Black hole formation in highenergy particle collisions

Hirotaka Yoshino

(University of Alberta)

with V.S. Rychkov

Black hole production at the LHC?

August 25-29, 2008: Short talk @ Bremen

CONTENTS

- Introduction
- High-energy two-particle system
- Finding the apparent horizon
- Numerical results
- Summary and discussion

CONTENTS

Introduction

- High-energy two-particle system
- Finding the apparent horizon
- Numerical results
- Summary and discussion

Arkani-Hamed et al. (1998)

In TeV gravity scenarios, our space is a 3-brane in large extra dimensions and Planck energy could be O(TeV).

- In TeV gravity scenarios, our space is a 3-brane in large extra dimensions and Planck energy could be O(TeV).
- If this is the case, trans-Planckian collision of particles would occur, and quantum gravity phenomena would be observed at the LHC.

- In TeV gravity scenarios, our space is a 3-brane in large extra dimensions and Planck energy could be O(TeV).
- If this is the case, trans-Planckian collision of particles would occur, and quantum gravity phenomena would be observed at the LHC.
- Theoretical studies of trans-Planckian collisions:

- In TeV gravity scenarios, our space is a 3-brane in large extra dimensions and Planck energy could be O(TeV).
- If this is the case, trans-Planckian collision of particles would occur, and quantum gravity phenomena would be observed at the LHC.
- Theoretical studies of trans-Planckian collisions:
 - string theory
 - e.g., Veneziano, JHEP 0411, 011 (2004)

Arkani-Hamed et al. (1998)

- In TeV gravity scenarios, our space is a 3-brane in large extra dimensions and Planck energy could be O(TeV).
- If this is the case, trans-Planckian collision of particles would occur, and quantum gravity phenomena would be observed at the LHC.
- Theoretical studies of trans-Planckian collisions:
 - string theory
 - e.g., Veneziano, JHEP 0411, 011 (2004)
 - (semi-)classical approximation

mini BH production and subsequent decay.

Giddings & Thomas, Dimopoulos & Landsberg (2002)

$$\sigma_{pp\to bh}(\tau_m, s) = \sum_{ij} \int_{\tau_m}^1 d\tau \int_{\tau}^1 \frac{dx}{x} f_i(x) f_j(\tau/x) \sigma_{ij\to bh}(\tau s)$$
$$\sigma_{ij\to bh}(\tau s) \simeq \pi [r_h(\sqrt{\tau s})]^2$$

Giddings & Thomas, Dimopoulos & Landsberg (2002)

$$\sigma_{pp\to bh}(\tau_m, s) = \sum_{ij} \int_{\tau_m}^1 d\tau \int_{\tau}^1 \frac{dx}{x} f_i(x) f_j(\tau/x) \sigma_{ij\to bh}(\tau s)$$
$$\sigma_{ij\to bh}(\tau s) \simeq \pi [r_h(\sqrt{\tau s})]^2$$

~ 1 BH / 1 s

Giddings & Thomas, Dimopoulos & Landsberg (2002)

$$\sigma_{pp\to bh}(\tau_m, s) = \sum_{ij} \int_{\tau_m}^1 d\tau \int_{\tau}^1 \frac{dx}{x} f_i(x) f_j(\tau/x) \sigma_{ij\to bh}(\tau s)$$
$$\sigma_{ij\to bh}(\tau s) \simeq \pi [r_h(\sqrt{\tau s})]^2$$

$\sim 1 \text{ BH} / 1 \text{ s}$

Basic assumption:

Giddings & Thomas, Dimopoulos & Landsberg (2002)

$$\sigma_{pp\to bh}(\tau_m, s) = \sum_{ij} \int_{\tau_m}^1 d\tau \int_{\tau}^1 \frac{dx}{x} f_i(x) f_j(\tau/x) \sigma_{ij\to bh}(\tau s)$$
$$\sigma_{ij\to bh}(\tau s) \simeq \pi [r_h(\sqrt{\tau s})]^2$$

~ 1 BH / 1 s

Basic assumption:

accurate value of $\sigma_{\rm BH}$??

Giddings & Thomas, Dimopoulos & Landsberg (2002)

$$\sigma_{pp\to bh}(\tau_m, s) = \sum_{ij} \int_{\tau_m}^1 d\tau \int_{\tau}^1 \frac{dx}{x} f_i(x) f_j(\tau/x) \sigma_{ij\to bh}(\tau s)$$
$$\sigma_{ij\to bh}(\tau s) \simeq \pi [r_h(\sqrt{\tau s})]^2$$

$\sim 1 \text{ BH} / 1 \text{ s}$

Basic assumption:

accurate value of σ_{BH} ?? \square AH is useful.

AH is a (D-2)-dimensional closed surface whose outgoing null geodesic congruence has zero expansion.

- AH is a (D-2)-dimensional closed surface whose outgoing null geodesic congruence has zero expansion.
- AH existence is the sufficient condition for the BH formation.

AH is a (D-2)-dimensional closed surface whose outgoing null geodesic congruence has zero expansion.

AH existence is the sufficient condition for the BH formation.

AH is a (D-2)-dimensional closed surface whose outgoing null geodesic congruence has zero expansion.

AH existence is the sufficient condition for the BH formation.

$$b_{max}^{(\mathrm{AH})} < b_{max}^{(\mathrm{BH})}$$

AH is a (D-2)-dimensional closed surface whose outgoing null geodesic congruence has zero expansion.

AH existence is the sufficient condition for the BH formation.

• We use the four- and higher-dimensional general relativity and study the AH formation in the particle collisions.

- We use the four- and higher-dimensional general relativity and study the AH formation in the particle collisions.
- We adopt the model of a high-energy particle by Aichelburg and Sexl (AS).

- We use the four- and higher-dimensional general relativity and study the AH formation in the particle collisions.
- We adopt the model of a high-energy particle by Aichelburg and Sexl (AS).
- We ignore
 - charge, color charge, spin of incoming particle
 - the effect of the brane tension
 - the structure of extra dimensions

- We use the four- and higher-dimensional general relativity and study the AH formation in the particle collisions.
- We adopt the model of a high-energy particle by Aichelburg and Sexl (AS).
- We ignore
 - charge, color charge, spin of incoming particle
 - the effect of the brane tension
 - the structure of extra dimensions
- We will find the lower bound on $\sigma_{
 m BH}$.

Penrose, unpublished (1974).

- Penrose, unpublished (1974).
 - 4D, headon

- Penrose, unpublished (1974).
 - 4D, headon

Penrose, unpublished (1974).

4D, headon

Eardley and Giddings, PRD66, 044011 (2003).

Penrose, unpublished (1974).

4D, headon

Eardley and Giddings, PRD66, 044011 (2003).

4D, non-head-on (analytic)

Penrose, unpublished (1974).

4D, headon

- Eardley and Giddings, PRD66, 044011 (2003).
 4D, non-head-on (analytic)
- Yoshino and Nambu, PRD67, 024009 (2003).

Penrose, unpublished (1974).

4D, headon

- Eardley and Giddings, PRD66, 044011 (2003).
 4D, non-head-on (analytic)
- Yoshino and Nambu, PRD67, 024009 (2003).
 high-D, non-head-on (numerical)

Penrose, unpublished (1974).

4D, headon

- Eardley and Giddings, PRD66, 044011 (2003).
 4D, non-head-on (analytic)
- Yoshino and Nambu, PRD67, 024009 (2003).
 high-D, non-head-on (numerical)

Studies on AHs in AS particle collision

Penrose, unpublished (1974).

4D, headon

- Eardley and Giddings, PRD66, 044011 (2003).
 4D, non-head-on (analytic)
- Yoshino and Nambu, PRD67, 024009 (2003).
 high-D, non-head-on (numerical)

Yoshino and Rychkov, PRD71, 104028 (2005).

CONTENTS

Introduction

- High-energy two-particle system
- Finding the apparent horizon
- Numerical results
- Summary and discussion

Schwarzshild-BH metric in isotropic coordinate

$$ds^{2} = -\left(\frac{1 - M/2\bar{R}^{D-3}}{1 + M/2\bar{R}^{D-3}}\right)^{2} d\bar{T}^{2} + \left(1 + \frac{M}{2\bar{R}^{D-3}}\right)^{4/(D-4)} \left(d\bar{Z}^{2} + \sum_{i=1}^{D-2} d\bar{X}_{i}^{2}\right)$$
$$M = \frac{8\pi Gm}{(D-2)\Omega_{D-2}}.$$

Schwarzshild-BH metric in isotropic coordinate

$$ds^{2} = -\left(\frac{1 - M/2\bar{R}^{D-3}}{1 + M/2\bar{R}^{D-3}}\right)^{2} d\bar{T}^{2} + \left(1 + \frac{M}{2\bar{R}^{D-3}}\right)^{4/(D-4)} \left(d\bar{Z}^{2} + \sum_{i=1}^{D-2} d\bar{X}_{i}^{2}\right)$$
$$M = \frac{8\pi Gm}{(D-2)\Omega_{D-2}}.$$

Lorentz transformation:

$$\bar{T} = \gamma(t - vz),$$

$$\bar{Z} = \gamma(-vt + z),$$

$$\bar{X}_i = x_i.$$

Schwarzshild-BH metric in isotropic coordinate

$$ds^{2} = -\left(\frac{1 - M/2\bar{R}^{D-3}}{1 + M/2\bar{R}^{D-3}}\right)^{2} d\bar{T}^{2} + \left(1 + \frac{M}{2\bar{R}^{D-3}}\right)^{4/(D-4)} \left(d\bar{Z}^{2} + \sum_{i=1}^{D-2} d\bar{X}_{i}^{2}\right)$$
$$M = \frac{8\pi Gm}{(D-2)\Omega_{D-2}}.$$

Lorentz transformation: $\bar{T} = \gamma(t - vz),$ $\gamma \to \infty$ $\bar{Z} = \gamma(-vt + z),$ $\bar{X}_i = x_i.$

Schwarzshild-BH metric in isotropic coordinate

$$ds^{2} = -\left(\frac{1 - M/2\bar{R}^{D-3}}{1 + M/2\bar{R}^{D-3}}\right)^{2} d\bar{T}^{2} + \left(1 + \frac{M}{2\bar{R}^{D-3}}\right)^{4/(D-4)} \left(d\bar{Z}^{2} + \sum_{i=1}^{D-2} d\bar{X}_{i}^{2}\right)$$
$$M = \frac{8\pi Gm}{(D-2)\Omega_{D-2}}.$$

Lorentz transformation:

 $\gamma
ightarrow \infty$

$$\bar{T} = \gamma(t - vz),$$

$$\bar{Z} = \gamma(-vt + z),$$

$$\bar{X}_i = x_i.$$

$$\mu = m\gamma$$

Schwarzshild-BH metric in isotropic coordinate

$$ds^{2} = -\left(\frac{1 - M/2\bar{R}^{D-3}}{1 + M/2\bar{R}^{D-3}}\right)^{2} d\bar{T}^{2} + \left(1 + \frac{M}{2\bar{R}^{D-3}}\right)^{4/(D-4)} \left(d\bar{Z}^{2} + \sum_{i=1}^{D-2} d\bar{X}_{i}^{2}\right)$$
$$M = \frac{8\pi Gm}{(D-2)\Omega_{D-2}}.$$

Lorentz transformation:
$$\bar{T} = \gamma(t - vz),$$
 $\gamma \to \infty$ $\bar{Z} = \gamma(-vt + z),$ $\bar{X}_i = x_i.$

$$\begin{split} ds^2 &= -d\bar{u}d\bar{v} + d\bar{r}^2 + \bar{r}^2 d\bar{\Omega}_{D-3}^2 + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^2, \\ \Phi(\bar{r}) &= \begin{cases} 2\log\bar{r} & (D=4), \\ 2/(D-4)\bar{r}^{D-4} & (D\geq5). \end{cases} \end{split}$$

Schwarzshild-BH metric in isotropic coordinate

$$ds^{2} = -\left(\frac{1 - M/2\bar{R}^{D-3}}{1 + M/2\bar{R}^{D-3}}\right)^{2} d\bar{T}^{2} + \left(1 + \frac{M}{2\bar{R}^{D-3}}\right)^{4/(D-4)} \left(d\bar{Z}^{2} + \sum_{i=1}^{D-2} d\bar{X}_{i}^{2}\right)$$
$$M = \frac{8\pi Gm}{(D-2)\Omega_{D-2}}.$$

Lorentz transformation:
$$\bar{T} = \gamma(t - vz),$$
 $\gamma \to \infty$ $\bar{Z} = \gamma(-vt + z),$ $\bar{X}_i = x_i.$

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} 2\log\bar{r} & (D=4), \\ 2/(D-4)\bar{r}^{D-4} & (D \ge 5). \end{cases}$$

hereafter $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$ is the unit of length.

Schwarzshild-BH metric in isotropic coordinate

$$ds^{2} = -\left(\frac{1 - M/2\bar{R}^{D-3}}{1 + M/2\bar{R}^{D-3}}\right)^{2} d\bar{T}^{2} + \left(1 + \frac{M}{2\bar{R}^{D-3}}\right)^{4/(D-4)} \left(d\bar{Z}^{2} + \sum_{i=1}^{D-2} d\bar{X}_{i}^{2}\right)$$
$$M = \frac{8\pi Gm}{(D-2)\Omega_{D-4}}.$$

Lorentz transformation:
$$\bar{T} = \gamma(t - vz),$$
 $\gamma \to \infty$ $\bar{Z} = \gamma(-vt + z),$ $\bar{X}_i = x_i.$

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} 2\log\bar{r} & (D=4), \\ 2/(D-4)\bar{r}^{D-4} & (D \ge 5). \end{cases}$$

hereafter $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$ is the unit of length.

length unit: $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \begin{cases} v - 2\log r\theta(u) + u\theta(u)/r^2 & (D=4), \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D \ge 5), \end{cases} \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \end{split}$$

length unit:
$$r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$
$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4)\\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \begin{cases} v - 2\log r\theta(u) + u\theta(u)/r^2 & (D=4), \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D \ge 5), \end{cases} \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \end{split}$$

$$ds^{2} = -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^{2}dr^{2} + r^{2}\left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^{2}d\Omega_{D-3}^{2}$$

length unit: $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \begin{cases} v - 2\log r\theta(u) + u\theta(u)/r^2 & (D=4), \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D \ge 5), \end{cases} \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \end{split}$$

$$ds^{2} = -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^{2}dr^{2} + r^{2}\left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^{2}d\Omega_{D-3}^{2}$$

- $v, r, \phi_i = \text{const.}$ is a null geodesic
- \bullet u is an affine parameter

length unit:
$$r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \begin{cases} v - 2\log r\theta(u) + u\theta(u)/r^2 & (D=4), \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D \ge 5), \end{cases} \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \end{split}$$

$$ds^{2} = -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^{2}dr^{2} + r^{2}\left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^{2}d\Omega_{D-3}^{2}$$

- $v, r, \phi_i = \text{const.}$ is a null geodesic
- \bullet u is an affine parameter

$$u = r^{D-2}$$

length unit:
$$r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \begin{cases} v - 2\log r\theta(u) + u\theta(u)/r^2 & (D=4) \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D \ge 5) \end{cases} \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \end{split}$$

$$ds^{2} = -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^{2}dr^{2} + r^{2}\left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^{2}d\Omega_{D-3}^{2}$$

- $v, r, \phi_i = \text{const.}$ is a null geodesic
 - \bullet u is an affine parameter

coordinate singularity

U

$$u = r^{D-2}$$

length unit: $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \begin{cases} v - 2\log r\theta(u) + u\theta(u)/r^2 & (D=4) \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D \ge 5) \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \end{split}$$

$$ds^{2} = -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^{2}dr^{2} + r^{2}\left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^{2}d\Omega_{D-3}^{2}$$

- $v, r, \phi_i = \text{const.}$ is a null geodesic
- \bullet u is an affine parameter

$$u = r^{D-2}$$

length unit:
$$r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \begin{cases} v - 2\log r\theta(u) + u\theta(u)/r^2 & (D=4), \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D \ge 5), \end{cases} \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \end{split}$$

$$ds^{2} = -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^{2}dr^{2} + r^{2}\left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^{2}d\Omega_{D-3}^{2}$$

- $v, r, \phi_i = \text{const.}$ is a null geodesic
- \bullet u is an affine parameter

length unit: $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$

$$u = r^{D-2}$$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \begin{cases} v - 2\log r\theta(u) + u\theta(u)/r^2 & (D=4), \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D \ge 5), \end{cases} \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \end{split}$$

$$ds^{2} = -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^{2}dr^{2} + r^{2}\left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^{2}d\Omega_{D-3}^{2}$$

- $v, r, \phi_i = \text{const.}$ is a null geodesic
 - \bullet u is an affine parameter

length unit: $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$

$$u = r^{D-2}$$

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

length unit: $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$

U

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$
$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4)\\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D\geq5) \end{cases}$$

Null geodesic coordinates

length unit: $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$

11

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

Null geodesic coordinates

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \left\{ \begin{array}{c} v - 2\log r\theta(u) + u\theta(u)/r^2 \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D=4), \\ (D \geq 5), \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \\ \\ ds^2 &= -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^2 dr^2 + r^2 \left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^2 d\Omega_{D-3}^2 \\ &\qquad \text{shock} \\ v, r, \phi_i &= \text{const. is a null geodesic} \\ & \mathcal{U} \text{ is an affine parameter} \\ \end{split}$$

length unit: $r_0 = \left(\frac{8\pi G_D \mu}{\Omega_{D-3}}\right)^{1/(D-3)}$

11

Flat coordinates

$$ds^{2} = -d\bar{u}d\bar{v} + d\bar{r}^{2} + \bar{r}^{2}d\bar{\Omega}_{D-3}^{2} + \Phi(\bar{r})\delta(\bar{u})d\bar{u}^{2},$$

$$\Phi(\bar{r}) = \begin{cases} -2\ln\bar{r} & (D=4) \\ \frac{2}{(D-4)\bar{r}^{D-4}} & (D \ge 5) \end{cases}$$

$$\begin{split} \bar{u} &= u \\ \bar{v} &= \left\{ \begin{array}{c} v - 2\log r\theta(u) + u\theta(u)/r^2 \\ v + 2\theta(u)/(D-4)r^{D-4} + u\theta(u)/r^{2D-6} & (D=4), \\ (D \geq 5), \\ \bar{r} &= r\left(1 - \frac{u}{r^{D-2}}\theta(u)\right), \\ ds^2 &= -dudv + \left[1 + (D-3)\frac{u\theta(u)}{r^{D-2}}\right]^2 dr^2 + r^2 \left[1 - \frac{u\theta(u)}{r^{D-2}}\right]^2 d\Omega_{D-3}^2 \\ \bullet \quad v, r, \phi_i &= \text{const.} \text{ is a null geodesic} \\ \bullet \quad u \text{ is an affine parameter} \\ \end{split}$$

shock

1/

b : Impact parameter

b : Impact parameter

x

b : Impact parameter

CONTENTS

Introduction

- High-energy two-particle system
- Finding the apparent horizon
- Numerical results
- Summary and discussion

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

Outer boundary: $r = r_{max}$ • Continuity of the surface; • Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

Outer boundary: $r = r_{max}$ • Continuity of the surface; • Continuity of the null

tangent vector.

U

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:
Outer boundary: $r = r_{max}$

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

Expansion is zero.

Outer boundary: $r = r_{max}$

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

Expansion is zero.

- Continuity of the surface;
- Continuity of the null tangent vector.

Inner boundary:

- Continuity of the surface;
- Continuity of the null tangent vector.

AH:

$$\left\{ r^{D-2} - h \right\}^2 \left\{ h_{,rr} + (D-3) \frac{h_{,r}}{r} \left[1 + \frac{(D-2)h - (3/2)rh_{,r}}{r^{D-2} + (D-3)h} + \frac{(D-2)h - (1/2)rh_{,r}}{r^{D-2} - h} \right] \right\} + r^{-2} \left(r^{D-2} + (D-3)h \right)^2 \left\{ h_{,\phi\phi} + (D-4)\cot\phi h_{,\phi} + \frac{h_{,\phi}^2}{2} \left[\frac{(D-3)}{r^{D-2} + (D-3)h} - \frac{(D-7)}{r^{D-2} - h} \right] \right\} = 0.$$

CONTENTS

Introduction

- High-energy two-particle system
- Finding the apparent horizon
- Numerical results
- Summary and discussion

D	4	5	6	7	8	9	10	11
$b_{max}^{(\mathrm{new})}/r_0$	0.843	1.145	1.33	1.44	1.51	1.57	1.61	1.65

D	4	5	6	7	8	9	10	11
$b_{max}^{(\mathrm{new})}/r_0$	0.843	1.145	1.33	1.44	1.51	1.57	1.61	1.65

D	4	5	6	7	8	9	10	11
$b_{max}^{(\mathrm{new})}/r_0$	0.843	1.145	1.33	1.44	1.51	1.57	1.61	1.65
$\sigma_{\mathrm{AH}}/\pi \left[r_h(2\mu)\right]^2$								

D	4	5	6	7	8	9	10	11
$b_{max}^{(\mathrm{new})}/r_0$	0.843	1.145	1.33	1.44	1.51	1.57	1.61	1.65
$\sigma_{\rm AH}/\pi \left[r_h(2\mu)\right]^2$	0.76	1.54	2.15	2.52	2.77	2.95	3.09	3.20

D	4	5	6	7	8	9	10	11
$b_{max}^{(\mathrm{new})}/r_0$	0.843	1.145	1.33	1.44	1.51	1.57	1.61	1.65
$\sigma_{\mathrm{AH}}/\pi \left[r_h(2\mu)\right]^2$	0.76	1.54	2.15	2.52	2.77	2.95	3.09	3.20

• $1.5 < \sigma_{AH} / \pi [r_h(2\mu)]^2 < 3.2$

D	4	5	6	7	8	9	10	11
$b_{max}^{(\mathrm{new})}/r_0$	0.843	1.145	1.33	1.44	1.51	1.57	1.61	1.65
$\sigma_{\mathrm{AH}}/\pi \left[r_h(2\mu)\right]^2$	0.76	1.54	2.15	2.52	2.77	2.95	3.09	3.20

- $1.5 < \sigma_{\rm AH} / \pi \left[r_h(2\mu) \right]^2 < 3.2$
- BH production rate is fairly larger than 1BH/1s.

(If the energy loss is small).

 $A_{\rm AH}$

 $A_{\rm AH} < A_{\rm EH}$

 $A_{\rm AH} < A_{\rm EH} < A_{\rm BH}$

 $A_{\rm AH} < A_{\rm EH} < A_{\rm BH}$ $M_{\rm AH} := \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm AH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)}$

 $\begin{aligned} A_{\rm AH} &< A_{\rm EH} &< A_{\rm BH} \\ M_{\rm AH} &:= \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm AH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)} \\ &< \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm BH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)} \end{aligned}$

 $\begin{array}{ll} A_{\rm AH} &< A_{\rm EH} &< A_{\rm BH} \\ \\ M_{\rm AH} & \coloneqq \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm AH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)} \\ & < \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm BH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)} &\leq M_{\rm BH} \end{array}$

 $\begin{array}{ll} A_{\rm AH} &< A_{\rm EH} &< A_{\rm BH} \\ \\ M_{\rm AH} & := \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm AH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)} \\ & < \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm BH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)} &\leq M_{\rm BH} \end{array}$

 $\begin{aligned} A_{\rm AH} &< A_{\rm EH} &< A_{\rm BH} \\ M_{\rm AH} &:= \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm AH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)} \\ &< \frac{(D-2)\Omega_{D-2}}{16\pi G_D} \left(\frac{A_{\rm BH}}{\Omega_{D-2}}\right)^{(D-3)/(D-2)} \leq M_{\rm BH} \end{aligned}$

Implication for the LHC

Implication for the LHC

Anchordoqui, Feng, Goldberg, Shapere, Phys.Lett. B594, 363 (2004)

Implication for the LHC

Anchordoqui, Feng, Goldberg, Shapere, Phys.Lett. B594, 363 (2004)

BH production rate highly depends on the amount of radiated energy.

CONTENTS

Introduction

- High-energy two-particle system
- Finding the apparent horizon
- Numerical results
- Summary and discussion

• We studied the AH formation in the collision of highenergy particles

- We studied the AH formation in the collision of highenergy particles
- The problem was reduced to solving the 2-dim elliptic equation with unusual boundary conditions

- We studied the AH formation in the collision of highenergy particles
- The problem was reduced to solving the 2-dim elliptic equation with unusual boundary conditions
- We developed a numerical code to solve this problem and found the maximal impact parameter

- We studied the AH formation in the collision of highenergy particles
- The problem was reduced to solving the 2-dim elliptic equation with unusual boundary conditions
- We developed a numerical code to solve this problem and found the maximal impact parameter
- The value of $\sigma_{AH}/\pi \left[r_h(2\mu)\right]^2$ ranges from 1.5 to 3.2

- We studied the AH formation in the collision of highenergy particles
- The problem was reduced to solving the 2-dim elliptic equation with unusual boundary conditions
- We developed a numerical code to solve this problem and found the maximal impact parameter
- The value of $\sigma_{AH}/\pi \left[r_h(2\mu)\right]^2$ ranges from 1.5 to 3.2
- If the energy loss by gravitational radiation is small, the production rate is fairly larger than 1BH/1s.
Effect of charge HY and R.B. Mann, PRD74 (06) 044003 [gr-qc/0605131].

- Effect of charge HY and R.B. Mann, PRD74 (06) 044003 [gr-qc/0605131].
- Effects of Spin and duration HY, A. Zelnikov and V.P. Frolov, PRD75, 124005 (2007).

- Effect of charge HY and R.B. Mann, PRD74 (06) 044003 [gr-qc/0605131].
- Effects of Spin and duration HY, A. Zelnikov and V.P. Frolov, PRD75, 124005 (2007).

Further discussion POSTER!

Appendix

Final state restriction

Angular momentum & AH formation

The Kerr BH is extremal if
$$J = J_{\star}(M)$$

$$J_{\star}(M) = \begin{cases} (1/2)Mr_h(M) & (D = 4) \\ (2/3)Mr_h(M) & (D = 5) \end{cases}$$

The BH (or AH) is expected to form only if

$$q \equiv J_{\rm system}/J_{\star}(M_{\rm system}) \lesssim 1,$$

• In our system,
$$q = \begin{cases} 0.84 & (D=4) \\ 0.93 & (D=5) \end{cases}$$

 This criterion was well confirmed in the collapse of rapidly rotating stars in 4-dim. by many authors, e.g, Sekiguchi & Shibata