$
 - null normal ℓ^a with vanishing expansion
 - outgoing null vector n^a has negative expansion
 - energy conditions: $T_{ab}k^b$ is future pointing
 - Einstein equation holds
- \Rightarrow > ℓ^a non-shearing, non-twisting
 - ► ∃ preferred intrinsic connection
 - $\blacktriangleright \ \ell^a \mathcal{D}_a \ell^b = \ell^a \omega_a \ell^b$
 - ℓ^a not unique (no zeroth law of thermodynamics)

Generic black holes: Weakly Isolated Horizons

• $(\mathcal{H}, [\ell^a])$ weakly isolated horizon if:

- \mathcal{H} is non-expanding horizon
- $[\ell^a]$ equivalence class of null normals under rescaling
- $\Rightarrow~$ surface gravity $\kappa_{(\ell)} = \ell^a \omega_a$ is constant
 - ▶ but: depends on scaling: $\kappa_{(\ell)} = c\kappa_{(c\ell)}$
 - extremal horizons: $\kappa_{(\ell)} = 0$

- ℓ^a null generator
- $v = \text{const.} \cong S^2$ ($\ell^a \nabla_a v = 1$)
- $m^a, ar{m}^a$ basis of TS_0
- Propagation by $\pounds_{\ell} m^a \doteq 0$
- Choose n^a , $n^a n_a = 0, n^a \ell_a = 1$
- Propagation by $n^b
 abla_b n^a = 0$

$$n = \frac{\partial}{\partial r}$$

- Propagate tetrad along n^a
- ▶ spherical coordinates on S_v : ${}^{(2)}ds^2 = R(\theta, \varphi)^2 \left(d\theta^2 + \sin^2\theta d\varphi^2\right)$ [Krishnan 2012]

- ℓ^a null generator
- $v = \text{const.} \cong S^2$ ($\ell^a \nabla_a v = 1$)
- $m^a, ar{m}^a$ basis of TS_0
- Propagation by $\pounds_\ell m^a \doteq 0$
- Choose n^a , $n^a n_a = 0, n^a \ell_a = 1$
- Propagation by $n^b
 abla_b n^a = 0$

$$n = \frac{\partial}{\partial r}$$

- Propagate tetrad along n^a
- ▶ spherical coordinates on S_v : ${}^{(2)}ds^2 = R(\theta, \varphi)^2 \left(d\theta^2 + \sin^2\theta d\varphi^2\right)$ [Krishnan 2012]

• ℓ^a – null generator

•
$$v = \text{const.} \cong S^2$$
 ($\ell^a \nabla_a v = 1$)

- m^a, \bar{m}^a basis of TS_0
- Propagation by $\pounds_\ell m^a \doteq 0$
- Choose n^a , $n^a n_a = 0, n^a \ell_a = 1$
- Propagation by $n^b
 abla_b n^a = 0$

$$n = \frac{\partial}{\partial r}$$

- Propagate tetrad along n^a
- ▶ spherical coordinates on S_v : ${}^{(2)}ds^2 = R(\theta, \varphi)^2 \left(d\theta^2 + \sin^2\theta d\varphi^2\right)$ [Krishnan 2012]

- ℓ^a null generator
- $v = \text{const.} \cong S^2$ ($\ell^a \nabla_a v = 1$)
- m^a, \bar{m}^a basis of TS_0
- Propagation by $\pounds_{\ell} m^a \doteq 0$
- Choose n^a , $n^a n_a = 0, n^a \ell_a = 1$
- Propagation by $n^b
 abla_b n^a = 0$

$$n = \frac{\partial}{\partial r}$$

- Propagate tetrad along n^a
- ▶ spherical coordinates on S_v : ${}^{(2)}ds^2 = R(\theta, \varphi)^2 \left(d\theta^2 + \sin^2\theta d\varphi^2\right)$ [Krishnan 2012]

- ℓ^a null generator
- $v = \text{const.} \cong S^2$ ($\ell^a \nabla_a v = 1$)
- m^a, \bar{m}^a basis of TS_0
- Propagation by $\pounds_{\ell} m^a \doteq 0$
- Choose n^a , $n^a n_a = 0$, $n^a \ell_a = 1$

Propagation by $n^b
abla_b n^a = 0$

$$n = \frac{\partial}{\partial r}$$

Propagate tetrad along n^a

▶ spherical coordinates on S_v : ${}^{(2)}ds^2 = R(\theta, \varphi)^2 \left(d\theta^2 + \sin^2\theta d\varphi^2\right)$ [Krishnan 2012]

- ℓ^a null generator
- $v = \text{const.} \cong S^2$ ($\ell^a \nabla_a v = 1$)
- m^a, \bar{m}^a basis of TS_0
- Propagation by $\pounds_{\ell} m^a \doteq 0$
- Choose n^a , $n^a n_a = 0, n^a \ell_a = 1$
- Propagation by $n^b \nabla_b n^a = 0$

 $n = \frac{\partial}{\partial r}$

Propagate tetrad along n^a

▶ spherical coordinates on S_v : ${}^{(2)}ds^2 = R(\theta, \varphi)^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right)$ [Krishnan 2012]

- ℓ^a null generator
- $v = \text{const.} \cong S^2$ ($\ell^a \nabla_a v = 1$)
- m^a, \bar{m}^a basis of TS_0
- Propagation by $\pounds_{\ell}m^a \doteq 0$
- Choose n^a , $n^a n_a = 0, n^a \ell_a = 1$
- Propagation by $n^b \nabla_b n^a = 0$

1

$$n = \frac{\partial}{\partial r}$$

- Propagate tetrad along n^a
- ▶ spherical coordinates on S_v : ${}^{(2)}ds^2 = R(\theta, \varphi)^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right)$ [Krishnan 2012]

- ℓ^a null generator
- $v = \text{const.} \cong S^2$ ($\ell^a \nabla_a v = 1$)
- m^a, \bar{m}^a basis of TS_0
- Propagation by $\pounds_{\ell} m^a \doteq 0$
- Choose n^a , $n^a n_a = 0, n^a \ell_a = 1$
- Propagation by $n^b \nabla_b n^a = 0$

r

$$n = \frac{\partial}{\partial r}$$

- Propagate tetrad along n^a
- ▶ spherical coordinates on S_v : ${}^{(2)}ds^2 = R(\theta, \varphi)^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right)$ [Krishnan 2012]

- axial symmetry (η^a), stationarity (ξ^a) & electro-vacuum *near* the WIH
- electromagnetic field with the same symmetries
- expansion of all functions in r: $f = f^{(0)} + f^{(1)}r + \dots$

- axial symmetry (η^a), stationarity (ξ^a) & electro-vacuum *near* the WIH
- electromagnetic field with the same symmetries
- expansion of all functions in r: $f = f^{(0)} + f^{(1)}r + \dots$

- axial symmetry (η^a), stationarity (ξ^a) & electro-vacuum *near* the WIH
- electromagnetic field with the same symmetries
- expansion of all functions in r: $f = f^{(0)} + f^{(1)}r + \dots$
- integrability condition of the Killing equation:

$$0 = \nabla_a \nabla_b \xi_c - R_{abcd} \xi^d$$

$$0 = \nabla_{[a} (F_{b]c} \eta^c + i F_{b]c}^* \eta^c)$$

$$\Rightarrow \quad \kappa_{(\ell)} \lambda^{(0)} = \bar{\eth} \pi^{(0)} + (\pi^{(0)})^2$$

$$\kappa_{(\ell)} \phi_2^{(0)} = \bar{\eth} \phi_1^{(0)} + 2 \pi^{(0)} \phi_1^{(0)}$$

- axial symmetry (η^a), stationarity (ξ^a) & electro-vacuum *near* the WIH
- electromagnetic field with the same symmetries
- expansion of all functions in r: $f = f^{(0)} + f^{(1)}r + \dots$
- integrability condition of the Killing equation:

$$0 = \nabla_a \nabla_b \xi_c - R_{abcd} \xi^d$$

$$0 = \nabla_{[a} (F_{b]c} \eta^c + i F_{b]c}^* \eta^c)$$

$$\Rightarrow \quad \kappa_{(\ell)} \lambda^{(0)} = \bar{\eth} \pi^{(0)} + (\pi^{(0)})^2$$

$$\kappa_{(\ell)} \phi_2^{(0)} = \bar{\eth} \phi_1^{(0)} + 2 \pi^{(0)} \phi_1^{(0)}$$

 $\blacktriangleright \ \lambda = n^a \bar{m}^b \nabla_b \bar{m}_a, \quad \pi = n^a l^b \nabla_b \bar{m}_a$

• electric and magnetic flux: $\phi_1 = \frac{1}{2} F_{ab} \left[l^a n^b - m^a \bar{m}^b \right]$

$$\blacktriangleright \ \phi_2 = F_{ab}\bar{m}^a n^b$$

$$\blacktriangleright \ \eth \eta = \left(m^a \nabla_a + s \bar{m}^a m^b \nabla_b m_a \right) \eta$$

- axial symmetry (η^a), stationarity (ξ^a) & electro-vacuum *near* the WIH
- electromagnetic field with the same symmetries
- expansion of all functions in r: $f = f^{(0)} + f^{(1)}r + \dots$
- integrability condition of the Killing equation:

$$0 = \nabla_a \nabla_b \xi_c - R_{abcd} \xi^d$$

$$0 = \nabla_{[a} (F_{b]c} \eta^c + i F_{b]c}^* \eta^c)$$

$$\Rightarrow \quad \kappa_{(\ell)} \lambda^{(0)} = \bar{\eth} \pi^{(0)} + \left(\pi^{(0)} \right)^2$$

$$\kappa_{(\ell)} \phi_2^{(0)} = \bar{\eth} \phi_1^{(0)} + 2 \pi^{(0)} \phi_1^{(0)}$$

▶ vanishing charges: $Q_e + iQ_m = 0 = \oint_{S_0} \phi_1 dS$

Extremal WIH

- explicit solution in the extremal case: $\kappa_{(\ell)} = 0$

$$\pi^{(0)}(\theta) = \frac{R(\theta)\sin\theta}{c_{\pi} + \sqrt{2}\int_{0}^{\theta} R^{2}(\tilde{\theta})\sin\tilde{\theta}\,d\tilde{\theta}}$$
$$\phi_{1}^{(0)}(\theta) = \frac{c_{\phi}}{\left(c_{\pi} + \sqrt{2}\int_{0}^{\theta} R^{2}(\tilde{\theta})\sin\tilde{\theta}\,d\tilde{\theta}\right)^{2}},$$

• c_{ϕ}, c_{π} integration constants

• charge of the WIH:
$$Q_e + iQ_m = \frac{2\sqrt{2}\pi c_{\phi}}{c_{\pi} + \sqrt{2}\int\limits_{\theta}^{\pi} R^2(\tilde{\theta}) \sin \tilde{\theta} d\tilde{\theta}}$$

$$\Rightarrow~$$
 for uncharged WIH: $c_{\phi}=0$

 $\Rightarrow \phi_1 \stackrel{.}{=} 0$

- $\Rightarrow\,$ no magnetic and electric flux across any part of the horizon of an extremal black hole
- ⇒ Meissner effect

Magnetic Flux

Electric flux

Expulsion of the magnetic field

Field lines of the magnetic field: B_a measured by an observer with the four-velocity $u^a=(\ell^a+n^a)/\sqrt{2}$

Motivation

The Meissner Effect

Jet creation

$$\eta = \frac{\varkappa}{4\pi} x^2 \left\langle \Phi_{\rm BH}^2 \left(\dot{M} \, M^2 \right)^{-1/2} \right\rangle \, (1 + 1.38 \, x^2 - 9.2 \, x^4) \\ x = \frac{a/M}{2(1 + \sqrt{1 - (a/M)^2})} \quad \text{[Tchekhovskoy 2010, 2011]}$$

$$\eta = \frac{\varkappa}{4\pi} x^2 \left\langle \Phi_{\rm BH}^2 \left(\dot{M} \, M^2 \right)^{-1/2} \right\rangle \, (1 + 1.38 \, x^2 - 9.2 \, x^4) \\ x = \frac{a/M}{2(1 + \sqrt{1 - (a/M)^2})} \quad \text{[Tchekhovskoy 2010, 2011]}$$

Thank You!

