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Lorentz Invariance, the main ingredient of Special Relativity, is one of the pillars of modern physics. Though
Special Relativity has been replaced by General Relativity, Lorentz Invariance is still valid locally.All physical
fields have to obey the laws of local Lorentz Invariance. This is also the reason why gravity within the theory
of General Relativity has to be described by the metric tensor. Here we give a short introduction into the early
experiments and show that they disproved the exact validity of the Galilean framework for the description
of classical mechanics. After a short summary of Special Relativity, the procedure of synchronization is
analyzed. It is emphasized that no experiment should depend on the synchronization. Otherwise it might be
possible to simulate or compensate effects by choosing another synchronization.Accordingly, the requirement
of synchronization independence is a guideline for the choice of appropriate measurable quantities which
then reveal relativistic physics in an unambiguous manner. Examples are given. In a subsequent article the
modern experiments implementing this kind of notions will be discussed. Also some remarks are made on
the importance of Lorentz Invariance in daily life. Finally we comment on possible violations of Lorentz
Invariance and their measurability.
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Abbreviations used in this article:
SR = Special Relativity, GR = General Relativity, LI = Lorentz Invariance, LT = Lorentz transformations.

1 Introduction

Hundered years ago, the theory of Special Relativity (SR) has been proposed by Einstein [1]. This theory
revolutionized the view of the physical world – it led to a unified view of space and time, to the famous
mass-energy relation E = mc2, as well as to the formulation of General Relativity (GR) which replaced
Special Relativity, see the article by G. Schäfer in this issue [2]. However, Lorentz Invariance (we restrict
ourselves to the homogeneous part), the most important ingredient of Special Relativity, is still valid locally
and leads to the result that the gravitational field in General Relativity has to be represented by a metrical
tensor. SR is much more than a physical theory for the propagation of light and particles, it is necessary
for the interpretation of many experimental data and, even more important, it is a theoretical framework for
other physical theories, as for the Standard Model, for example, and is the basis for relativistic quantum
field theory.

Today, Lorentz Invariance (LI) is indispensible for practical purposes: Together with GR it is necessary
for the functioning of the Global Positioning System GPS as well as for spectroscopy and metrology.Atomic
spectra, used in connection with the realization of the international atomic time (TAI), can be understood
only by including LI, and the comparison and calibration of clocks in various countries, again necessary
for the definition of TAI, requires to take into account the special (and general) relativistic effects due to the
motion (and position) of these clocks.

Owing to this overwhelming importance of SR it is clear that the experimental basis for such a theory
has to be as good as possible. Indeed, starting with Fizeau, Michelson, and others in the 19th century, there
are a lot of experiments carried through which disproved the Galilean structure of space-time, and explored,
instead, its relativistic structure and tested LI with ever increasing accuracy. It is remarkable that just before
the 100th anniversary of SR a kind of a race started among many experimental groups in the world in order
to obtain the best tests of LI showing that LI still is in the focus of modern phyiscs. The three famous
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experiments providing the basis of LI, namely the test of the isotropy of light propagation, of the constancy
of the speed of light and of time dilation, were all improved in 2003 [3–5], and further improvements can
be expected in the very near future. Until now no departure from LI has been observed. – The increasing
accuracy in the tests of these basic principles are mainly based on the improvements of the precision and
stability of clocks. Indeed, almost all tests of LI (and of GR) can be interpreted as clock-comparison tests
(see below).

Beside the universal importance and applicability of LI, the situation becomes even more involved
because almost all approaches to a quantum gravity theory like string theory, canonical loop quantum
gravity, or non-commutative geometry predict small deviations from exact Lorentz symmetry. Therefore
there is a strong pressure on the experimental side to improve their devices in order to get even more
precise results than obtained up to now. In a first approach one expects that quantum gravity modifies any of
today’s valid standard theories at a scale of the Planck length, Planck time, or Planck energy. For standard
laboratory experiments, the energy involved is of the order 1 eV so that deviations are expected to occur
at the order 10−28 which seems to be far of any experimental access. It should be stressed, however, that
all these predictions are in fact merely hypotheses, these predictions are not based on complete theories.
In addition, there might perhaps also some mechanism at work which may lead to some enhancements of
the expected effect as it is the case for deviations from Newton potential at small distances as predicted by
higher dimensional theories. Therefore, there is still a possibility that deviations from standard physics may
occur at lower levels. Consequently, any improvement of the accuracy of experimental results is of great
value. Furthermore, even for laboratory experiments, as will be shown at the end of this review, there are
instruments which possess at least in principle a capability to approach the 10−28 level.

This is the first of two review papers. Here we introduce the main notions of LI and SR, in the second
paper we like to review the experimental status of LI. We start by showing that at the end of the 19th century
inconsistencies in the theoretical description of mechnanis and electrodynamics had been recognized. More
importantly, also the experimental situation became even worse since all the attempts clearly failed to verify
the motion between the Earth and an ether, a prediction which follows form the theoretical understanding at
that time. Then, we introduce the basic notions, namely the notion of an inertial system and of the relativity
principle, which the derivation of the Lorentz and Poincaré trasformations were based on. One of the main
results of the Lorentz and Poincaré transformations were the unification of space and time and, thus, the
notion of simultaneity. While simultaneity is unimportant for the physical interpretation of SR and LI (only
synchronization independent quantities can be taken for an unambigous description of experiments since
otherwise it might be possible to simulate or compensate effects by choosing just another setting of clocks),
it is important for the understanding of the physics behind LI and for the selection of meaningful observables
reveal physical effects of LI in an unambigious way. Finally we summarize the meaning of SR and LI and
give some outlook of “predictions” from quantum gravity theories suggesting a tiny violation of LI at very
high energies.

2 Before Special Relativity

2.1 The theoretical frame

Prerelativistic physics is characterized by two theories: Newtonian or (non-relativistic) classical machanics
and Mawxell’s theory. While Newtonian mechanics is Galilean invariant, Maxwell’s equations are not: The
force in Newton’s equation F = mẍ transforms covariant under Galilei-Transformations

x′ = Rx + vt+ a , t′ = t+ b , (1)

where R is a rotation, v the relative velocity between two inertial systems, a a translation, and b a re-
set of the clock which is not allowed to depend on the position, orientation or relative velocity. On the
other hand, it has been shown by Bateman [6] that Maxwell’s equations in vacuum are invariant under
conformal transformations.
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This will become inconsistent at last as one wishes to couple both theories, as in the Lorentz force
equation mẍ = qE + q

c v × B. If the left-hand-side is Galilei covariant while the right hand side is
Poincaré covariant, then the relativity principle is violated: The same experiment will lead to different
results when performed in different frames. There will be observer systems which are distinguished by a
specific outcome of certain experiments.

The Galilean invariance of classical mechanics is a consequence of the invariance of the force equation
F = mẍ only if one assumes a certain F and an absolute time, t′ = t+ b. This assumption has been stated
by Newton even though there is no need for doing that. It has been shown later that dropping the assumption
of an absolute time leads to the Lorentz transformations.

One of the consequences of the different covariance groups defined by classical mechanics and Maxwell’s
equations is that the speed of light which is constant in Mawxell’s theory may acquire any value within
classical mechanics. This is due to the (Galilean) addition of velocities

u′ = u + v , (2)

where v is the velocity of a second observer with respect to a first observer and u and u′ are the velocities
of a body with respect to the first and second inertial frame. One way to make both theories compatible is
to assume that Maxwell’s theory is valid in a preferred frame only in which the velocity of light is constant.
This particular frame can be identified with an ether frame. By going to another frame, one should observe
a velocity and orientation dependent velocity of light, as predicted by the classical law (2) of the addition
of velocities

c′(θ, v) =
√
c2 + v2 + 2cv cos θ

≈ c

(
1 +

v

c
cos θ +

1
2
v2

c2
(1 + 3 cos θ)

)
, (3)

where v is the velocity of the observer with respect to the ether and θ = ∠(c,v). We also made an expansion
for small velocities. This is the basis for searches for an orientation dependence or anisotropy of the velocity
of light and for a velocity dependendence of the velocity of light.

The violation of Galilean invariance came in by comparing the dynamics of different realms of physics,
namely mechanics and electrodynamics. The same one does today when one searches for a violation of LI:
one compares the dynamics of the electromagnetic field and the dynamics of (various) quantum particles
or fields.

2.2 First experiments

In principle, all experiments with light or with any other electromagnetic phenomenon that are peformed on
Earth and, thus, in a frame moving with a variable orientation and velocity with respect to a frame defined
by the Sun, by our galaxy, or by the cosmic background radiation, can be used for a search for the ether. In
fact, already very early it became clear that at least a naive version of an ether cannot be compatible with the
experimental results. These experiments played no decisive role in the course of establishing SR but at the
end disproved classical mechanics and showed that some new elements had to be taken into consideration.
Here we shortly describe some of these early experiments which are incompatible with standard classical
mechanics and Galilean kinematics. The setups of some of these experiments are still used today.

2.2.1 Aberration and the experiment of Airy

Aberration is the effect that incoming light, when viewed from a moving system, seems to come from a
different direction. The non-relativistic part of aberration has an analogue in everyday experience: falling
rain, when observed from a moving car, seems to come from ahead. In the same way light from stars seem
to come from a direction slightly shifted in the direction of motion. This has already been observed by
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Fig. 1 (online colour at: www.ann-phys.org) Aberration: If for one observer the light from a distant star
arrives from a direction θ0 (left), then for a second observer moving with a velocity v with respect to the first
observer (right) light arrives from another direction θ < θ0.

Bradley in 1725 who recognized that the position of the stars is related to the state of motion of the Earth,
see Fig. 1.

The non-relativistic aberration can be calculated very easily by referring to Fig. 2. If for an observer at
rest in a given inertial frame light comes from a direction given by the angle θ0, then an observer moving
in that inertial frame has to tilt the ocular a bit in order to account for the motion of the ocular during the
time the light propagates inside the ocular: light now seems to arrive from a direction θ

tan θ =
ct sin θ0

ct cos θ0 + vt
=

sin θ0
cos θ0 + v

c

. (4)

The aberration angle δθ = θ − θ0 then is

tan δθ = tan(θ − θ0) =
tan θ − tan θ0

1 + tan θ tan θ0
= − v

c

sin θ0
1 + v

c cos θ0
≈ − v

c
sin θ0 , (5)

where we approximated for small velocities v. If v is given by the motion of the Earth around the sun, then
this results in a 1-year periodic change of the apparent direction of the incoming star light.

In an experiment designed by Airy in 1871, it should be possible to determine the motion of the telescope
with respect to the ether. The trick is to use a second version of the same telescope filled with water. This

��

�

Fig. 2 (online colour at: www.ann-phys.org) After entering the
telescope, light needs some time to reach the ocular. During this
time the telescope and the ocular moves and, thus, has to be tilted
a bit.
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Fig. 3 (online colour at: www.ann-phys.org) The experiment of Airy. The
direction of the incoming light is given by θ0, in water the direction is θ′.
The orientation of the telescope is described by the angle θ.

modifies the velocity of the light inside the telescope and, thus, the angle the telecope has to be tilted in order
to account for the finite velocity of light inside the telescope. Then we have one more condition that allows
the calculation of the velocity relative to the ether. The description is a bit more complicated than before
since we have to take into account an additional refraction when entering the optically more dense medium,

sin(θ0 − θn) = n sin(θ′ − θn) . (6)

Here n is the refractive index and θ0 and θ′ are the directions of the propagation of light outside the telescope
and within the water and θn the new angle of the telescope. We find

tan(θn) =
(c/n)t sin(θ′)

(c/n)t cos(θ′) + vt
=

sin(θ′)
cos(θ′) + nv

c

, (7)

where θ′ still depends on θ. The aberration is given by (5) where we have to use tan θn insetad of tan θ. Being
a transcendental equation, it cannot be solved exactly. However, using the approximation |θn−θ0|, |nv/c| �
1 we obtain the aberration δθn = θn − θ0, with

δθn = −n2v

c
sin θ0 . (8)

The difference between the aberrations of the air and water filled telescopes is

δθn − δθ = − (n2 − 1
) v
c

sin θ0 . (9)

This change in the aberration has never been observed. Therefore, one of the above assumption cannot be
true. The n2 term comes in during use of the Galilean addition of velocities. If we use Einstein addition
law, then this term is not present, in agreement with observation. The same phenomenon happens in the
experiment by Fizeau.

2.2.2 The Fizeau “ether drag” experiment

In this interference experiment carried through by Fizau in 1851, see Fig. 4, light will be split coherently.
Both parts of the light ray propagate through a moving medium where the motion is in opposite direction.
A change in the velocity of the medium should result in moving interference fringes.

The velocity of light in the moving medium, for v � c, is

clab ≈ c

n
± σv , (10)
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Fig. 4 (online colour at: www.ann-phys.org) The experiment of Fizeau: The split light beams propagates
through differently moving media. The interference fringes are sensitive on the magnitude of the flow speed.

where σ = 1 − ε/n2 and ε = 0 stands for the Galilean (2) and ε = 1 for the Einstein addition of velocities.
Since it does not interfere with any result from SR, we can describe light by plane waves

ϕ = exp (i(kx− ωt)) = exp
(
iω

(
1
clab

x− t

))
, (11)

what results in the observable intensity

I =
1
2

{
1 + cos

[
ω

(
1

c/n+ σv
− 1
c/n− σv

)
l

]}
≈ 1

2

[
1 + cos

(
2n2σ

ω

c

v

c
l
)]

, (12)

where l is the distance light travels in the medium and where we used v � c. The phase shift depends on v
so that a change in v allows to determine ε. The result is not compatible with ε = 0. Therefore, either the
Galilean addition of velocities is not correct or one tries to explain the result by assuming a dragging of the
ether with the motion of the moving medium.

2.2.3 The experiment of Michelson and Morley

The first experiment searching for the ether was the Michelson-Morley experiment, see Fig. 5, which in
its advanced version was capable to disprove the orientation dependence of the velocity of light (3) as
originating from the Galiean addition of velocities (2). No orientation dependence has been observed in
this experiment though it has the accuracy to detect the motion of the Earth through the ether assuming the
ether to be attached to the Sun.

We describe this experiment by calculating the difference in the time-of-flight ∆t of the light along the
two interferometer arms. This depends on the orientation of the interferometer and leads to a phase shift
∆φ = ω∆twhere ω is the frequency of the light. The difference ∆t can be calculated either in the frame of
the interferometer using the direction dependent velocity of light, or in the ether frame taking into account
the motion of the interferometer. The calculation in the ether frame refers to Fig. 6 showing the propagation
of the light rays along one interferometer arm from the beam splitter A to the mirror B where during the
flight the mirror continues to move so that the light effectively propagates the distance from A to B′. This
yields the time-of-flight along one interferometer arm

∆t(l, ϑ) =
2lc

c2 − v2

√

1 − v2

c2
(1 − cos2 ϑ) , (13)

where ϑ is the angle between the interferometer arm and the velocity v of the interferometer with respect to
the ether. Doing this for both interferometer arms, which are assumed to be orthogonal, yields the difference
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Fig. 5 (online colour at: www.ann-phys.org) The interference exper-
iment of Michelson and Morley. Light is split coherently at the beam
splitter and propagates in two orthogonal directions. After reflection at
the mirrors it recombines again at the beam splitter. If the velocity of
light is direction dependent then the interference fringes should vary
during the rotation of the apparatus.
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Fig. 6 (online colour at: www.ann-
phys.org) The trajectories of light in an
interferometer arm that moves through the
ether along the x-axis.

in the time of flight ∆t = ∆t(l, ϑ) − ∆t(l, ϑ+ π/2) and, thus, the phase shift

∆φ =
2lω
c

1
1 − v2

c2

(√

1 − v2

c2
(1 − cos2 ϑ) −

√

1 − v2

c2
(
1 − sin2 ϑ

)
)

≈ 2lω
c

v2

c2
cos(2ϑ) , (14)

where we made an expansion for v � c. A calculation of the same process in the interferometer system
using the orientation dependent velocity of light yields exactly the same result.

For an armlength of 11 m, light with a wavelength of 550 nm and a velocity of the Earth around the sun of
about 30 km/s, this yields a phase shift of ∆φ = 0.8π. The sensitivity of the Michelson-Morley apparatus
was ∆φ ∼ 0.01π. However, no effect has been observed. This leads to a maximum velocity of the apparatus
with respect to the ether system of v ≤ 8 km/s. Using the velocity of the Earth with respect to the cosmic
background, that is, taking the microwave background as ether frame, should result in a more than 10-fold
larger effect and makes the failure even more drastic.

Therefore either the addition of velocities is not correct or some process has to be modified.A modification
may be the dragging of the ether by massive bodies. Another explanation was the hypothesis of Lorentz and
Fitzgerald proposing a physical contraction of the length of the interferometer by a factor

√
1 − v2/c2 in

the direction of the motion. This was an important step towards establishing the Lorentz transformations.
This physical contraction has to be universal, that is, independent of the material used for the interferometer
arms. In fact, subsequently, Morley and Miller [7,8] repeated the experiment with different materials, like
pine wood, sand stone etc. Of course, they didn’d find any material dependent effect.
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Fig. 7 The setup of the experiment of Trouton and Noble. Two opposite charges move
with velocity v through the ether. The resulting magnetic field acts on the charges and
gives a torque.

For arms of unequal lengths l1 �= l2, one obtains as phase difference

∆φ =
2ω
c

1
1 − v2

c2

(

l1

√

1 − v2

c2
(1 − cos2 ϑ) − l2

√

1 − v2

c2
(
1 − sin2 ϑ

)
)

=
2ω
c

(
l1 − l2 +

v2

c2
1
2
(
l1 − l2 + l1 cos2 ϑ− l2 sin2 ϑ

))
+ O(v4/c4) , (15)

so that a change in the velocity should lead to a change in the phase. This is the issue of the experiment of
Kennedy and Thorndike performed as late as in 1932 [9].

2.2.4 The experiment of Trouton and Noble

In this experiment [10], Trouton and Noble checked whether electromagnetic phenomena single out an
ether frame. If the Maxwell equations possess their well known form in the ether system and if an absolute
motion of a charge with respect to the ether creates a magnetic field

B = e
v × r

r3
, (16)

then both charges of a dipole moving with a velocity v with respect to the ether feel a Lorentz force due to
the magnetic field of the other charge. This leads to the torque

M = r × F = e2 r × (v × (v × r))
r3

, (17)

see Fig. 7. For a capacitor C, the torque is

T = 1
2CV

2 v
2

c2
sin(2ψ) sin2 ϕ , (18)

where V is the voltage applied to the capacitor, ψ the angle between v and the condensor, and ϕ the angle
between v and the suspension. Though the sensitivity of the experiment of Trouton and Noble was not
sufficient, better experiments performed later have shown no effect.

3 Special Relativity

3.1 Basic notions

The basic notions in the derivation of the Lorentz transformations (LT) are the inertial systems, the relativity
principle, and the notion of simultaneity (or synchronization) which is needed for an operational meaning of
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the velocity of bodies moving with respect to an observer. These notions are already known from classical
mechanics and can be taken over except the notion of simultaneity. The definition of a frame of reference to
be an inertial system relies on the uniform motion of force-free particles. The relativity principle states that
by performing experiments inside a box in an inertial system with identical intial and boundary conditions
and perfect shielding from the environment, it is not possible to determine the state of motion of this box.
The latter requires the covariance of physical equations: all laws of physics have to acquire the same form
in all boxes, that is, in all inertial systems.

Since in classical mechanics time is absolute, all inertial systems carry the same time and are, thus,
automatically synchronized. If one does not accept the absolute time and likes to replace the synchronization
with a physical process with finite propagation speed, then ambiguities may occur. In principle one may take
any physical process to synchronize clocks at different positions, but it is preferable to use a distinguished
phenomenon. Since the propagation of light is a universal and unique phenomenon (the velocitiy does not
depend on the velocity of the source and there is only one light signal connecting two events) light is a
good choice for that. Since the measured velocity of a body moving with respect to the observer depends
on the synchronization of clocks at different positions, it is clear that the statement that the velocity of light
is constant depends on the synchronization procedure chosen. However, the two-way velocity of light does
not depend on the synchronization. Furthermore, since in all experiments only the two-way velocity of light
plays a role – in fact: can play a role – synchronization is, in principle, a completely unimportant issue in
SR. The description of all the effects characteristic for SR should lead to the same result irrespective of
the chosen synchronization. The particular effects which are characteristic for special relativistic physics,
remain unaffected by the choice of a synchronization. However, the condition of being independent of any
synchronization serves as a guide for the selection of unambiguous tests of special relativistic effects where
it is not possible to manipulate the experimental result by choosing another synchronization procedure. We
will address this issue below in Sect. 4.

3.2 Derivation of the Poincaré and Lorentz transformation

Since the derivations of the Poincaré transformations and LT have been exposed many times, we just mention
that there are at least three ways to derive them, see Fig. 8. The first one was used by Einstein [1] where he
assumed the constancy of the speed of light and the relativity principle in the sense that there is no preferred
inertial system. This leads to the transformations of the coordinates (t(p),x(p)) and (t′(p),x′(p)) of one
event E at point p:

t′(p) =
1

√
1 − v2/c2

(
t(p) − v

c2
· x(p)

)
+ t0 , (19)
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Fig. 8 (online colour at: www.ann-phys.org) The “magic tri-
angle” of SR. From two of the three conditions one can derive
the Poincaé transformation.
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x′(p) = x⊥(p) +
1

√
1 − v2/c2

(
x‖(p) − vt(p)

)
+ x0 , (20)

(t,x) and (t′,x′) are the coordinates of two inertial systemsS andS′ whereS′ moves with a relative velocity
v with respect to S. Here x‖ and x⊥ are the components of the position vector parallel and orthogonal
with respect to the relative velocity v. In (19), (20) also a translation in the space and time can appear.
The relations (19), (20) are the Poincaré transformations. For t0 = 0 and x0 = 0 eqs. (19), (20) reduce
to the LT. The LT are homogeneous in position and time. The velocity of light is a limiting velocity. The
relative velocity between two inertial systems never can exceed c. For v � c, the Poincaré transformations
degenerate to the Galilean transformations.

Another derivation, intiated by v. Ignatowski [11, 12] and Frank and Rothe [13, 14], shows that the
invariance of the uniform motion together with the relativity principle already is enough to derive Poincaré
transformations with an undefined invariant velocity which has to be identified with the velocity of light.

A third derivation uses the uniform motion as well as the constancy of the speed of light. The coor-
dinate transformations which leave a uniform motion invariant are related by projective transformations,
while the conformal transformations leave the velocity of light invariant. Requiring both, breaks down the
transformations to the Poincaré transformations, see Fig. 8.

3.3 The consequences

The consequences of the LT are well known and some are listed below. All these relativistic effects can
be divided into two classes: (i) Effects that rely on the particular chosen Einstein synchronization. These
effects are usually presented in the literature. The result of these effects are different from the nonrelativitsic
results but depend on the synchronization and, thus, may be simulated or compensated by a choice of
another synchronization. (ii) Effects which are independent of the synchronization, which we are going to
discuss in the next section. The synchronization independent effects are more important since these effects
are realized in the experiments which, as described above, should not depend on the synchronization.

Here we first describe the effects of the first category:

• If one event E at point p which is located at the spatial origin of an observer is viewed from another
observer moving with velocity v with respect to the first one, then the time coordinates of that event
determined by the two observers are related by

t′(p) =
1

√
1 − v2/c2

t(p) . (21)

That means that two observers measure different times intervals. The time interval is larger the larger
the relative velocity is. This is the time dilation. It is also easy to see that the time of a light clocks
moving in an inertial system goes slower by the the factor 1/

√
1 − v2/c2 compared to a clock at rest

in that inertial system, see Fig. 9.

• The contraction of lengths,

L′ =
√

1 − v2/c2L , (22)

which can also be understood in terms of the light clock, see Fig. 9

• the addition of velocities

u =
v + 1

γ(v) v
′ + γ(v)−1

γ(v)
v′·v
v2 v

1 + v · v′/c2
(23)

which, when specialized to case of parallel velocities, reads

u =
v + v′

1 + vv′/c2
. (24)
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Fig. 9 (online colour at: www.ann-phys.org) A light clock consists of two mirrors at a distance L0 and a
photon propagating back and forth between the two mirrors. This defines a unit of time by T0 = 2L0/c

(left). In case the clock moves orthogonally with respect to distance between the two mirrors, then for the
observer at rest the distance the photon has to travel is longer, namely L = 2

√
L2

0 + (vT )2, where T is the
time-of-flight of the photon from one mirror to the other. Since photons have a constant velocity c, the unit
of time is now given by T = L/c. If we use the longer L, the unit of time of the moving clock is longer by
1/

√
1 − v2/c2. If the light clocks moves along its axes (right), then the constancy of the speed of light and

the requirement of the ordinary time dilation, which is a consequence of the relativity principle, leads to the
necessity that the length has to be shortened according to (22).

These equations show that the velocity of light has the same value independent of the velocity of the
observer in an inertial system. Thus, we are back at the constancy of the speed of light.

• The Doppler effect

ν′ =

√
1 − v2/c2

1 + (v/c) cos θ′ ν , (25)

relates the frequency ν measured by an observer at rest in an inertial system with the frequency ν′

measured by an observer moving in that inertial system. θ′ is the direction the moving observes sees
the light coming from.

• Aberration

cos θ′ =
cos θ − v/c

1 − (v/c) cos θ
, (26)

where θ is the direction the observer at rest sees the light coming from.

• Finally, effects based on accelerated motion, namely the Sagnac effect and the Thomas precession.

The aberration (26) is a direct consequence of the addition of velocities (23) if one takes as one of the
velocities the velocity of light, and the Doppler effect is a consequence of time dilation. While time dilation
is a consequence of the constancy of the speed of light, the addition of velocities also rely on the relativity
principle. Therefore, also from the consequences of the LT it is very clear that the constancy of the speed
of light and the relativity principle are directly behind all these effects and are, thus, the postulates which
have to be confronted with experiments. The length contraction is no proper effect of the LT since it always
depends on the synchronization and, thus, can be simulated or transformed away, see below.

Instead of going into the details of all these well known effects we only cover two points which may be
of particular interest. The first one is the twin paradox, and the other the Sagnac effect.
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Fig. 10 (online colour at: www.ann-phys.org)
The twin paradox as realized by three clocks (from
bottom to top). The clocks in the first row indicate
the time elapsing for the twin staying at rest. The
clocks with an attached arrow, which indicates the
motion of that clock with respect to the twin at rest,
show the time of the moving twin as seen from the
twin at rest.

3.3.1 The twin paradox

Here we emphasize that contrary to what is often stated, it is not necessary to have an acceleration of one
of the twins or of the moving clock. This is important since sometimes the effect is said to be caused by the
acceleration. Since accelerations are beyond the Poincaré transformations, this would mean that the effect
is not due to the LT and, thus, no genuine SR effect. This is not true. By using a third clock, we have a purely
kinematical version of the twin paradox. The procedure is as follows: The first clock is at rest in the inertial
system. Then a moving clock is given the same time as the clock at rest. After some time, a third clock is
used which moves in the opposite direction and overtakes the time of the moving clock when they meet,
see Fig. 10. The twin paradox now is the time difference between the first and the third clock upon arrival
at the original position. No acceleration is necessary to observe this time difference. Therefore, this is a
purely kinematical effect fully describable within SR [15,16]. In addition, we will see below that the twin
paradox is the synchronization invariant version of the time dilation. However, it has been demonstrated
experimentally that clocks based on atomic phenomena are inert against accelerations. Therefore, for tests
of the twin paradox it is no problem to use accelerated clocks.

3.3.2 The Sagnac effect

The Sagnac effect is the shift of interference fringes in the case the interferometer starts to rotate. This holds
for laser interferometers as well as for interferometers for neutrons or atoms. Though many derivations
of the Sagnac effect for matter waves use a non-relativistic Hamiltonian only or even use non-relativistic
particle motion, we will show that the Sagnac effect is a truly relativistic effect which can be understood
only by using SR.

We model the geometry of the interferometer by a disk of radius R rotating with angular velocity Ω
with respect to the laboratory attached to an inertial system (again, though in principle a rotating system is
accelerating and, thus, not related to an inertial system by a Poincaré transformation and therefore beyond
the range of application of SR, we safely can apply the LT locally acting on vectors defined at a point p).
The source and analyzer are attached to the disc and, thus, are co-rotating. The phase shift is δφ = ωδt,
where ω is the frequency of the matter or light wave in the rotating system at the position of the source and
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δt the time difference in the arrival time of the two counter-propagating matter or light waves. The source
emits particles that move with velocities ±v with respect to the source. Since the source is moving with
velocity ΩR with respect to the non-rotating laboratory, the velocities of these particles with respect to the
laboratory are

v′
± =

ΩR± v

1 ± ΩRv/c2
. (27)

From this velocity we calculate the time t′± in the laboratory that the particles need to reach the recombiner
which is placed on the disc opposite to the source. This time is determined by v′

±t
′
± = ±πR+ΩRt′±:

t′± =
±πR

v′± − ΩR
. (28)

Therefore, by substituting (27) the times of arrival of the two particles differ by

δt′ = t′+ − t′− =
1

1 − Ω2R2/c2
2ΩΣ
c2

. (29)

In the co-rotating system we find

δt =
1

(1 − Ω2R2/c2)1/2

2ΩΣ
c2

=
2ΩΣ
c2

+ O [(ΩR/c)4] , (30)

where Σ = πR2 is the area of the disc. The observed phase shift is given by the phase difference between
the two points of arrival, that is, by

δφ = ωδt =
1

(1 − Ω2R2/c2)1/2

2ωΩΣ
c2

=
2ωΩΣ
c2

+ O(c−4) . (31)

Thus, the Sagnac effect is a purely relativistic effect. In a non-relativistic approach δt = 0 and no phase
shift can occur.

We can now assume that there is a dispersion relation of the form �ω = E =
(
m2c4 + p2c2

)1/2
, which

for slow particles yields approximately mc2. Then

δφ =
Eδt

�
=

1
(
1 − Ω2R2

c2

)1/2

2EΩΣ
c2

=
2mΩΣ

�
+ O(c−2) . (32)

It is only due to the multiplication by c2 from re-expressing the energy in terms of the mass (instead of
the frequency) that the speed of light disappears in the dominating term. However, in the frame of wave
mechanics it is more appropriate to describe properties of a wave in terms of its frequency rather than in
terms of the (mechanical) energy E. Only in the form (31) all notions appearing in the Sagnac effect are
defined in an operational way. This phase shift has the same form as the phase shift for light. This indeed
has to be the case because both, light and matter waves, are wave phenomena. A wave is characterized
by its frequency and its wave vector. The “mass” of a wave is only a derived concept since it assumes a
particular dynamical equation for the wave, either in terms of a wave equation or of a dispersion relation.
As a consequence, the result (31) is valid for any matter wave, irrespective of the dynamical equation it
obeys. This is also apparent from the fact that, beside the frequency of the matter wave at the position of the
beam splitter, the result (31) does not depend on any particle properties, and in particular not on the mass.
Thus, the Sagnac effect (31) is a universal special relativistic wave phenomenon.

This result looks a bit contradictory to the fact that the first term in (32) can be derived from the non-
relativistic Schrödinger Hamiltonian in a rotating frame, H = p2/(2m) + Ω · L, where L is the angular
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momentum. However, this Hamiltonian can be derived as a non-relativistic limit of the Dirac equation [17]
which directly leads to the first term in (32). For the massless case, one has to consider the Maxwell equations
in a rotating frame. In an eikonal approximation it leads to (31) with ω as the frequency of the light beam.
In terms of fundamental equations one has to treat the massive and massles cases separately; in terms of
wave propagation, both cases can be treated in a unified manner. In any case, the exact result as well as the
approximation 2mΩΣ/� are of purely relativistic origin.

We can push these ideas a bit further if we distinguish between the velocity of light which appears in
the LT and, thus, in the formula for the addition of velocities, and the velocity of “light” which appears in
relativistic field equations for the matter wave. If we denote by cD the velocity of “light” appearing in the
Compton wavelength of the Dirac particle, e. g., λC = �/mcD, then the above formula (32) for the Sagnac
effect yields

δφ =
1

(
1 − Ω2R2

c2

)1/2

2EΩΣ
c2

= 2
c2D
c2

2mΩΣ
�

+ O(c−2) . (33)

As a consequence, one may, at least in principle, use the Sagnac effect as a test of the universality of the
limiting velocity for various elementary particles. The ratio of the various masses can be determined by
different and independent methods as collision processes, for example.

4 The issue of synchronization

One of the consequences of the derivations of the LT is a well-defined notion of synchronization between
different events. However, experiments like the Michelson-Morley, Kennedy-Thorndike experiments or
experiments searching for the correct time-dilation using absorption of photons by moving atoms cannot
depend on the the way clocks at different positions are related. For none of these experiments the experi-
mentator has to synchronize clocks. And for the atom and the photon it absorbs it is completely irrelevant
how the clocks are set. Therefore, physics must be invariant under the procedure of how to synchronize
clocks. As a consequence, we have to establish a formalism for introducing arbitrary synchronizations.
Subsequently, we have to show that all the experiments testing LI do not depend on the parameter which
characterizes the chosen synchronization. We can go a step further and claim that only those experiments,
which can be described such that the synchronization parameter drops out, are real experiments testing LI.
If the description of an experiment depends on the synchronization, then the effect can be simulated or
transformed away by choosing some (probably curious but still viable) synchronization.

In this section we define how to set up different synchronizations, reformulate the LT for arbitrary
synchronizations and describe various basic effects. We will see that time dilation effects like the ordinary
time dilation or the Doppler effect which depend on the chosen synchronization, can be reformulated in a
synchronization independent way while length contraction always depends on the synchronization.

4.1 The definition of synchronization

In order to introduce these notions we first restrict to one spatial dimension. We use an observer with a clock
moving along a straight line which we choose as time axis, and light propagating between the observer to
an event B and back to the observer. According to a choice of a parameter ε̂ in

t(B) = t1 + ε̂(t2 − t1) where 0 < ε̂ < 1 (34)

the eventB will be assigned the same time as the eventA on the observer’s worldline, see Fig. 11. This new
definition of a synchronization can be regarded as a coordinate transformation relating the (t, x) coordinates
(with the dashed line in Fig. 11 as x–axis) to the new coordinates where the new x′–axes is the line through
A and B:

t′ = t− (2ε̂− 1)x , x′ = x . (35)
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Fig. 11 (online colour at: www.ann-phys.org)
Synchronization of two events using light rays. At
time t1 an observer, represented by its worldline,
sends a light signal to the event B where it is re-
flected back to the observer and arrives at t2. As-
signing B the time of the event A on the observer’s
worldline, t(B) = t(A) = t1+ ε̂(t2−t1) for some
0 < ε̂ < 1, then all events on the line through A
and B are simultaneous. Einstein synchronization
is given by ε = 1

2 and the simultaneous events are
shown by the dashed line.

In three dimensions this can be generalized to

t′ = t− ε̂ · x , x′ = x , (36)

where ε̂ is a 3-vector characterizing the hyperplane of simultaneity. (In “real life” one can observe a
synchronization in the Volksgarten in Düsseldorf, see Fig. 12.)

The round-trip velocity of light is twice the spatial distance between the events A and B devided by the
round-trip time

c :=
2(xB − xA)
t3 − t1

. (37)

It does not depend on the synchronization. However, the synchronization will affect the measured one-way
velocities. The velocity of light propagating in the ±x–directions is given by

c+ =
xB − xA

t0 − t1
=

c

2ε̂
, c− =

xB − xA

t3 − t0
=

c

2(1 − ε̂)
. (38)

The values of the measured one-way velocities of light is directly related to the synchronization parameter

ε̂ =
c

2c+
and ε̂ = 1 − c

2c−
. (39)

Note that

1
c+

+
1
c−

=
2
c
, (40)

that is, the two one-way velocities can be combined to give the synchronization independent two-way
velocity of light.

The velocity of massive bodies in ±x–direction

vε
+ = ±xB − xA

tB − tA
(41)
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Fig. 12 (online colour at: www.ann-phys.org) A two-dimensional field of synchronized clocks at the Volks-
garten in Düsseldorf.

also depends on the synchronization. However, with

1
v

− 1
c

=
1
vε±

− 1
c±

(42)

we are able to define a velocity v which is independent of the choice of ε̂. Therefore, for massive bodies
it is also possible to get synchronization invariant velocities from certain combinations of synchronization
dependent ones.

4.2 The general formalism

Now we turn to the description of arbitrary synchronizations in three dimensions. We start from an Einstein
synchronized Lorentz system Σ with coordinates (T,X) and perform a transformation into a system S with
coordinates (t,x), which moves with velocity w with respect to the Σ. In S an arbitrary synchronization is
assumed. Then, the combination of the ordinary LT and the synchronization (36) yields

T = γ(w) (t− ε · x) (43)

X = x −
(

1 − 1
γ(w)

)
(w · x)w

w2 + wT , (44)

where we used a redefined synchronization parameter ε. For a given value of ε the synchronization is tran-
sitive.

A very important relation is the modified addition of velocities according to the diagram

������

�
�

���
��

��
��

��
�

������

�

������������
�

�

�� ���������

(45)
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For deriving the dependence of w′ on w and uε, we use (43), (44) and

T = γ(w′)
(
t− ε′ · x′) (46)

X = x′ −
(

1 − 1
γ(w′)

)
(w′ · x′)w′

w′2 + w′T . (47)

With (43), (44) and (46), (47) and using that the origin of S′, namely x′ = 0, moves with velocity uε with
respect to S, we obtain

w′ = w +
uε − (1 − √

1 − w2)ŵ(uε · ŵ)
γ(w) (1 − ε · uε)

. (48)

For ε = −w we obtain (23). We also get

γ(w′) = γ(w)γε(uε)(1 − ε · uε) (49)

with the generalized Lorentz factor

γε(uε) :=
1

√
(1 − (ε + w) · uε)2 − (uε)2

. (50)

It is possible to display the transformation between the two arbitrarily synchronized systems S and S′.
Since they are rather complicated and since we do not need these transformations we will not display them.

4.3 A preliminary calculation of the effects

As preparation for the derivation of synchronization independent effects, we first treat the usual effects in
a “naive”way. At first we calculate the one-way velocity of light measured in the system S. We start with
the equation characterizing light rays in Σ, (Tr − Ts)2 = |Xr − Xs|2, where the indices s and r refer to
“sender” and “receiver”, respectively. With the transformations (43), (44) we get

Tr − Ts = γ(w) (xrs + w · xrs) , (51)

where xrs = xr−xs.With (43) the time of sending and reception of the signal is tr = ts+ 1
γ (Tr−Ts)+ε·xrs.

With (51) we obtain

tr = ts + xrs + (w + ε) · xrs . (52)

The velocity of light propagating in the direction x̂rs = xrs/|xrs| is then given by

cone−way(x̂rs) =
xrs

tr − ts
=

1
1 + (w + ε) · x̂rs

, (53)

which clearly depends on the synchronization. In the case ε �= −w, the velocity not only depends on the
direction but also on the state of motion of the system S. Only in the case ε = −w the velocity of light is the
same for all directions and for all velocities of the systemS.Accordingly, by postulating the constancy of the
velocity of light, one implicitely makes an assumption about the synchronization of the reference system.

Now we are calculating in the usual manner the known effects of SR. We always refer to (45). For the
time dilation of the moving system S′ with respect to S we get

t = γε(uε)t′ . (54)

The time dilation depends on the synchronization. Thus, it is not symmetric against interchange of the ob-
servers.
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Fig. 13 (online colour at: www.ann-phys.org)
For the calculation of the observed frequency
1/∆tr as function of the sent frequency 1/∆ts.

Since the length depends on the spatial t = const. hypersurface which itself depends on the synchro-
nization procedure, length contraction is no proper relativistic effect. Therefore we skip the discussion of
length contraction here.

For the description of the Doppler effect, we refer to the reference systems outlined in the scheme
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(55)

We describe two light rays that are sent at times t(1)s and t(2)s and reach the observer at times t(1)r and t(2)r .
The sender and reveiver are assumed to move with velocities vs and vr with respect to the system S. The
latter moves with velocity w with respect to Σ. With (t(1)s ,x

(1)
s ) and (t(2)s ,x

(2)
s ), as well as with (t(1)r ,x

(1)
r )

and (t(2)r ,x
(2)
r ) as positions and times of sending and receiption of the signals we first get

x(2)
rs − x(1)

rs = x(2)
r − x(1)

r − x(2)
s + x(1)

s = vr∆tr − vs∆ts . (56)

With (52) this yields

∆tr = t(2)r − t(1)r = ∆ts + (x̂rs + w + ε) · (vr∆tr − vs∆ts) , (57)

where we used |x(2)
rs | = |x(1)| + (x(2)

rs − x
(1)
rs )∇|x(1)

rs |. This can be solved for ∆tr

∆tr =
1 − (x̂rs + w + ε) · vs

1 − (x̂rs + w + ε) · vr
∆ts . (58)
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The time differences ∆ts and ∆tr, still referring to the systemS, have to be expressed by quantities measured
in the moving systems Ss and Sr by

dt′ =
γ(v)
γ(w)

(1 − ε · v)dt . (59)

If we use this in (58) and introduce the observed and sent frequencies νr = 1/∆t′r and νs = 1/∆t′s, then
we obtain

νs
νr

=
γ(ws)
γ(wr)

1 − (x̂rs + w) · vs

1 − ε · vs

1 − (x̂rs + w) · vr

1 − ε · vr

. (60)

The velocities ws and wr have to be calculated with the help of the law for the addition of velocities (48).
In many cases one chooses vs = 0 so that

νr
νs

= γε(vr) (1 − (x̂rs + ε + w) · vr) . (61)

In case of the Einstein synchronization, this reduces to the ordinary Doppler shift formula (25),

νr
νs

= γ(vr) (1 − x̂rs · vr) . (62)

As a result, both the time dilation as well as the Doppler shift depend on the chosen synchronization and
are, thus, not applicable to a description of synchronization invariant experiments. We will see below that
there are versions of these two effects which are indeed independent of any synchronization and which have
been applied to real experiments. In the meantime we shortly discuss some synchronizations which can be
realized by using some simple procedures.

4.4 Physically motivated synchronizations

4.4.1 Einstein-synchronization

In order to determine the coefficient ε for the Einstein-synchronization we consider two clocks A and B
which are at rest in a system S. This system S moves with a velocity w with respect to Σ. At t = 0, a signal
is sent from A and arrives in B at t = t1. This signal will be sent back immediately and reaches A at t2,
see Fig. 14. Einstein synchronization now requires (compare, e. g., [18])

t2 = 2 t1 . (63)

According to the diagram (45) and the relations (43), (44) we represent the eventsE1 andE2 in the relations
between S and Σ as well as in the relations between S′ and Σ. Since the clock A is at rest in the moving
system S, we have x2 = 0 and X2 = wT2. Therefore,

T2 = γ(w)t2 . (64)

From the equations for light propagation

|X1|2 = T 2
1 , |X2 − X1|2 = (T2 − T1)2 , (65)

we then obtain (w + ε) · x1 = 0. Since this is true for all x1, we find

ε = −w . (66)

In this case the transformations (43), (44) reduce to the ordinary LT (19), (20).
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Fig. 14 (online colour at: www.ann-phys.org) The Einstein-
synchronization: A and B are worldlines of two clocks at rest in
a system which moves with respect to Σ.At t = 0, the observer A
sends a light signal to B, where it arrives at time t1. The signal
sent back immediately arrives in A at time t2. The Einstein-
synchronization now requires t1 = 1

2 t2.
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Fig. 15 (online colour at: www.ann-phys.org)
Synchronization by using slow clocks: a clock A
moves slowly in S and sets all clocks in S at its
own time.

4.4.2 Slow clock transport

A clock is moving with small velocity with respect to the system S. By passing the clocks at rest in S, these
clocks will be given the time of the slowly moving clock, see Fig. 15. According to the law of addition of
velocities (48), the clock possesses the velocity

w′ = w +
uε − (1 − √

1 − w2)ŵ(uε · ŵ)
1 − ε · uε

≈ w + uε − (1 −
√

1 − w2)ŵ(uε · ŵ) , (67)

with respect to Σ, where we used that uε is small. From (43) we get T = γ(w′)t′ and T = γ(w) (t+ ε · x).
The above described synchronization procedure states t′ = t, that is,

1
γ(w′)

T =
1

γ(w)
T − ε · x . (68)

The velocity of the clock in the system Σ is X = w′T . We use this in (44) what, together with (67), yields

ε · x = −
(

1
γ(w′)

− 1
γ(w)

)
w · x

u · w
= −

(
(w′ − w) · ∇w

1
γ(w)

)
w · x

u · w
= −w · x . (69)

As a consequence, this kind of synchronization again requires (66).

4.4.3 Fast clock transport

According to an idea of Salmon [19], it is possible to define a synchronization by using clocks which are
moving with arbitrary velocity. We call this “synchronization by fast clock transport”.
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Fig. 16 (online colour at: www.ann-phys.org) Synchronization by fast
clock transport. Numerous clocks U

(1)
i start in A at time t1 and move to

B. Upon arrival, other clocks U
(2)
i at B overtake the times of the arriving

clocks and move back to A where these clock arrive at time t2. The mini-
mum time dilation characterizes a particular pair of clocks (solid lines). This
particular synchronization assigns the time 1

2 (t2 − t1) to the event EB at B.

Again we have two worldlinesA andB at a constant spatial distance. Both worldlines are equipped with
clocks. At the moment t1 a clock U (1)

1 moves with a certain velocity from A to B where it arrives at tB1.

At that moment another clock U (2)
1 with the time given by the arriving clock starts in B and moves with

another velocity to A where it arrives at t2. This procedure will be performed by numerous clocks with
different velocities in such a way that at A all clocks start at t1 and all clocks starting at B arrive A at t2,
see Fig. 16. The arriving clocks U (2)

i at A show a time ti that is dilated with respect to t2 − t1. The rate of

dilation depends on the velocity of U (1)
i . We will show that there is a velocity which leads to a minimum

dilation. The clock moving with that velocity defines a unique event EB onB to which the time 1
2 (t2 − t1)

can be attributet. This again corresponds to ε = −w.
From the time dilation we can relate the times of the moving clocks, ∆t′AB and ∆t′BA with the times in

the system at rest,

∆t′ = ∆t′AB + ∆t′BA
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=
1

γε(v1)
∆tAB +

1
γε(v2)

∆tBA

=





√(
1
v1

− (ε + w) · n

)2

− 1 +

√(
1
v2

+ (ε + w) · n

)2

− 1



∆x . (70)

Here n is the spatial direction between A and B. The velocities v1 = ∆x/∆tAB and v2 = ∆x/∆tBA,
with ∆x = xB − xA, yield

1
v1

+
1
v2

=
2
v
. (71)

The velocity v is independent of the synchronization. Thus,

∆t′ =





√(
1
v1

− (ε + w) · n

)2

− 1 +

√(
2
v

− 1
v1

+ (ε + w) · n

)2

− 1



∆x . (72)

The velocity v1 that minimizes this time dilation is given by

1
v1

=
1
v

+ (ε + w) · n . (73)

This uniquely defines an event EB on the second worldline. Inserting this result into the time dilation (72)
yields

∆t′ =

(√
1
v2 − 1 +

√
1
v2 − 1

)

∆x . (74)

Thus, the particular clock which minimizes ∆ moves both from A to B and back from B to A with the
velocity v. The synchronization now assigns the time 1

2 (t2 − t1) to the eventEB . Then v1 = v and v2 = v.
Hence, ε = −w.

4.4.4 External synchronization

If we require all t = const hypersurfaces to coincide with the T = const hypersurface of the original
Lorentz system, then t ∼ T . This is possible only if

ε = 0 . (75)

This is called external synchronization [18]. This particular synchronization distinguishes an ether, a pre-
ferred frame. There is no unification of space and time. However, this theory is in agreement with all
experimental tests of SR that, as stated above, should not depend on the synchronization.

4.5 Synchronization independent effects

4.5.1 Two-way velocity of light

It is easy to show that with the one-way velocity of light, defined in (53), the two-way velocity of light
defined by

2
c

=
1

cone−way(x̂ES)
+

1
cone−way(−x̂ES)

(76)

is independent from the synchronization.
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�� Fig. 17 (online colour at: www.ann-phys.org) The twin paradox: A clock which in A shows
the same time as the clock at rest, moves from A to B and sets the clock which moves from
B to C. The time shown by the second moving clock is behind the clock which stayed at rest.

4.5.2 Synchronization invariant velocities

Now we present the synchronization independent counterpart of the time dilation and Doppler effect derived
above. For that purpose we again define synchronization independent velocities. As in the one-dimensional
case discussed above, the difference of the inverse of velocities turns out to be synchronization independent.
For the velocity of light cone−way(n) and the velocity of a particle vε(n), both moving in the same direction
n,

1
vε(n)

− 1
cone−way(n)

(77)

is independent from the synchronization. Using (53) this can be identified with a synchronization indepen-
dent velocity V by

1
vε±(n)

− (1 ± (w + ε) · n) =
1
V

− 1 . (78)

For ε = −w, we have V = vε(n). Also the synchronization-dependent Lorentz factor can be reformulated:

γε(u) =
1

√
(1 − (ε + w) · vε)2 − (vε)2

=
V

vε

1√
1 − V 2

. (79)

4.5.3 The twin paradox

Though the time dilation (54) is synchronization dependent, the twin paradox is not. A clock is moving
from A to B and sets a clock which is moving from B to C, see Fig. 17.

We take two clocks with velocities v1 = v1n and v2 = −v2n, with v1, v2 ≥ 0. In S the duration
between A and B is tAB and the time given by the moving clocks after arrival is then

∆t′AB + ∆t′BC =
1

γε(v1)
∆tAB +

1
γε(v2)

∆tBC =
√

1 − V 2
1

∆x
V1

+
√

1 − V 2
2

∆x
V2

, (80)
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Fig. 18 (online colour at: www.ann-phys.org) The
setup for the synchronization independent Doppler ef-
fect. The sender as well as the receiver are equipped
with identical clocks, both emitting signals of fre-
quency ν0. In addition, the receiver sends back the
signal it receives from the sender.

where we used (78). If the restrict to V1 = V2 = V , this yields

∆t′AC = ∆t′AB + ∆′
BC = 2

√
1 − V 2 ∆x

V
=
√

1 − V 2∆tAC , (81)

with ∆tAC = 2∆x/V . This is a synchronization independent expression. Therefore, the twin paradox is a
“true” manifestation of relativistic physics.

4.5.4 Synchronization invariant Doppler effect

According to the experiments performed there are at least two synchronization independent realizations
of the Doppler effect. In both cases one adds a second measured quantity that at the end can be used to
eliminate the synchronization parameter which is present in the “naive” effects described above. One may
also consider the additional measurements as additional procedures to establish a certain synchronization
in a clever way. However, in any case the synchronization is not introduced explicitly according to the way
described above.

The synchronization independent Doppler ranging In order to obtain a synchronization independent
Doppler effect, one uses three frequencies. For that purpose the sender as well as the receiver is equipped
with two identical species of clocks, both establishing the same frequency ν0 in their rest frame1. Now, the
sender emits a signal with frequency ν0 which the receiver observes as frequency νr. This is sent back with
the same frequency νr which the sender observes as frequency ν′′. In addition, the receiver sends another
signal with frequency ν0 related to the clock he carries with him. This signal will be observed by the sender
as possessing the frequency ν′, see Fig. 18. This procedure, which is used for Doppler tracking, allows to
eliminate the synchronization parameter.

With the frequencies ν′ and ν′′, which are measured at the position of the sender only, we define the
two-way Doppler-signal, see e. g. [20]

D :=
ν′′ − ν0
ν0

(82)

and the redshift signal

R :=
ν′ − ν0
ν0

− 1
2
D . (83)

1 Here we have to make an additional assumption about the transport of clocks: We assume that clocks do not intrinsically
change their frequency during transport into another frame. However, this does not interfere with the issue of synchronization.
Our assumption is about the frequency, synchronization makes statements about the setting of clocks. Two points have to be
checked in experiments: (i) The frequency of clocks is not allowed to depend on the history of the clock. This can be tested
by first separating two clocks and then bringing them together again and compare the ticking rates. Nothing of this kind has
been observed. (ii) the frequency does not depend on the frame (this would violate the relativity principle). (iii) The transport
of clocks to other inertial frames has to be accomplished using accelerations. It has been experimentally verified with high
accuracy that clocks, in particular atomic clocks, are very insensitive against accelerations.
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Both quantities, which we have to calculate, depend only on frequencies which are measured at the sender
and, thus, do not depend on any synchronization.

Using (60) twice we get

ν′′ =
1 − (x̂rs + ε + w) · vr

1 − (−x̂rs + ε + w) · vr
ν0 . (84)

where at the end we set vs = 0. Then

D = −2
x̂rs · vr

1 − (−x̂rs + ε + w) · vr
. (85)

For the redshift signal we use again (60) and get for vS = 0

R =

√
(1 − (ε + w) · vr)

2 − v2
r − 1 + (w + ε) · vr

1 − (−x̂rs + ε + w) · vr
. (86)

In this form D as well as R seems to depend on the synchronization ε. However, this dependence is only
fictitious. We use D from (85) in order to determine vr. Since we have a three-dimensional setup, we need
three independent directions ni, i = 1, 2, 3, and get

Di = −2
ni · vr

1 − (−ni + ε + w) · vr
(87)

In principle we can solve this for vr and insert this intoR. However, we use this synchronization-independent
Di in order to introduce a synchronization independent velocity V via

Di =: −2
ni · V r

1 + ni · V r
. (88)

Eqs. (88) and (87) can now be solved for vr

vr =
V r

1 + (w + ε) · V r
, (89)

which will be used in R,

R =

√
1 − V 2

r − 1

1 + x̂rs · V r
. (90)

This result which is of the usual form does not depend on ε. Note that V is not the directly measured
velocity, it is the velocity indirectly inferred from the two-way Doppler signal. In order to get a relation
between directly measured quantities only, we can replace V r by Di and find

R =

(√

1 −
∑

i

D2
i

(2 +Di)2
− 1

)/ (

1 −
∑

i

D1

2 +D1

)

. (91)

This is the synchronization-independent Doppler-effect. This and only this particular dependence ofR from
D is specific for SR. Since this is a relation between measured quantities, it is an invariant manifestation of
special relativistic physics. For non-relativistic physics, the relation between D and R is different.
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Fig. 19 (online colour at: www.ann-phys.org) The scheme of the experiment with 2-level systems as de-
signed by Ives and Stilwell. Atoms in the excited state move with a velocity v and decay into the ground state
by emitting electromagnetic radiation. In order to avoid any synchronization dependence, the frequency of
the emitted radiation has been measured for two opposite directions, namely for θ = 0 and θ = π, that is,
in the direction parallel and antiparallel to the velocity v.

Two photon Doppler effect In this setup the ticks of a clock (or the frequency of the radiation of a atom)
moving with respect to an inertial observer is measured simultaneously in opposite directions. In most cases
the direction is given by the motion of the atom, see Fig. 19.

If the radiation emitted by the moving atom is detected in the direction of flight and in the opposite
direction, then the measured frequencies ν+ and ν− are given by (61)

ν− = γε(v) (1 − (x̂rs + ε + w) · vr) ν0 , (92)

ν+ = γε(v) (1 − (−x̂rs + ε + w) · vr) ν0 , (93)

which clearly depends on the synchronization. With γε(v) from (50) we get

ν−ν+ = γ2
ε (v) (1 − (x̂rs + ε + w) · vr) (1 − (−x̂rs + ε + w) · vr) ν2

0 = ν2
0 , (94)

which is a synchronization independent relation. Again, this and only this relation for the two frequencies
is characteristic for SR. This relation should hold for all velocities. Though the notion of a velocity depends
on the synchronization, we can use the measured frequencies to define an invariant velocity by

V :=
ν− − ν+
ν− + ν+

. (95)

This leads to

V =
x̂rs · vr

1 − (ε + w) · vr
. (96)

The synchronization invariant statement now is that (94) should hold for all velocities defined in (95).
Similar results can be achieved for the description of tests using the technique of two-photon spectroscopy.

5 Lorentz Invariance and Special Relativity

Einstein derived the Poincaré transformations from two postulates: the constancy of the speed of light and
the relativity principle. The LT constitute the homogenous part of the Poincaré transformations. Though
physics, due to GR, is no longer invariant against the translation part in the Poincaré transformation, it
still is locally invariant with respect to the homogenous part, namely the LT. We have to restrict to local
LI since, again due to GR, the characteristic length scale of the experimental setup has to be smaller than
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Fig. 20 Special Relativity is a consequence of the orientation and velocity independence of all experiments
together with a statement about the relation of units in moving laboratories.

the length scale at which the curvature of space-time, or equivalently, the gravity gradient which cannot
be transformed away, may influnce the experimental result. For example, if resonators, which are used for
tests of the isotropy of the speed of light, are too large, then, even in free fall, the gravity gradient induces
a distortion of the cavity which leads to an effect which looks like an anisotropy of the speed of light. This
can be overcome only by making the resonator smaller (or by numerical compensation).

The constancy of the speed of light in the postulates means its independence from the orientation and
from the velocity of the source and of the laboratory, and furthermore from its frequency and polarization (in
vacuum). The relativity principle is a universality principle: it states that the results of experiments carried
through in isolated laboratories in inertial frames of reference are independent from the orientation and the
velocity of the laboratory. This should be true for all experiments, not only for those considering light rays.
This means that for all physical phenomena the principle of LI has to be confirmed experimentally. This
has the same logical status as tests of the weak equivalence principle where also for all types of test matter
(including interactions) the universality of free fall has to be examined. Since the velocity independence of
the outcome of experiments leads (except in the case of exotic synchronizations [18]) to a mixing of time
and space with the consequence that the spatial axes of moving systems are realizations of quite different
sets of events, there is a need to fix the units in the moving frame. This is done with the time dilation formula.
Consequently, we have the scheme in Fig. 20 for the exploration of the physical content of the LT which
also holds for kinematic and dynamics test theories.

We also address the question what happens if an experiment shows a violation of LI. This does not
necessarily mean that one indeed has found a violation of LI. This effect may also be a result of a new
interaction. This means that one first has to search whether this effect can be shielded or whether one can
find a cause of this effect in the sense of a source which creates a field causing this effect, or whether this
effect is universal or depends on the probe. In the first two cases the effect can be considered to be caused
by a new interaction. In the latter case this new effect can be regarded to be of geometrical origin due to its
universality. However, in this case the new gravitational interaction may violate LI, too, as it is the case in
Finsler geometry, for example. Only if all these questions are answered appropriately one can speak about
a violation of LI.

We also should mention that there is a difference between LI and Lorentz covariance. LI means that the
result of an experiment, when prepared and performed under indentical conditions, is independent of the
constant orientation and constant velocity of the laboratory with respect to an inertial system (the laboratory
itself then constitutes an inertial system). Since the outcome is the same, the physical laws must have the
same form in all inertial systems. This is equivalent to that the laws have to be transformed in a covariant
way between the various inertial systems.

6 The importance of Lorentz Invariance

Though the LT can be derived mainly be considering the behaviour of light, the relativity principle makes
these transformations universally applicable. That means, LI is a theoretical frame for all other theories

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Ann. Phys. (Leipzig) 14, No. 1 – 3 (2005) / www.ann-phys.org 99

of physics. In taking GR into account, LI has to be restricted to be applicable only locally. Beside that,
LI is needed in order to successfully interpret the experimental data from molecular, atomic and nuclear
spectroscopy. High energy physics is not possible without the use of the results of LI. In astrophysics, VLBI
which gave the most precise observations of astrophysical phenomena works only by taking all effects of
LI into account, besides GR effects, of course.

Not only in physics but also in daily life, the validity and use of LI (and of GR) is indispensible. The most
well known application is positioning. Today’s Global Positioning System, or later the European Galileo
system, will give huge errors of more than 2 km per day when LI is not included in the processing of the
signals (another 10 km error comes in if GR effects are not taken ionto account). The main effect in the
relation between the time τ of a moving clock and the geocentric coordinate time t is described by

∆τ =
(

1 − U(x1) − U(x0)
c2

− 1
2
v2

t2
+ ω · dA

dt

)
dt , (97)

where U(x) is the gravitational potential at position x including the mass quadrupole field of the earth and
the centrifugal potential, v is the velocity of the clock with respect to the Earth, ω the angular velocity of
the Earth and A is the area a vector sweeps out from the center-of-mass of the Earth to the clocks [21,22].
This formula is built into the programs used in the GPS receivers, see [23] for a review. The importance is
becoming clear by noting the numbers: While clocks today have a relative precision of the order 10−15, the
above contributions to GPS or Galileo satellites yield the following relative effects: gravitational potential
∼ 10−10, gravitational quadrupole ∼ 10−13, centrifugal force ∼ 10−12, velocity ∼ 10−10. For an orbit of
a clock around the Earth, the Sagnac efect gives a time difference of ∼ 10−7. All these effects are much
bigger that the present accuracy of clocks and, thus, have to be taken into account.

Not so well known but equally important is the consideraion of LI in the definition of the International
Atomic Time TAI. This time is obtained by comparison, averaging an weighting the various clocks on Earth,
mainly the clocks at the national bureaus of standards like the PTB (Germany), BIPM (France), NIST (USA),
etc. All these clocks are on a different height above the geoid (surface of constant gravitational potential
of the Earth) and move with different velocities due to the different geographical latitude. The comparison
of clocks on the rotating Earth also needs to take into account the Sagnac effect. Therefore, Eq. (97) also
applies to this comparison. Clocks are such precise so that, only by including LI, the observation of the
rotation rate of the Earth reveals effects due to climatic changes.

Another application, which is of major importance for practical life, is today’s definition of physical
units, like the meter, the ohm and the volt. They directly rely on LI. The meter, for example, is the length
light travels within the 299 792 458th part of a second. If the speed of light proves to be not isotropic, then
the unit of length will depend on the direction. The ohm and the volt are operationally defined by means of
the Quantum Hall and the Josephsen effect, which are described and interpreted by using standard Maxell
and Schrödinger theory. This has to be modified if LI turns out to be violated.

7 Violations of Lorentz Invariance?

The search for a theory of quantum gravity is one of the important issues of today’s theoretical as well as
experimental physics [24,25]. There is a need for a new theory combining GR and quantum theory because
both have been proven to be incompatible. This new theory may modify either GR or quantum theory or
both. If GR is going to be modified, then also LI may have to undergo a modification since local LI is at
the very basis of GR. Indeed, most of the approaches towards a quantum gravity theory predict not only
tiny violations of, e. g., the equivalence principle, or deviations of PPN parameters from their Einsteinian
values, but also a tiny violation of LI.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



100 C. Lämmerzahl: Special Relativity and Lorentz Invariance

7.1 Main quantum gravity schemes

There are three main directions in the search for a theory of quantum gravity: (i) canonical, in particular loop
quantum gravity, (ii) string theory, and (iii) non-commutative geometry. Each of these have characteristic
features in their “predictions” of violations of standard physics.

• Canonical quantum gravity and in particular loop quantum gravity, being a scheme of quantizing the
ordinary Einstein field equation and, thus, still emphasizing the geometrical nature of gravity, does not
predict additional interactions but instead deviations from the ordinary Maxwell and Dirac equations
in terms of higher derivatives and in terms of violations of LI which may arise from a spontaneous
breaking of the underlying Lorentz symmetry. Many considerations predict such features [26–29] but
there are also claims that loop gravity is still Lorentz invariant [30]: the hitherto found violations of
LI are claimed to be due to particular choices of the quasiclassical states or result from a choice of the
boundary conditions.

The first order modifications of basic dynamical equations like the Maxwell or Dirac equations have
the form

(ηµρηνσ + χµνρσ)∂νFρσ + χµρσFρσ = 4πjµ , (98)

where χµνρσ and χµρσ are tensors introducing frame dependent terms. In certain models these tensors
are the result of spontaneous symmetry breaking. A first order modification of the Dirac equation is
given by

0 = iγµ∂µψ +Mψ , (99)

where the matrices γµ are not assumed to fulfill a Clifford algebra, rather γµγν +γνγµ = 1
2 tr(γµγν)+

Xµν , andM is an arbitrary matrix. Here theXµν and the tracefree parts ofM induce frame dependent
effects. The χµνρσ as well as the Xµν lead to birefringence and anisotropies in the characteristic
cones [31–33]. Higher order deviations from ordinary equations consists in higher order derivatives
and non-linearities. The parts that can be derived within a Lagrangian framework constitute the Standard
Model Extension (SME) worked out by Kostelecký and co-workers [34,35,37].

• String theory in higher dimensions always predict many other fields which couple in different ways
to the various matter sectors. Therefore, many types of additional interactions appear that lead to a
violation of LI, of the Universality of Free Fall and the Universality of the Gravitational Redshift. In a
string theory motivated dilaton scenario [36] deviations were predicted from the Universality of Free
Fall at the order 10−13 and deviations of the PPN parameters γ and β at the order 10−5 and 10−9,
respectively. As far as the violation of LI is concerned, the main effects are collected in the universal
phenomenological framework of the SME [34, 35, 37]. However, no specific predictions have been
made in this case.

• In non-commutative geometry, translation and LI obviously is broken leading to some non-local fea-
tures. This means that – in terms of partial differential equations – higher order derivatives may occur.
This, in turn, leads to anomalous dispersion relations with higher order powers in the momentum and
energy. The most simple example for such an anomalous dispersion relation is (see, e. g. [38,39])

p2 = E2
(

1 + η
E

EQG

)
, (100)

whereEQG represents the quantum gravity energy scale which is of the order 1028 eV and η is a factor
of the order 1 describing the strength of the quantum gravity modification.

Furthermore, it has been shown in [40] that field theory in non-comuutative space-time leads to tiny
violations of LI which can be considered as being part of the Standard Model Extension.
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7.2 The magnitude of quantum gravity effects

Though many modern high precision devices are available for searching for new effects, the new effects
that are expected to be induced by quantum gravity are assumed to be extremely small: Since the typical
laboratory energies are of the order of 1 eV and the quantum gravity energy scale is assumed to be of the
order of the Planck energy, which is about 1028 eV, the quantum gravity effects in laboratory experiments
are likely to be of the order of 10−28, which looks very unlikely to be accessible in laboratory experiments.
Nevertheless, there are several reasons for pursuing this way of thinking:

• Since there is no theory of quantum gravity available that is worked out explicitely, all statements
regarding the quantum gravity energy scale of 1028 eV have the status of a speculation only. Nobody
knows about the “true” energy scale of the final quantum gravity theory.

• There could be sometimes mechanisms at work which magnify the quantum gravity induced effects
by means of some multipliers. In theories leading to deviations from Newton’s law at small distances,
for example, the assumption of higher dimensions introduces additional constants which enhances the
effect, see, e. g., [41]. Another example is the effect of quantum gravity induced fluctuations in interfer-
ometers. In the framework of models for such fluctuations, the magnitude of these fluctuations increase
for small frequencies, that is, for long measurement times (1/f–noise) [42]. Therefore, searching for
noise in high precision long-term stable devices (like optical resonators) may give new access to this
domain of quantum gravity effects [43]. Further examples of this kind are the already mentioned pre-
dictions for a violation of the Universality of Free Fall and the deviation of PPN parameters from their
Einsteinian values.

• There are ideas that the unification of the electroweak and strong interactions with the gravitational
interaction will not occur at the Planck scale but at considerably lower energies, namely 1016 GeV
which is three orders smaller than the Planck energy, see e. g. [44]. Therefore it is not the Planck energy
we have to compare with the laboratory energies but rather the GUT energy scale of 1016 GeV.

• Using very high precision devices, it might be possible even in laboratory experiments to achieve a
sensitivity that approaches, at least in principle, the 10−28 range. Such devices are gravitational wave
interferometers, for example. Today’s gravitational wave interferometers have a strain sensitivity of
about ∆L/L ≈ 10−22. Advanced LIGO is planned to reach the 10−24 level. For a periodic signal and
a measurement time one can be better than 10−27. Since this accuracy is related to phase sensitivity in
an interferometric setup, and phase shifts can also be achieved by (100) using two beams of different
frequencies, the modification in (100) might be accessible at the 10−27 level [39]. However, technical
problems, as the frequency dependent properties of optical elements, might cause major problems.
Nevertheless, it is interesting to note that, at least in principle, there is a “laboratory approach” to
Planck scale effects.

Putting all these facts together it seems mandatory to search for quantum gravity induced effects. All kinds
of experimental tests should be considered and tried to be improved.

Acknowledgements For ongoing collaboration and enlightening discussions I would like to thank M. Carrier, H. Dittus,
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