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Within constructive axiomatics of space-time geometry based on elements of 
quantum mechanics it can be shown that by means of the study of the dynamical 
behavior of general matter fields in a geometry-free way one can give reasons for 
the dimension of space-time to be four. 

I. INTRODUCTION 

The notion of the dimensionality of space-time is a fact which lies at the very foundations 
of geometry’ and physics.2 We of course are convinced that the dimension of our physical 
space-time is four. One reason for this is that we are used to taking four numbers to fix naively 
an event in space-time: three space coordinates and one time coordinate. However, it has been 
shown by Cantor,3 that there is a bijective mapping f:R’ -. W2, and, in addition, Peano proved 
that there is a continuous mapping g:W’ 1 [O,l] -+ [0, I] x [0, l] C R2. These examples show that 
coordinatization is not a good means to give to some set a certain number of dimensions. This 
difficulty was overcome by the definition of the dimension by Urysohn, Menger, and Brower 
(see Hurewicz and Wallman, Ref. 5) whereby the latter proved the topological invariance of 
this definition. Therefore, by means of this notion, the four dimensionality of our physical 
space-time can be regarded as a matter of fact. 

However, in some physical theories other dimensions have been considered. In some cases 
they are used as a purely mathematical trick as it is done, for example, in the dimensional 
regularization procedure in quantum field theory (see, e.g., Ref. 6). In other cases the addi- 
tional dimensions are taken to describe physical reality as it is in Klein-Kaluza theories (see, 
e.g., Ref. 7). In an approach of Zeilinger and Svozil’ who use a modified Hausdortf definition 
of dimension, the space-time dimension in the microphysical domain is regarded to be a little 
bit less than four. 

If we now accept that the dimension of our physical space-time is four, we may ask, why 
it is so. The question we are trying to answer is: Are there fundamental grounds for the four 
dimensionality of our space-time? 

In the literature one can find considerations giving reasons for the four dimensionality of 
space-time which are related to effects calculated for some physical laws (for a review see Ref. 
2). Thereby the considered physical laws are the formal extensions to arbitrary dimensions of 
laws established in three dimensions. Among those are considerations concerning the stability 
of planetary or electron orbits, Huygen’s principle for the wave equation,’ or the occurrence of 
Bose-Einstein condensation.” 

In principle their argumentation roughly runs as follows: At first one takes physical laws 
formulated in three dimensions and generalizes them to an arbitrary number of dimensions. 
Then dynamical consequences or effects, which can be distinguished from effects which occur 
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in three dimensions, are calculated by means of this new theory, whereby the notion of these 
effects does not depend on the dimensionality. In the case of Newton gravity in higher dimen- 
sions, for example, one demands that (as in three dimensions) the force between two bodies 
depends on the direction and the distance between the two bodies, and that Gauss’ law should 
hold. Thus one physical consequence of this new theory is the nonstability of planetary orbits. 
The notion of stability is a dynamical effect and does not depend on the dimension. Therefore 
dynamical observations which do not depend on the dimensionality of space, force us to con- 
clude that space is three dimensional. However, in all examples mentioned above, the consid- 
ered physical laws in higher dimensions are essentially obtained as a formal generalization to 
higher dimensions of physical laws which one has established in three dimensions. 

In this article we want to give, along a different way of reasoning, another argument for the 
space-time dimension to be four. The difference to earlier considerations lies in the fact that we 
derive our dynamical equation from a few first principles (see below) which do not depend in 
any way on the underlying space-time dimension or space-time geometry. Then this dynamical 
equation is taken to calculate observable dynamical effects. We are not just generalizing some 
theory given in three dimensions to an arbitrary number of dimensions. 

For doing so we take arguments from new constructive space-time axiomatics based on 
elements of quantum theory (for an extensive account on the relevance of this approach and a 
complete exposition see Ref. 11) . Thereby we refer to the propagation phenomena of quantum 
matter only. In doing so we use quantum mechanics in the “position representation,” that is, 
represented by classical field theory. ThesE quantum objects are considered as the “test field,” 
that is, as the field analog to the usual test point particles. In the following we describe the 
behavior of these quantum objects in particular basic experiences. These basic experiences are 
then formalized in postulates. Thereby it is possible to formulate the postulates and to perform 
the underlying experiments without making reference to geometry. The introduction of a space- 
time geometry, which will consist in a Riemannian metric, in a Riemann-Cartan connection 
and in the space-time dimension, will be the result of our constructive axiomatic scheme. 

In our approach we use very general propagation phenomena, which we take as our basic 
experiences, like deterministic evolution, the superposition principle, and finite propagation 
speed to derive a linear first order system of partial differential equations as the dynamical 
equation for quantum matter (see Ref. 12). Then we demand that this system possesses some 
properties concerning the propagation of singularities and of Wentzel-Kramers-Brillouin 
( WKB) states. This propagation equation as well as the requirements are completely geometty- 

free statements, they do not depend on any geometrical notion like the metric, the connection, 
or the dimensionality of space-time. Nevertheless, we can derive a Clifford algebra with 4X4 
matrices which is only possible in five dimensions at most. An additional argument using the 
conservation of chirality excludes less than four and five dimensions and leaves us with a 
four-dimensional space-time (Fig. 1). This last step can be alternatively replaced by using 
Huygen’s principle. 

For completeness, in the following we give a short summary of the derivation of the field 
equation we are dealing with. Then we state our requirements which lead us to the Clifford 
algebra which in turn gives us the space-time dimension. Therefore all these quantities will 
prove to be consequences of our purely dynamical and geometry-free approach. The metric and 
the connection is introduced in Refs. 13 and 14 by means of a field equation which is charac- 
terized by means of a deterministic linear evolution with finite propagation speed. In this article 
we want to derive within this scheme the dimensionality of space-time. 

Together with the results obtained in Refs. 11-14 we can state: If space-time geometry is 
the entity that prescribes to testfields their typical behavior as seen in the basic experiences, then 
space-time geometry is mathematically described by a Riemann-Cartan geometry with axial 
torsion in four space-time dimensions. 
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generalised Dirac equation GDE 

metric torsion 4 - dimensionality 

FIG. 1. Scheme of constructive space-time axiomatics based on elements of quantum theory. 

II. THE FIELD EQUATION 

At first we want to repeat the way of how to arrive in a geometry-free manner at some field 
equation in a similar way as in Ref. 12. Thereby “geometry-free” means that we do not rely on 
any geometric notion, e.g., the metric, the connect@, or even the dimension. All these entities 
will be a consequence of our scheme. 

According to Ref. 12 we assume that on a differentiable (n + 1 )-dimensional manifold & 
there is given a field 9~4 + C?x H p(x) whereby each p(x) EC’ is a complex vector. The 
inner degrees of freedom as represented by the complex vector valuedness of the field q~ will be 
essential in the following scheme. 

At first we shall derive a general partial differential equation governing the dynamics of the 
considered matter field. For doing so we first postulate a deterministic evolution of the field 
with respect to a “time’‘-parameter t associated with a (n + 1) slicing of the manifold &. This 
means that, given a field on some hypersurface labeled with a parameter t’, the field will be 
determined uniquely on a “later” hypersurface with parameter t > t’. All hypersurfaces for 
which this is true will be called spacelike. Note that n refers to the dimension of the spacelike 
hypersurface, and will shortly be called the space dimension. 

Next we require a superposition principle to hold. This property of quantum matter is 
verified in a lot of experiments (see, e.g., Ref. 15 ). (Of course there are equations for which the 
superposition principle does not hold. Here we are not concerned with any of such equations 
like Einstein’s equation or Yang-Mills equation. In demanding the superposition principle to 
hold we are essentially restricted to source-free matter fields (i.e., fields which are propagating 
in a source free space-time region) which feel no self interaction. Since matter fields like the 
Klein-Gordon or the Dirac field fulfill this demand, this represents no limitation with respect 
to our approach. Thereby we require that the evolution of an arbitrary sum of initial data 
results in the same field as the sum of separately propagated initial data. One derives an 
abstract Cauchy problem dqJdt=G#*, where Q)~ is the field p for fixed t and where Gt is the 
generator of the dynamical evolution. 

According to our experience signals cannot propagate with infinite velocity. Therefore we 
postulate next that the propagation of all initial data with compact support results in a field 
which still has compact support. This requirement implies that the generator Gt is local. As a 
consequence, the generator Gt has to be a partial differential operator implying that the abstract 
Cauchy problem reduces to a first order system of partial differential equations (p=O,l,...,n) 

i~%M,p(x) +M(x)p(x) =O, (1) 
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where the 7 p and Mare complex coordinate dependent s Xs matrices. We call this equation the 
generalized Dirac equation (GDE). For coordinate dependent transformations 9 t--t q’ =Sq, 
SE Gl (C,s), 7 p transforms homogeneously, 7” +P y 1P==S~5’-1, while M transforms inhomo- 
geneously, M H M’ =SiUS- ’ - i+S~~‘a,S-‘. Note that 7 p are not necessarily the usual Dirac 
matrices. In general they do not fulfill any Clifford algebra. 

Next we introduce the probability interpretation of quantum mechanics which must be 
based on a real vector current jp which is bilinear in the fields q. Its zeroth component j” is 
interpreted as the probability density for finding a particle at a certain location. The only object 
in our theory which carries a vector index is 7 p. Therefore we require q’&j Pq to be real for 
some matrix /3 and all q. This implies that rr p must be Hermitian: (m p) + =m p. At this 
point, the Klein-Gordon equation is ruled out. However, the Dirac equation still satisfies all 
the requirements above. Indeed, the fact that the Dirac equation leads to a positive definite 
current was one of the main successes of this equation. 

In addition, this first order system can be easily shown to be weakly hyperbolic, that is, the 
spacelike hypersurfaces are noncharacteristic and all zeros of the characteristic equation 
H,( x,k) : = det (T “kP) = 0 are real. The reality of the zeros can be inferred from the Hermiticity 
of the matrices Fyp. In addition, the spacelike hypersurfaces can be proven to be necessarily 
noncharacteristic, because otherwise it is not possible to pose arbitrary initial data. 

To sum up, a deterministic evolution which is linear and propagates with finite velocity 
results in a first order system of partial differential equations ( 1) . A probability interpretation 
then requires the coefficients of the principal part to be Hermitian. 

Now one can derive the geometrical content of this partial differential equation, that is, 
metric, connection, and dimensionality, whereby in the following we would be able to show 
that within this axiomatic scheme one can easily characterize the four dimensionality of space- 
time. 

III. THE PROPAGATION OF SINGULARITIES 

The propagation of singularities is a first consequence of our field equation ( 1) . Singular- 
ities are jumps resp. discontinuities in solutions of Eq. ( 1) or in one of its derivatives which can 
occur only on certain hypersurfaces.16 In general relativity they are related to the notion of the 
light cone because for all physical theories of matter the characteristics are identical with the 
usual light cones describing also the causal behavior of the fields. The jumps of lowest order 
along a hypersurface a=0 obey O=ykPa with the normal kP=aP@ related to the hypersur- 
face Cp. Since multiplication of this equation with a nonsingular matrix, e.g., p, does not alter 
the solutions for kP and a we use instead 

(2) 

The advantage of this form is that the coefficient matrix flFpkP is Hermitian. 
Vectors aEC solving Eq. (2) are called jump amplitudes on the hypersurface. At the 

moment these jump amplitudes are just the set of vectors which describe possible jumps in the 
solutions of Eq. ( 1). The jump amplitudes solving Eq. (2) are defined only along the hyper- 
surface where the discontinuity of the solution occurs. 

The solvability condition of Eq. (2) is given by the characteristic polynomial 

H,(x,k):=det( p(x)y~(x)k,)=g*l”‘~~(x)kP;*-kPs=O, (3) 

whereby the tensor g pk”‘ps of rank s is real. Equation (3) is a scalar partial differential equation 
of the Hamilton-Jacobi-type for the function @ which always possesses a solution. These 
solutions are called characteristic surfaces or null surfaces which are the only hypersurfaces 
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where discontinuities of solutions can occur. The set of k,, solving Eq. (3) defines the normal 
cone. These characteristic surfaces generalize the usual null surfaces appearing in relativistic 
field equations (note that ko#O for all kc, fi=l,...,n). 

Now we demand according to physical experience that there is only one null cone (that is, 
one past and one future cone) and there are only two jump amplitudes. (If this requirement is 
not fullilled one is led to Lorentz noninvariant theories whose physical consequences are 
discussed in Ref. 17. Estimates on possible Lorentz noninvariance parameters from experimen- 
tal observation are also given.) 

The latter requirement implies that the multiplicity of the zeros of the characteristic 
polynomial H, must be two. This in turn implies that there is another polynomial Ho, so that 

H&G) =WoCx,k))2. 

That there is only one future and one past null cone implies (see Appendix A) 

(4) 

Ho(x,k) =;““(x)k,k,. (5) 

Accordingly, s=4, that is, q~ has four components, and 7 P and M are 4X4 matrices. This 
cP’y means that there is a second rank tensor g which is determined up to a positive scalar 

function. 
It is easy to see that this tensor is nonsingular and has (according to our convention to be 

cjW* chosen) the signature n - 1: Since g IS a symmetric second rank tensor, it can be diagonalized 
by means of a coordinate transformation. For meeting the above requirements, i.e., k,EpP, it is 

c11 necessary that for the special case of k@=Sb we have nonvanishing ica and g with opposite 

signs. We make the convention lm > 0. Then ii1 < 0. Analogously g’ 22 ’ 3 < O,$ < O,andsoon. 

Therefore we have det i”“(x)#O and also that the tensor 2 has the correct signature 1 -n. 
This also means that the GDE( 1) is a first order system of partial differential equations of 
normal hyperbolic-type. 

cp’y * Because g is nonsingular, it possesses an inverse &,(x). This metrical tensor defines a 
conformal structure in the usual sense (Ref. 11) in n+ 1 dimensions. One can introduce the 

following notions: a vector w is called time-, null-, or spacelike if &, w Pwv is > 0, < 0, or =0, 
respectively. 

It can be shown that the vector field z#‘: = i ““k,, is characterized by &,, v %J” = 0 and obeys 
a geodesic equation v”a,, v P + (~O}cv”v’v”- v p with the Christoffel symbol {cg}‘: 

= fhvvipo + a,k,, - a, i,,p). These properties justify calling &,, a metric. Solutions of the 
geodesic equation are null trajectories, that is, at each point along the trajectory the tangent is 
a null vector. The set of points which can be connected by null trajectories starting from a 
certain point x0 is called the null cone Y% at x0. The interior of the null cone, that is, all points 
which can be reached by a timelike curve, is denoted by J%. The future null cone and its 
interior are denoted by V$ and J& respectively. 

IV. THE PROPAGATION OF WKB STATES 

Next we want to consider approximate solutions of Eq. ( 1). The solutions we are looking 
for are approximate plane wave solutions. We make the ansatz 

q(x) =a(x)eiscx), (6) 
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with a real function S. We demand that derivatives of the amplitude a are small compared with 
derivatives of the phase S:II~Qccall (Il~~($S)ajl. Here 11. II is some norm in the vector space 
d. Inserting Eq. (6) into Eq. ( 1) we arrive at 

0= -~%3,sa-Ma+i~V,a. (7) 

The last term is small compared with the first one. The second term must be split into a 
covariant one M(O) and a second one M(i) which transforms in the same way as iU. That is, 
M=M(‘)+M”) (a formal derivation of this result is given in Ref. 14). The covariance of the 
resulting equations requires this kind of splitting. We are not interested in any special form of 
M(O) and we must not know it. M(O) can be any complex 4X4 matrix. 

If we use this splitting, then we get from Eq. (7) 

0= (--~a,s-M(O))a+i~‘*d,a+M(‘)a. (8) 

In a first step, the last two terms can be neglected in comparison to the first term, so that we 
have 

O= (ypp Ir --M(O))a. (9) 

If this equation is fulfilled, we additionally get 

O=i~hY,a---M(‘)a. (10) 

The vectors a solving Eq. (9) are called spin states and pp := -a$’ are the momenta of the 
approximate plane waves. Any solution for S and a of Eqs. (9) and ( 10) are approximately 
plane matter waves. 

If there is a solution of the form of an approximately plane matter wave, then a solvability 
condition det( p( ~~p~--M’“‘)) for the first equation (9), which is algebraic, must be fulfilled 
[we multiplied Eq. ( 10) with S for the same reason as in Sec. III]. This results in a Hamilton- 
Jacobi equation which is a polynomial of forth order 

with coefficients jjp”P,..., g which are determined by 7 p and M(O). 
Now we demand that for each solution p of the above equation there are two spin_ states 

and that there is at least one timelike group velocity v 5 =dH/ap, . This implies that H is the 
square of another polynomial H(x,p) =(H’(x,P))~ leading to the solvability condition 

H’(x,p) =;‘ypP,+gpp,+g=O. (11) 

A redefinition of p: Pee : =pp + 1 &,gv and a subsequent resealing of Eq. ( 11) leads to an 
equation of the structure 

H(x,P) =g “vPpP,,- 1 =0 , (12) 

with g pv: = (i ;,,gpg” - g ) - ‘i P”. g Irv now plays the role of a Riemannian metric on the 

manifold A. The fact that the resealing in Eq. ( 12) leads to the term - 1 (and not to a zero), 

resp. the fact, that the denominator a ip,gP$ - g > 0, is due to the requirement that there is 
at least one timelike group velocity. From Eq. ( 12) one can derive an equation of motion for 
the respective group velocity v Y =g pvPv showing that the Riemannian metric g P as well as 
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the coefficient g p (leading to a Lorentz-type force) prescribes for the wave packets their paths 
on A. (The discussion of the equation of motion for the group velocity is not subject of this 
article and will be postponed to a later publication. All following results are independent of 
this.) In addition, from Eq. (10) a Riemann-Cartan connection with axial torsion which 
describes the motion of the spin vector, can be derived. This has been done in Refs. 11 and 13. 

Combining the redefinition and resealing we have with p p: = (i ipU gpg” - g) -“2Tp and 

M: = ($;pggpf-gg)-1/2(M(o) +&gvp) 

(13) 

This now is the equation we are using to derive the Clifford algebra of the matrices y which 
in turn gives us restrictions of the dimension of space-time. 

V. THE CLIFFORD ALGEBRA 

Given some matrix, its determinant is given by the multiplicatio_n of this matrix with its 
minor (see, e.g., Ref. 18). Therefore, there is a matrix B, so that B(fpPp-M) = (gpvP,P,, 
- 1) 2. In addition, one can show (see, e.g., Ref. 18) that for multiple zeros of a certain degree 
d the minor is proportional to the (d- 1)st power of this zero. In our case there is another 
matrix B with B= (g “vPpP,,- 1) B. Therefore we get from Eq. ( 13) 

B(PpP/+ii)=g”‘P,P,-1. (14) 

It is not difficult to show that, because of the fact that the right hand side is a polynomial of 
order 2 in P, B must be a polynomial of order 1 (see Appendix B) 

B= B(x,P) = W(x)P,+ p(x). (15) 

In_sertion of this B into Eq. ( 14) and equating the coefficients of equal powers of Pp gives 
@=M- ‘, B l’= Bcp pBc’ and therefore the Clifford algebra 

f(yPyV+yVyP)=gPV, 

with y 6 = Bcp PI?. Here the y P are 4 x 4 matrices. 

(16) 

On the other hand we know that only for four and five space-time dimensions there is a 
faithful realization of a Clifford algebra with 4X 4 matrices. Because our y matrices are derived 
to be 4x4 matrices we conclude at first that space-time can be at most five dimensional: It is 
well-known19 that for dim J=n + 1 a Clifford algebra possesses a representation in a 
210’+1)‘21-dimensional complex vector space ([(n + 1)/2] = (n + 1)/2 for n odd, = n/2 for n 
even). Since we do not assume irreducibility for our case we can conclude ~=4>2[‘“+“‘~~ only. 
This means that only space-time dimensions n + 1 < 5 are possible. Thereby n = 0 means that 
there is no space dimension and only one time dimension which is nonphysical. We exclude 
n= 1 because in this case two solutions of Eq. (5) cannot be continuously connected by 
solutions of Eq. (5) which should always be possible according to our physical experience. We 
also exclude n = 2, that is, three-dimensional space-time, because in this case in the same way 
as it is in five dimensions (see below) the chirality of particles is not conserved. In addition, 
lower-dimensional physics, especially gravity, is said to be nonphysical.20 

In principle one also should consider fields with more than four components, that is, fields 
with higher spin. In this case, the representation of the Clifford algebra may also be higher 
dimensional which may lead to other conclusions than above, namely,’ to the possibility of more 
than four space-time dimensions. However, beside the fact that it is possible also in this case 
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to modify appropriately the requirements to arrive at the same conclusion, there is an argument 
which shows that it is not necessary to consider these fields: At first we note that a field with 
the properties required in our axioms does exist in nature, namely, the Dirac field which is 
realized, e.g., by neutrons or electrons. On the other side, other fields may lead to more than 
four space-time dimensions. However, because all fields live in the same space-time manifold 
we have to take this very dimensionality which is derived from that field which is most 
restrictive for the number of dimensions. Therefore, treating the four-component GDE is 
sufficient for our conclusion. 

VI. CONSERVATION OF CHIRALITY 

It is possible to distinguish four dimensions from five by means of the following observa- 
tion: 

In five dimensions a representation of the Clifford algebra (up to similarity transforma- 
tions) is given by y p, p=O ,..., 4 with y” ,..., 9 as the usual y matrices in four dimensions and 
y4:=iy5=yOy1y 2y 3. 

This means that the vector space d cannot be split in any way into two subspaces so that 
the dynamical evolution given by the GDE ( 1) leaves the solution in these subspaces. (In the 
usual special relativistic field theories this property is referred to as the conservation of chiral- 
ity.) 

For proving this proposition we reformulate Eq. ( 1) as an evolution equation (here we 
redefined M and p in an obvious manner according to the replacement of 7~ with Y/L) 

ia~=-i(ro)-lyCia,~+(yO)-*M~, (17) 

whereby x0 acts as a “time” coordinate and the surfaces x’=const are spacelike hypersurfaces 
Z p, and p runs from 1 to 4 denoting the coordinates within 2,. 

By means of Eq. ( 17) the field on a hypersurface with the parameter x0+6x0 is then given 
by 

~=~o+~xo(-i(~)-lylia~~o+C~)-lM~o), (18) 

where q. is the initial value on the hypersurface at x0. 
If a function 4 is given which depends on the coordinates of B,o only, then each initial 

valuegivenby~o=e’~@owith Ily”aF~oll~lly”(a,~>~oll and IIM~oll~lly”(a~~>9)oll iscalledan 
oscillatory initial value (see, e.g., Ref. 9) for the GDE. Physically one may interpret these 
functions as fields with high momentum. Inserting the oscillatory initial values into Eq. ( 18) 
we get with (r”:=(p)-‘y@ 

~=~o-i6~o&~,~)~o. (19) 

Now there are experimental observations with respect to the propagation of oscillatory 
initial values: There is a representation of the y matrices so that in this representation the 
dynamics of oscillatory initial values decouple (we need not know the explicit form of the y 
matrices for this representation). This means that in the representation under consideration 
there are projection operators P, = ( A g) and P-=(i T) where 0 and 1 are the 2x2 zero and 
unity matrices, so that for a field prepared in an oscillatory initial state with P,@o=@o, the 
propagated state also fulfills P,@=@. In other words, if an oscillatory initial state is prepared 
with P+@o=@o, then it always remains a state with this property. There is no dynamical 
mixing between states fulfilling P+p=q and those fulfilling P-q=rp. This we now take as our 
last postulate. (For Dirac’s theory this is equivalent to the conservation of helicity for massless 
particles. ) 
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With respect to the operator c&Q& in Eq. ( 19) governing the time evolution of oscillatory 
initial values this means that it should commute with the projection operators [P, ,&a,+] =O. 
This in turn implies that in this representation the matrix c@ must have diagonal form. This, 
however, is not possible in four space dimensions as can be seen by the following observation: 
In a special orthonormal tetrad, or a special coordinate system for which g@” has Minkowskian 
form, we infer from the Clifford algebra (16) (y’)*= 1 [that is (y”>-‘=r”], ycaP+aFyo=O, 
and 

a(Pao) = Sri”* (20) 

If now the c# matrices are of diagonal form, say 

” afo 
ap= o ag , 

( ) 
1 

where cze and a$ are 2 X 2 matrices, then relation (20) splits into two relations 

a;“af = p, aya;’ ,sLi” 

However, in four space dimensions (that is, ,&, += 1 ,..., 4) this kind of relation, namely, a 
Clifford algebra with a positive definite metric, cannot be fulfilled with 2X2 matrices. This is 
only possible for at most three space dimensions. 

This kind of reasoning is related to the fact that in four space-time dimensions for massless 
particles one can define the chirality as the eigenvalue of the matrix yS [then P, =f( 1 + y5)]. 
The chirality represents a conserved quantity. Therefore, for massless particles y5 should 
commute with the Hamilton operator &dfi. First, in four space dimensions it is not even 
possible to define any helicity, and second, there is no matrix which commutes with all c@ as 
one can easily prove using Eq. ( 16). 

Therefore, by this last step we have fully characterized the four dimensionality of space- 
time on the level of the dynamics of matter fields by means of geometry-free postulates resp. 
requirements. 

VII. HUYGEN’S PRINCIPLE 

One may think of an alternative way to arrive at the above conclusion, for example, the 
consideration of Huygen’s principle for the squared version of the GDE ( 1). Let us take Eq. 
(1) and act on it with -if(x we then get, with Eq. (16) and the above redefinition of M 
and a 

o=gcLywapad~~ +m)a,dd +B(x)P(x), (21) 

with some 4X4 matrices N(x) and B(x). Each solution fulfilling Rq. ( 1) must also fulfill Eq. 
(2 1) . The first part of this equation consists in the wave operator. Locally, there is a coordinate 
system so that this first term acquires the form ai-- A,,, with A,,, as the Laplacian in n space 
dimensions. The other terms usually contain the mass and connection term. 

Huygen’s principle can be stated in several ways (see, e.g., Refs. 9, 21). One way to say 
that Huygen’sprinciple is fulfilled is, that the (retarded) solution of a hyperbolic equation with 
a S-like source term (or with a &like initial value) at x0 is a distribution, the support of which 
consists in the null cone v: only. This means that there is no “tail.“** (Another way to state 
this is to say that the value of the field at x depends only on the initial values on the intersection 
of the past light cone v; with some initial hypersurface 8.) 

It is well-known that in flat space-time, that is, for the wave equation $“‘a$,, p 
= (ai- Acn) )q = 0, Huygen’s principle holds for odd n, while it does not hold in even space 
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dimensions. Thereby the form of the fundamental solution in odd space dimensions is of the 
form G+(x,x,) -S(‘“-3)‘2)(s2) with &=~Py(x-xo)P(x-xo)y= (t-to)2-(x-q>2, while 
for even space dimensions it has the structure G+(x,x,) -O(L?)S’-~ where 0 is the step 
function O(2) = 1 for ?> 0 and a(.?) =0 for 2 <O (see Refs. 9, 23, and 24). Therefore the 
singular support of each fundamental solution consists in the null cone vg . However, the type 
of the singularities differs for even and odd space dimensions: While in odd space dimensions 
on both sides of the null cone the fundamental solution is exactly zero, it is nonzero inside the 
null cone (it declines continuously by progressing from the light cone vg to its interior JG) for 
even space dimensions. 

The fundamental solution will be modified in curved space-times, where the wave equation 
reads g P”(x) (a a q(x) -{,“,}a, q(x))=0 with the Christoffel symbol built from the metric 
gP,, . In compariioi to flat space-time the fundamental solution will be altered (see Ref. 24) : 
The general structure for odd-dimensional space is 

(n-3)/2 

G+ (wo) - 1 $n--3)/2--m)(~) + v, 
m=O 

where V is a regular function with support in JTo and 2 now is the geodesic distance between 
x0 and x. For even space dimensions we have G+ (x,x0) - Ws’-” where W again is a regular 
function with support in Jz. We notice that (i) for even as well as for odd dimensions the 
singular support, like in the flat case, still consists in vz and (ii) the change in the solution 
consists only of the modification by regular functions. Therefore we can again distinguish 
between even and odd space dimension by noting that in odd space dimensions on both sides 
of the null cone the fundamental solution is regular and therefore finite, while for even space 
dimensions it declines continuously from infinity by progressing from the light cone V& to its 
interior JG . 

In our case of Eq. (2 1 ), deviations from the wave operator, that is, for example, mass, in 
general add to the fundamental solution of the wave operator additional terms (among others) 
of the form -a(?) (rX4 + B2?), etc., which do not modify the singular support. In any case, 
for an equation of the type (2 1) Ap and B cannot lead to terms becoming infinite, for the 
following two reasons: (i) For the limit A Ir + 0 and B-+0 the undisturbed fundamental solution 
must be recovered, and singularities cannot vanish with such a limiting process. (ii) In view of 
Sec. III we notice that discontinuities of solutions can occur on characteristic surfaces only. 
Since these surfaces are determined solely and completely by the principal part of the differ- 
ential operator the additional terms A” and B in Eq. (20) cannot influence these surfaces. 
Therefore these terms cannot produce other singularities so that we are left with those given by 
the principal part g Pva&, q~ which we discussed above. This argumentation has been proven in 
detail for the wave equation by Friedlander, see also DeWitt.25 

Therefore, violations of Huygens principle which are caused by odd space-time dimensions 
can be experimentally distinguished from violations which are caused by nonzero Ap and B. 
This can be done as follows (see Fig. 2) : Assume that the field is caused by a &like source at 
x0. Then the field has the form of a retarded (we choose appropriate boundary conditions) 
Green function G+ (x,x0). An observer (which we assume to be represented by a parametrized 
world line with monotonically increasing parameter 7) near the source measures the intensity 
of the field at his position x(7). At first (let us say at the moment 70) he measures an infinite 
peak having its origin either in the 6 function on the light cone (in the case of odd space 
dimensions) or in the factor ?--n (in the case of even space dimensions). If for each moment 
Q-> r. after this moment the intensity is finite [i.e., lim,,, GC(x,xO) = c < CO], then there are 
only finite non-Huygens terms which necessarily originate from Ap and B. If, however, the 
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null cone 

FIG. 2. Observer, parametrized with T, crossing a null cone defined by the fundamental solution with vertex at x0. 

non-Huygens terms for r+ro with r> r. tend to infinity [that is, limrl,.a G+ (x,x0) = a], then 
this infinity can only be caused by a term of the form s*-” which is present in even space 
dimensions only. 

Consequently, if we demand that in nature violations of Huygens principle of the form 
O(s)slmn never occur, then we can infer that space-time must have even dimensions, that is, 
in our case, four dimensions. [One might ask what happens if n=5 and if furthermore Huy- 
gen’s principle in the above form should be valid. In this case one expects according to the 
results of Ref. 23 that one has to modify the field equation (2 1) in such a way that it is of a 
pseudodifferential operator type. Such operators are nonlocal and therefore violate our require- 
ment of finite propagation speed (see Refs. 11 and 26) and are therefore excluded in our 
axiomatic approach.] In this way we have, in analogy to the last section, characterized the four 
dimensionality of space-time by means of geometry-free restrictions of the dynamics of matter 
fields, which are observable in principle. 

VIII. CONCLUSION 

Within a constructive axiomatic scheme’1-14 we were able to derive the structure of space- 
time. Thereby the structure is given by the metric, the connection, and the dimensionality. Here 
we derived within this axiomatic scheme that space-time has to possess four dimensions. 

The derivation proceeded in a completely geometry-free way essentially along the following 
steps whereby each step is based on physical experiences: 

( 1) A tlrst order system of partial differential equations is derived from the requirement of 
deterministic linear evolution with finite propagation velocity. 

(2) A probability interpretation implies the Hermiticity of the coefficients of the principal 
part. 

(3) According to experience we demand one light cone and two jump amplitudes and two 
spin states only. This results in the Clifford algebra ( 16) which exists in at most five space-time 
dimensions. 

(4) The requirement of conservation of chirality during evolution or the validness of a 
form of Huygen’s principle sorts out the four space-time dimensions. 

Therefore we succeeded in characterizing the four dimensionality of space-time by means 
of propagation phenomena only. 

The main points which are essential for the characterization of four space-time dimensions 
are (i) the conservation law which implies that there is a Hermitizing matrix for the y 

J. Math. Phys., Vol. 34, No. 10, October 1993 

Downloaded 31 Jul 2006 to 134.102.236.59. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



C. LLmmerzahl and A. Macias: On the dimensionality of space-time 4551 

matrices, (ii) the demand that there are two jump amplitudes on each of the two light cones 
and two spin states on each mass shell which are essentially the facts implying that there is a 
Clifford algebra with 4 X 4 matrices, and (iii) the demand of conservation of helicity, respec- 
tively, of a form of Huygens principle. Therefore the four dimensionality of our physical 
configuration space d is deeply connected with the spin content, that is, with the number of 
inner degrees of freedom of our field Q) (compare the end of Sec. V) . 
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APPENDIX A: PROOF OF EQ. (5) 

According to our assumptions Ho(x,k) has two zeros for given kc., that is, it has the form 
H,(x,k) =a(x)(k,-hl(x,kfi))(ko-h2(x,kG)) with some proportionahty factor a(x). On the 
other hand, det (fly pk,,) =g p”P”kpkV k,k, is a polynomial of order four. Therefore the follow- 
ing equality must hold: 

gpvp”kpk ,, k,k,= [a(ko-h~(x,k~))(ko-hz(x,k~))lz 
and therefore 

gmk; + 3g @Oookfik; + 6g gmkfik; k2,+ 3g kG@kfiko kgko+g @+fickfik; kakb 

=a2[k~-2(h,+h2)k~+(h~+4h,h2+h~)kZ,-2hlh2(hl+h2)ko+h~h~]. 

Comparison of the coefficients to powers of k. gives a2=goooo and 

h;+4hlh2+h;=q@‘kpko, 

hlh2(h,+h2)=q@~kEkokd, 

h;h;=~&&$& 

for appropriate coefficients q p,...,q P’ba Inserting Eq. (Al) into Eq. (A2) gives . 

hlh2=f(qfiQ-qfiq’)kpk;. 

Using this result and Eq. (Al) we therefore get 

fMx,k) =a(ko--hl) (ko--hd 

=a(~-(hl+h2)ko+hM 

=a(k2,--qfikck,+f((1Ci”-&q”)kGk;) 

= :; pvkpk,, 

(AlI 

(42) 

J. Math. Phys., Vol. 34, No. IO, October 1993 
Downloaded 31 Jul 2006 to 134.102.236.59. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



4552 C. Ummerzahl and A. Macias: On the dimensional@ of space-time 

for some tensor 2”. This has the form stated above. 

APPENDIX B: PROOF OF EQ. (15) 

To show Eq. (15), we rewrite Eq. (14) with k:=Bp as 

In Ref. !8 it is shown that k must be a polynomial of first order in PO. Therefore we make the 
ansatz B= 3-k i’Po with so= pp and B’= B’$‘, insert this into Eq. (Bl ), and expand the 
resulting expression 

Comparison of the coefficients to the powers of PO then gives 

B’$=$o, 

From these equations we can infer that B’ does not depend on Pci and 

so that Boy0 = 2g $“Pfi -g”( p) - ’ ( p fiPfl - 1 ), that is, Ba is a polynomial of Pg. Taking all 
results together, we see that B is a polynomial of first order in Pp. 
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