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ITS PHOTOSPHERE AND QNM
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REGULAR BLACK HOLES

To have a regular black hole some kind of matter must be introduced.
Sakharov (1966), Gliner(1966) suggested a de Sitter core with EoS p = −ρ,
hence Tµν = Λgµν
Several ways to regularize: introducing an internal structure, exotic matter.
Static Spherically Symmetric solutions of the EFE,

ds2 = f (r)dt2 − f (r)−1dr2 − r2[dθ2 + sin2 θdφ2],

f (r) = 1− 2m(r)

r
, m(r) =

M0[
1 +

(
r0
r

)q]p/q
M0, r0 mass and length parameters;
p, q > 0 guarantee asymptotic flatness: m(r) ≈M0

(
1− p

q

(
r0
r

)q)
As r → 0, m(r) ≈M0

(
r
r0

)p
Markov, Brandenberger, Mukhanov in the 1990s: Spacetimes in the highly den-
se central region of a black hole would be de Sitter-like, f (r) = 1−

(
r
l

)2
, that

requires p = 3.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Several SSS solutions have been derived with horizons, a regular center, asym-
ptotically flat, with finite curvature quantities, R, RµνR

µν, RµνρσR
µνρσ

Bardeen (1968), magnetic monopole,

Hayward (2006)
f (r) = 1− 2m

r
, as r →∞,

f (r) = 1− r2

l2
, as r → 0,

an effective cc Λ = 3/l2 at small distances with Hubble length l
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NLED-REGULAR BLACK HOLES

Sourced by NLED coupled to gravity, with L(F ),
F = FµνF

µν, with L(F )→ F in the weak field limit
Regular black holes have been determined by demanding a regular center

f (r) = 1− 2
m(r)

r
, m(r) =

1

2

∫
T 0

0 r
2dr,

8πGT ν
µ = −2LFFµαF αν +

1

2
gνµL,

NLED Magnetically charged can have a Maxwell center
Electrically charged should have a de Sitter center

Most of them satisfy WEC

Examples: Ayon-Beato-Garcia (1999), Dymnikova (2000), Bronnikov
(2001)
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SET THEM SPINNING

Algorithm by Trautman (1962), Newman-Janis (1965), Gurses-Gursey
(1975)

Kerr can be derived from Schwarzschild
Kerr-Newman can be derived from Reissner-Nordstrom

Starting with a static spherically symmetric metric,

ds2 = f (r)dt2 − dr2

f (r)
− h(r)(sin2 θdϕ2 + dθ2),

Transform to null coordinates:

du = dt− dr

f (r)
, gµν = lµnν + lνnµ −mµm̄ν −mνm̄µ

Introduce rotation by hand (there is no a unique way to do it)

r → r′ = r + ia cos θ, u→ u′ − ia cos θ,

Recover the metric in Boyer-Lindquist coordinates.

NJ algorithm in general does not preserve field equations.
Improvements to the method: Azreg-Ainou (2014),
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WEAK, DOMINANT, STRONG ENERGY CONDITIONS

SSS can be written in Kerr-Schild form, gµν = ηµν + 2f̃(r)

Σ
kµkν,

kµ are null and geodesics directions; Σ = r2 + a2 cos2 θ.

The energy-momentum tensor can be considered as

8πTµν = (D + 2G)gµν − (D + 4G)(lµlν − uµuν),

G =
f̃ ′r − f̃

Σ2
; D = −f̃

′′

Σ
, 8πρ = 2G, ptan = ρ +

D

8π
,

WEC is satisfied if T µνVµVν ≥ 0, ρ ≥ 0, ρ′ ≤ 0.

i.e. energy density should be a decreasing function,

DEC is satisfied if T 00 ≥ T ij, for all i, j

SEC is satisfied if RµνVµVν ≥ 0, ptan ≥ 0, ρ′ ≤ 0.
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Violation of WEC

For instance in the core of a non-rotating regular BH:
ρ = 8πΛ, ptan = −8πΛ, ρ′ = 0
it depends on the sign of Λ, in de Sitter case, Λ > 0, WEC is fulfilled and SEC
is violated.
Note that since f̃ does not depend on a, ρ has the same sign in the static and its
rotating counterpart, Note that if f̃ ′′ 6= 0 the fluid may not be perfect when set
rotating
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Violation of WEC

Introducing rotation WEC may be violated:
A generic solution with m(r), at the poles,
T 00 = 2r2m′(r)

8π(r2+a2)2
= −T 11, T 22 = −2a2m′+r(r2+a2)m′′

8π(r2+a2)2
= T 33,

WEC: T 00 ≥ 0, T 00 + T ii ≥ 0,
Considering the case m(r) ∝ r3,
As r ≈ 0, T 00 + T 22 = T 00 + T 33 ∝ − 12r2a2

(r2+a2)2

Then in the case of a de Sitter core, violation of WEC cannot be prevented
irrespective of the details of m(r).
In the NLED case more freedom exists to adjust the fulfilment of WEC:
8π(ptan + ρ) = −FLF
F is non positive (purely electrical), LF plays the role of the electric permeabi-
lity, then LF > 0
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IS THERE A SIGNATURE OF THE REGULAR CENTER
OUTSIDE THE HORIZON?

Three last stages of black hole perturbations
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Three last stages of black hole perturbations
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QNM are particular solutions of the pulsation equations

{
∂2
t − ∂2

r + ψ(r)Vl±(r)
}(Ψlm±

Φlm±

)
= 0,

− 7→ odd parity sector 7→ axial perturbations (Regge-Wheeler eq. 1957)
+ 7→ even parity sector 7→ polar perturbations (Zerilli eq. 1970)
QNM solutions are of the form eωtψ(r), ω = ωR + iωI
with ψ(r) solution of[

w2 − f (r)∂rf (r)∂r + f (r)Vl±(r)
]
ψ(r) = 0,

where f (r) is the metric component of a SSS solution to EE

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2dΩ2,

BOUNDARY CONDITIONS:

at∞ purely outgoing waves,

at the horizon purely ingoing waves.
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QNM and unstable null geodesics

In the high-frequency approx. QNF can be derived directly from the properties
of the unstable circular NULL orbits [Mashhoon and Ferrari (1984), Cardoso
(2009)]: ωQNM = Ωcl − ı(n + 1

2
)|λ|,

n is the overtone number, l is the angular momentum of the perturbation.
Ωc is the angular velocity at the unstable null geodesic.
λ is the Lyapunov exponent, determining the instability time scale of the orbit.
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Rc the radius of the photosphere of the rotating regular Hayward BH

Kerr

g´=0.6

g´=0.9
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The radius of the photosphere of the rotating regular Hayward BHM = 1, g′ =
0,6; 0,9 and g = 1., as a function of a, g′ g is the parameter associated to the
regular center, a kind of de Sitter parameter, m(r) = Mr3/(r3 + g′3).
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Rc the radius of the photosphere of the rotating regular Hayward BH

Kerr

g = 0

g = 2.
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The radius of the photosphere of the rotating regular Hayward BHM = 1, g′ =
0,6 and g = 0, 2, as a function of a; g is the parameter associated to a non-rigid
rotation, a→ ar3/(r3 + g3)
The photosphere of Hayward’s BH is smaller than Schwarzschild and Kerr’s.
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The real part of the QNMs, Hayward BH
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The real frequency of the QNMs of Hayward’s BH, as a function of the rota-
tion a. It is compared with Kerr’s, and for a = 0 the Schwarzschild case is
recovered. M = 1, g′ = 0,6 and g = 0; 2; a→ ar3/(r3 + g3)
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The real part of the QNMs, Hayward BH
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g´=0.6

Kerr

0.0 0.2 0.4 0.6 0.8

0.20

0.25

0.30

0.35

a

Wc

The real frequency of the QNMs of Hayward’s BH, as a function of the rotation
a. It is compared with Kerr’s, for two values of g′; for a = 0 the Schwarzschild
case is recovered. M = 1, g′ = 0,6; 0,9 and g = 1. m(r) = Mr3/(r3 + g′3)
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Imaginary part of the QNMs for Hayward Black Hole
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Comparison for varying acceleration between the ωi of the Hayward black hole
and Kerr’s. In this plot M = 1, g′ = 0,6, g = 0; 2 and n = 0; a→ ar3/(r3 +
g3)
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Imaginary part of the QNMs for Hayward Black Hole
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Comparison for varying acceleration between the ωi of the Hayward black hole
and Kerr’s. In this plot M = 1, g′ = 0,6; 0,9, g = 1 and n = 0; m(r) =
Mr3/(r3 + g′3)
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CONCLUSIONS

Precaution when dealing with rotating solutions generated via NJ

WEC is violated in the de Sitter core; including NLED WEC may be fulfi-
lled.

The (in principle) observable signatures of the BH like shadow and QNM
from perturbations would be different if coming from a regular or from a
singular rotating body.

Photosphere would be smaller for a regular BH than Kerr’s

The imaginary part of QNMs of the regular BH is smaller than Kerr’s,⇒
Regular rotating BH with a de Sitter core is more stable than Kerr


