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Abstract

We derive an analytic solution for the capillary rise of liquids in a cylindrical tube or a porous medium in terms of height h as
a function of time t. The implicit t(h) solution by Washburn is the basis for these calculations and the Lambert W function is
used for its mathematical rearrangement. The original equation is derived out of the 1D momentum conservation equation and
features viscous and gravity terms. Thus our h(t) solution, as it includes the gravity term (hydrostatic pressure), enables the
calculation of the liquid rise behavior for longer times than the classical Lucas-Washburn equation. Based on the new equation
several parameters like the steady state time and the validity of the Lucas-Washburn equation are examined. The results are also
discussed in dimensionless form.
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Introduction

Capillary driven flow is an important field of research as
many applications in science, industry and daily life rely
on capillary transport. For example in hydrology the move-
ment of groundwater is influenced by capillary transport
as well as in heat pipes, spacecraft propellant management
devices (PMDs), marker pens, candle wicks and sponges.
Mostly this transport occurs in complex formed structures,
however many flow or layout calculations adopt models for
cylindric tubes to match the flow in arbitrary shaped cap-
illaries. Often a porous medium, no matter how its pores
are formed microscopically, can be described with sufficient
precision by the ”bundle of capillary tubes” model or the
Darcy law. When regarding the behavior of a liquid brought
into contact with a vertical, small tube (as shown in Fig. 1)
it can be seen that at first a fairly fast flow into it will de-
velop. Later the rising of the liquid will continuously slow
down until finally a steady state is reached. The descrip-
tion of the liquid rise over time by mathematical methods
and its prediction are of great interest as can be seen from
the following brief literature review. In 1918 Lucas [1] and
1921 Washburn [2] are the first to give an analytic expla-
nation of the rate of liquid rise in a capillary tube. They
consider a flow regime where the influence of inertia and
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Fig. 1. Setup for capillary driven flow showing the liquid reservoir

and a tube.

the influence of gravity can be neglected. In 1922 Rideal [3]
and 1923 Bosanquet [4] try to expand the Lucas-Washburn
solution to cases including inertia and gravity by means of
series expansion. 1976 Levine et al. [5] and [6] develop theo-
ries for the capillary rise in tubes as well as in parallel plate
channels. Marmur and Cohen [7], [8] characterize porous
media by analyzing the kinetics of capillary penetration.
Ichikawa and Satoda [9] describe the interface dynamics of
capillary flow and derive dimensionless variables. In 1997
Quere [10] investigates the capillary rise dominated by in-
ertial forces and finds oscillations to occur if the fluid vis-
cosity is low enough. Delker et al. [11] and Lago and Araujo
[12] write about the rise of liquids in columns of glass beads
and find Lucas-Washburn behavior for small times, how-
ever deviations for later times. In 2000 Zhmud et al. [13]
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give a good overview over the solutions for the different
time regimes and derive short- and long time asymptotic
solutions. Siebold et al. [14] carry out capillary rise experi-
ments in glass capillaries and packed powder to investigate
the effect of the dynamic contact angle. Hamraoui and Ny-
lander [15] provide an analytical approach for setups with
a highly dynamic contact angle. 2004 Chan et al. [16] give
factors affecting the significance of gravity on infiltration
of a liquid into a porous medium. Lockington and Parlange
[17] find an equation for the capillary rise in porous media.
Xue et al. [18] write about dynamic capillary rise with hy-
drostatic effects. In a recent paper Chebbi [19] investigates
the dynamics of liquid penetration and compares numeri-
cal results with asymptotic solutions.
To look at the problem in more detail the momentum bal-
ance of a liquid inside a tube shall be presented. The fol-
lowing assumptions hold: i) the flow is one dimensional, ii)
no friction or inertia effects by displaced air occur, iii) no
inertia or entry effects in the liquid reservoir, iv) the vis-
cous pressure loss inside the tube is given by the Hagen-
Poiseuille respectively the Darcy law both valid for laminar
flow, and v) the constant capillary pressure can be calcu-
lated with the static contact angle θ and the tube (or pore)
radius R (see Appendix 1). With these assumptions the
momentum balance of a liquid inside a capillary tube gives:

2σ cos θ
R

= ρgh sinψ +
8µh
R2

ḣ+ ρ
d(hḣ)
dt

. (1)

Here σ refers to the surface tension, R to the inner tube
radius, ρ to the fluid density, g to gravity and µ to the
dynamic viscosity. In Eq. (1) the individual terms refer to
(left to right):
– The capillary pressure
– The gravity term (hydrostatic pressure)
– The viscous pressure loss (Hagen-Poiseuille)
– The inertia term

Fig. 2. Setup with an inclined tube.

ψ (see Fig. 2) is the angle formed between the inclined tube
and the free liquid surface. It shall be mentioned that for
an inclined setup the height h is not the absolute height in
relation to the liquid reservoir level but the distance covered
within the tube.

When it comes to the momentum equation of a liquid in
a generic porous medium (see Fig. 3), the Darcy law can
be used. It gives the viscous pressure loss as

∇p = − µ

K
vs, (2)

where vs is the volume averaged velocity (superficial ve-
locity) and K the permeability of the porous medium.
Comparing the Hagen-Poiseuille law and Eq. (2) shows that

Fig. 3. Setup using a porous medium.

both laws are interchangeable with each other giving

R2 =
8K
φ
, (3)

with φ being the porosity of the material. The porosity is
included as both laws are defined for the intersticial (Hagen-
Poiseuille) and the superficial velocity (Darcy) respectively.
Thus the momentum equation in a porous medium using
the Darcy law reads

2σ cos θ
R

= ρgh sinψ +
φµh

K
ḣ+ ρ

d(hḣ)
dt

. (4)

For porous media one possible approach to experimentally
determine the two parameters R andK is to do a first eval-
uation of the maximum reachable height (static case) to
obtain the radius R for the capillary pressure. Later the
permeability K can be obtained by fitting the calculated
liquid rise curve to experimental values.
The differential equations (1) and (4) cannot be easily
solved analytically, but numerical methods may be used.
However, as an analytical solution is favorable, solutions
can be found for certain flow regimes where individual
terms of Eqs. (1) and (4) can be neglected. Stange [20]
claims that there are four time regimes. For small times
the inertia term dominates, later the convective losses in
the entry region (not modeled here), then the viscous term
and finally the hydrostatic term. For infinite times a steady
state is reached where the hydrostatic pressure balances
the capillary pressure. As applications of capillary flow or
experiments are often bound to certain time regimes, it is
feasible to neglect the corresponding terms in Eq. (1) to
obtain analytic solutions. In the following two of these will
be presented.

Viscous dominated flow

Lucas [1] 1918 and Washburn [2] 1921 consider a flow
regime where the influence of inertia and the influence of
gravity can be neglected, thus simplifying Eq. (1) to
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2σ cos θ
R

=
8µhḣ
R2

. (5)

Rearranging gives

h
dh

dt
=
σR cos θ

4µ
. (6)

Solving this ordinary differential equation with the initial
condition h(0) = 0 by means of separation of variables leads
to the well-established Lucas-Washburn equation:

h2 =
σR cos θ

2µ
t. (7)

The Lucas-Washburn solution is probably the most used
equation when it comes to the characterization of capillary
transport or ”wicking” in capillary tubes, porous media
or the capillarities in a pack of powder. Unfortunately the
fairly simple - and thus nice to handle - Eq. (7) has some
limitations. For small times near zero the fluid velocity is
approaching infinity, which is not feasible. This discrep-
ancy can be explained with the neglect of the inertia term.
Also when flow is occurring in a vertical capillary under
gravity there is no limit to the maximum reachable height,
which originates from the neglect of the gravity term. In the
following sections the gravity term shall not be neglected
which still allows to give an analytic solution as already
shown by Washburn in 1921, however in terms of t(h) and
not h(t) as we seek it.

Viscous and hydrostatic dominated flow regime

To extend the just derived Lucas-Washburn equation to
flows where gravity and thus hydrostatic pressure have to
be taken into account one is only allowed to neglect the
inertia term of Eqs. (1) or (4) giving (here shown for Eq.
(4)):

2σ cos θ
R

= ρgh sinψ +
φµh

K
ḣ. (8)

Rearranging gives

ḣ =
2σ cos θ
φµ

K

R

1
h
− ρKg sinψ

φµ
, (9)

valid for h 6= 0 as there is a singularity.
To simplify the equation one may introduce the constants

(capillary tube and Darcy version)

a =
σR cos θ

4µ
=̂

2σ cos θ
φµ

K

R
(10)

and

b =
ρgR2 sinψ

8µ
=̂
ρKg sinψ

φµ
. (11)

Thus Eq. (9) reduces to

ḣ =
a

h
− b. (12)

As mentioned above, an analytic solution to this differential
equation is given by Washburn [2] or Lukas and Soukupova
[21]. It is calculated as follows: Eq. (12) can be rewritten as

dt =
hdh

a− bh
. (13)

After integration as shown in Appendix 2 one obtains

t = −h
b
− a

b2
ln(a− bh) + C. (14)

To find the unknown constant C the initial condition

h(t→ 0) = 0 (15)

can be used to give

C =
a

b2
ln(a). (16)

This leads to following implicit analytic form

t = −h
b
− a

b2
ln
(

1− bh

a

)
, (17)

which is the result of Washburn or Lukas and Soukupova
in terms of t = t(h). Hamraoui and Nylander [15] find this
solution to diverge as the liquid approaches the equilibrium
height. In 2000 Zhmud et al. [13] evolve a long term asymp-
totic solution in terms of h(t), shown here rearranged as

h(t) =
a

b
(1− e− b2t

a ). (18)

To obtain a more accurate solution for h(t) we follow a
new approach. Eq. (17) can be multiplied by −b2/a and by
subtracting 1 on both sides one obtains

−1− b2t

a
=
hb

a
− 1 + ln

(
1− bh

a

)
, (19)

which by taking the power of e gives after rearrangement

−e−1− b2t
a =

(
hb

a
− 1
)
e

hb
a −1. (20)

At this point the Lambert W function W (x) named after
Johann Heinrich Lambert, and defined by an inverse expo-
nential function

x = W (x)eW (x) (21)
can be used to solve for h. It can be seen that Eq. (20)
follows the form

y(t) = x(h)ex(h). (22)

By definition the W function can be written as

y(t) = W (y(t))eW (y(t)). (23)

Relating Eq. (22) and Eq. (23) gives

x(h)ex(h) = W (y(t))eW (y(t)). (24)

From this it can be seen that

x(h) = W (y(t)). (25)

Coming back to Eq. (20) the inverse properties of the Lam-
bert W function can be used to give

bh

a
− 1 = W

(
−e−1− b2t

a

)
. (26)

After rearranging one obtains

h(t) =
a

b

[
1 +W (−e−1− b2t

a )
]
, (27)

which is a full analytic solution in terms of h = h(t), and
can be verified as shown in Appendix 3. From now on we will
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refer to it as the extended solution. In Fig. 4 this extended
solution is calculated and plotted for a setup using silicon
fluid (0.93 cSt) in a 0.1 mm radius borosilicate glass cap-
illary. The material properties are found to be θs = 16.3◦,
µ = 7.6× 10−4 Pa s and σ = 15.9× 10−3 N/m. The other
lines in Fig. 4 refer to the Lucas-Washburn equation (Eq.
(7)) and the long time asymptotic solution by Zhmud et
al. [13] (Eq. (18)). The two numerical simulations are cal-
culated with constant contact angle and dynamic contact
angle as done by Chebbi [19], respectively. For the numeric
simulations inertia is neglected and for the dynamic contact
angle the equation given by Jiang et al. [22] (see Appendix
1) is used.

Fig. 4. Diagram showing the different solutions for silicon fluid 0.93

cSt in a 0.1 mm radius borosilicate glass capillary. Height h is plotted
versus time t.

For certain cases it might be of interest to consider a more
general definition of the initial condition (Eq. (15)) like

h(t0) = h0. (28)

This leads to

h(t) =
a

b

[
1 +W

(
(−a+ bh0)e−1+

b(bt0+h0−bt)
a

a

)]
, (29)

as is shown in Appendix 4. Regarding Eq. (29) it can be
seen that for t0 = 0 and h0 = 0 it is equal to Eq. (27), the
extended solution derived before.

Further information on the Lambert W function as de-
fined in Eq. (21), and its applications shall be given [23],
[24] and [25]. Its solutions are partly in the complex plane,
but switch to real values for −1/e ≤ x as shown in Fig. 5.
Also, the Lambert W function has been used to solve dif-
ferential equations before. For example in 1993 Barry et al.
[26] use the Lambert W function to give an analytical so-
lution to a transcendental equation related to the problem
the present work deals with. To calculate water movement
in unsaturated soil they use a differential equation which
is a simplified form of Eq. (12) with a = b (here shown re-
arranged and in our variables)

ḣ =
a

h
− a. (30)

Solving for the initial condition h(t → 0) = 0 gives an
equation featuring the Lambert W function

Fig. 5. Upper branch of the Lambert W function for −1/e ≤ x ≤ 5.

h(t) = 1 +W (−e−1−at). (31)

Barry et al. mention that it can be used to calculate infil-
tration as well as capillary rise of moisture in soils.

Practical evaluation of the Lambert W function

When applying Eq. (27) to practical problems it is impor-
tant to be able to calculate the numeric value of the Lam-
bert W function. In many commercial mathematical pro-
grams the Lambert W function is already included with its
call being W[x] or ProductLog[x]. It is also possible to use
spreadsheet calculation programs that don’t feature Lam-
bert W. In this case it is required to use an approximation
expression forW (x) that covers the relevant range. For our
case such an approximate function is given by Barry et al.
[26] (slightly rearranged) as

W (x) ≈ −1 +
√

2 + 2ex

1 + 4.13501
√

2+2ex
12.7036+

√
2+2ex

, (32)

with e being Euler’s number. This equation accounts for
the relevant range of −e−1 ≤ x ≤ 0 (upper branch) with a
maximum relative error of 0.1%.

Steady state time

Regarding Eq. (27) one may notice that for infinite time
the height gain converges into a maximum value hmax. This
is the point where the hydrostatic pressure balances the
capillary pressure, or mathematicallyW (0) = 0. This gives

hmax = h(t→∞) =
a

b
=

2σ cos θ
Rρg sinψ

. (33)

Here a and b are defined by Eqs. (10) and (11). As h ap-
proaches hmax at some point the height increase is so small
that one may speak of a steady state. To find the time
needed to reach this point, we define the steady state time
ts to be exactly that time where h has reached 99% of hmax.
Thus one may write

h(ts) = 0.99hmax. (34)

Using Eq. (33) and Eq. (27) gives
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0.99
a

b
=
a

b
(1 +W (−e−1− b2ts

a )). (35)

After rearranging one obtains

−0.01 = W (−e−1− b2ts
a ), (36)

and with Eq. (21)

−0.01e−0.01 = −e−1− b2ts
a . (37)

To obtain ts

−1− b2ts
a

= ln(0.01)− 0.01, (38)

and finally

ts =
a

b2
(− ln(0.01) + 0.01− 1) ≈ 3.62a

b2
. (39)

This may also be written with all variables to give

ts = 3.62
16σµ cos θ

R3ρ2g2 sin2 ψ
=̂ 3.62

2φσµ cos θ
Rρ2g2K sin2 ψ

. (40)

Flow velocity

To obtain the flow velocity ḣ(t) it is necessary to differ-
entiate the height h(t). For the Lucas-Washburn equation
one obtains

ḣ(t) =
√
a

2t
, (41)

while using the extended solution including gravity yields

ḣ(t) =
−b W (−e−1− b2t

a )

1 +W (−e−1− b2t
a )

. (42)

Both velocity functions are only defined for t > 0. Further
details on differentiating the Lambert W function can be
found in Appendix 3.

Dimensional analysis

To generalize the obtained solutions the introduction of
dimensionless numbers is always of interest. Zhmud et al.
[13] use

h∗ =
h(t)
hmax

, (43)

and

t∗ =
ρgr2t

8µhmax
. (44)

Ichikawa and Satoda [9] give dimensionless numbers that
also allow to account for the dynamic contact angle. For
the time they find

t∗ =
t

T0
, (45)

where T0 is defined as the characteristic time of viscous
effects

T0 =
ρD2

32µ
. (46)

To scale the height they use following expression

h∗ =

√
128
Me

h

D
, (47)

where Me is defined as Reynolds number divided by Cap-
illary number

Me =
σ0ρD

µ2
. (48)

Here σ0 refers to the static surface tension. Ichikawa and
Satoda scale the driving force by

Df =
σ cos θ
σ0

+
Bo
4
, (49)

where Bo is the Bond number as given in Eq. (52). In our
work, regarding Eqs. (39) and (40) we derive a dimension-
less number for the time, the ”capillary time number” TN

TN = t
b2

a
=

tρ2g2R3 sin2 ψ

16σµ cos θ
=̂

tRρ2g2Ksin2 ψ

2φσµ cos θ
. (50)

This TN can be transferred to t∗ (Eq. (44)) used by Zhmud
et al.. The TN can be interpreted as a specialized form of
the following term:

(Gravity force)2

Viscous force× Surface tension force
=

Bo2

Ca
, (51)

with the Bond number relating gravity forces to surface
tension forces

Bo =
ρg sinψR2

σ
, (52)

and the Capillary number relating viscous forces to surface
tension forces being

Ca =
µv
σ
∼ µR

σt
. (53)

From Eq. (39) it can be derived that if TN is larger than
3.62 a steady state has been reached as shown in Fig. 6.
To give a dimensionless number including the height, the
”capillary height number” HN, one may relate the height h
to the maximum obtainable height hmax as done by Zhmud
et al.

HN = h
b
a

=
hRρg sinψ
2σ cos θ

. (54)

The HN can also be regarded as a ”capillary Bond number”
since it relates gravity forces to surface tension forces.
Using these dimensionless numbers the Lucas-Washburn
equation (Eq. (7)) as well as the extended solution (Eq.
(27)) can be made dimensionless giving

HN =
√

2TN, (55)

for the Lucas-Washburn equation and

HN = 1 + W(−e−1−TN) (56)

for the extended solution including the gravity term. Fig. 6
shows that in the beginning the Lucas-Washburn solution
fits very good to the extended solution (Eq. (27)), however
tends to deviate to higher values for longer times due to
the neglect of gravity. For TN > 3.62 the extended solution
reaches a steady state. Regarding the velocity of the ex-

5



Fig. 6. Dimensionless representation of the Lucas-Washburn equation

and Eq. (27). Steady state reached for TN ≥ 3.62.

tended solution (Eq. (42)) one may derive a dimensionless
number for the flow velocity, the ”capillary velocity num-
ber” VN

VN =
ḣ
b

=
8ḣµ

ρgR2 sinψ
=̂

φḣµ
ρgK sinψ

. (57)

The VN can be interpreted as viscous forces in relation to
gravity forces

VN =
Ca
Bo

. (58)

Using TN and VN the flow velocity can be rewritten as

VN =

√
1

2TN
(59)

for the Lucas-Washburn equation and

VN =
−W(−e−1−TN)

1 + W(−e−1−TN)
(60)

for the extended solution including the gravity term. These
results are plotted in Fig. 7.

Fig. 7. Dimensionless representation of flow velocity calculated by

differentiating the Lucas-Washburn equation and our extended so-
lution Eq. (27).

When considering a setup using a horizontal capillary
or an experiment under microgravity the Lucas-Washburn
equation has to be applied. However it is not possible to use
the ”capillary time number” TN and the ”capillary height
number” HN derived before, since g or sinψ would be zero.

For these cases the following approach may be used: The
Lucas-Washburn equation (Eq. (7)) can be rearranged to

h2

R2
=
σ cos θ
2µR

t. (61)

When using a dimensionless height

h∗ =
h

R
, (62)

and a modified capillary number

Ca∗ =
2µR

σt cos θ
=̂

16µK
φRσt cos θ

, (63)

the Lucas-Washburn equation can be rewritten as

h∗ =

√
1

Ca∗
. (64)

Using these scalings, experimental values gathered with dif-
ferent liquids or different radii can all be expressed by a
single curve as is shown later in the chapter on experimen-
tal evidence.

Validity of the Lucas-Washburn equation

When comparing the Lucas-Washburn equation Eq. (7)
and the extended solution (Eq. (27)) one may notice that
the Lucas-Washburn equation is preferable due to its sim-
plicity, however it is not valid for increasing time. This rises
the question to which time tv it may be used when taking
into account an acceptable error, where for later times the
extended solution including gravity has to be considered.
This chapter tries to give more insight to this question. If
the acceptable discrepancy is - for example - 1% one may
write:

(100%− 1%) hLucas Washburn = hextended solution (65)

equal to

(1− 0.01)
√

2atv =
a

b
(1 +W (−e−1− b2tv

a )), (66)

with
√

2at =

√
σR cos θ

2µ
t (67)

being the Lucas-Washburn equation (Eq. (7)). To solve the
transcendental equation Eq. (66) for tv we use the follow-
ing approach. Considering the dimensionless number TN
derived in Eq. (50) one may assume that the solution (tv)
to Eq. (66) can be expressed by means of this number

tv = TNv
a
b2
, (68)

with TNv being the unknown value. Substituting tv in Eq.
(66) gives

0.99
√

2TNv = 1 +W (−e−1−TNv). (69)

This transcendental equation can now be solved by means
of numerical methods giving TNv = 0.0004523. Thus the
result is that the Lucas-Washburn equation can be used
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up to t = 0.0004523a/b2 when accepting an error of 1%.
The height reached at this point may again be expressed in
terms of HN

HNv =
hv

hmax
= 1 + W(−e−1−TNv), (70)

giving HNv = hv/hmax = 0.029775 for an error of 1%.
Values for further errors are given in Table 1.

Table 1
Further values for different errors

error TNv = tv b2/a HNv = hv/hmax

1% 0.0004523 0.029775

5% 0.0115465 0.144366

10% 0.0475088 0.277424

Fig. 8. Dimensionless representation of the Lucas-Washburn equation
and the extended solution (Eq. (27)), mark at 10% deviation.

Generalizing it can be concluded that under gravity the
Lucas-Washburn equation can be used up to about 10% of
the maximum reachable height.

Experimental evidence

To verify the obtained results the investigation done by
Stange [20] can be used as a benchmark. He examines the
fluid rise in capillary tubes made of borosilicate glass with
varying radius. Also the angle of inclination ψ is varied,
while two different liquids, silicon fluid (1.0 cSt) and FC 77
are used. The height recordings are performed by optical
means and are now plotted in dimensionless form in Fig. 9.
The dimensionless capillary height number ”HN” and the
capillary time number ”TN” introduced before are used.

Table 2

Experimental Data by Stange

Name Inner radius Fluid Inclin. ψ θ

Exp1 0.088 mm SF1 32.3◦ 16.3◦

Exp2 0.104 mm FC77 32.3◦ 28.0◦

Exp3 0.1405 mm SF1 88.7◦ 16.3◦

From the dimensionless plot it can be seen that the experi-
mental data by Stange matches the values predicted by the

Fig. 9. Dimensionless experimental results (ψ 6= 0) by Stange [20] as

described in Table 2.

extended solution Eq. (27). Especially for the steady state
values a good consistency can be observed. For TN between
0.2 and 1.4 some deviation to lower results can be seen, this
may be explained by a higher friction than expected origi-
nating from surface roughness, the neglect of entry effects
or assuming a constant contact angle.
As mentioned in the chapter ”dimensional analysis” the
scaling using TN and HN is not applicable for horizontal
capillaries as g · sinψ is zero. In Fig. 10 the dimensionless
height h∗ and the modified capillary number Ca∗ are used.
It can be seen that both experimental rows for horizontal
tubes by Stange collapse to the curve given by the Lucas-
Washburn equation.

Fig. 10. Dimensionless experimental results (ψ = 0, horizontal cap-
illary) by Stange as described in Table 3.

Table 3
Experimental Data by Stange

Name Inner radius Fluid Inclin. ψ θ

Exp4 0.109 mm SF1 0◦ 16.3◦

Exp5 0.104 mm FC77 0◦ 28.0◦

Conclusion

A method for deriving an analytic solution to the mo-
mentum balance of a liquid in a capillary tube is presented.
The well-established Lucas-Washburn equation is shown as
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well as an extended solution introduced. The extended so-
lution includes the gravity term (hydrostatic pressure) and
enables the calculation of the liquid rise behavior for longer
times. The time necessary to reach a steady state is exam-
ined and several relevant dimensionless numbers are found.
By means of these numbers a dimensionless plot of the
Lucas-Washburn equation and the extended solution in-
cluding gravity can be plotted. The flow velocity is obtained
by differentiating the height and a dimensionless number
for its description is found. Also the error made when ne-
glecting gravity and using the Lucas-Washburn equation is
determined. As an outlook it can be stated that deriving
further analytical solutions to the momentum equation is
still of great interest, as it could lead to a solution that is
also valid for shortest time regimes at the beginning of the
capillary rise process.
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Appendix 1

When a liquid-gas interface is subject to motion the dy-
namic contact angle θd formed between the liquid and solid
is different from the static contact angle θs. Jiang et al. [22]
(based on data by Hoffman [27]) give the following corre-
lation for the dynamic contact angle

cos θd − cos θs

cos θs + 1
= − tanh(4.94Ca0.702), (71)

where the capillary number is defined as

Ca =
µḣ
σ
. (72)

Bracke et al. [28] find

cos θd − cos θs

cos θs + 1
= −2Ca0.5. (73)

When considering silicon fluid (0.93 cSt) in a borosilicate
glass capillary (like in Fig. 4) and using some arbitrary rise
rates one obtains the values shown in Table 4. Coming back
to the numerical simulation presented in Fig. 4 (capillary
radius is 0.1 mm) Figs. 11 and 12 show further results of
the simulation featuring the dynamic contact angle. Due to
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Table 4
Calculated values of the dynamic contact angle for different capillary

rise rates. ”eff. dev.” refers to the effective deviation of the cosine

values of the dynamic vs. static contact angle.

Jiang et al. Bracke et al.

ḣ [mm/s] θd [◦] eff. dev. [%] θd [◦] eff. dev. [%]

1 18.04 0.94 21.14 2.83

5 21.26 2.90 25.94 6.31

10 23.87 4.72 29.06 8.93

50 34.95 14.6 39.81 20.0

Fig. 11. Numerical results (interface velocity) for silicon fluid (0.93

cSt) in a 0.1 mm capillary.

Fig. 12. Dynamic contact angle for same simulation.

the small deviation between the simulation with the static
contact angle and the dynamic one it can be concluded that
assuming a constant contact angle is feasible for capillary
rise in the investigated flow regime as typical contact line
rise rates (depending on radius, viscosity etc.) are mostly
found to be in the range of some mm/s. However one must
be aware that for very large capillaries and short times the
contact angle can not be assumed as constant and inertia
effects may as well be significant.

Appendix 2

To solve the integral of Eq. (13) the following approach
may be used:

t =
∫

h

a− bh
dh =

∫
(bh− a) + a

b(a− bh)
dh. (74)

This may be rearranged to

t =
∫
−1
b
dh+

∫
a

b

1
a− bh

dh. (75)

Preparing the substitution

y = a− bh (76)

by
dy = −bdh (77)

gives

t =
∫
−1
b
dh−

∫
a

b2
1
y
dy. (78)

Solving and reversing the substitute gives

t = −h
b
− a

b2
ln(y) = −h

b
− a

b2
ln(a− bh). (79)

Appendix 3

To show that the extended solution Eq. (27) fulfills the
differential equation (Eq. (12)) one may use the derivative
of the solution and put it back into the initial differential
equation.

By differentiating the defining Eq. (21) forW (x) [24] one
obtains

dx

dW (x)
= eW (x) +W (x)eW (x). (80)

Rearranging gives

W ′(x) =
1

eW (x) +W (x)eW (x)
, (81)

further
W ′(x) =

1
eW (x)(1 +W (x))

, (82)

and

W ′(x) =
W (x)

W (x)eW (x)(1 +W (x))
. (83)

Per definitionem:

x = W (x)eW (x) (84)

and finally

W ′(x) =
W (x)

x(1 +W (x))
. (85)

To ease the handling of Eq. (27) a coefficient z can be de-
fined:

z = −e−1− b2t
a , (86)

the derivative is
dz

dt
= z

−b2

a
. (87)

Putting Eq. (85), Eq. (87) (the inner derivative) and Eq.
(27) into Eq. (12) gives

a

b

W (z)
z(1 +W (z))

z
−b2

a
=

ab

a(1 +W (z))
− b. (88)

After some rearrangement one obtains

−b2

b
W (z) =

−b2

b
W (z) (89)

which proves that Eq. (27) is a solution to Eq. (12).
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Appendix 4

In following the derivation of the analytic solution for
the general initial condition h(c) = d shall be explained in
more detail. Starting from Eq. (14)

t = −h
b
− a

b2
ln(a− bh) + C (90)

one can use the initial condition to obtain

t = −h
b
− a

b2
ln(a− bh) + c+

d

b
+
a

b2
ln(a− bd). (91)

Rearranging gives

b2c

a
+
bd

a
− b2t

a
− bh

a
= ln((a− bh)(bd− a)), (92)

and
b2c

a
+
bd

a
− b2t

a
− bh

a
= ln((bh− a)(a− bd)), (93)

which gives

ln(−a+bd)−1+
b

a
(bc+d−bt) = ln(bh−a)+ bh

a
−1. (94)

After some further rearrangement

(−a+ bd)e−1+
b(bc+d−bt)

a

a
=
(
bh

a
− 1
)
e(

bh
a −1) (95)

and applying the inverse properties of the Lambert W func-
tion as shown before one finally obtains

h(t) =
a

b

[
1 +W

(
(−a+ bd)e−1+

b(bc+d−bt)
a

a

)]
. (96)
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