Gravitating non-Abelian solitons and hairy black holes in higher dimensions

Michael S. Volkov

LMPT, Tours
FRANCE

Bremen, August 2008

hep-th/0612219
Contents

- Gravitating Yang-Mills fields in string theory.
Einstein and Yang-Mills in D=4

Pure gravity /attraction/

\[\mathcal{L}_E = -\frac{R}{16\pi G} \]

has no solitons /Lichenrowitz/, there are black holes. Pure Yang-Mills /repulsion/

\[\mathcal{L}_{YM} = -\frac{1}{4g^2} F_{\mu\nu}^a F^{a\mu\nu} \]

is scale invariant \(\Rightarrow\) no solitons /Deser, Coleman/. Gravity + Yang-Mills = attraction+repulsion

\[\mathcal{L}_{EYM} = -\frac{R}{16\pi G} - \frac{1}{4g^2} F_{\mu\nu}^a F^{a\mu\nu} \]
EYM solutions in D=4

- Solitons of Bartnik-McKinnon ⇒ the first example of globally regular gravitational solitons.

- EYM black holes ⇒ the first example of hairy black holes, \(B_k^a \sim 1/r^3 \) /Galtsov+M.S.V./

- Generalizations: non-spherically symmetric, non-static solitons/black holes, coupling to other fields . . . /Kleihaus-Kunz+ . . . /

- Gravitating t’Hooft-Polyakov /Breitenlohner, Forgacs, Maison/

Manifest counter-examples to a number of electroweak theorems /uniqueness, staticity, circularity, Israel’s theorem, no-hair theorems . . . /

D=5, pure gravity

• if \(g^{E}_{\mu\nu} \) is a regular D=4 gravitational instanton \(\Rightarrow \)

\[
g_{MN}dx^M dx^N = dt^2 - g^{E}_{\mu\nu}dx^\mu dx^\nu
\]

is 5D Ricci flat. No AE instantons \(\Rightarrow \) no solitons.

• Localized but not regular: black holes

\[
g_{MN}dx^M dx^N = N dt^2 - \frac{dr^2}{N} - r^2 d\Omega_3^2, \quad N = 1 - \left(\frac{rg}{r} \right)^2
\]

• black strings: if \(g_{\mu\nu} \) is 4D Ricci flat (black hole) \(\Rightarrow \)

\[
g_{MN}dx^M dx^N = g_{\mu\nu}dx^\mu dx^\nu - (dx^4)^2
\]
pure YMA in D=5, particles

Pure Yang-Mills is not scale invariant in $D \neq 4$ (the coupling g is dimensionful) $\Rightarrow \exists$ solitons. If $A^a_\mu(x^\nu)$ is a solution of 4D Euclidean YM equations, then

$$A^a_M = (0, A^a_\mu(x^\nu)) \quad / \mu = 1, 2, 3, 4/$$

will be a soliton in 5D with the energy

$$E = \frac{1}{4g^2} \int (F^a_{\mu\nu})^2 d^4x \geq \frac{8\pi^2|n|}{g^2}$$

Self-dual 4D YM instantons \Rightarrow ‘YM particles’ in D=5.
pure YM in D=5, vortices

If $\partial/\partial x^4$ is a symmetry \Rightarrow

$$A^a_M = (0, A^a_i(x^k), H^a(x^k)), \quad /i, k = 1, 2, 3/$$

the energy per unit x^4,

$$E = \frac{1}{2g^2} \int ((\partial_i H^a + \varepsilon_{abc} A^b_i H^c)^2 + \frac{1}{2} (F^a_{ik})^2) d^3 x \geq \frac{4\pi|n|}{g^2}$$

coincides with the energy of the D=3 YM-Higgs system \Rightarrow

\Rightarrow monopoles, when lifted back to D=5 they become

‘YM vortices’.
Pure Yang-Mills in D=5 admits ‘particle’ and ‘vortex’ solutions.

What happens to them if they are coupled to gravity?
Gravitating YM particles

\[S = \int \left(-\frac{1}{16\pi G} R - \frac{1}{4g^2} F^a_{MN} F^{aMN} \right) \sqrt{g} \, d^5 x. \]

\[F^a_{MN} = \partial_M A^a_N - \partial_N A^a_M + \varepsilon_{abc} A^b_M A^c_N \quad (a = 1, 2, 3), \]

\[[G^{1/3}] = [g^2] = [\text{length}] \Rightarrow \text{dimensionless coupling} \]

\[\kappa = \frac{8\pi G}{g^6} \quad / \kappa = 2\alpha^2 / \]

SO(4)-symmetry: if \(\theta^a \) are the invariant forms on \(S^3 \),

\[ds^2 = \sigma(r)^2 N(r) dt^2 - \frac{dr^2}{N(r)} - r^2 \, d\Omega_3^2, \quad A^a = (1 + w(r)) \, \theta^a, \]

the length scale is \(g^2 \).
Field equations

\[r^2 N w'' + r w' + \kappa (m - (w^2 - 1)^2) \frac{w'}{r} = 2 (w^2 - 1)w , \]

\[rm' = r^2 N w'^2 + (w^2 - 1)^2 , \]

\[N \equiv 1 - \kappa m(r)/r^2 \]

\[\sigma' = \kappa \frac{w'^2}{r} \sigma \]

If \(\kappa = 0 \implies \sigma = N = 1 \), the YM particle with \(M_{\text{ADM}} = \frac{8}{3} \)

\[w = \frac{1 - b r^2}{1 + b r^2} , \]

\(b \in \mathbb{R} \) is a scale parameter. What happens if \(\kappa \neq 0 \)?
No finite mass solutions with $\kappa \neq 0$

$M_{\text{ADM}} < \infty \Rightarrow w(\infty) = \pm 1$. Either

- $w = 1 - 2br^2 + O(r^4)$, $m = O(r^3)$ as $r \to 0$ /solitons/ or
- $\exists r_h: N(r_h) = 0$, $N'(r_h) > 0$, $w(r_h) < \infty$ /black holes/

$$M_{\text{ADM}}[w(r)] = m(\infty) =$$

$$= \frac{r_h^2}{\kappa} + \int_{r_h}^{\infty} \frac{dr}{r} \left(r^2 w'^2 + (w^2 - 1)^2 \right) \exp \left(-\kappa \int_{r_h}^{\infty} \frac{w'^2}{r} \, dr \right)$$

One should have

$$\frac{d}{d\lambda} M[w(\lambda r)] = 0 \text{ for } \lambda = 1 \text{ but } \frac{d}{d\lambda} M[w(\lambda r)] < 0 \text{ } \forall \lambda$$
The SO(4) YM particles get completely destroyed by gravity. They resemble a dust, since

\[T_{\mu\nu} = \epsilon(r) \delta^0_\mu \delta^0_\nu \]

and they can be scaled to an arbitrary size ⇒ repulsion and attraction are not balanced ⇒ equilibrium states are not possible.

The globally regular solutions with infinite mass are quasi-periodic /infinite sequence of static spherical shells/ with the metric approaching the flat metric at large \(r \) (but not fast enough).
Quasi-periodic solutions

\[m(r) \sim \ln r. \text{ Remedy: } F^4, R^2 \text{ etc terms} \]
Gravitating Yang monopole in D=6

YM field is again = 4D instanton, but this time on S^4

$$ds^2 = \sigma(r)^2 N(r) dt^2 - \frac{dr^2}{N(r)} - r^2 (d\xi^2 + \sin^2 \chi d\Omega_3^2), \quad A^a = (1+w(\chi)) \theta^a,$$

YM equations decouple $\Rightarrow w(\chi) = \cos \chi$, Einstein eq-s \Rightarrow

$\sigma = 1,$

$$N = 1 - \frac{2Gm(r)}{r^3}, \quad m' = 8\pi, \quad m(r) = 8\pi r + m_0,$$

\Rightarrow mass issue linearly divergent

/Gibbons, Townsend ’06/

$D = 2k + 2$, $\text{SO}(2k)$, $m \sim r^{2k-3}$.
Gravitating YM vortices

If $\partial/\partial x^4$ is hypersurface orthogonal Killing vector, then

$$g_{MN} dx^M dx^N = e^{-\zeta} g_{\mu\nu} dx^\mu dx^\nu - e^{2\zeta} (dx^4)^2$$

$$A^a_M dx^M = A^a_\mu dx^\mu + H^a dx^4$$

reducing the 5D EYM to the 4D EYM-Higgs-dilaton theory

$$\sqrt{5} g \mathcal{L}_{EYM} =
\left(-\frac{(4) R}{2\kappa g^6} + \frac{3}{\kappa g^6} (\partial_\mu \zeta)^2 \right) + \frac{1}{2g^2} e^{-2\zeta} (D_\mu H^a)^2 - \frac{1}{4g^2} e^{\zeta} (F^a_{\mu\nu})^2 \right) \sqrt{-\left(4\right) g}$$

Gravitating non-Abelian solitons and hairy black holes in higher dimensions -- p.15/47
SO(3) symmetry

\[e^{-\zeta(r)} ds^2 = e^{2\nu(r)} dt^2 - dr^2 - R^2(r) d\Omega_2^2, \]

\[A^a_k dx^k = (w(r) - 1) \epsilon_{ai} n^i dn^k, \quad H^a = n^a e^{\zeta(r)} h(r) \]

the independent field equations can be represented as a seven-dimensional dynamical system

\[\frac{d}{dr} y_k = F_k(y_s, \kappa) \]

with \(y_k = \{w, w', h, h', Z = \zeta', R, R'\} \).
Fixed points

I. The origin, \((w, h, Z, R) = (1, 0, 0, 0)\); as \(r \to 0\),
\[
\begin{align*}
w &= 1 - br^2 + O(r^2), \\
h &= ar + O(r^3), \\
Z &= O(r^2), \\
R &= r + O(r^3).
\end{align*}
\] (1)

II. Infinity, \((w, h, Z, 1/R) = (0, 1, 0, 0)\); as \(r \to \infty\),
\[
\begin{align*}
w &= Ar^C e^{-r} + o(e^{-r}), \\
Z &= \kappa Q r^{-2} + O(r^{-3} \ln r), \\
h &= 1 - Cr^{-1} + O(r^{-2} \ln r), \\
R &= r - m \ln r + m^2 r^{-1} \ln r - r_0 + \gamma r^{-1} + O(r^{-2} \ln r).
\end{align*}
\] (2)

The ADM mass
\[
M_{\text{ADM}} = 3(C + (2 + \kappa)Q)
\]
III. “Warped” $AdS_3 \times S^2$: If $4q^3 + 7q^2 + 11q = 1$, then $w^2 = q$,

$$R^2 = \frac{\kappa}{(4q^2 - 13q + 1)} \left(11q - 1\right) \left(1 - q\right), \quad h^2 = \frac{1 - q}{R^2}, \quad Z^2 = -\frac{4q^2 - 13q + 1}{(4q + 1)R^2}$$

Evaluating, $w = 0.29$, $h = \frac{1.27}{\sqrt{\kappa}}$, $Z = \pm \frac{0.31}{\sqrt{\kappa}}$, $R = 0.75\sqrt{\kappa}$ \Rightarrow essentially non-Abelian field, Kantowski-Sachs geometry

$$ds^2 = e^{2(1+\kappa h^2)} Zr \, dt^2 - dr^2 - e^{2Zr} (dx^4)^2 - R^2 \, d\Omega_2^2$$

The characteristic eigenvalues

$$\left(-\frac{2.77}{\sqrt{\kappa}}, -\frac{2.47}{\sqrt{\kappa}}, -\frac{2.12}{\sqrt{\kappa}}, -\frac{0.61}{\sqrt{\kappa}} \pm \frac{1.24}{\sqrt{\kappa}}, \frac{0.88}{\sqrt{\kappa}}, \frac{1.54}{\sqrt{\kappa}} \right)$$
Global solutions

- $\kappa=0$: BPS monopole
- $\kappa \ll 1$: weakly gravitating BPS monopole
- $\kappa \sim 1$: strongly gravitating BPS monopole

exterior solution
interior solution

strong gravity
For $\kappa_{max} = 3.22 > \kappa > \kappa_{min} = 0.11$ one has more than one solution (‘branches’).
Limiting solution

Strongly gravitating solutions have a regular core connected to the asymptotic region by a long throat. For the limiting solution the throat becomes infinite and the solution splits up into the union of two different solutions.

- **Interior solution** interpolates between the regular origin and the Kantowsksi-Sachs (KS).
- **Exterior solution** interpolates between the KS and infinity. Looks like an extreme non-Abelian black string: in the Schwarzschild gauge ($r = R$) one has

\[
\begin{align*}
g_{rr} &\sim (r - r_h)^{-2}, \quad g_{tt} \sim (r - r_h)^{2.02}, \quad g_{44} = e^{2\zeta} \sim (r - r_h)^{2.02} \\
\end{align*}
\]

with $r_h = 0.42$, $\kappa = 0.316$.
Strong gravity limit

strong gravity limiting solution

interior

exterior (extreme black string)

+
Limiting solution
Conclusions

Gravitating YM vortices form a one-parameter family (fundamental branch) of globally regular solutions that interpolates between the flat space BPS monopole and the extreme non-Abelian black string.

∃ also excited solutions for which the YM field amplitude \(w \) oscillates around zero value. These solutions do not have the flat space limit.

Generalizations of the fundamental YM vortices have been studied /Brihaye, Hartmann, Radu/. Excited solutions have never been considered.
From the 4D viewpoint the YM vortices are regular gravitating monopoles. Gravitating solitons can usually be generalized to include a small black hole with a non-degenerate horizon in the core /Kastor, Traschen ’92/: replace the boundary condition at the origin, \(r = 0 \), by those at the regular horizon, \(r = r_h \). This generalizes YM vortices to black strings /Hartmann ’04/.

For a given \(\kappa \) there can be several YM vortices \(\Rightarrow \) one finds several black string solutions with small \(r_h \). As \(r_h \) increases, these solutions approach each other and finally merge for some maximal value \(r_h^{\text{max}}(\kappa) \). Black strings exists only for a finite domain of the \(\kappa - r_h \) parameter plane. /Brihaye, Hartmann, Radu ’05/.
‘Twisted’ solutions

/Brihaye, Radu ’05/ consider the case of a non-hypersurface orthogonal Killing vector $\partial/\partial x^4$:

$$g_{MN}dx^M dx^N = e^{-\zeta} g_{\mu\nu} dx^\mu dx^\nu - e^{2\zeta} (dx^4 + W_\mu dx^\mu)^2$$

$$A^a_M dx^M = A^a_\mu dx^\mu + H^a (dx^4 + W_\mu dx^\mu)$$

Upon the reduction to D=4 the twist W_μ becomes a U(1) vector fields \Rightarrow 4D EYM-Higgs-dilaton+U(1) model. When the charge associated to the U(1) field vanishes, the solutions reduce to the YM vortices/black strings.
Deformed solutions

/Brihaye, Hartmann, Radu ’05/ after the reduction to 4D choose the fields to be static, axially symmetric

\[ds^2 = f(r, \theta)dt^2 - m(r, \theta)(dr^2 + r^2 \sin^2 \theta) - l(r, \theta)d\varphi^2. \]

Within this ansatz they have obtained solutions analogues to multimonomopes and monopole - antimonopole pairs.

Both regular solutions and black strings are considered, the existence of several ‘solution branches’ is detected.

Lorentz boosting the solutions along the \(x^4 \) axis gives stationary spinning configurations.
Non-Abelian braneworlds

Uplifting the D=4 monopole gives a vortex in D=5, a domain wall in D=6 and a 3-brane in D=7. The YM and Higgs field can be chosen to be spherically symmetric,

\[
A^a_k = \epsilon_{akj} x^j W(r), \quad \Phi^a = x^a H(r) / r^2 = x^k x^k / ,
\]

where \(x^k \) are coordinates on the orthogonal space,

\[
ds^2 = A(r) \eta_{\mu\nu} dy^\mu dy^\nu - B(r) \delta_{ik} dx^i dx^k ,
\]

solutions with \(A(0) = 1, A(\infty) = 0 \Rightarrow \text{gravity localization by the monopole} /\text{Shaposhnikov et al. '03}/.

Similar solutions in D dimensions, with \(\Lambda \)-term, and with global monopoles have been analyzed.
Gravitating Yang-Mills fields in string theory.
Heterotic string theory

has the YM in D=10. Heterotic 5-brane contains the YM instanton in the orthogonal 4-space /Strominger ’90/

\[ds^2 = A(x^\mu)\eta_{MN}dy^Mdy^N - B(x^\nu)\delta_{\mu\nu}dx^\mu dx^\nu \]

\[A_a^\mu(x^\nu), \quad F_{\mu\nu} = \tilde{F}_{\mu\nu}, \quad \phi(x^\mu) \]

compactifications \(\Rightarrow\) many solitons – heterotic solitons /Duff, Khuri, Liu ’95/
YM via Kaluza-Klein

Type I string theory

\[L_{10} = \frac{1}{4} \hat{R} - \frac{1}{2} \partial_M \hat{\phi} \partial^M \hat{\phi} - \frac{1}{12} e^{-2\hat{\phi}} \hat{H}_{MNP} \hat{H}^{MNP} \]

fermion SUSY variations

\[\delta \hat{\psi}_M = \hat{D}_M \hat{\epsilon} - \frac{1}{48} e^{-\hat{\phi}} \left(\hat{\Gamma}^{SPQ}_M + 9 \delta_M \hat{\Gamma}^{PQ} \right) \hat{H}_{SPQ} \hat{\epsilon}, \]

\[\delta \hat{\chi} = -\frac{1}{\sqrt{2}} (\hat{\Gamma}^M \partial_M \hat{\phi}) \hat{\epsilon} - \frac{1}{12 \sqrt{2}} e^{-\hat{\phi}} \hat{\Gamma}^{SPQ} \hat{H}_{SPQ} \hat{\epsilon}. \]
Reduction on a group manifold

\[ds^2 = e^{\phi} \left\{ \frac{1}{2} e^{-2\phi} g_{\mu\nu} dx^\mu dx^\nu + \sum_{(\sigma)=1,2} \frac{1}{g^2_2(\sigma)} \eta^{(\sigma)}_{ab} \Theta^a(\sigma) \Theta^b(\sigma) \right\} \]

\[g_{\mu\nu} \sim (s^2, +1, +1, +1), \quad \eta^{(1)}_{ab} = \delta_{ab}, \quad \eta^{(2)}_{ab} = \text{diag}(1, 1, -s^2) \]

\[\hat{H}_3 = \sum_{(\sigma)=1,2} \left(\frac{1}{g^2_2(\sigma)} \Theta^1(\sigma) \wedge \Theta^2(\sigma) \wedge \Theta^3(\sigma) - \Theta^a(\sigma) \wedge F^a(\sigma) \right) + e^{-4\phi} \ast da \]

\[\Theta^a(\sigma) = A^a(x) - \theta^a(\sigma)(z), \quad \theta^a(\sigma) + \frac{1}{2} \eta^{(\sigma)}_{ad} \epsilon_{bcd} \theta^b(\sigma) \wedge \theta^c(\sigma) = 0 \]
D=4 theory

\[L_4 = \frac{R}{4} - \frac{1}{2} (\partial_\mu \phi)^2 + \frac{s^2}{2} e^{-4\phi} (\partial_\mu a)^2 - \frac{1}{4} e^{2\phi} \sum_{(\sigma)=1,2} \frac{\eta_{ab}^{(\sigma)}}{g^2(\sigma)} F_{\mu\nu}^{(\sigma)a} F_{\sigma b\mu\nu} \]

\[-\frac{1}{2} a \sum_{(\sigma)=1,2} \frac{\eta_{ab}^{(\sigma)}}{g^2(\sigma)} \ast F_{a\mu\nu}^{(\sigma)} F_{b\mu\nu}^{(\sigma)} + \frac{1}{8} \left(g^2_{(1)} - s^2 g^2_{(2)} \right) e^{-2\phi} \]

\[s^2 = -1 \] gives N=4 SU(2)×SU(2) gauged SUGRA (Freedman-Schwarz) /Chamseddine and M.S.V. ’98/

\[s^2 = +1 \] gives Euclidean N=4 SU(2)×SU(1,1) SUGRA /M.S.V. ’00/
fermionic SUSY variations

\[\delta \chi = \left(\frac{1}{\sqrt{2}} \gamma^\mu \partial_\mu \phi - \frac{1}{\sqrt{2} s} e^{-2 \phi} \gamma^5 \gamma^\mu \partial_\mu a \right) \epsilon \]
\[+ \frac{1}{2s} e^\phi \left(s \mathcal{F}^{(1)} - \gamma_5 \mathcal{F}^{(2)} \right) \epsilon + \frac{1}{4s} e^{-\phi} \left(s g^{(1)} - g^{(2)} \gamma_5 \right) \epsilon , \]

\[\delta \psi_\mu = \left(\partial_\mu + \frac{1}{4} \omega_{\alpha \beta, \mu} \gamma^\alpha \gamma^\beta + \sum_{(\sigma) = 1, 2} K_{ab}^{(\sigma)} T^{(\sigma) a} A_\mu^{(\sigma) b} + \frac{1}{2s} e^{-2 \phi} \gamma_5 \partial_\mu a \right) \epsilon \]
\[+ \frac{1}{2\sqrt{2} s} \ e^\phi \left(s \mathcal{F}^{(1)} + \gamma_5 \mathcal{F}^{(2)} \right) \gamma_\mu \epsilon + \frac{1}{4\sqrt{2} s} e^{-\phi} \left(s g^{(1)} + g^{(2)} \gamma_5 \right) \gamma_\mu \epsilon \]

with \(\mathcal{F}^{(\sigma)} = - \frac{1}{g^{(\sigma)}} \eta_{ab}^{(\sigma)} \gamma^\alpha \gamma^\beta F^{(\sigma) a}_{\alpha \beta} T^{(\sigma) b} \)
Supersymmetry

Setting

$$\delta \chi = \delta \psi_\mu = 0$$

gives equations for the SUSY Killing spinor ϵ.

In most cases these equations are inconsistent.

Sometimes their consistency conditions can be reformulated as first order non-linear Bogomol’nyi equations for the bosonic fields $\{g_{\mu\nu}, A^{(\sigma)b}_\mu, \phi, a\}$

Exactly solvable case: $\ g(1) = 1, \ g(2) = 0, \ A^{(2)a}_\mu = 0$
SUGRA monopole

solution of Bogomol’nyi equations

\[ds^2 = 2 e^{2\phi} \left\{ dt^2 - d\rho^2 - R^2(\rho) \left(d\vartheta^2 + \sin^2 \vartheta d\varphi^2 \right) \right\}, \]

\[\tau^a A^a_\mu dx^\mu = \frac{i}{2} (1 - w(\rho))[T, dT], \quad \phi = \phi(\rho); \quad T = \tau^a n^a \]

\[w = \pm \frac{\rho}{\sinh \rho}, \quad e^{2(\phi - \phi_0)} = \frac{\sinh \rho}{2R(\rho)}, \quad R(\rho) = \sqrt{2 \rho \coth \rho - w^2 - 1}. \]

/Chamseddine, M.S.V. ’97/

Four independent Killing spinors \(\Rightarrow \) N=1 SUSY
Uplifting to $D=10$

\[ds^2 = dt^2 - dx_1^2 - dx_2^2 - dx_3^2 - d\rho^2 - R^2(\rho) \, d\Omega_2^2 - \Theta^a \Theta^a \]

\[H = \frac{1}{2\sqrt{2}} e^{-\frac{3}{4}\phi} (F^a \wedge \Theta^a + \epsilon_{abc} \Theta^a \wedge \Theta^b \wedge \Theta^c) \]

\[\Theta^a = A^a - \theta^a \]

According to /Maldacena, Nunez ’01/ this solution describes the NS-NS 5-brane wrapped on $S^2 \Rightarrow$ the dual description of N=1 SYM \Rightarrow the dual description of confinement.

Used to be called ‘Maldacena-Nunez solution’.
Gates-Zwiebach model

SO(4), N=4 gauged SUGRA

\[\mathcal{L}_4 = \frac{1}{4} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{4} e^{2\phi} F^a_{\mu\nu} F^{a\mu\nu} + \frac{1}{8} (e^{-2\phi} + \xi^2 e^{2\phi} + 4\xi). \]

can be obtained by reducing D=11 SUGRA on \(S^7 \)

/Cvetic, Lu, Pope ’00/; /Cvetic, Gibbons, Pope ’04/

\[\delta \chi = \frac{1}{\sqrt{2}} \gamma^\mu \partial_\mu \phi \epsilon + \frac{1}{2} e^\phi \mathcal{F} \epsilon + \frac{1}{4} (e^{-\phi} - \xi e^\phi) \epsilon, \]

\[\delta \psi_\mu = \mathcal{D}_\mu \epsilon + \frac{1}{2\sqrt{2}} e^\phi \mathcal{F} \gamma_\mu \epsilon + \frac{1}{4\sqrt{2}} (e^{-\phi} + \xi e^\phi) \gamma_\mu \epsilon. \]

\[\mathcal{F} = \frac{1}{2} \alpha^a \alpha_\beta \gamma^\alpha \gamma^\beta \]

\[\delta \chi = \delta \psi_\mu = 0 \Rightarrow \text{consistency conditions} \]

\Rightarrow \text{Bogomol’nyi equations} \Rightarrow /Chamseddine, M.S.V. ’04/
Bogomol’nyi equations

\[ds^2_{(4)} = -e^{2V(\rho)} dt^2 + e^{2\lambda(\rho)} d\rho^2 + r^2(\rho) d\Omega^2, \]

\[\tau^a A_\mu^a dx^\mu = \frac{i}{2} (1 - w(\rho))[T, dT], \quad \phi = \phi(\rho); \quad T = \tau^a n^a \]

\[V' - \phi' = \xi \frac{P}{\sqrt{2N}} e^{\phi + \lambda}, \quad Q = e^{V + \phi} \frac{w}{N}, \]

\[\phi' = \sqrt{2} \frac{BP}{N} e^\lambda, \quad w' = -\frac{rwB}{N} e^{-\phi + \lambda}, \]

\[N = \sqrt{w^2 + P^2}, \quad r' = Ne^\lambda. \]

\[P = e^{\phi} \frac{1-w^2}{\sqrt{2r}} + \frac{r}{2\sqrt{2}} (e^{-\phi} + \xi e^\phi), \quad B = -\frac{P}{\sqrt{2r}} + \frac{1}{2} e^{-\phi}. \]
Solutions

comprise a family labeled by ξ, all have N=1 SUSY. $\xi = 0 \Rightarrow$ SUGRA monopole. $\xi > 0$ asymptotically AdS. $\xi < 0$ compact. For $\xi = -2$ static Einstein universe $ds^2 = -dt^2 + 2\theta^a \theta^a$, $A^a = \theta^a$ inv. forms on S^3.

Oxidizing gives branes in D=11.
Wormholes in Euclidean SUGRA

\[\mathcal{L}_4 = \frac{R}{4} - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} e^{-4\phi} \partial_\mu a \partial^\mu a - \frac{1}{4} e^{2\phi} F_{\mu \nu}^a F^{a \mu \nu} \]

\[-\frac{a}{2} \ast F_{\mu \nu}^a F^{a \mu \nu} + \frac{1}{4} (1 - q^2) e^{-2\phi} \]

reduction on \(S^3 \times AdS_3 \) with the same radii.

Simplest solutions

\[g_{\mu \nu} = \delta_{\mu \nu}, \quad F_{\mu \nu}^a = \pm \ast F_{\mu \nu}^a, \quad a = \mp \frac{1}{2} e^{2\phi}, \]

\[\partial_\sigma \partial^\sigma e^{-2\phi} = -F_{\mu \nu}^a F^{a \mu \nu} \]

coincide with the heterotic instantons of Strominger, but are not supersymmetric, their D=10 analogs are different.
Homogeneous and isotropic ansatz

\[ds^2 = e^{2\nu}d\tau^2 + e^{2\lambda}(d\xi^2 + R(d\vartheta^2 + \sin^2 \vartheta d\varphi^2)) \]

\[R = \sin \xi, \sinh \xi, \xi \text{ if } K = 1, -1, 0 \]

gauge field /with \(T = \tau^1 \sin \theta \cos \varphi + \tau^2 \sin \theta \sin \varphi + \tau^3 \cos \theta / \)

\[A = (a_0 d\tau + a_1 d\chi) T + i(1 - W) [T, dT], \]

\[a_0 = -\frac{w'R}{W^2} \frac{dR}{d\xi}, \quad a_1 = \frac{w(w^2 - K) R^2}{W^2}, \quad W = \sqrt{1 + R^2(w^2 - K)} \]

Here

\[w = w(\tau), \quad \phi = \phi(\tau), \quad a = a(\tau), \quad \nu = \nu(\tau), \quad \lambda = \lambda(\tau) \]
Wormhole solution

\[ds^2 = \frac{e^{2\lambda_0}}{\cos (2e^{2\lambda_0}\tau)} \left(\frac{e^{4\lambda_0} d\tau^2}{(\cos (2e^{2\lambda_0}\tau))^2} + d\Omega_3^2 \right) \]

\[e^{2(\phi_0 - \phi)} = \cos \left(4(2 + h)e^{2\phi_0}\tau \right) \]

\[a' = 2e^{4\phi}(3w - w^3 + h), \quad \omega = \pm 1, \quad K = 1 \]

Let \(\tau_0 = \frac{\pi}{4}e^{-2\lambda_0} \). If \(\tau \to \pm \tau_0 \) then \(\cos (2e^{2\lambda_0}\tau) \to 0 \), the metric is flat – interpolates between two flat regions. If

\[|2 + h| < 1/2 \]

then dilaton is bounded in the interval \((-\tau_0, \tau_0)\). Otherwise it diverges, but this does not spoil the metric.

Supersymmetric wormholes? /Maldacena and Maoz ’05/
Supersymmetry conditions

\[\frac{1}{Y} \frac{dY}{d\tau} = \left(w + \frac{3Kw - w^3 + h}{Y^2} \right) \cos \Psi + \frac{2(w^2 - K)}{Y} \sin \Psi, \]

\[\frac{1}{Y} \frac{dw}{d\tau} = \left(w + \frac{3Kw - w^3 + h}{Y^2} \right) \sin \Psi - \frac{2(w^2 - K)}{Y} \cos \Psi, \]

where \(Y = \exp(\lambda - \phi), \)

\[\tan \frac{\Psi}{2} = -\frac{B + Q}{N + \Lambda}, \quad B = \frac{K - w^2}{Y} + \frac{Y}{2}, \quad Q = -\frac{qY}{2}, \]

\[\Lambda = \frac{3}{2} w + \frac{3Kw - w^3 + h}{2Y^2}, \quad N = \sqrt{B^2 + \Lambda^2 - Q^2}. \]
Solutions

with the reflection symmetry comprise a 4-parameter family labeled by $q, h, K, w'(0)$
Conclusions

Analysis of gravitating YM fields in General Relativity are useful for accumulating a qualitative understanding of the solution behaviour. Interesting mathematically.

This qualitative experience can be used for constructing non-Abelian solutions in string theory inspired SUGRA models.