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REGULAR BLACK HOLES

To have a regular black hole some kind of matter must be introduced.
Sakharov (1966), Gliner(1966) suggested a de Sitter core with EoS p = —p,
hence 1), = Ag,.,

Several ways to regularize: introducing an internal structure, exotic matter.
Static Spherically Symmetric solutions of the EFE,

ds® = f(r)dt’ — f(r)"'dr® — r°[d0? + sin® Oder],

fry=1-220, iy =

r 1+ ()"

M, ro mass and length parameters;

P, q > 0 guarantee asymptotic flatness: m(r) ~ M, (1 — g (T—O)q>
p

Asr — 0,m(r) ~ M, (:—0

Markov, Brandenberger, Mukhanov in the 1990s: Spacetimes in the highly den-

se central region of a black hole would be de Sitter-like, f(r) = 1 — (%)2, that

requires p = 3.



Several SSS solutions have been derived with horizons, a regular center, asym-
ptotically flat, with finite curvature quantities, R, I, R"", R, ,, """’

= Bardeen (1968), magnetic monopole,

= Hayward (2006)

fle)=1— 2 asr — oo,

Hil = T e A

an effective cc A = 3/I* at small distances with Hubble length [
= flr) =125
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recovering Schwarzschild when [ = 0 and flat for m = 0

m > m, = %gl for having a two horizons BH, with r_ > [



NLED-REGULAR BLACK HOLES

= Sourced by NLED coupled to gravity, with £(F),
F=F,F", with L(F) — F in the weak field limit

Regular black holes have been determined by demanding a regular center

N m(r) A 0,.2
f(r)y=1-2 N m(r)—é/Tordr,

1
G — 0L F P g

= NLED Magnetically charged can have a Maxwell center

Electrically charged should have a de Sitter center
= Most of them satisfy WEC

= Examples: Ayon-Beato-Garcia (1999), Dymnikova (2000), Bronnikov
(2001)



SET THEM SPINNING

= Algorithm by Trautman (1962), Newman-Janis (1965), Gurses-Gursey
(1975)

m Kerr can be derived from Schwarzschild

Kerr-Newman can be derived from Reissner-Nordstrom

= Starting with a static spherically symmetric metric,

dr?

ds® = f(r)dt* — — h(r)(sin® 8dp* + db?),
f(r)
» Transform to null coordinates:
dr N\ N
du=dt — —, g¢"" =1U"n"+1"n" — m'm”" — m"m"

il
= Introduce rotation by hand (there is no a unique way to do it)
r—r' =r+iacosf, u—u —iacosh,

= Recover the metric in Boyer-Lindquist coordinates.

NJ algorithm in general does not preserve field equations.
Improvements to the method: Azreg-Ainou (2014),



WEAK, DOMINANT, STRONG ENERGY CONDITIONS

= SSS can be written in Kerr-Schild form, g, = 1, + QJ;(T) kK.,

k* are null and geodesics directions; 2 = r? + a? cos? 6.

= The energy-momentum tensor can be considered as

81T = (D +2G)gu — (D +4G)(udy — wuy),

G = > D=—=, 8mp=2G, pPim=p+—,
T

» WEC is satisfied ift 7"V,V, >0, p>0, p <0.

1.e. energy density should be a decreasing function,
= DEC is satisfied if 7% > T foralli,
» SEC is satisfied if RM™V,V, >0, pn >0, p' <O0.



Violation of WEC

For instance in the core of a non-rotating regular BH:

p = 87TA7 Ptan = _87TA7 p, =0

it depends on the sign of A, in de Sitter case, A > 0, WEC is fulfilled and SEC
is violated. A

Note that since f does not depend on a, p has the same sign in the static and its
rotating counterpart, Note that if f” =4 0 the fluid may not be perfect when set
rotating



Violation of WEC

Introducing rotation WEC may be violated:

A generic solution with m(r), at the poles,

MO = (r) 11 22 _ 2a’m'+r(r’+a®)m” _ 33
I = A A = —
EENE ) T 1 T > (),

Considering the case m(r) o< %,

BN T T | T e

Then in the case of a de Sitter core, violation of WEC cannot be prevented
irrespective of the details of m(r).

In the NLED case more freedom exists to adjust the fulfilment of WEC:
87T(ptan -+ P) - _FEF

F is non positive (purely electrical), £ plays the role of the electric permeabi-
lity, then L > 0




IS THERE A SIGNATURE OF THE REGULAR CENTER
OUTSIDE THE HORIZON?

Three last stages of black hole perturbations

=0 0.2 =) 0-04

0.3E t=5M
02F 0.1 0.02
0.1 ‘
@ 0 . 0 Y 0
3 oo 0.1 0.02
o e I T T T _O 2 'S U N T T .04 IR Y 15 NN DT
‘:} 0 20 40 /N?O 80 100 70 20 40 /1\460 80 108 0 20 40 IN?O 80 100
Lo T T 0.04 T
3 g\ 0.04 0.04_ =i T T=o0M
3 ;) 0.02 0.02 0.02
§e 0 0 0
32 om .0.02 0.02
§ 0—- l l I 1.1 I L.l I i ‘ 1 04 i L1 ‘l [ ) i il l L
J -0'040 50 100 150 2 '040 50 100 150 2 8 0 50 100 150 200
: ™ ™ ™

FIG. 1: Time evolution of Rg) for £ = 2 for initial data of the form specified in Eq. (46). Most of the initial pulse falls into
the black hole (note the different scales in the vertical axis when passing from ¢ = 0 to t = 2M to ¢t = 5M) after which the
spacetime reacts with an oscillating characteristic signal which contains the QN modes.



Three last stages of black hole perturbations

Chaverra ot ol PRDY3 23013 (z0tb) 12

0.01
0.005
0
-0.005

t/‘M

1 1 Randndod ‘ W l V.- 1 I -] l I - 1 st l D - | {,
300 350 400 450 500 550 600 650
/M

FIG. 2: A plot of the signal as a function of time for the ring-down part of the waveform (upper panel). The exponential decay
rate and the constant frequency are visible in the semi-logarithmic representation (bottom panel).



QNM are particular solutions of the pulsation equations

(01 - 2 + v} (3 =0,

— > odd parity sector —> axial perturbations (Regge-Wheeler eq. 1957)
-+ > even parity sector — polar perturbations (Zerilli eq. 1970)

QNM solutions are of the form e“'1)(r), w = wg + iwy

with ) (7) solution of

[w® = f(r)0.f(r)0, + f(r)Vie(r)] 9(r) =0,
where f(r) is the metric component of a SSS solution to EE
1

dr® — r?dQ?,
f(r)

ds* = f(r)dt* —

BOUNDARY CONDITIONS:

= at 0O purely outgoing waves,

= at the horizon purely ingoing waves.



QNM and unstable null geodesics

In the high-frequency approx. QNF can be derived directly from the properties
of the unstable circular NULL orbits [Mashhoon and Ferrari (1984), Cardoso
(2009)]:  wony = 2l —1(n + 3|,

n is the overtone number, [ is the angular momentum of the perturbation.

(. is the angular velocity at the unstable null geodesic.

A is the Lyapunov exponent, determining the instability time scale of the orbit.
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R. the radius of the photosphere of the rotating regular Hayward BH
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The radius of the photosphere of the rotating regular Hayward BH M =1, ¢’ =
0,6;0,9 and g = 1., as a function of a, ¢’ ¢ is the parameter associated to the
regular center, a kind of de Sitter parameter, m(r) = Mr?®/(r® + ¢"*).



R. the radius of the photosphere of the rotating regular Hayward BH
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The radius of the photosphere of the rotating regular Hayward BH M =1, ¢’ =
0,6 and g = 0, 2, as a function of a; g is the parameter associated to a non-rigid

rotation, a — ar®/(r* + ¢°)
The photosphere of Hayward’s BH is smaller than Schwarzschild and Kerr’s.



The real part of the QNMs, Hayward BH
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The real frequency of the QNMs of Hayward’s BH, as a function of the rota-
tion a. It is compared with Kerr’s, and for a = (0 the Schwarzschild case is
recovered. M =1,¢' = 0,6 and g = 0;2; a — ar’/(r® + ¢*)



The real part of the QNMs, Hayward BH
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The real frequency of the QNMs of Hayward’s BH, as a function of the rotation

a. It is compared with Kerr’s, for two values of ¢’; for a = 0 the Schwarzschild
case is recovered. M = 1,9’ = 0,6;0,9and g = 1. m(r) = Mr*/(r* + ¢”)



Imaginary part of the QNMs for Hayward Black Hole
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Comparison for varying acceleration between the w; of the Hayward black hole

and Kerr’s. In this plot M = 1, ¢ = 0,6, g = 0;2and n = 0; a — ar’/(r® +
3

9°)



Imaginary part of the QNMs for Hayward Black Hole

0.205¢ Kerr
: .............0............
0.200" 9200,
0.195¢ L i, N
ALya L ...°" .'°.,9.’ =0.9
0.190f «* °
0.185f .
0180
0.0 0.2 0.4 0.6 0.8
a

Comparison for varying acceleration between the w; of the Hayward black hole
and Kerr’s. In this plot M = 1, ¢ = 0,6;0,9, g = 1 and n = 0; m(r) =
Mr2/(r + g%)



CONCLUSIONS

= Precaution when dealing with rotating solutions generated via NJ

= WEC is violated in the de Sitter core; including NLED WEC may be fulfi-
lled.

= The (in principle) observable signatures of the BH like shadow and QNM
from perturbations would be different if coming from a regular or from a
singular rotating body.

= Photosphere would be smaller for a regular BH than Kerr’s
= The imaginary part of QNMs of the regular BH is smaller than Kerr’s, =

= Regular rotating BH with a de Sitter core is more stable than Kerr



