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The basic idea

When the gravitational field of a central body is large enough,
gravitational collapse will take place and spacetime singularities will
form. This is inevitable at the future endpoint of evolution of massive
enough stars (with mass greater than the Chandrasekhar mass).

In the spherically symmetric case, an event horizon will form; no
information can escape from the interior to the exterior.

This also occurs in the case of rotating black holes (provided cosmic
censorship is true).

Static (Schwarzschild) and stationary (Kerr) black holes are in
principle possible, that have existed forever. Because of their
symmetries, they enable a clear study of key black hole properties
(this lecture).

In reality, black holes form dynamically and there are major differences
to the properties of stationary or static black holes (next lecture).

They have been observed to occur at stellar, intermediate, and large
masses. There might possibly also be small priordial black holes.
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Schwarzschild Solution
The exterior solution

Spherical Vacuum Solution

The unique spherically symmetric vacuum solution of the Einstein Field
Equations is the Schwarzschild solution. It turns out to be a black hole.

In standard coordinates, the exterior Schwarzschild metric for a body of
mass m := GM/c2 may be written in the form:

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2 (1)

for r > 2m, where dΩ2 := (dθ2 + sin2 θdφ2). The Schwarzschild radius
rSch is defined by rSch := 2m.
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Schwarzschild Solution
The exterior solution

1: It is automatically asymptotically flat: this does not have to be
added as a boundary condition

2. It has SO(3) continuous symmetry, implying spatial reflection
symmetry R1(r → −r), and has translation and reflection time
symmetries T1(t → t + t0), T2(t → −t).

3: Thus is automatically static (or stationary): this does not have to
be added as an extra condition. This is Birkhoff’s theorem.

4: It can be joined smoothly onto a spherically symmetric interior star
metric provided the surface is at RS > 2M. This is true whether the
interior stellar solution is static or dynamic: possibly RS = RS(t).
The exterior remains static (no spherical gravitational waves).
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Schwarzschild Solution
Matter motion

1: Matter paths are timelike geodesics. The effective radial potential
is

V 2(h, r) ≡
(

1− 2m

r

)
(1 +

h2

r2
) (2)

where h is angular monentum, so V → 1 as r →∞
2. Particle orbits reproduce Newtonian results for planetary motion
but with the correct perihelion precession, confirming the EFE and
identifying m as the mass.

3. The lower bound for any circular particle orbit, is r =
3GM

c2
=

3rs

2
.

These are unstable orbits

4. Innermost stable circular matter orbit (ISCO) risco = 3 rs =
6GM

c2
,

5. Matter: infalling matter will generically circle many times before
falling in, forming accretion discs that will heat up and emit x-rays.
These are power sources for astrophysical objects, of crucial
importance for QSOs
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Schwarzschild Solution
Light rays and lensing

1: Light rays are null geodesics The effective radial potential is

V 2(h, r) ≡
(

1− 2m

r

)
h2

r2
(3)

2. Light rays are bent by the gravitational field of the central star,
leading to gravitational lensing and time delays in multiple images of
time-varying sources. If there is a central mass with RS >> rs , this
will give weak lensing. This further confirms the EFE.

3. Photon sphere: Unstable circular orbits are possible for light rays

travelling at r =
3GM

c2
=

3rs

2
(and only at that radius) – they are

held at this distance by gravitational attraction. These are unstable
orbits. The photon sphere casts a shadow.

4. If one has a black hole with no central star, strong lensing will
occur: with photons circling the horizon numerous times to create
many multiple images. But dust may obscure them.
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Schwarzschild Solution
Coordinate singularity

1: The metric has an apparent singularity at(
1− 2m

r

)
= 0⇔ r = rSchw = 2m (4)

where the metric tensor breaks down: as r → rSchw , g00 → 0,
g11 →∞. However no scalar invariants diverge there.

2. This is a coordinate singularity, and by using a null coordinate

v = t + r∗, r∗ := r + 2m ln
( r

2m
− 1

)
⇔ dr∗ =

dr

1− 2m
r

(5)

the solution can be extended beyond the apparent singularity at
r = 2m to a time dependent domain ending at a physical singularity
at r = 0.

Ellis (UCT) Classical aspects of Black Holes I: April 30, 2017 10 / 36



Schwarzschild Solution
Eddington-Lemaitre extension

The extended metric is

ds2 = −
(

1− 2m

r

)
dv2 + 2dvdr + r2dΩ2 (6)

3. This metric is regular at r = 2m: there

ds2 = 2dvdr + r2dΩ2 (7)

Future directed timelike and null particle paths can be continued
beyond the null surface r = 2m

Coordinate singularities

Metric singularities may be due to a breakdown of coordinates rather than
a physical problem. Null coordinates can extend across such surfaces.
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Schwarzschild Solution
Eddington-Lemaitre extension

Figure: Diagram of event horizon and central singularity. Note that solution is
time asymmetric. Radially infalling matter is seen crossing the horizon with
infinite redshift: ”frozen stars”
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Schwarzschild Solution
Eddington-Lemaitre extension

1. It is no longer static for r < 2m: rather it is spatially homogeneous
and evolving.

2. It has an event horizon limiting the domain from which information
can escape to infinity, hence it represents a black hole. Infalling
bodies that cross the horizon cannot escape: they are doomed to fall
in and get crushed at the centre by diverging tidal forces.

3. It has closed trapped surfaces inside the event horizon: a highly
counterintuitive aspect. Their existence is key to the Penrose
singularity theorem and its extensions.

4. This solution is time asymmetric, and null geodesically incomplete
to the past. There is a time-reverse time asymmetric extension with
null coordinate w = t − r∗.
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Schwarzschild Solution
Maximal extension

It can be further extended to a maximal time symmetric solution that
cannot be extended any further. All geodesics then either extend to
infinity, or end at a singularity. This maximal (Kruskal) metric is

ds2 =
32G 3M3

r
e−r/2GM(−dT 2 + dX 2) + r2dΩ2 (8)

where r(T ,X ) is determined by(
1− r

2GM

)
er/2GM = T 2 − X 2. (9)

1. Unexpected unavoidable global structure: Its maximal extension
has two scalar singularities , where the Weyl tensor diverges, at r = 0:
one in the future, one in the past; plus two asymptotically flat
domains, linked by a minimal throat. This forms a wormhole that in
some coordinates opens and closes. However the wormhole is
spacelike and hence is not traversable.
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Schwarzschild Solution
Maximal extension

Figure: Maximally extended solution, which is time symmetric. It has two
singularities bounding two spatially homogeneous evolving regions, and two
asymptotically flat static regions.
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Schwarzschild Solution
Maximal extension

2. Overall it has SO(3)× SU(1) continuous symmetry plus reflection
symmetry R1(r → −r) and time reflection symmetry T1(t → −t).

3. It has a bifurcating horizon at the centre, which is a set of fixed
points forming an invariant 2-sphere under all these symmetries. The
SU(1) Killing vector field parameter rescales infinitely relative to an
affine parameter on this 2-sphere (Boyer and Ehlers)
6. Closed trapped surfaces are obvious from the Kruskal diagram
4. The interior regions r < 2m are not static: they are spatially
homogeneous and evolving in time. There is no central world line at
r = 0.

Microphysics:

This solution shows that like in quantum physics, the idea of point particle
is not viable in general relativity. You cannot model a gravitating particle
by a timelike worldline with an series of moments defined on the world line,
as you can in special relativity. The minimum radius for a particle is rs .
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Schwarzschild Solution
Symmetries

Figure: Penrose diagram of Symmetries of Maximally extended solution. Each
point represents a 2-sphere. One can create different topologies by identifications
under these groups (the field equations do not determine this topology) but this
may create extendible singularities and closed timelike lines.
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Schwarzschild Solution
Bifurcating horizons

R H Boyer and J Ehlers: Proc Roy Soc A311:245-252 (1969)

Where a Killing vector field ξ changes from timelike to spacelike,
(1) θi are null geodesic Killing orbits with fixed points p; (2) Bifurcating
Killing Horizons with branches Ñ,N and fixed points B occur. The Killing
vector parameter t relates to the affine parameter v by u = expct and
k = exp−ct ξ is constant on θ so t → ±∞ as u → ±0.
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Schwarschild solution
Infalling particles and redshift

Radially infalling particles are represented by timelike geodesics with
zero angular momentum

From the outside they are seen to fade out with infinite time dilation
and infinite redshift

However they experience nothing special as they cross the horizon

They can send no signals to the exterior after horizon crossing, due to
the event horizon. No light or other radiation emitted by the inside
region II can reach the outside region I.

Infalling matter is doomed to fall into the singularity at the centre
and be crushed by diverging tidal forces

Black holes

Existence of the event horizon is the key feature of black holes.

Ellis (UCT) Classical aspects of Black Holes I: April 30, 2017 19 / 36



Uniqueness Theorems
Schwarzschild solution

Uniqueness Theorem

Werner Israel: first uniqueness theorem, for Schwarzschild solution
(Phys Rev 164 (1967): 1776)

A space-time manifold is static if it admits a hypersurface-orthogonal
Killing vector field ξ which is timelike over some domain. In a simply

connected region which has ξ.ξ < 0 throughout, there will exist a scalar
field t and coordinates xa such that the line element reduces locally to

ds2 = gαβ(x1, x2, x3)dxαdxβ − V 2dt2, (10)

where V = (|ξ.ξ|)2 = V (x1, x2, x3), (ξ.∇)xα = 0.
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Uniqueness Theorems
Schwarzschild solution

In a static space-time, let Σ be any spatial hypersurface t = const,
maximally extended consistent with ξ.ξ < 0. We consider the class of

static fields such that the following conditions are satisfied on Σ:

1 Σ is regular, empty, noncompact, and “asymptotically
Euclidean.”

2 The equipotential surfaces (V = const > 0, t = const) are
regular, simply connected closed 2-spaces.

3 The invariant RABCDRABCD formed from the
four-dimensional Riemann tensor is bounded on Σ.

4 If V has a vanishing lower bound on Σ, the intrinsic
geometry (characterized by (2)R) of the 2-spaces V = c
approaches a limit as c → 0+, corresponding to a closed
regular 2-space of finite area.
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Uniqueness Theorems
Schwarzschild solution

Theorem

The only static space-time satisfying (1), (2), (3), and (4) is
Schwarzschild’s spherically symmetric vacuum solution.

Essentially: this requires

a static spacetime

asymptotic flatness

simply connected equipotential surfaces

a regular Killing horizon

It does not requires spherical symmetry, it deduces it
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Reissner Nordstrom Solution

Charged version of Schwarzschild:

Reissner Nordstrom Solution

The Reissner Nordstrom Solution is the unique electrovac solution of the
Einstein Field Equations

ds2 =

(
1− 2m

r
+

e2

r2

)
dt2 −

(
1− r2m

r
+

e2

r2

)−1

dr2 − r2 dΩ2, (11)

where e is the electrical charge at the centre in suitable units.

For large enough e (e.g. electron) this has a naked singularity

This solution has no astrophysical or particle physics applications.

It has two apparent singularities and associated horizons where(
1− rS

r + e2

r2

)
= 0, and a consequent complex global structure.
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Kerr solution
Rotating black hole

Kerr stationary axisymmetric vacuum solution. The metric is

dτ2 = ρ2
(
dr2

∆
+ dθ2

)
+
(
r2 + a2

)
sin2 θdφ2 − dt2

+
2mr

ρ2
(
a sin2 θdφ− dt

)2
(12)

where (r , θ, φ) are standard spherical coordinates,
ma is the angular momentum measured at infinity, and

ρ2(r , θ) = r2 + a2 cos2 θ,

∆(r) = r2 −mr + a2.

This gives the Schwarzschild solution when a = 0.
No exact interior solution.
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The Kerr solution
Rotating black hole

More complex metric than Schwarschild when a 6= 0 (not spherically
symmetric), with various coordinate systems

Two radii r+ and r− where ∆(r) vanishes, and an ergosphere between
the stationary limit surface (a bifurcating Killing horizon) and the
event horizon r = r+.

There is a ring singularity at r = 0; one can continue through the ring
to negative values of r

Maximal extension with infinite number of Killing horizons and
asymptotically flat regions; : but this is unstable because of infinite
blueshifts at r = r−

Closed timelike lines inside inner horizon because light cones tilt over

Killing tensors that can be used to determine geodesics and lensing.
Much more complex orbits and images than Schwarzschild.
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The Kerr Solution
Ergosphere

Figure: The Kerr solution, rotating about the symmetry axis
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The Kerr Solution
Maximal Extension: symmetry axis

Regions I (∞ > r > r+) are
asymptoticaly flat with event
horizons at r = r+.

Regions II (r+ > r > r−)are
spatially homogeneous and
contain closed trapped surfaces

Regions III (−∞ < r < r−)
contain the ring singularity; ∃
closed timelike curves through
every point in region III

Bifurcating Killing horizons
separate these regions

Maximal extension on symmetry axis (Carter) for a2 < m2

(naked singularity if m2 > a2)
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Uniqueness Theorems
Kerr solution

Uniqueness theorems for rotating stationary vacuum space time:
Extending Israel’s Theorem from static to stationary

Hawking: All stationary but non-static black holes must be have
spherical topology and be axisymmetric

Carter: vacuum black holes that are stationary and axisymmetric form
a 2-parameter family

Robinson, Bunting, Mazur, Wald, Chruściel: Kerr back holes are the
only possible stationary vacuum black holes

Thus an uncharged stationary black hole solution is completely described
by the 2 parameters of the Kerr metric: mass and angular momentum.

Uniqueness (Carter 1999)

The Kerr family of metrics are believed to constitute, when a2 ≤ m2, the
unique family of asymptotically flat and stationary black hole solutions

This result includes Schwarzschild when a = 0.
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MacVittie solution
Black hole in an expanding universe

“The mass-particle in an expanding universe”
GC McVittie - MNRAS 93:325-339 (1933)

Spherical Mass in Expanding universe

The unique spherically symmetric solution of the Einstein Field Equations
with a central mass in an expanding universe is the MacVittie solution

No longer asymptotically flat, but still simple
In “Schwarzschild” coordinates this is

ds2 = −
(

1− 2M

r a(t)

)
dt2 +

(
1− 2M

r a(t)

)−1

a2dr2 + a(t)2r2dΩ2 (13)

where r is the radial coordinate a = a(t) is the cosmological scale factor.
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MacVittie solution
Black hole in an expanding universe

Roberto A. Sussman “Conformal structure of a Schwarzschild black hole
immersed in a Friedman universe” GRG (1985) 17:251–291

Figure:
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Closing notes

How does this relate to astrophyiscs?

Stellar mass black holes: 5M� < M < 15M�

Intermediate mass black holes: 30M� < M < 103M�

Massive black holes in galaxies and AGNs: 105M� < M < 106M�

Power source for QSO’s: 108M� < M < 109M�

Primordial black holes, M > 10−8 kg?? Dark matter???

Black hole collisions producing gravitational waves

The significance of black holes

Black holes started off as a purely mathematical construct. They are now
central to much of high energy astrophyiscs.

Dynamical black holes in a cosmological context are different than static
or stationary (next lecture)
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Cosmological contexts
Kerr-de Sitter Black Hole

Kerr-de Sitter Universe - Akcay and Matzner.
Class.Quant.Grav. 28 (2011) 085012 arXiv:1011.0479.

Figure: Kerr-de Sitter black hole
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