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I. Revision of basic geometric optics
(cf. Pedrotti and Pedrotti, Chapter 3)

The simplest way to describe light is in terms of rays.

This is called ray optics or geometric optics.

All of geometric optics can be based on Fermat’s Principle.

a) Fermat’s Principle

Pierre de Fermat (1601–1665)

French lawyer, politician, mathematician
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Original version of Fermat’s Principle:

The actual path between two points taken by a light ray is

the one which is traversed in the least time.

Pierre de Fermat (1657)

A

B

Applying Fermat’s Principle to light rays in some medium requires to know along

each trial path the velocity of light

v = c
n

in this medium. Here

c = velocity of light in vacuo (≈ 300 000 km/sec)

n = index of refraction

3



Caveats: • Modifications of Fermat’s Principle are necessary for moving media

(e.g., light traveling in moving fluid).

• Frequency of light has to be fixed if velocity of light depends on fre-

quency (“dispersive medium”).

• Actually, the travel time need not be minimal, only stationary, i.e., a

minimum, a maximum or a saddle, see examples below.

Fermat’s Principle has analogue in mechanics (“Optical-mechanical analogy”):

ray optics ←→ classical mechanics

ray = path of photon ←→ path of particle

Fermat’s Principle ←→ Maupertuis’ Principle

wave optics ←→ quantum mechanics

electromagnetic wave ←→ probability wave

In the following we discuss several applications of Fermat’s Principle to basic geo-
metric optics.
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b) Medium with n = constant

Assume that the index of refraction n is constant.

(Recall: The velocity of light is v = c
n
.)

A

B

travel time t = geometric length · n
c

minimal travel time = minimal geometric length

Fermat’s Principle ⇒ light rays are straight lines

[maxima or saddles cannot occur in this case]
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c) Reflection law

(was known already to ancient Greeks)

Consider medium of constant index of refraction n, bounded by reflecting plane.

Then Fermat’s Principle yields two solutions for rays from A to B: The connecting
straight line, and a reflected ray.

Derivation of the reflection law:

A

B

hA

hB

y

w − y

ΘR

ΘI

By symmetry, rays must lie in plane perpendicular to reflecting plane.
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travel time t = geometric length · n
c

=

=
(

√

h2
A + y2 +

√

h2
B + (w − y)2

)

n
c

0
!
=

dt
dy

=
(

��2y

��2
√

h2
A+y2

+
��2(w−y)(−1)

��2
√

h2
B+(w−y)2

)

n
c

y√
h2

A+y2
=

w−y√
h2

B+(w−y)2

sin ΘI = sin ΘR

As −π
2
≤ ΘI ≤ π

2
and −π

2
≤ ΘR ≤ π

2
:

ΘI = ΘR This is the reflection law

• The solution is always a minimum with respect to all broken straight lines. (Proof:

Consider second derivative.) However, it is a saddle if arbitrarily curved trial

paths are allowed.

• The reflection law holds for curved reflecting surfaces as well. (Proof: Apply

above argument to the tangent plane.)
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d) Refraction law

(experimentally discovered by Snellius in 1621)

Consider medium with constant index of refraction n in one half-space, medium
with constant index of refraction n′ in the other half-space.

Derivation of the refraction law:

n n′

A

B

hA

hB

y

w − y

Θ

Θ′

By symmetry, rays must lie in plane perpendicular to boundary plane.
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travel time t =

= n
c

√

h2
A + y2 + n′

c

√

h2
B + (w − y)2

0
!
=

dt
dy

= ��2ny

��2c
√

h2
A+y2

+
��2n′(w−y)(−1)

��2c
√

h2
B+(w−y)2

ny√
h2

A+y2
=

n′(w−y)√
h2

B+(w−y)2

n sin Θ = n′ sin Θ′ This is Snell’s law.

• The solution is always a minimum. (Proof: Consider second derivative.)

• The refraction law holds for curved surfaces as well, e.g. for lenses.

(Proof: Apply above argument to the tangent plane.)
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e) Medium with spatially variable n

If n is not a constant, it is not the geometric length
∫

dℓ but the

optical path length =
∫

n dℓ

that is minimal (or stationary). As a consequence, the rays are curved.

Example:

Air above a hot surface
(z is the height)

n(z)

z

(inferior) mirage:

Picture from http://sol.sci.uop.edu

Requires temperature gradients of at least 2 degrees per meter.
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f) Example where solution is not a minimum

Consider the reflection at the inner side of an ellipsoid. Then, with respect to broken
straight lines, the solution may be a minimum or a maximum.

A = B

maximum

minimum

Remark: With respect to arbitrary trial curves (i.e., not only broken straight lines),
Fermat’s Principle never yields a maximum (either minimum or saddle).
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g) Imaging by mirrors of various shapes

Always consider specular reflection

specular diffuse

α) Plane mirror

ho hi

do di

Virtual image, upright and side-inverted,

do = di and ho = hi.
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β) Corner mirror

outgoing ray always parallel to incoming ray
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γ) Concave spherical mirror

Θ

Θ

Rh

a center optical axis

• Ray through center is always reflected in itself.

• What about ray parallel to optical axis?

h given, determine a:
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sine theorem:
R

sin(π−2Θ)
= R−a

sinΘ

R sinΘ = (R− a) sin2Θ = (R− a) 2 sinΘ cosΘ

R = 2 (R− a) cosΘ (∗)

h
R

= sinΘ , cosΘ =
√

1− h2

R2 (∗∗)

(∗) and (∗∗) =⇒ R = 2(R− a)
√

1− h2

R2

a = R− R2

2
√

R2−h2

a depends on h, i.e., no perfect focusing

First order approximation (Gaussian optics, paraxial rays):

sinΘ ≈ Θ , cosΘ ≈ 1 , R2 − h2 ≈ R2 , a ≈ R
2

First order approximation for a gives focal length of spherical concave mirror:

f = R
2
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Imaging properties of concave spherical mirror in first order approximation:

Θ

Θ

2Θf R

ho

do

di

hi

x

z

object

real image

f = R
2

(positive)

do distance of object (positive by choice of axes)

ho height of object (positive by choice of axes)

di distance of image (positive if on the same side of the mirror as object)

hi height of image (negative if inverted)

Goal: Determine di and hi if f , do and ho are given.
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ho

do

= − hi

di

(∗)

tan(2Θ) =
−hi

di−f
≈ 2Θ

sin Θ =
ho

2f
≈ Θ







=⇒ −hi

di − f
=

ho

f
(∗∗)

(∗) and (∗∗) =⇒ do

di
=

f

di − f

do di − do f = di f | : di do f

1
f

= 1
di

+ 1
do

This is the mirror equation. With di known, (∗) now gives the magnification

m = hi

ho
= − di

do

For do > f , the image is real and inverted, thus m < 0.

For do < f , the image is virtual and upright, thus m > 0.
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δ) Convex spherical mirror

f = −R
2

(negative)

−R f

ho

dodi

hi

x

z

object
virtual image

do distance of object (positive by choice of axes)

ho height of object (positive by choice of axes)

di distance of image (negative if on other side of the mirror than object)

hi height of image (positive if upright)

Calculation analogous to concave case:
1
f

= 1
di

+ 1
do

m = hi

ho
= − di

do

Image is always virtual and upright, thus m > 0.
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h) Refraction by bodies of various shapes

α) Prisms

nn n′

α

δ

Θ1

Θ′
1

Θ′
2

Θ2

Prism: Index of refraction n′

Ambient medium: Index of refraction n

n′ > n =⇒ δ > 0, i.e., bending away from apex
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β) Spherical lenses

Lens: Index of refraction n′

Ambient medium: Index of refraction n

Assume n′ > n

Spherical lens can be approximated by prisms:

converging effect diverging effect
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A) B) C) D) E) F)

converging diverging

A) double-convex D) double-concave

B) plano-convex E) plano-concave

C) concave-convex F) convex-concave

C) and F) are also called meniscus-lenses

Like spherical mirrors, spherical lenses focus parallel rays only in first order approx-

imation (paraxial rays, Gaussian optics). Imaging properties are simple under the

following two assumptions.

• First order approximation: Parallel rays go through focus.

• Thin lens approximation: Rays through center of lens are not being deflected.
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Converging lens:

−f

ho

do

−di

hi

x

z

object

real image

f positive

do distance of object (positive by choice of axes)

ho height of object (positive by choice of axes)

di distance of image (positive if on the other side of the lens than object)

hi height of image (negative if inverted)

Goal: Determine di and hi if f , do and ho are given.
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ho

do

= − hi

di

(∗)

ho

f
=
−hi

di − f
(∗∗)

(∗) and (∗∗) =⇒ do

di
=

f

di − f

do di − do f = di f | : di do f

1
f

= 1
di

+ 1
do

This is the (thin) lens equation. With di known, (∗) now gives the magnification

m = hi

ho
= − di

do

For do > f , the image is real and inverted, thus m < 0.

For do < f , the image is virtual and upright, thus m > 0.
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Diverging lens:

−f

ho

do−di

hi

x

z

objectvirtual image

f negative

do distance of object (positive by choice of axes)

ho height of object (positive by choice of axes)

di distance of image (negative if on the same side of the lens as object)

hi height of image (positive if upright)

Calculation analogous to converging lens:
1
f

= 1
di

+ 1
do

m = hi

ho
= − di

do

Image is always virtual and upright, thus m > 0.
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II. Waves

(cf. Pedrotti and Pedrotti, Chapters 8 and 9)

There are two observational facts that demonstrate that light is actually a wave
phenomenon. Ray optics is only an approximation.

First, light can travel into the geometric shadow. This is called “diffraction”.

picture from http://www.astrophys-assist.com

Diffraction of light was first observed by Francesco Grimaldi (1618–1663) whose

observations were published in 1665.
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Second, light coming from two sources shows “interference”.

picture from http://www.astrophys-assist.com

This was demonstrated in the famous double-slit experiment by Thomas Young
(1773-1829) in 1801.

In every-day life the wave character of light is not obvious because its wave length
(< 1µm) is very small compared to the dimension of obstacles.

Later we discuss diffraction and interference in great detail. In this section we deal
with general properties of waves.
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a) General features of waves

Waves are special fields. A field is a function of space of time.

Distinguish:

• one-dimensional scalar field

u(x, t)

e.g. elongation of a string, temperature along a (thin) rod, . . .

• three-dimensional scalar field

u( r
–
, t )

e.g. temperature in a room, mass density in a fluid or in a gas, . . .

• three-dimensional vector field

v
–
( r
–
, t )

e.g. velocity of a fluid, electric field, magnetic field, . . .

There are other types of fields. E.g., the gravitational field in general relativity is

a “tensor field”.
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A wave is a field that describes how a physically measurable
quantity travels through space in the course of time.

Notes:

• The time-dependence of a wave need not be periodic. (However, we can always

do a series expansion, called Fourier analysis, in terms of sinusoidal waves.)

• A wave does not necessarily need a material medium to travel in. E.g., light

waves can travel in vacuo. This was hard to grasp for 19th and early 20th century

physicists who believed that light waves needed a material medium, called the

ether, to travel in. A. Einstein postulated, within the framework of his Special

Relativity Theory of 1905, that the ether does not exist.

Distinguish the following properties of waves:

linear ←→ non-linear

For linear waves the superposition principle holds, for non-linear waves it does not.

Small-amplitude waves are typically linear.

damped ←→ undamped

For a damped wave, part of the wave energy is converted into other forms of energy,
typically heat, for an undamped wave the wave energy is preserved.
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traveling ←→ standing

In a standing wave the energy does not travel if averaged over appropriate time

intervals, in a traveling wave it does. (A linear standing wave can be written as a

superposition of two waves that travel into opposite directions.)

free ←→ driven

A driven wave has a permanent driving force as its source, in a free wave a pertur-

bation travels without driving force; e.g.:

• stone thrown into water: free wave

(after stone has sunk)

• rod rhythmically moved in water: driven wave

We will now discuss one-dimensional scalar waves in detail Then we turn to three-

dimensional scalar and vector waves. The latter case includes light.

29



b) One-dimensional scalar waves

α) Derivation of the one-dimensional wave equation for a string

x

x

y = u(x, t)

y = u(x, t)

string at rest

string in perturbed state

Assumptions: • motion in x− y−plane

• µ = mass/length in rest state = constant

• motion purely transverse, i.e., each line element moves vertically

(justified if elongation sufficiently small)

• no forces other than tension (i.e., ignore gravity, friction, ...)

Goal: Derive differential equation for u(x, t).
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Consider short line element between x and x+ ∆x

x
x

y

x+ ∆x

u(x, t)

u(x+ ∆x, t)

α1

α2

T
–

1

T
–

2

µ ·∆x = mass of line element

T
– 1 = tension at x

T
– 2 = tension at x+ ∆x
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Total force on line element: F
–

= T
– 1 + T

– 2

Newton’s second law: T
– 1 + T

– 2 = µ ·∆x · a
–

• x−component of Newton’s second law (motion is transverse):

−|T
– 1| cosα1 + |T

– 2| cosα2 = 0

|T
– 1| cosα1 = |T

– 2| cosα2 =: T (∗)

• y−component of Newton’s second law:

−|T
– 1| sinα1 + |T

– 2| sinα2 = µ ·∆x ·
∂2u(x+ 1

2
∆x, t)

∂t2
(∗∗)

where x+ 1
2
∆x = center of inertia of line element.

From geometry:
tanα1 =

∂u(x, t)

∂x

tanα2 =
∂u(x+ ∆x, t)

∂x

(∗ ∗ ∗)
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Insert (∗ ∗ ∗) into (∗∗):

−|T
– 1| cosα1

∂u(x, t)

∂x
+ |T

– 2| cosα2

∂u(x+ ∆x, t)

∂x
= µ ·∆x ·

∂2u(x+ 1
2
∆x, t)

∂t2

Insert (∗) into the last equation:

T
1

∆x

(
∂u(x+ ∆x, t)

∂x
− ∂u(x, t)

∂x

)
= µ ·

∂2u(x+ 1
2
∆x, t)

∂t2

Send ∆x −→ 0 :

T
∂2u(x, t)

∂x2
= µ · ∂

2u(x, t)

∂t2

With v =
√
T/µ :

∂2u(x, t)

∂x2
− 1

v2

∂2u(x, t)

∂t2
= 0

one-dimensional wave equation
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• The differential operator
∂2

∂x2
− 1

v2

∂2

∂t2

is called the one-dimensional wave operator with velocity v.

• v has, indeed, dimension of velocity:

1

length2
=

1

dim[v]2
· 1

time2

dim[v] =
length

time

• For elastic string, v =
√
T/µ increases with increasing tension T and decreases

with increasing mass density µ.

• For all mechanical waves:

v2 =
measure of tension

measure of inertia
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β) Solutions to the one-dimensional wave equation

Claim 1: Let u(x, t) = ϕ(x− vt), where ϕ is any two times differentiable function.

Then u(x, t) satisfies the wave equation
∂2u(x, t)

∂x2
− 1

v2

∂2u(x, t)

∂t2
= 0 .

Proof: ∂u(x, t)

∂x
= ϕ′(x− vt)

∂2u(x, t)

∂x2
= ϕ′′(x− vt)

∂u(x, t)

∂t
= −v ϕ′(x− vt)

∂2u(x, t)

∂t2
= v2ϕ′′(x− vt)

�

Such solutions describe waves of arbitrary shape moving in positive x−direction:

x

y

x0 x0 + vt1 x0 + vt2

u(x, 0) u(x, t1) u(x, t2)
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Claim 2: Let u(x, t) = ψ(x+ vt), where ψ is any two times differentiable function.

Then u(x, t) satisfies the wave equation
∂2u(x, t)

∂x2
−

1

v2

∂2u(x, t)

∂t2
= 0 .

The proof is analogous to that of Claim 1.

Such solutions describe waves of arbitrary shape moving in negative x−direction:

x

y

x0x0 − vt1x0 − vt2

u(x, 0)u(x, t1)u(x, t2)

Superposition principle (wave equation is linear): Every function of the form

u(x, t) = ϕ(x− vt) + ψ(x+ vt) solves the wave equation.
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One can show that u(x, t) = ϕ(x− vt) + ψ(x+ vt) is actually the general solution

of the wave equation. Indeed, ϕ and ψ can be adapted to arbitrary initial conditions:

Want to find a solution u(x, t) of the wave equation such that

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = h(x) (∗)

where f and h are two given functions. Choose x0 and define functions ϕ and ψ by

ϕ(x) =
1

2
f(x) − 1

2v

∫ x

x0

h(ξ)dξ ,

ψ(x) =
1

2
f(x) +

1

2v

∫ x

x0

h(ξ)dξ .

Then

u(x, t) = ϕ(x− vt) + ψ(x+ vt)

satisfies the wave equation and the initial conditions (∗). This represents the general

solution to the wave equation in terms of its initial conditions:

u(x, t) =
1

2

(
u(x+ vt, 0) + u(x− vt, 0)

)

+
1

2v

∫ x+vt

x−vt

∂u

∂t
(ξ, 0) dξ

d’Alembert’s formula
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Example: Determine the solution u(x, t) to the one-dimensional wave equation that

satisfies the initial conditions

u(x, 0) = 0 and
∂u

∂t
(x, 0) = C cos(kx)

where C and k are real constants.

D’Alembert’s formula:

u(x, t) =
1

2

(
u(x+ vt, 0) + u(x− vt, 0)

)
+

1

2v

∫ x+vt

x−vt

∂u

∂t
(ξ, 0) dξ

= 0 +
1

2v

∫ x+vt

x−vt
C cos(kξ) dξ =

C

2v

1

k
sin(kξ)

∣∣∣
x+vt

x−vt

=
C

2vk

(
sin

(
k(x+ vt)

)
− sin

(
k(x− vt)

) )

=
C

vk
cos(kx) sin(kvt)

Check that this u(x, t) satisfies indeed the wave equation and the initial con-

ditions!
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γ) Harmonic waves in one space dimension

A one-dimensional harmonic wave is a function that depends on x and t in the form

u(x, t) = A sin(kx− ωt+ δ) (∗)

A : amplitude

δ : phase shift

k : wave number

ω : angular frequency

Note that (∗) is the same as

u(x, t) = A cos(kx− ωt+ δ̃)

where δ̃ = δ − π
2
.

Also, with the identity

sin(α+ β) = sinα cosβ + cosα sinβ

(∗) can be equivalently rewritten as

u(x, t) = B sin(kx− ωt) + C cos(kx− ωt)

where B = A cos δ and C = A sin δ.
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At fixed x:

Oscillation with

period T = 2π
ω

[in seconds]

frequency ν = ω
2π

[in Hz = c.p.s.] t

u(x, t)

T

At fixed t:

Snapshot of a wave with

wave length λ = 2π
k

[in meters]

x

u(x, t)

λ
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The differential equation that determines the physical system (or the “medium”)

gives a relation between ω and k, called the dispersion relation, which is usually

written in the form

ω = ω(k)

From the dispersion relation one derives the

phase velocity vp =
ω
k

and the

group velocity vg =
dω
dk

Explanation of the names “phase velocity” and “group velocity”:

Phase velocity:

If someone moves with the phase velocity vp = ω/k, his x-coordinate depends on

time according to x = x0 + ωt/k, so for him the phase kx− ωt+ δ = kx0 + δ is a

constant (independent of t). This explains the name “phase velocity”.
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Group velocity:

Consider two harmonic waves with the same amplitude and the same phase shift:

u1(x, t) = A cos(k1x− ω1t+ δ) and u2(x, t) = A cos(k2x− ω2t+ δ) .

The identity

cosα + cosβ = 2 cos
α− β

2
cos

α+ β

2
yields

u(x, t) = u1(x, t) + u2(x, t) =

2A cos
(k1 − k2

2
x− ω1 − ω2

2
t
)

cos
(k1 + k2

2
x− ω1 + ω2

2
t+ δ

)

This is a cosine function whose amplitude is modulated by another cosine function,

with modulation wave number and modulation frequency

kmod =
k1 − k2

2
, ωmod =

ω1 − ω2

2
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picture from http://www.tinpan.fortunecity.com

The maximum of the modulation function moves at velocity

vmod =
ωmod

kmod

=
ω1 − ω2

k1 − k2

.

If k1 − k2 is small,

vmod ≈ dω/dk = vg .

This explains the name “group velocity”. (Here we considered a “group” consisting

of only two waves. The argument can be generalised to larger groups of waves.)
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Example: Derive the dispersion relation for the wave equation

∂2u(x, t)

∂x2
− 1

v2

∂2u(x, t)

∂t2
= 0 .

Ansatz u(x, t) = A sin(kx− ωt+ δ) yields

∂2u(x, t)

dx2
= −Ak2 sin(kx− ωt+ δ)

∂2u(x, t)

dt2
= −Aω2 sin(kx− ωt+ δ) .

Wave equation requires (
− k2 +

ω2

v2

)
A sin(kx− ωt+ δ) = 0 .

So the dispersion relation for

the wave equation reads

ω = v k

k

ω = vk

vp = v

vg = v

Quite generally, if vp is independent of k, the medium is said to be “non-dispersive”.
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δ) Complex notation and phasors

Some quantities in physics are complex, e.g. the wave function in quantum me-

chanics. However, even when dealing with real quantities complex notation is often

useful.

Basic idea: Write the real quantity you are interested in as the real part of an ap-

propriately defined complex quantity; use the more convenient calculational rules

for complex numbers.

Recap complex numbers:

z = x+ iy where i2 = −1

x = Re(z) , y = Im(z)

Complex conjugate : z∗ = x− iy

Modulus : |z| =
√
x2 + y2

|z|2 = z∗ z = z z∗

real axis

imaginary axis

z

z∗

x

iy

{complex numbers} = {pairs of real numbers with multiplication such that i2 = −1}.
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Polar cordinates for

complex numbers:

x = r cosϕ , y = r sinϕ

r =
√
x2 + y2 , tanϕ =

y

x
real axis

imaginary axis

z

x = r cosϕ

iy =

i r sinϕ

ϕ

z = x + i y = r
(
cosϕ + i sinϕ

)

Euler’s formula: cosϕ + i sinϕ = eiϕ

Proof of Euler’s formula: Compare Taylor series

ex =
∞∑

n=0

xn

n!
, sinx =

∞∑

m=0

(−1)m
x2m+1

(2m+ 1)!
, cosx =

∞∑

m=0

(−1)m
x2m

(2m)!
.

�

Representation of complex numbers in polar coordinates with Euler’s formula:

z = r eiϕ r and ϕ real, r = |z| ≥ 0.
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Harmonic wave at fixed position in space is given by a function

u(t) = A cos
(
ωt+ β

)

where ω, A and β are real constants.

u(t) can be written as the real

part of an appropriately defined

complex function Φ(t):

u(t) = Re
(
Φ(t)

)

Φ(t) = Aei(ωt+β)

= Aeiβeiωt

real axis

imaginary axis

Φ(t)

Aeiβ

ωt
β

Time-dependence =̂ circular motion in complex plane : “Phasor diagram”
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picture from http://de.wikipedia.org
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Example 1: Two waves are given, at a fixed point x, as

u1(t) =
√

3A cos(ωt) and u2(t) = A sin(ωt)

where A and ω are positive real constants. Write u(t) = u1(t) + u2(t) in the form

u(t) = r cos(ωt+ ϕ). Show u1, u2 and u in a phasor diagram.

u1(t) = Re
{√

3Aeiωt
}

and u2(t) = Re
{
Aei(ωt−π/2)

}
= Re

{
− i A eiωt

}

u(t) = Re
{

(
√

3− i)Aeiωt
}

Set (
√

3− i)A = reiϕ. Then r =
√

3 + 1A = 2A and tanϕ = −1/
√

3, so ϕ = −π/3(+2π).

u(t) = Re
{

2Ae−iπ/3 eiωt
}

= Re
{

2Aei(ωt−π/3)
}

= 2A cos
(
ωt− π/3

)
.

Phasor diagram for t = 0: real axis

imaginary axis

u2

u1

u

ϕ

A

√
3A
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Example 2: Rederive the dispersion relation for the wave equation

∂2u(x, t)

∂x2
− 1

v2

∂2u(x, t)

∂t2
= 0

with the ansatz u(x, t) = Wei(kx−ωt) where W is complex and k and ω are real.

∂u(x, t)

∂x
= W ik ei(kx−ωt) ,

∂2u(x, t)

∂x2
= −W k2 ei(kx−ωt)

∂u(x, t)

∂t
= −W iω ei(kx−ωt) ,

∂2u(x, t)

∂t2
= −W ω2 ei(kx−ωt)

So the wave eqation requires

(
− k2 +

ω2

v2

)
W ei(kx−ωt) = 0 , hence ω = v k .

[Note: If we write W = Aeiδ, we have

Re{u(x, t)} = A cos(kx− ωt+ δ) and Im{u(x, t)} = A sin(kx− ωt+ δ) .

The complex function u(x, t) satisfies the wave equation if and only if both its real and

its imaginary part satisfies the wave equation. This relates the use of the exponential

function to our earlier use of sine or cosine functions. ]
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ε) Fourier analysis

Why are harmonic waves important?

Fourier Theorem: Every continuous function F (t) that is periodic, F (t+ T ) = F (t) ,

can be written as a Fourier series

F (t) =
a0

2
+

∞∑

n=1

an cos
2nπt

T
+

∞∑

n=1

bn sin
2nπt

T
,

where

an =
2

T

∫ T

0

F (t) cos
2nπt

T
dt , bn =

2

T

∫ T

0

F (t) sin
2nπt

T
dt .

• Determining the coefficients an and bn for a given function F (t) is called “Fourier

analysis” or “harmonic analysis”. For practical purposes, the infinite series can

often be approximated by a finite sum.

• Fourier analysis can be done with respect to the time coordinate t and with

respect to the spatial coordinate x.

• The Fourier theorem even holds for some discontinuous functions. (F must satisfy

the “Dirichlet condition”: There are only finitely many discontinuities in a finite

interval and at each discontinuity the limit from above and from below exists.)

• If a function is defined on a finite interval [0, T ], one can extend it periodically

to the whole real line and apply the Fourier theorem to the resulting periodic

function.
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Example: Fourier analysis of a rectangle function.

The picture shows the first four sine functions that contribute to a rectangle function.

(Cosine functions do not contribute because the rectangle function is odd.)

picture from http://www.nemesi.net/mp3
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Switch to complex notation:

Introduce cn for n ∈ Z by

c0 =
a0

2

cn =
1

2

(
an − i bn

)
if n > 0 ,

cn =
1

2

(
a−n + i b−n

)
if n < 0 .

Then

F (t) =
∞∑

n=−∞
cn e

iωnt , ωn =
2πn

T

cn =
1

T

∫ T

0

F (t) e−iωnt dt

Works for real-valued and for complex-valued periodic functions F (t).
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What if F (t) is not periodic?

Replace Fourier series by Fourier integral:

F (t) =

∫ ∞

−∞
G(ω) eiωt dω ,

where

G(ω) =
1

2π

∫ ∞

−∞
F (t) e−iωt dt ,

is the Fourier transform of F (t).

G(ω) tells with which weight each frequency ω occurs in the Fourier analysis of F (t).

Keep in mind:

Periodic functions have discrete spectrum cn , ωn = 2πn/T , non-periodic functions

have continuous spectrum G(ω).
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c) Three-dimensional scalar waves

α) The three-dimensional wave equation

From the one-dimensional wave equation

∂2u(x, t)

∂x2
− 1

v2

∂2u(x, t)

∂t2
= 0

for a function u(x, t) one generalises to the three-dimensional wave equation

∂2u(r
−

, t)

∂x2
+

∂2u(r
−

, t)

∂y2
+

∂2u(r
−

, t)

∂z2
− 1

v2

∂2u(r
−

, t)

∂t2
= 0

for a function u(r
−

, t) = u(x, y, z, t).

Short-hand notation: With the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

the wave equation reads

∆u − 1

v2

∂2u

∂t2
= 0 .
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Even shorter: With the wave operator (or d’Alembert operator)

� = ∆ −
1

v2

∂2

∂t2
,

(
� = �v

)

the wave equation reads

�u = 0 .

With the help of the vectorial operator del (or nabla)

∇ ( · ) =
∂( · )
∂x

x̂
−

+
∂( · )
∂y

ŷ
−

+
∂( · )
∂z

ẑ
−

where x̂
−
, ŷ

−
, ẑ

−
are the unit vectors in x, y, z directions:

∆ = ∇2 = ∇ · ∇ ,

� = ∇2 − 1

v2

∂2

∂t2
.
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β) Sound waves in air

What we notice as sound is a pressure wave in air. Approximately, the pressure

p(r
−

, t) satisfies the wave equation

∆p − 1

v2

∂2p

∂t2
= 0

where

v =
√

γp0/ρ0 ,

γ = adiabatic index ,

p0 = pressure at rest ,

ρ0 = mass density at rest .

For air at 0oC :

γ ≈ 1.4 , p0 ≈ 106 dyne/cm2 , ρ0 ≈ 1.3 · 10−3 g/cm3 ,

v ≈ 330m/s

v increases with temperature ( v ∼
√

T ).
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The frequency of sound waves is perceived as pitch.

A440: Standard for musical pitch (440 Hz).

The same pitch played by different instruments sounds different because of overtones
(higher terms in Fourier series).

Musical intervals are frequency ratios. E.g., an octave is the frequency ratio 1:2.

Audio range: 20 Hz to 20 kHz (varies significantly with age).

Maximum of sensitivity: 1 kHz to 3.5 kHz.

Some animals ( elephants, alligators, . . . ) can produce and hear frequencies lower

than 20 Hz (infrasound).

Some animals (bats, mice, . . . ) can produce and hear frequencies higher than 20 kHz

(ultrasound).
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The intensity of a sound wave is measured as the time-average

p( r
−

, t)2 =
1

(t2 − t1)

∫ t2

t1

p( r
−

, t )2dt .

Human perception of the intensity is measured in decibel (dB):

L( r
−

) = 10 log10





p( r
−

, t)2

p0
2



 dB .

Note: For all human senses, the relation between perception and stimulus is loga-

rithmic (Weber-Fechner law).

immediate soft tissue damage 185 dB

threshold of pain 134 dB

jet engine, 100 m distant 110 . . . 140 dB

moving passenger car, 10 m distant 60 . . . 80 dB

normal talking, 1 m distant 40 . . . 60 dB

quiet rustling leaves 10 dB
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γ) Harmonic plane waves in three space dimensions

From one-dimensional harmonic waves

u(x, t) = A sin(kx − ωt + δ)

we generalise to three-dimensional harmonic plane waves

u(r
−

, t) = A sin(k
−

· r
−

− ωt + δ) .

A : amplitude

δ : phase shift

k
−

: wave vector

ω : angular frequency

Angular frequency determines period: T = 2π/ω.

Modulus of wave vector determines wave length: λ = 2π/|k
−

|.

Direction of wave vector determines the surfaces of constant phase:

The surfaces k
−

· r
−

− ωt + δ = constant are planes perpendicular to k
−
.
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The intensity of a plane harmonic wave

u(r
−

, t) = A sin(k
−

· r
−

− ωt + δ) .

is the time-average of u( r
−

, t )2 :

I( r
−

) = u( r
−

, t)2 =
ω

2 π

∫ 2π/ω

0

u( r
−

, t )2 dt =

= A2 ω

2 π

∫ 2π/ω

0

sin2(k
−

· r
−

− ωt + δ) dt .

Substituting ξ = ωt and using 1
2π

∫ 2π

0 sin2(ξ + α)dξ = 1
2
,

I( r
−
) = u( r

−
, t)2 =

A2

2
.

The dispersion relation for plane harmonic waves is of the form ω = ω(k
−
)

In the special case that ω depends only on k = |k
−

|, the medium is called isotropic.
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Phase velocity vector:

v
− p(k

−
) =

ω(k
−
)

|k
−

|2
k
−

has modulus

vp(k
−
) =

ω(k
−
)

|k
−

|
.

Group velocity vector:

v
− g (k

−
) = ∇k

−
ω(k

−
) =

∂ω(k
−
)

∂kx

x̂
−

+
∂ω(k

−
)

∂ky

ŷ
−

+
∂ω(k

−
)

∂kz

ẑ
−

has modulus

vg(k
−
) =

√
√
√
√

(∂ω(k
−
)

∂kx

)2

+
(∂ω(k

−
)

∂ky

)2

+
(∂ω(k

−
)

∂kz

)2

.

For an isotropic medium, ω = ω(k), we recover the familiar formulas

vp(k) =
ω(k)

k
, vg(k) =

dω(k)

dk
.
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Derive the dispersion relation for the wave equation ∆u − 1
v2

∂2u
∂t2

= 0 .

u(r
−

, t) = A sin(k
−

· r
−

− ωt + δ) ,

∇u(r
−

, t) = A k
−

cos(k
−

· r
−

− ωt + δ) ,

∇ · ∇u(r
−

, t) = − A |k
−

|2 sin(k
−

· r
−

− ωt + δ) ,

∂2

∂t2
u(r

−
, t) = − A ω2 sin(k

−
· r

−
− ωt + δ) .

As ∇ · ∇ = ∆ , the wave equation requires

(
k2 − ω2/v2

)
A sin(k

−
· r

−
− ωt + δ) = 0 ,

where k = |k
−

|. This yields the dispersion relation for the wave equation

ω = v k .

=⇒ vp = vg = v .
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As in the one-dimensional case, we say that the medium is non-dispersive if vp is

independent of k.

Keep in mind:

isotropic medium:

vp is independent of the direction of k
−
, but may depend on k.

isotropic and non-dispersive medium:

vp is a constant.

For the wave equation

vp = v = constant ;

so the wave equation describes isotropic and non-dispersive media.
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δ) Spherical harmonic waves

A spherical harmonic wave is a wave of the form

u(r
−

, t) = A(r) sin (kr − ωt + δ)

where r = |r
−

| =
√

x2 + y2 + z2.

The surfaces of constant phase

kr − ωt + δ = constant

are spheres.

Goal: Determine A(r) such that the wave equation

∆u − 1

v2

∂2u

∂t2
= 0

is satisfied.
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We first calculate

∇r =
∂

√

x2 + y2 + z2

∂x
x̂
−

+
∂

√

x2 + y2 + z2

∂y
ŷ
−

+
∂

√

x2 + y2 + z2

∂z
ẑ
−

=

��2xx̂
−

+ ��2y ŷ
−

+ ��2z ẑ
−

��2
√

x2 + y2 + z2
=

r
−

r

and

∆r = ∇ · ∇ r = ∇ ·
r
−

r
=

1

r
∇ · r

−
−

r
−

r2
· ∇r =

1

r

( ∂x

∂x
+

∂y

∂y
+

∂z

∂z

)

−
r
−

r2
·

r
−

r
=

3

r
− 1

r
=

2

r
.
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From u(r
−

, t) = A(r) sin (kr − ωt + δ) we find

∇u(r
−

, t) =
(

A′(r) sin (kr − ωt + δ) + A(r) k cos (kr − ωt + δ)
)

∇r .

Hence, with our results ∇r =
r
−
r

and ∆r = 2
r

we get

∆u(r
−

, t) = ∇ · ∇u(r
−

, t) =

(

A′(r) sin (kr − ωt + δ) + A(r) k cos (kr − ωt + δ)
)

∇ · ∇r +

({
A′′(r) − A(r) k2

}
sin (kr − ωt + δ) + 2 A′(r) k cos(kr − ωt + δ)

)

|∇r|2 =

( 2 A′(r)

r
+ A′′(r) − A(r) k2

)

sin (kr − ωt + δ)

+
( 2 k A(r)

r
+ 2 A′(r) k

)

cos (kr − ωt + δ) .

On the other hand,

∂2u

∂t2
= − A(r) ω2 sin (kr − ωt + δ) .
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Thus, the wave equation requires

( 2A′(r)

r
+ A′′(r) − A(r) k2 +

A(r) ω2

v2

)

sin (kr − ωt + δ) +

( 2 k A(r)

r
+ 2 A′(r) k

)

cos (kr − ωt + δ) = 0 .

This holds, for all r and t, if and only if the coefficients are zero,

2A′(r)

r
+ A′′(r) − A(r) k2 + A(r)

ω2

v2
= 0 (∗)

and

A(r)

r
+ A′(r) = 0 . (∗∗)

(∗∗) yields

dA

dr
= − A

r
,

∫
dA

A
= −

∫
dr

r
, ln A = − ln r + ln A0 , A(r) =

A0

r
.

With A(r) known, (∗) reads

−
�

�
�

�2 A0

r3
+

�
�

�
�2 A0

r3
+

A0

r

( ω2

v2
− k2

)

= 0

i.e., it gives the dispersion relation ω = v k .
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Summing up, a spherical harmonic wave that solves the wave equation

∆u − 1

v2

∂2u

∂t2
= 0

reads

u(r
−

, t) =
A0

r
sin(kr − ωt + δ)

with ω = vk .

If it is not centered at the origin, but rather at a point with position vector r
− 0, we

find by a coordinate transformation r
−

7→ r
−

− r
− 0 :

u(r
−

, t) =
A0

|r
−

− r
− 0|

sin
(

k|r
−

− r
− 0| − ωt + δ

)

.
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The intensity of a spherical harmonic wave

u(r
−

, t) =
A0

r
sin(kr − ωt + δ)

is the time-average of u( r
−

, t )2 :

I( r
−

) = u( r
−

, t)2 =
ω

2 π

∫ 2π/ω

0

u( r
−

, t )2 dt =
A2

0

r2

ω

2 π

∫ 2π/ω

0

sin2(kr − ωt + δ) dt .

Substituting ξ = ωt and using 1
2π

∫ 2π

0 sin2(ξ + α)dξ = 1
2
,

I( r
−
) = u( r

−
, t)2 =

A2
0

2 r2
.

So the intensity integrated over a sphere of radius r is independent of r :

∫ 2 π

0

∫ π

0

u( r
−

, t)2 r2 sin ϑ dϑ dϕ
︸ ︷︷ ︸

area element

=

∫ 2 π

0

∫ π

0

A2
0

2�
�r2

�
�r2 sin ϑ dϑ dϕ =

A2
0

��2
��2 2 π .

70



d) Three-dimensional vector waves

The most important example for a

vector wave in three dimensions is an

electromagnetic wave.

An electromagnetic wave consists

of two vector fields E
−
( r

−
, t ) and

B
−
( r

−
, t ) which are dynamically cou-

pled by Maxwell’s equations.

Radio waves, visible light, X-rays and

Gamma-rays are all electromagnetic

waves (of different frequency ranges,

see picture next page).

In principle, all properties of light

can be derived from Maxwell’s equa-

tions.

Below we derive the wave equation

for E
−

and B
−

from Maxwell’s equa-

tions.

James Clerk Maxwell (1831–1879)

picture from http://en.wikipedia.org/
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Spectrum of electromagnetic waves

picture from http://en.wikipedia.org/
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Maxwell’s theory of electromagnetic

waves was verified by Heinrich

Hertz’s experiments.

In 1888, Hertz produced radio waves

in the laboratory in agreement with

Maxwell’s theory.

Heinrich Hertz (1857 – 1894)

picture from http://en.wikipedia.org/

“It’s of no use whatsoever [. . . ] this is just an experiment that proves Maestro

Maxwell was right – we just have these mysterious electromagnetic waves that

we cannot see with the naked eye. But they are there.”

Heinrich Hertz
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α) Derivation of the wave equation from Maxwell’s equations

In SI units, the source-free Maxwell equations read

∇ · B
−

= 0 ,

∇ × E
−

+
∂

∂t
B
−

= 0
−

,

∇ · D
−

= 0 ,

∇ × H
−

−
∂

∂t
D
−

= 0
−

.

The vector fields E
−
( r

−
, t ), B

−
( r

−
, t ), D

−
( r

−
, t ) and H

−
( r

−
, t ) are related by consti-

tutive equations that characterise the medium. We consider the simplest case of

constitutive equations,

D
−

( r
−

, t ) = εr ε0 E
−
( r

−
, t ) , B

−
( r

−
, t ) = µr µ0 H

−
( r

−
, t ) ,

where εr and µr are constants that characterise the medium. For vacuum, εr = µr = 1.

ε0 and µ0 are constants of nature. In SI units:

ε0 = absolute permittivity = 8.85 · 10−12 C2

N m2

µ0 = absolute permeability = 1.26 · 10−6 N
A2
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Then Maxwell’s equations read
∇ · B

−
= 0 ,

∇ × E
−

+
∂

∂t
B
−

= 0
−

,

∇ · E
−

= 0 ,

∇ × B
−

− 1

v2

∂

∂t
E
−

= 0
−

,

where v =
1√

εr µr ε0 µ0
. From the second Maxwell equation:

∇ × (∇ × E
−
) = −∇ ×

∂B
−

dt

∇(∇ · E
−
) − (∇ · ∇)E

−
= − ∂

∂t

(

∇ × B
−

)

0
−

− ∆E
−

= − ∂

∂t




1

v2

∂E
−

∂t





∆E
−

− 1

v2

∂2E
−

∂t2
= 0 .
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An analogous calculation yields

∆B
−

− 1

v2

∂2B
−

∂t2
= 0 .

Every component of E and every component of B satisfies the three-dimensional

wave equation. Thus, Maxwell’s equations predict the existence of electromagnetic

waves that propagate with velocity

v =
1√

εr µrε0 µ0
= c

n

where

index of refraction: n =
√

εr µr

vacuum velocity of light: c =
1√

ε0 µ0
≈ 300, 000 km/sec

Propagation of electromagnetic waves (light) in a medium with constant εr and

constant µr is isotropic and non-dispersive. Propagation of electromagnetic waves

in gases or fluids is, in general, isotropic and dispersive, in crystals it is anisotropic

and dispersive. (Glass is an extremely viscous fluid, not a crystal.)
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The interstellar medium is disper-

sive, i.e., the velocity of electro-

magnetic waves depends on the

wave length.

Arrival of radiation from super-

nova 1987A in the Large Magel-

lanic Cloud:

type date time

[ neutrino February 23 07:35 ]

X rays February 23 09:00

light February 24 07:00

radio February 25 10:00

(Distance ≈ 160, 000 light years)

picture from http://www.dsd.lbl.gov/
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β) Plane harmonic electromagnetic waves

Ansatz for harmonic plane electromagnetic waves:

E
−
(r

−
, t) = E

− 0 cos(k
−

· r
−

− ωt + α) , B
−
(r

−
, t) = B

− 0 cos(k
−

· r
−

− ωt + β) .

Feed this into Maxwell’s equations for medium with constant εr and constant µr:

∇ · B
−

= 0 ,

∇ × E
−

+
∂

∂t
B
−

= 0
−

,

∇ · E
−

= 0 ,

∇ × B
−

− 1

v2

∂

∂t
E
−

= 0
−

,

where

v =
c

n
=

1
√

εr µr ε0 µ0

is the velocity of light.
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Consider the first and the third of the Maxwell equations:

∇ ·
(
E
− 0 cos(k

−
· r

−
− ωt + α)

)
= −E

− 0 · k
−

sin(k
−

· r
−

− ωt + α) = 0 ,

∇ ·
(
B
− 0 cos(k

−
· r

−
− ωt + β)

)
= −B

− 0 · k
−

sin(k
−

· r
−

− ωt + β) = 0 .

These imply

E
− 0 · k

−
= 0 , B

− 0 · k
−

= 0 .

i.e., electromagnetic waves are transverse.

Now consider the remaining two Maxwell equations:

∂
(
E
− 0 cos(k

−
· r

−
− ωt + α)

)

∂t
− v2∇ ×

(
B
− 0 cos(k

−
· r

−
− ωt + β)

)
=

= E
− 0 ω sin(k

−
· r

−
− ωt + α) + v2k

−
× B

− 0 sin(k
−

· r
−

− ωt + β)
)

= 0
−

,

∂
(
B
− 0 cos(k

−
· r

−
− ωt + β)

)

∂t
+ ∇ ×

(
E
− 0 cos(k

−
· r

−
− ωt + α)

)
=

= B
− 0 ω sin(k

−
· r

−
− ωt + β) − k

−
× E

− 0 sin(k
−

· r
−

− ωt + α)
)

= 0
−

.
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These imply

α = β

i.e., electric and magnetic field are in phase, and

E
− 0 = −

v2

ω
k
−

× B
− 0 , B

− 0 =
1

ω
k
−

× E
− 0 .

Thus,

k
−
, E

− 0 and B
− 0 are pairwise orthogonal

and their magnitudes satisfy
∣
∣E

− 0

∣
∣ = v

∣
∣B

− 0

∣
∣ , ω = v

∣
∣k

−

∣
∣ .

Summing up: For a harmonic plane electromagnetic wave in a medium with constant

εr and constant µr, the electric field

E
−
(r

−
, t) = E

− 0 cos(k
−

· r
−

− ωt + α) ,

determines the corresponding magnetic field to be

B
−
(r

−
, t) =

1

v

k
−

|k
−

|
× E

−
(r

−
, t) .

Thus, it suffices to know E
−
.
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The “intensity” (“irradiance”) of a plane harmonic electromagnetic wave with elec-

tric field E
−
(r

−
, t) = E

− 0 cos(k
−

· r
−

− ωt + α) is the time-average of |E
−
( r

−
, t )|2 :

I( r
−

) = |E
−
( r

−
, t)|2 =

ω

2 π

∫ 2π/ω

0

|E
−
( r

−
, t )|2 dt =

= |E
− 0|2

ω

2 π

∫ 2π/ω

0

cos2(k
−

· r
−

− ωt + δ) dt =
1

2
|E

− 0|2 .

In light from an ordinary light source (Sun, light bulb, . . . ), the direction of the

vector E
− 0 varies randomly over all directions perpendicular to k

−
. This is called un-

polarised light.

If a certain direction of E
− 0 is filtered out, one gets polarised light. We will discuss

polarisation of light later in detail.

The vector character of light is crucial for the understanding of polarisation experi-

ments, but it is irrelevant for diffraction and interference experiments. For the latter

case, one often models light in terms of a fictitious scalar field u(r
−

, t), in analogy to

sound waves, with the irradiance given as the time-average of u(r
−

, t)2. This is called

scalar optics.
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III. Diffraction

(cf. Pedrotti and Pedrotti, Sec. 3-1, Chapters 16, 17 and 18)

a) Huygens’ Principle

Huygens’ Principle

• was formulated by C. Huygens in his

“Traitée de la lumière” (submitted to

the Académie Française in 1678);

• describes propagation of waves in

terms of wave fronts;

• applies to waves described by a large

class of differential equations, includ-

ing the classical wave equation;

• allows to rederive the reflection law

and the refraction law in terms of

wave fronts;

• gives a basic understanding of diffrac-

tion.

Christiaan Huygens (1629 - 1695)

picture from http://de.wikipedia.org/
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Huygens’ Principle: Every point in a wavefront is the source of an

elementary wave (called ”wavelet”) which propagates in all direc-

tions with the speed of the wave. Later wavefronts are the envelopes

of these wavelets at fixed time.

We now give several applications of Huygens’ Principle to optics.

α) Medium with constant velocity of light

In a medium with constant veloc-

ity of light v (i.e., constant in-

dex of refraction n = c/v), the

wavelets are spheres that expand

with velocity v.

A plane wavefront remains a

plane wavefront parallel to itself.

wavefront at later time t = t0

wavefront at time t = 0
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β) Reflection law in terms of wavefronts

n

c
CD =

n

c

(
BG + GE

)
=

n

c
AF

sin ΘI = CD : AD , sinΘR = AF : AD ,

sinΘI = sin ΘR

As −
π

2
≤ ΘI ≤

π

2
and −

π

2
≤ ΘR ≤

π

2
:

ΘI = ΘR

n

mirror

AB

C

D
E

F

G

ΘI

ΘR
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γ) Refraction law in terms of wavefronts

n′

c
AD =

n

c
BG +

n′

c
GE =

n

c
CF (∗)

sin Θ = CF : AF , sin Θ′ = AD : AF ,

AF = CF : sinΘ = AD : sin Θ′ (∗∗)

(∗) and (∗∗) =⇒

n sinΘ = n′ sin Θ′

n n′

A

B

C

D

E

F

G

Θ′

Θ

85



δ) Huygens’ Principle and diffraction

Huygens’ Principle indicates that waves propagate into the geometric shadow.

shadow

This is called diffraction.

With light, diffraction was first observed by Francesco Grimaldi (1618–1663) whose
observations were published in 1665.

Huygens did not know about Grimaldi’s observation and tried to find arguments
why, in spite of the principle named after him, light should show no diffraction.
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In its original version Huy-

gens’ principle cannot explain

diffraction quantitatively; it

does not allow to calculate the

wave field u(r
−

, t).

Augustin Fresnel added to

the Huygens principle the as-

sumption that the wave field

can be calculated as a super-

position of all wavelets orig-

inating from one wave front,

taking their amplitudes and

phases into account. This

is called the Huygens-Fresnel

Principle.

In the following we work out

some mathematical details of

the Huygens-Fresnel Princi-

ple.

Augustin Fresnel (1788–1827)

picture from http://en.wikipedia.org/
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Recall ( p. 69 ) :

A spherical harmonic wave that solves the classical wave equation

∆u −
1

v2

∂2u

∂t2
= 0

is of the form

u(r
−

, t) =
A0

|r
−

− r
−

0|
sin

(
k|r

−
− r

−
0| − ωt + δ

)

where ω = vk.

In complex notation, using sin ϕ = Re
{

− ieiϕ
}
,

u(r
−

, t) = Re
{ − i A0

|r
−

− r
−

0|
e

i
(

ω
v | r

−
− r

−
0|−ωt+δ

)
}

= Re
{

− i A0 eiδ e−iωt e
iω

v | r
−

− r
−

0|

|r
−

− r
−

0|

}

The Huygens-Fresnel Principle says that superposition of such wavelets, with A0, δ, ω

fixed and r
−

0 ranging over one wavefront, gives the wave field.

−ieiδ = ei(δ−π/2) can be made equal to 1 by shifting the zero on the time axis,

t 7→ t − t0 with t0 = 1
ω

(
π
2

− δ
)
.

The Huygens-Fresnel Principle is the main tool for calculating diffraction patterns.
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However, something must be wrong with the Huygens-Fresnel Principle in this form:

Actually, Huygens wavelets should not radiate in the backward direction because no

light goes back from the aperture in the direction from which the light came in.

Therefore, Fresnel introduced the socalled

“obliquity factor” 1
2

(
1 + cos Θ

)
with which

the amplitude of each wavelet must be multi-

plied.

Forward direction, Θ = 0 : 1
2
(1 + cosΘ) = 1

Backward direction, Θ = π : 1
2
(1 + cos Θ) = 0

[A mathematical justification for the obliquity

factor was later given by Gustav Kirchhoff

(1824–1887).]

Θ

So the Huygens-Fresnel wavelets finally read

u(r
−

, t) = Re
{ A0

2

(
1 + cos Θ

)
e−iωt e

iω
v | r

−
− r

−
0|

|r
−

− r
−

0|

}

.

This is the basis of the diffraction theory as it was worked out by Kirchhoff. In the

following we discuss the diffraction patterns for apertures of various shapes.
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b) Fraunhofer diffraction

We will discuss the diffraction patterns for planar apertures of simple geometry, with

the help of the Huygens-Fresnel principle. One distinguishes:

Fraunhofer diffraction:

• Light source so far away from aperture that incoming wavefront

can be considered as plane.

• Observation screen so far away from aperture that the fronts of

the wavelets, originating from the points of the aperture, can be

considered as plane when they arrive at the screen.

Fresnel diffraction: Otherwise

The conditions of Fraunhofer diffraction can be achieved with the help of collimator

lenses (see 3rd worksheet).

For all examples in this section we

• assume that the index of refraction is constant;

• use scalar optics (i.e., we describe light in terms of a scalar function u(r
−

, t));

• assume that Fraunhofer diffraction is applicable and that Θ is so small that the

obliquity factor 1
2
(1 + cosΘ) can be approximated by 1.
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α) Two narrow slits

Consider two narrow slits with separation a.

Restrict to plane perpendicular to the slits.

If the slits are very narrow, the result-

ing wave is the superposition of just two

wavelets, centered in the slits.

As we assume Fraunhofer diffraction, they

can be approximated as plane harmonic

waves near a screen point. a sin Θ

Θ

a

Wavelet from first slit:

u0(r
−

, t) = Re
{

A e
i( k

−
· r
−

−ωt) }

For the second wavelet, the distance to the screen is longer by a sin Θ (see picture),

so with respect to the first it has a phase shift ∆ = k a sin Θ .

Wavelet from second slit:

u1(r
−

, t) = Re
{

A e
i( k

−
· r
−

−ωt+∆) }
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The superposition of them is

u(r
−

, t) = u0(r
−

, t) + u1(r
−

, t) = Re
{

A e
i( k

−
· r
−

−ωt) (
1 + ei∆

) }

= Re
{

A e
i( k

−
· r
−

−ωt)
ei∆

2
(
e−i∆

2 + ei∆
2
) }

= Re
{

A e
i( k

−
· r
−

−ωt+∆
2 )

2 cos
(∆

2

) }

= 2 A cos(k
−

· r
−

− ωt +
∆

2
) cos

(∆

2

)

The intensity (irradiance) is the time-average of the square of u(r
−

, t):

I(Θ) =
ω

2 π

∫ t0+
2 π
ω

t0

u(r
−

, t)2 dt = 4 A2 cos2
(∆

2

) ω

2 π

∫ t0+
2 π
ω

t0

cos2(k
−

· r
−

− ωt +
∆

2
) dt

With

ω

2 π

∫ t0+
2 π
ω

t0

cos2(α − ωt) dt =
1

2

I(Θ) = 2 A2 cos2
( ∆

2

)
.
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With ∆ = k a sin Θ = 2 π
λ

a sin Θ :

I(Θ) = 2 A2 cos2
( π a

λ
sin Θ

)

As I(0) = 2A2:

I(Θ) = I(0) cos2
( π a

λ
sin Θ

)
.

mth minimum(m = 0, ±1, ±2, ...) :

sinΘm =
(2m − 1)

2

λ

a

mth maximum (m = 0, ±1, ±2, ...) :

sin Θm = m
λ

a

sin Θ

I(Θ)

λ
2a

3 λ
2a

− λ
2a

−3λ
2a

So we get a diffraction pattern of equally

spaced bright stripes.

The spacing depends on wave length (i.e.

colour).

picture from www.itp.uni-hannover.de
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The same result can be found by

means of a phasor diagram:

Notation: OP = complex number

represented by arrow from O to P in

complex plane

u0(r
−

, t) = Re{OP}

u1(r
−

, t) = Re{PQ} = Re{OP ei∆}

u(r
−

, t) = Re{OQ}

Phasor diagram rotates rigidly with

angular frequency ω.

real axis

imaginary axis

O

Q

P

∆

∆/2

From the picture one reads:

1

2
|OQ| = |OP | cos

(∆

2

)

|OQ|2 = 4 |OP |2 cos2
(∆

2

)
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β) Grating

From two narrow slits we generalize to N narrow slits with equal separation a. This

is called a “grating”.

a

a sin Θ

Θ

Now we have to add

up N wavelets.

The wavelet from

each subsequent slit

gains a phase shift

∆ =
2π

λ
a sin Θ

relative to the

previous one.

Summing up all

wavelets:
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u(r
−

, t) = Re
{

A
(

e
i
(

k
−

· r
−

−ωt
)

+ e
i
(

k
−

· r
−

−ωt+∆
)

+

+ e
i
(

k
−

· r
−

−ωt+2∆
)

+ . . . + e
i
(

k
−

· r
−

−ωt+[N−1]∆
)

) }

=

= Re
{

A e
i
(

k
−

· r
−

−ωt
)

(

1 + ei∆ + ei2∆ + . . . + ei[N−1]∆
) }

Geometric progression: 1 + q + q2 + . . . + qN−1 =
1 − qN

1 − q

u(r
−

, t) = Re
{

A e
i
(

k
−

· r
−

−ωt
) (

1 − ei∆N
)

(
1 − ei∆

)

}

=

= Re
{

A e
i
(

k
−

· r
−

−ωt
)

eiN∆/2
(
e−iN∆/2 − eiN∆/2

)

ei∆/2
(
e−i∆/2 − ei∆/2

)

}

=

= Re
{

A e
i
(

k
−

· r
−

− ωt+ N∆
2 − ∆

2

)

�
�

�
�

�(−2i) sin(N∆/2)

�
�

�
�

�(−2i) sin(∆/2)

}

=

= A cos
(
k
−

· r
−

− ωt + [N − 1]∆/2
) sin(N∆/2)

sin(∆/2)
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Gives intensity I(Θ) =
ω

2 π

∫ t0+
2 π
ω

t0

u(r
−

, t)2 dt

= A2 sin2(N∆/2)

sin2(∆/2)

ω

2 π

∫ t0+
2 π
ω

t0

cos2
(
k
−

· r
−

− ωt + [N − 1]∆/2
)
dt

︸ ︷︷ ︸

1/2

=
A2

2

sin2(N∆/2)

sin2(∆/2)
.

With ∆ = 2 π
λ

a sin Θ :

I(Θ) =
A2

2

sin2
(

Nπa
λ

sinΘ
)

sin2
(

πa
λ

sinΘ
) .

To calculate I(0), we use the Taylor series of the sine function:

sin(Nζ)

sin ζ
=

Nζ − 1
3!

N3ζ3 + . . .

ζ − 1
3!

ζ3 + . . .
=

N − 1
3!

N3ζ2 + . . .

1 − 1
3!

ζ2 + . . .
−→ N for ζ → 0 ,

so

I(0) = A2N2/2 .
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Thus, the intensity is

I(Θ) = I(0)
sin2

(
Nπa

λ
sin Θ

)

N2 sin2
(

πa
λ

sin Θ
) .

The pictures show I(Θ) over sin Θ

for two values of N .

With increasing N , the primary

maxima become sharper and the

secondary maxima are more and

more suppressed.

Primary maxima occur at

sin Θm = m
λ

a

m = 0, ±1, ±2, . . .

N = 4

N = 8

picture from http://www.physik.fu-berlin.de/ brewer/
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Dependence on λ implies that a grating can be used for spectral decomposition:

pictures from http://des.memphis.edu

For instance, in astronomy gratings are used for spectral analysis of celestial bodies.
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Geometric construction of the N slits diffraction pattern with the help of phasors:

real axis

imaginary axis

O

Q

M

P

∆

∆

∆

∆

∆

∆

∆

(Picture for N = 4 slits)

|OM | sin ∆
2

= 1
2
|OP |

|OM | sin N∆
2

= 1
2
|OQ|







=⇒

|OQ|2 = |OP |2
sin2N∆

2

sin2∆
2
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γ) Single slit

Diffraction pattern

produced by a sin-

gle slit with water

waves.

picture from http://content.answers.com

b

a

Consider single slit of finite width b as the limit of a grating:

Let b = Na, keep b fixed, send N → ∞ (thus a → 0).

For finite N , we know (p.98):

I(Θ) = I(0)
sin2

(
N π a sin Θ

λ

)

N2 sin2
(

π a sin Θ
λ

) = I(0)
sin2

(
π b sin Θ

λ

)

N2 sin2
(

π b sin Θ
Nλ

)
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To calculate the limit N → ∞, we use the Taylor expansion of the sine function:

N sin
( ξ

N

)
= N

( ξ

N
−

1

3!

ξ3

N3
+ . . .

)
= ξ −

1

3!

ξ3

N2
+ . . . −→ ξ for N → ∞

Thus, in the limit N → ∞ we get

I(Θ) = I(0)
sin2

(
π b sin Θ

λ

)

(
π b sin Θ

λ

)2 .

This is sometimes written as

I(Θ) = I(0) sinc2
(π b sin Θ

λ

)

with the “sinc-function” sinc(ξ) =
sin ξ

ξ
.

Minima occur at

sinΘm =
m λ

b
(m = ±1, ±2, . . . )

−2λ
b

−λ
b

λ
b

2λ
b

sin Θ

I(Θ)

picture from nebula.deanza.fhda.edu
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δ) Double slit

Thomas Young

(1773-1829)

picture from http://en.wikipedia.org

Diffraction pattern produced by a

double slit with water waves

picture from http://www.lightandmatter.com/

With light, the double-slit experiment was first de-

scribed by Thomas Young in 1801. It was the “exper-

imentum crucis” which decided in favour of the wave

theory of light.

The double-slit experiment with matter waves (elec-

trons) played an important role for the understanding

of quantum mechanics.
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Consider two slits of finite width b and sep-

aration a.

Proceed as for single slit (p.101).

Treat each of the two slits as the limit of a

grating (N narrow slits with separation g).

Keep b = Ng fixed, send N → ∞

(thus g → 0).

For finite N , wave from first slit is (p.96)

u1(r
−

, t) =

Re
{

A e
i
(

k
−

· r
−

− ωt +
(N−1)∆

2

)

sin(N∆/2)

sin(∆/2)

}

where ∆ = k g sinΘ = k b
N

sin Θ.

Wave from second slit has additional phase

shift k a sin Θ:

u2(r
−

, t) =

Re
{

A e
i
(

k
−

· r
−

− ωt +
(N−1)∆

2

)

sin(N∆/2)

sin(∆/2)
ei k a sin Θ

}

Θ

b

b

g

g

a

a sin Θg sin Θ
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Adding up: u(r
−

, t) = u1(r
−

, t) + u2(r
−

, t) =

Re
{

A e
i
(

k
−

· r
−

− ωt+
(N−1)∆

2

)

sin(N∆/2)

sin(∆/2)

(
1 + ei k a sin Θ

) }

=

Re
{

A e
i
(

k
−

· r
−

− ωt +
(N−1)∆

2

)

sin(N∆/2)

sin(∆/2)
e

i
2 k a sin Θ

(
e− i

2 k a sin Θ + e
i
2 k a sin Θ

)

︸ ︷︷ ︸

2 cos
(

k
2 a sin Θ

)

}

=

2 A cos
(
k
−

· r
−

− ωt +
(N − 1)∆

2
+

k

2
a sinΘ

) sin(N∆/2)

sin(∆/2)
cos

( k

2
a sin Θ

)
.

Intensity:

I(Θ) =
2π

ω

∫ 2π
ω

0

u(r
−

, t)2dt =

4 A2 sin2(N∆/2)

sin2(∆/2)
cos2

( k

2
a sinΘ

) 2π

ω

∫ 2π
ω

0

cos2
(
k
−

· r
−

− ωt +
(N − 1)∆

2
+

k

2
a sin Θ

)
dt

︸ ︷︷ ︸

1/2

.
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With ∆ = k b
N

sinΘ: I(Θ) = 2 A2
sin2

(
k b
2

sin Θ
)

sin2
(

k b
2 N

sin Θ
) cos2

( k

2
a sin Θ

)
.

By Taylor expansion of the sine function,

sin
(

k b
2

sin Θ
)

sin
(

k b
2 N

sin Θ
) =

k b
2

�����sinΘ − 1
3!

(
k b
2

)3
sin�32Θ + . . .

k b
2 N

�����sin Θ − 1
3!

(
k b
2 N

)3
sin�32Θ + . . .

→ N for Θ → 0 ,

we find I(0) = 2 A2 N2 , hence

I(Θ) = I(0)
sin2

(
k b
2

sinΘ
)

N2 sin2
(

k b
2 N

sin Θ
) cos2

( k

2
a sin Θ

)
=

= I(0)
( sin

(
k b
2

sinΘ
)

�
��N

(
k b
2��N

sin Θ − 1
3!

(
k b
2

)3 1

N �32 sin3 Θ + . . .
)

)2

cos2
( k

2
a sin Θ

)
.

Limit N → ∞ gives the double-slit diffraction pattern. With k = 2 π/λ:

I(Θ) = I(0)

(
λ

π b sin Θ
sin

π b sin Θ

λ

)2

︸ ︷︷ ︸

= sinc2
(

π b sinΘ
λ

)

(

cos
π a sin Θ

λ

)2

Note: I(Θ) is the intensity function for two narrow slits with separation a, modulated

with the intensity function for a single slit with width b.
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sin Θ
λ
2a

λ
b

I(Θ)
picture from http://www.union.edu/PUBLIC/PHYDEPT/jonesc/

Minima at

sin Θm =
(2m − 1)

2

λ

a
, m = 0, ±1, ±2, . . .

and at

sin Θ̃m = m
λ

b
, m = ±1, ±2, . . .
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Double-slit experiment with electrons:

picture from http://www.physics.utoledo.edu/ ljc
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ε) Circular aperture

The diffraction pattern of a circular

aperture was investigated by the British

astronomer George B. Airy (1801–1892)

and is named after him.

Fraunhofer diffraction pattern produced

by a a circular aperture of diameter D:

I(Θ) = I(0)

(
2 λ

π D sin Θ
J1

( π

λ
D sin Θ

)
)2

where J1 denotes the first Bessel func-

tion of the first kind.

picture from

http://www.astrotelescope.com/optique

The angular radius ΘR of the central bright disk (“Airy disk”) can be found from

tabulated values of J1.

sin ΘR ≈ 1.22
λ

D
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wave fronts from distant star

ΘR

f

D
f tan ΘR

Because of diffraction, even an optically perfect telescope does not produce a point

image of a point source (distant star).

Image in the focal plane has radius f tan ΘR ≈ 1.22 f λ/D (with approximation

tan ΘR ≈ sin ΘR for small angles).
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Rayleigh criterion for resolution of two point sources:

Angular separation α of the two sources should be

larger than the angular radius of their Airy disks,

sin α > 1.22
λ

D

where D is the diameter of the aperture of the

optical instrument (e.g. telescope).

• Bigger aperture gives higher resolving power.

• Smaller wave length gives higher resolving

power.

• A radio telescope must have a much bigger

aperture than an optical telescope to give the

same resolving power.

• In spite of the last observation, today radio tele-

scopes have higher resolving power than optical

telescopes because they can be combined by in-

terferometric methods (see below).

Top to bottom: Decreasing D.

Left to right: Decreasing λ.

picture from

http://www.union.edu/PUBLIC/PHYDEPT/jonesc
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α) Opaque circular disk

picture from

http://www.union.edu/PUBLIC/PHYDEPT/jonesc

With Fraunhofer diffraction, wavelets

originating in the aperture plane show

no phase difference in the forward direc-

tion (Θ = 0), so there is always bright-

ness at the center of the screen.

In particular, the diffraction pattern of

an opaque circular disk should show a

bright spot in the center. Denis Poisson

considered this to be absurd and there-

fore rejected Fresnel’s diffraction the-

ory in 1818. The spot was observed

by François Arago shortly thereafter

(and had actually already been observed

by Giacomo Maraldi in 1723). It is

now called “Poisson’s spot” or “Arago’s

spot”.

Thus, by diffraction, an opaque circular disk has a focusing effect on light.
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η) Note on (Fraunhofer) diffraction by three-dimensional structures

The above techniques apply

to planar apertures only. For

three-dimensional obstacles,

one needs other techniques,

even if light source and ob-

servation screen are very far

from the obstacle.

An important example is

the diffraction of X rays by

a three-dimensional crystal.

This was first observed by

Max von Laue in 1912 (with

his collaborators Friedrich and

Knipping). For this discovery

he won the Nobel Prize in

1914.

picture from www.union.edu/PUBLIC/PHYDEPT/jonesc

Laue diagram of an Si crystal
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c) Fresnel diffraction

Recall:

Fraunhofer diffraction:

• Light source so far away from aperture that incoming wavefront

can be considered as plane.

• Observation screen so far away from aperture that the fronts of

the wavelets, originating from the points of the aperture, can be

considered as plane when they arrive at the screen.

Fresnel diffraction: Otherwise

Fresnel diffraction is much more difficult to calculate than Fraunhofer diffraction.

We will do only one example:

Consider light source so far away from aperture plane that incoming wavefront can

be considered as plane, but observation screen at finite distance. Calculate intensity

on the axis of symmetry for a circular aperture.
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Divide aperture into Fresnel zones, defined by rN = r0 + N λ
2

r0

r1

r2

r3

P

aperture plane (edge-on)

axis of symmetry

first Fresnel zone

second Fresnel zone

third Fresnel zone

Phase difference at P of wavelets from subsequent Fresnel zones is π.

Construction of Fresnel zones depends on r0 and λ, i.e., it is made for a particular

point P and a particular wave length.
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Now subdvide each Fresnel zone into K concentric rings, with constant phase differ-

ence π/K between subsequent rings.

Consider one phasor for all the light coming from one ring zone, i.e., K phasors for

each Fresnel zone.

(Picture for K = 10; actually,

we divide each Fresnel zone

into 9 full-size and 2 half-size

sections.)

For K → ∞ we get two half-

circles that close up.

Phasors from N th and

(N + 1)th Fresnel zones add

up to zero!

Any two subsequent Fresnel

zones give waves that cancel

each other.

π
K

real axis

imaginary axis

N th Fresnel zone(N + 1)th Fresnel zone
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• If circular aperture contains even number of Fresnel zones: Darkness at P .

• If circular aperture contains odd number of Fresnel zones: Same intensity at P

as from first Fresnel zone alone.

Fresnel zone plate:

Make every other Fresnel zone opaque, get maximal intensity

at P , i.e., effect similar to converging lens.

picture from http://www.nature.com
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• A Fresnel zone plate produces an image similar to a lens:

picture from http://www.alternativephotography.com

• Fresnel zone plates can be easily produced for wave lengths

outside of the visible spectrum.

• A space telescope using a Fresnel zone plate is in the planning

stage (‘Fresnel imager’).
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We have assumed that the intensity from all ring zones is the same (phasors of equal

length).

This is true as long as the obliq-

uity factor can be approximated

by 1, i.e., Θ so small that

1

2

(
1 + cosΘ

)
= 1 .

Then the amplitude of each

wavelet falls off equally in all spa-

tial directions; the total ampli-

tude from the ring zone at P is
r0

r

r + λ
2K

P

s1

s2

∼ A = area of ring zone

∼ 1/r = inverse distance from P to ring zone.

A

r
=

π s2
2 − π s2

1

r
=

π

r

[ ( (
r +

λ

2K

)2
− r2

0

)

−
(
r2 − r2

0

) ]

=

=
π

r

(

r2 +
2rλ

2K
+

λ2

4K2
− r2

0 − r2 + r2
0

)

=
π λ

K

(
1 +

λ

4Kr

)
≈

π λ

K

is, indeed, independent of r. (We used that λ ≪ r for all practical purposes.)
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Taking obliquity factor into ac-

count, the intensity decreases

from ring zone to ring zone if we

move outwards (i.e., phasors be-

come shorter and shorter).

For K → ∞, we get a spiral in-

stead of half-circles that close up.

Thus, exact cancellation of waves

from subsequent Fresnel zones

holds true only as long as Θ is so

small that the obliquity factor can

be approximated by 1.

Quantitative criterion for dis-

tinction between Fraunhofer and

Fresnel diffraction:
real axis

imaginary axis

Fresnel number : F =
a2

r0 λ

r0 = distance of observation point from aperture

a = radius of aperture

λ = wave length

F counts how many Fresnel zones are in the aperture.

Fraunhofer diffraction is applicable if F ≪ 1.
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Construction of Fresnel zones was given here for parallel incoming light (i.e., light

source at infinity).

For light source at finite distance, construction must be modified. Then Huygens

wavelets originate from a spherical wave front, not from a plane.

spherical wave front

P
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IV. Interference

(cf. Pedrotti and Pedrotti, Chapters 10, 11 and 12)

a) Interference and coherence

“Interference” means superposition of two or more waves which

• enhance each other in some regions (“constructive interference”);

• cancel each other, exactly or approximately, in other regions (“de-

structive interference”).

This results in characteristic “interference pat-

terns”.

Diffraction is a special interference phenomenon:

According to the Huygens-Fresnel principle,

diffraction can be explained in terms of interfer-

ence of wavelets.

Interference patterns can be observed only if the

superposed waves are “coherent”, i.e., if their

phases are synchronised.
picture from http://www.lightandmatter.com/
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How to achieve coherence?

• water waves: wave machine with two rods on the same axle

• sound waves: two loudspeakers fed from the same generator

• radio waves: two antennas fed from the same emitter

• light: see examples in this section

Light emitted from two points of an ordinary light source (e.g., the Sun or a light

bulb) is not coherent; it consists of short “wave trains” which are not synchronised.

As quantitative measures for coherence one uses the notions of “coherence time”,

“coherence length” and “band width”:

If we idealise, for simplicity, a wave train as strictly harmonic over its lifetime, it is

given at a fixed point in space by a function of the form

F (t) =







A cosω0t if −τ0
2

< t < τ0
2

0 otherwise

t

F (t)

−τ0
2

τ0
2

The average duration τ0
is called the coherence

time of the light source.
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What is the Fourier transform G(ω) (i.e., the frequency spectrum) of such a wave

train?

Recall: F (t) =

∫ ∞

−∞
G(ω) eiωt dω

where G(ω) =
1

2π

∫ ∞

−∞
F (t) e−iωt dt =

1

2π

∫ τ0/2

−τ0/2

A cos(ω0t) e
−iωt dt =

=
A

2π

∫ τ0/2

−τ0/2

1

2

(

eiω0t + e−iω0t
)

e−iωt dt =
A

4π

∫ τ0/2

−τ0/2

(

e−i(ω−ω0)t + e−i(ω+ω0)t
)

dt =

=
A

4π

[

e−i(ω−ω0)t

−i(ω − ω0)
+

e−i(ω+ω0)t

−i(ω + ω0)

]τ0/2

−τ0/2

=

=
A

2π

(

sin ((ω − ω0)τ0/2)

ω − ω0

+
sin ((ω + ω0)τ0/2)

ω + ω0

)

=

=
Aτ0

4π

(

sin ((ω − ω0)τ0/2)

(ω − ω0)τ0/2
+

sin ((ω + ω0)τ0/2)

(ω + ω0)τ0/2

)
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If the wave train contains many periods, ω0τ0 � 2π, the second term is small near

ω = ω0. We can then approximate G(ω) near ω0 by

G(ω) ≈ Aτ0

4π

sin ((ω − ω0)τ0/2)

(ω − ω0)τ0/2
.

The “band width”

∆ω =
2π

τ0

(see picture) is a measure for

the frequency interval that con-

tributes essentially to the wave

train.

Recall: We already encountered the (square of

the) function sinc(x) = 1
x
sinx for the single-slit

diffraction pattern.

G(ω)

ω0

∆ω

ω

The shorter the wave train, the broader the frequency distribution:

τ0 → 0 : ∆ω → ∞
The longer the wave train, the narrower the frequency distribution:

τ0 → ∞ : ∆ω → 0

125



To express the band width in terms of wave length, rather than frequency, introduce

coherence length `0 = length traveled by light in coherence time τ0.

In medium with constant velocity of light v = c/n: `0 = vτ0 =
2πv

∆ω

light bulb: `0 ≈ a few µm

laser: `0 from a few cm up to more than 100 km

Band width in terms of wave length:

ω =
2πv

λ
⇒ ∆ω ≈ 2πv

λ2
∆λ ⇒ ∆λ ≈ λ2

`0

Because of higher coherence, interference experiments are easier to carry through

with laser light than with light from a light bulb or from a gas discharge lamp.

Light from a light bulb can be

made more coherent by sending

it through a small aperture and

through a filter. (The aperture

singles out wave trains from a

smaller spatial region, the filter

reduces the band width ∆ω.) picture from http://electron9.phys.utk.edu
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b) Two-beam interference in complex notation

Superposition of two harmonic waves with the same frequency at a fixed point in

space:

u1(t) = A1 cos(ωt + δ1)

u2(t) = A2 cos(ωt + δ2)

u(t) = u1(t) + u2(t)

Intensities:

I1 =
ω

2π

∫ 2π/ω

0

u1(t)
2 dt = A2

1/2

I2 =
ω

2π

∫ 2π/ω

0

u2(t)
2 dt = A2

2/2

I =
ω

2π

∫ 2π/ω

0

u(t)2 dt = ?

Here we have used that

1

2π

∫ 2π

0

cos2ξ dξ =
1

2
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Introduce complex notation:

Φ1(t) = A1 e
i(ωt+δ1) , u1(t) = Re

(

Φ1(t)
)

Φ2(t) = A2 e
i(ωt+δ2) , u2(t) = Re

(

Φ2(t)
)

Φ(t) = Φ1(t) + Φ2(t) , u(t) = Re
(

Φ(t)
)

Φ(t) = A1 e
i(ωt+δ1) + A2 e

i(ωt+δ2) = Z eiωt

where Z := A1 e
iδ1 + A2 e

iδ2 is independent of t .

Phasor diagram rotates rigidly with angular frequency ω.
real axis

imaginary axis

Φ(t)

Φ1(t)

Φ2(t)

Write Z in polar coordinates:

Z = x + i y = r eiϕ , Z∗ = x − i y = r e−iϕ

r2 = Z∗Z =
(

A1 e
−iδ1 + A2 e

−iδ2
) (

A1 e
iδ1 + A2 e

iδ2
)

= A2
1 + A2

2 + 2A1 A2 cos(δ2 − δ1)

u(t) = Re
(

Φ(t)
)

= Re
(

rei(ωt+ϕ)
)

= r cos(ωt + ϕ)

I =
ω

2π

∫ 2π/ω

0

u(t)2 dt = r2/2 =
(

A2
1 + A2

2 + 2A1 A2 cos(δ2 − δ1)
)

/2
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I = I1 + I2 + 2
√

I1I2 cos(δ2 − δ1)

• If δ2 − δ1 varies randomly over observation time (incoherent beams), cosine av-

erages to zero, I = I1 + I2.

• If δ2 − δ1 is constant over observation time (coherent beams):

Interference maxima if cos(δ2 − δ1) = 1

δ2 − δ1 = 2mπ for integer m

I = (
√

I1 +
√

I2 )
2

Interference minima if cos(δ2 − δ1) = −1

δ2 − δ1 = (2m + 1)π for integer m

I = (
√

I1 −
√

I2 )
2

• If intensities are equal, I1 = I2 =: I0 ,

I = 2 I0
(

1 + cos(δ2 − δ1)
)

= 4 I0 cos
2(δ2 − δ1)

2
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Relation between phase difference

δ2 − δ1 and difference in optical

path length:

In a medium with constant index

of refraction n, consider two co-

herent sources of frequency ω at

points with position vector r
− 1 and

r
− 2.
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r
−

r
−

1

r
−

2

r
−

− r
−

1

r
−

− r
−

2

At point with position vector r
−
:

u1(r−
, t) =

B1

|r
−
− r

− 1|
cos

(

ωt − k|r
−
− r

− 1|
)

,

u2(r−
, t) =

B2

|r
−
− r

− 2|
cos

(

ωt − k|r
−
− r

− 2|
)

.

Phase difference:

δ2 − δ1 = k
(

|r
−
− r

− 1| − |r
−
− r

− 2|
)

.

With k = ω/v = ω n/c :
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δ2 − δ1 =
ω

c
·
(

n |r
−
− r

− 1| − n |r
−
− r

− 2|
)

Phase difference =
2π

vacuumwave length
· difference in optical path length

Interference maxima:

difference in optical path length

vacuumwave length
= m , m = 0,±1,±2, . . .

Interference minima:

difference in optical path length

vacuumwave length
=

2m + 1

2
, m = 0,±1,±2, . . .

If the index of refraction n varies from point to point, the optical path length must

be written as an integral,

n |r
−
− r

− 1| 7→
∫

P1

nds , n |r
−
− r

− 2| 7→
∫

P2

nds ,

where P1 and P2 are the rays from the point with position vector r
− 1 and r

− 2, respec-

tively, to the point with the position vector r
−
.
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c) Interference experiments

We now give an overview of interference experiments.

For all examples in this section we

• use scalar optics (i.e., we describe light in terms of a scalar function u(r
−
, t));

• assume that the experiment is done in a medium with constant index of refraction

unless otherwise stated.

α) Fresnel’s biprism

S′
1 and S′

2 act

like a double-slit

with built-in co-

herence. Thus,

we get the same

interference pat-

tern as for the

double-slit.
picture from http://www.physics.umd.edu
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β) Lloyd’s mirror

Humphrey Lloyd (1800–1881)

Same geometry as for double slit, so

one would expect the same interfer-

ence pattern:

center bright

minima at sinΘm = (2m−1)
2

λ
a
.

That’s wrong! Experiment shows:

center dark

maxima at sinΘm = (2m−1)
2

λ
a
.

a
Θ

screen

mirror

source

virtual image

Explanation:

Wave undergoes phase shift of π when reflected at mirror.

(We will show later how to derive this from Maxwell’s equations.)
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γ) Thin films

Observe thin transparent material, e.g.

• soap bubble

• oil layer

• plastic layer of CD

• wing of a butterfly

in white light.

picture from http://www.exploratorium.edu/imagery/

picture from http://homepages.compuserve.de/kunz2andy/

See colored interference pattern, result-

ing from light reflected at front side in-

terfering with light reflected at back side.
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Consider a layer of thickness d with

index of refraction n′, sandwiched

between medium with index of re-

fraction n and medium with index

of refraction n′′.

Difference in optical path length for

the two beams:

∆ = n′ (AB + BC
)

− nAD (∗)

From geometry:

AB = BC =
d

cosΘ′ (∗∗)

AD = AC sinΘ = 2 d tanΘ′ sinΘ

The last equation can be rewritten

with Snell’s law:

AD = 2 d tanΘ′ n
′

n
sinΘ′ (∗ ∗ ∗)

Θ

Θ′

n

n′

n′′

A

B

C

D

d
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Insert (∗∗) and (∗ ∗ ∗) into (∗) :

∆ =
2n′ d

cosΘ′
(

1 − sin2Θ′ ) = 2n′ d cosΘ′

Additional phase jump of π occurs at reflection from optically thinner to optically

thicker medium. (We will see later how to derive this from Maxwell’s equations.)

Thus:

Difference in optical path length = 2n′ d cosΘ′ + ∆r

∆r =







0 if n < n′ < n′′ or n > n′ > n′′

λ/2 otherwise

where λ =vacuum wave length.

Minima: 2n′ d cosΘ′ + ∆r = 2m+1
2

λ

Maxima: 2n′ d cosΘ′ + ∆r = mλ
m = 0,±1,±2, . . .

Θ′ can be expressed in terms of Θ by means of Snell’s law.
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Thin-film interference is an example for “amplitude division” (amplitude of

incoming wave is split into two halves) as opposed to “wave front division”

(wave front is split into two halves, as by Fresnel’s biprism or Lloyd’s mirror).

• If only first and second beam are considered, as in the picture, we get a two-beam

interference pattern which is similar to the double-slit diffraction pattern.

• If in addition beams are considered that undergo several reflections inside the

layer, a multi-beam interference pattern results. Note that the intensity of these

beams decreases with increasing number of reflections. This decrease is strongest

for small Θ.

• Thin-film interference can be used for measuring d or n′.

• An inportant application of thin film interference is anti-reflective coating which

will be discussed later.

Thin film of variable thick-

ness leads to fringes of

equal thickness (“Newton’s

rings”).

picture from http://www.physics.ucsd.edu/
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Newton’s rings allow to determine

the radius of curvature R of a

spherical lens surface:

mth minimum:

(Assume n > n′ and n′′ > n′)

2n′ d cosΘ′ + λ
2

= 2m+1
2

λ

n′ ≈ 1 (air)

cosΘ′ ≈ 1 (vertical incidence)

2 d = mλ

Radius of mth dark ring:

rm =
√

R2 − (R − d)2

=
√

�
��R2 − �

��R2 + 2Rd− d2

=

√

2Rd
(

1 − d�2

2R��d

)

=
√
2Rd

√

1 − d
2R

≈
√
2Rd

R ≈
r2
m

mλ

rm

R
R − d

d

n
n′

n′′

picture from http://www.practicalphysics.org/imageLibrary
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δ) Fabry-Perot interferometer

Charles Fabry and Alfred Perot (1899)

picture from http://www.chemicool.com

A Fabry-Perot interferometer

with fixed d is often called an

“etalon” (french for standard or

gauge).

• point source on axis:

circular pattern

• line source (slit):

parallel stripes

Difference in optical path length for two successive beams can be calculated in anal-

ogy to thin films, cf. p.136. (If the refraction index of the glass plates is bigger than

n′, there is a phase jump of π at each reflection. As there is always an even num-

ber of reflections, this is irrelevant because the phase is defined only up to integer

multiples of 2π.)

minima: 2 n′ d cos Θ′ = 2m+1
2

λ

maxima: 2 n′ d cos Θ′ = m λ
m = 0, ±1, ±2, . . .

where n sin Θ = n′ sinΘ′ and λ = vacuum wave length .
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picture from http://www.engineering.sdstate.edu

Interference pattern produced by a

Fabry-Perot interferometer, with a

sodium gas discharge lamp. The light

source emits two yellow spectral lines at

λ1 = 588.9950nm and λ2 = 589.5924nm

(“sodium doublet”).

Condition that, for a wave length

interval [λ, λ + ∆λ], the mth or-

der maximum and the (m + 1)th

order maximum do not overlap:

(

m + 1
)

λ > m
(

λ + ∆λ
)

∆λ < λ/m =: (∆λ)fsr

(∆λ)fsr is called the free spectral

range of the Fabry-Perot interfer-

ometer.

For Θ = Θ′ = 0 , the order num-

ber m satisfies 2 d n′ = m λ , thus

(∆λ)fsr =
λ2

2 d n′
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Now restrict to the case n′ = n, thus Θ = Θ′.

Goal: Calculate the total intensity as a function of Θ.

This requires calculating the superposition of infinitely many beams.

The calculation is based on two observations:

• Whenever beam meets glass plate, a fraction r

of the amplitude is reflected (0 < r < 1), the

rest is transmitted.

• Two subsequent beams have difference in opti-

cal path length of ∆ = 2 d n cos Θ, thus a phase

difference of

δ =
2 π

λ
∆ =

4 π

λ
d n cosΘ

Incoming beam: Re
{

A e
i( k

−
· r
−

−ωt) }

First transmitted beam: Re
{

(1 − r2) A e
i( k

−
· r
−

−ωt) }

Second transmitted beam: Re
{

(1 − r2) r2A e
i( k

−
· r
−

−ωt+δ) }

. . .

Kth transmitted beam: Re
{

(1 − r2) r2(K−1)A e
i( k

−
· r
−

−ωt+[K−1]δ) }
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Summing up all transmitted beams:

u(r
−

, t) = Re
{

(1 − r2) A e
i( k

−
· r
−

−ωt) (

1 + r2eiδ + (r2eiδ)2 + . . . + (r2eiδ)K−1 + . . .
) }

Infinite geometric progression (q = r2eiδ , |q | = r2 < 1 ) :

1 + q + q2 + . . . + qK−1 + . . . =
1

1 − q

u(r
−

, t) = Re
{

Z e
i( k

−
· r
−

−ωt) }

, Z :=
(1 − r2) A

1 − r2eiδ

Decompose Z into modulus and phase, Z = |Z| eiϕ :

u(r
−

, t) = Re
{

|Z| e
i( k

−
· r
−

−ωt+ϕ) }

= |Z| cos(k
−

· r
−

− ωt + ϕ)

Intensity of all transmitted beams:

Itrans = u2 =
|Z|2
2

=
A2

2

(

1 − r2
)2

∣

∣1 − r2eiδ
∣

∣

2 =
A2

2

(

1 − r2
)2

(

1 − r2eiδ
) (

1 − r2eiδ
)∗

=
A2

2

(

1 − r2
)2

(

1 − r2eiδ
) (

1 − r2e−iδ
) =

A2

2

(

1 − r2
)2

(

1 + r4 − 2r2cos δ
)
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With the identity cos δ = 1 − 2 sin2δ
2

and A2/2 = Iinc = incoming intensity:

Itrans =
Iinc (1 − r2)2

(1 − r2)2 + 4 r2 sin2δ
2

=
Iinc

1 +
4 r2

(1 − r2)2
sin2δ

2

.

The resulting expression for the ratio Itrans/Iinc is known as the “Airy function”:

T =
Itrans

Iinc

=
1

1 + f sin2δ
2

, δ =
4 π

λ
d n cos Θ

where

f =
4 r2

( 1 − r2 )2

is the “coefficient of finesse”. The “finesse” F is defined as F = π
2

√
f .

If the reflectance r and, thus, the coefficient of finesse f is known, the Airy function

gives the ratio T = Itrans/Iinc as a function of δ ∼ 1/λ (for fixed Θ).
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Plot of the Airy function T =
1

1 + f sin2δ
2

for different values of f :T f = 0:1f = 0:5f = 4:5f = 360� � 1=�
picture from http://lqcc.ustc.edu.cn/cui/

Resolving power with respect to wave length increases with increasing f .
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Applications of Fabry-Perot:

• high precision spectroscopy

• optical filters

• length standard

• laser resonator

• (astrophysical) photography

in a small spectral range

• ...

picture from http://mingus.as.arizona.edu/ bjw/

Velocity field of the galaxy NGC 1365,

obtained with the Rutgers Fabry-Perot,

CTIO 1.5-m telescope. Radial motion

(red: away from us, blue: towards us)

is measured in terms of Doppler shift of

spectral lines.
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ε) Michelson interferometer

picture from http://www.lightandmatter.com/

Albert A. Michelson (1852–1931)

Nobelprize 1907

The Michelson interferometer was de-

signed for measuring the velocity of the

Earth with respect to the (hypothetical)

ether.

The experiment was carried through

• by Michelson in Berlin and Potsdam,

Germany, 1881

• by Michelson and Morley in Cleve-

land, Ohio, 1888

The negative outcome of this experiment

was crucial for the advent of Special Rel-

ativity.
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Sketch of a Michelson interferometer

picture from http://web.phys.ksu.edu/vqm/laserweb

If the mirrors are perfectly aligned, the

fringes are circular.

The fringes move whenever the difference

in optical path length of the two beams is

changed (e.g. by moving one mirror, or by

placing a sample into one arm).

picture from http://www1.union.edu

If one of the mirrors is moved

by λ/4, the center changes

from dark to bright.

More generally:

If difference in optical

path lengths changes by

∆ − ∆̃ = m λ ,

m fringes move by.
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Michelson’s attempt to mea-

sure the velocity of the Earth

relative to the ether:

c =velocity of light relative to

the ether

u =velocity of the Earth rela-

tive to the ether

Assume first that, in the ether

system, the Earth moves in

the direction from H to M , as

indicated in the picture.
picture from http://www2.selu.edu/Academics

First beam goes

• from H to M in time t1 : ct1 = d + ut1 , t1 = d
c−u

• back from M to H in time t2 : ct2 = d − ut2 , t2 = d
c+u

Second beam goes

• from H to M ′ in time t′
1 : (ct′

1)
2 = d′2 + (ut′

1)
2 , t′

1 = d′√
c2−u2

• back from M ′ to H in time t′
2 : (ct′

2)
2 = d′2 + (ut′

2)
2 , t′

2 = d′√
c2−u2
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Difference in optical path length:

∆ = c(t1 + t2 − t′
1 − t′

2) =
c d

c − u
+

c d

c + u
− 2 c d′

√
c2 − u2

=
2 d

1 − u2

c2

− 2d′
√

1 − u2

c2

≈ 2d

(

1 +
u2

c2

)

− 2d′
(

1 +
u2

2c2

)

= 2d − 2d′ + (2d − d′)
u2

c2

Now rotate apparatus by 90o, such that, in the ether system, the Earth moves in the

direction from H to M ′.

First beam goes

• from H to M in time t̃1 : (ct̃1)
2 = d2 + (ut̃1)

2 , t̃1 = d√
c2−u2

• back from M to H in time t̃2 : (ct̃2)
2 = d2 + (ut̃2)

2 , t̃2 = d√
c2−u2

Second beam goes

• from H to M ′ in time t̃′
1 : ct̃′

1 = d′ + ut̃′
1 , t̃′

1 = d′
c−u

• back from M ′ to H in time t̃′
2 : ct̃′

2 = d′ − ut̃′
2 , t̃′

2 = d′
c+u
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Difference in optical path length:

∆̃ = c ( t̃1 + t̃2 − t̃′
1 − t̃′

2 ) =
2 c d

√
c2 − u2

− cd′

c − u
− cd′

c + u
=

2 d
√

1 − u2

c2

− 2 d′

1 − u2

c2

≈ 2 d

(

1 +
u2

2 c2

)

− 2 d′
(

1 +
u2

c2

)

= 2 d − 2 d′ + (d − 2 d′)
u2

c2

The quantity ∆ − ∆̃ gives the number m of fringes that move by during the rotation

process:

∆ − ∆̃ = ( d + d′ )
u2

c2
= m λ .

One expected u ≈ velocity of the Earth relative to the Sun ≈ 30 km/sec ≈ 10−4 c .

In the Michelson-Morley 1888 experiment, it was d + d′ ≈ 22m (effective armlength

enlarged with the help of mirrors) and λ ≈ 500nm, so one expected

m =
( d + d′ )

λ

u2

c2
≈ 0.4.

This would have been easily observable for Michelson. However, no change of the

fringe pattern was actually observed.

Explanation given by Albert Einstein (1905): The ether does not exist. Light in

vacuum propagates in all inertial systems with velocity c .
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Some applications of Michelson interferometer:

• Measuring distance with accuracy in the order of λ

• Measuring thickness or index of refraction of samples placed into one arm

• Gravitational wave detectors

Gravitational waves are predicted

by Einstein’s general theory of

relativity. Until now they have

been detected only indirectly.

(Hulse-Taylor pulsar loses energy

which is interpreted as being ra-

diated away in the form of gravi-

tational waves, Nobelprize 1993).

Direct detection of gravitational

waves is attempted with Michel-

son interferometers, e.g.

Geo600, German-British project,

Hannover, Germany.

picture from http://www.sr.bham.ac.uk/ adf
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Gravitational wave detector in space:

Laser Interferometer Space Antenna (LISA)

ESA-NASA project, launch scheduled 2015

picture from http://www.esa.int/techresources
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ζ) Other interferometers

There is a large variety of other interferometers. Here are two further examples.

Both are two-beam interferometers, like the Michelson interferometer.

Michelson’s stellar interferometer

• was used by Michelson in 1919 to

measure the angular diameter of the

star Beteigeuze (red shoulder star in

Orion)

• result was 0.044 arcseconds

picture from http://www.mtwilson.edu/vir/
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Sagnac interferometer (Georges Sagnac, 1913)

• ring interferometer, mounted on rotating platform

• was used by Michelson to measure the rotation of the Earth

• is now used e.g. in inertial guidance systems.

picture from http://en.wikipedia.org
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η) Radio interferometry

A radio telescope has a much lower re-

solving power than an optical telescope

of the same aperture (recall Rayleigh cri-

terion).

However, the resolving power of radio

telescopes can be greatly enhanced by

using a radio interferometric method,

called “aperture synthesis”, invented by

Martin Ryle in the 1950s.

Basic idea: Connect a collection of tele-

scopes together, such that the resulting

resolving power is the same as for an in-

strument the size of the entire collection.

Aperture synthesis with radio telescopes

on different continents can resolve angu-

lar distances of less than 0.0001 arcsec-

onds (“Very Long Baseline Interferome-

try” = VLBI).

picture from http://www.eb.com/

Martin Ryle (1918-1984)

Nobelprize 1974
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picture from

http://astrosun2.astro.cornell.edu/academics/courses//astro201

Resolving power is deter-

mined by length of baseline,

not by diameter of the indi-

vidual radio telescopes.

The larger the number of

different baselines, the higher

the quality of the pictures.

Very Large Array (VLA) near Socorro,

New Mexico

• 27 radio telescopes in Y shaped array

• 25 meter diameter each

• 36 km longest baseline

• angular resolution ≈ 0.05 arcseconds

picture from http://deepspace.jpl.nasa.gov
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Aperture synthesis with infrared or optical telescopes is much more difficult and

more recent.

Cambridge Optical Aperture Synthesis Telescope (COAST)

• 4 telescopes, 40 cm diameter each

• 100 meter longest baseline

• observation in the red and near infrared

• aims at angular resolution of 0.001 arcseconds

picture from http://www.mrao.cam.ac.uk/telescopes/coast
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Infrared picture of binary star Capella, taken by COAST

picture from http://138.238.143.191/astronomy/Chaisson

158



V. Polarisation
(cf. Pedrotti and Pedrotti, Chapter 15 [Chapters 14, 19, 20 treat more advanced aspects])

a) Linearly and circularly polarised light

Recall (p. 80):

Light is not a scalar wave, but rather described by two vector fields E
−

and B
−

that

satisfy Maxwell’s equations. The vector character is largely irrelevant for diffraction

and interference, but it is crucial for understanding polarisation.

In a medium with constant permittivity εr and constant permeability µr,

D
−

= εrε0E−
, B

−
= µrµ0H−

,

a plane harmonic wave is completely determined by the electric field

E
−
(r

−
, t) = E

− 0 cos(k
−

· r
−

− ωt + α) ;

The corresponding magnetic field is given by B
−
(r

−
, t) =

1

v

k
−

|k
−

|
× E

−
(r

−
, t) where

v =
c

n
=

c
√

εr µr

=
1

√
ε0 µ0 εr µr

is the velocity of light in the medium.
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An electromagnetic wave of the form

E
−
(r

−
, t) = E

− 0 cos(k
−

· r
−

− ωt + α) ,

with constant E
− 0, is called linearly polarised.

picture from

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/

For an observer

watching such a

wave coming to-

wards him, the

E
−
-vector seems

to oscillate in a

line.

Superposition of two linearly polarised waves with the same wave vectors (k
− 1 = k

− 2),

hence the same frequencies (ω1 = ω2), and the same phase shifts (i.e., α1 = α2) gives

again a linearly polarised wave.

If the phase shifts are different, this is no longer true. Some special cases:
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Two linearly polarised waves

E
− 1(r

−
, t) = E

− 01 cos(k
−

· r
−

− ωt + α1) ,

E
− 2(r

−
, t) = E

− 02 cos(k
−

· r
−

− ωt + α2) ,

with
E
− 01 · E

− 02 = 0 , |E
− 01| = |E

− 02| , |α2 − α1| = π/2

give a circularly polarised wave.

picture from

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/

corkscrew: right-handed

(as in picture)

anti-corkscrew: left-handed

For an observer watching

such a wave coming towards

him, the tip of the E
−
-vector

seems to move on a circle.
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Two linearly polarised waves

E
− 1(r

−
, t) = E

− 01 cos(k
−

· r
−

− ωt + α1) ,

E
− 2(r

−
, t) = E

− 02 cos(k
−

· r
−

− ωt + α2) ,

with
E
− 01 · E

− 02 = 0 , |E
− 01| 6= |E

− 02| , |α2 − α1| = π/2

give an elliptically polarised wave.

picture from

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/

corkscrew: right-handed

(as in picture)

anti-corkscrew: left-handed

For an observer watching

such a wave coming towards

him, the tip of the E
−
-vector

seems to move on an ellipse.
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Waves from ordinary light sources (our Sun, light bulb, etc.) consists of wave trains

with the direction of E
− 0 varying randomly. This is called unpolarised light.

Unpolarised light can be made (partly) polarised by various methods to be discussed

below.

Note: The fact that light can be polarised proves that light is a transverse vector

wave. For longitudinal vector waves, or for scalar waves, polarisation does not exist.

Polarisation is often visualised by the “picket-fence analogy”:

picture from http://physics.usc.edu/ bars/
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b) Optical effects and their relation to polarisation

α) Reflection and refraction

We know the basic laws of reflection and refraction. With the help of Maxwell’s equa-

tions, taking the vector character of light waves into account, we will get additional

information on the amplitudes of reflected and refracted waves.

Boundary between two dielectric media (µr = µ′
r = 1):

E
− i = incident wave with

wave vector k
− i

E
− r = reflected wave with

wave vector k
− r

E
− t = transmitted wave

with wave vector k
− t

k
−

i k
−

r

k
−

t

ΘΘ

Θ′

n =
√

εr

n′ =
√

ε′
r
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The source-free Maxwell equations (in SI units)

∇ · D
−

= 0

∇ · B
−

= 0

∂D
−

∂t
− ∇ × H

−
= 0

−

∂B
−

∂t
+ ∇ × E

−
= 0

−

imply:

At a boundary surface,

• tangential components of E
−

and H
−

• normal components of D
−

and B
−

are continuous.

For a proof see, e.g., J. D. Jackson: “Classical Electrodynamics” Second Edition,

Wiley (1975), pp. 19–20.

With this information one can calcaluate E
− r and E

− t if E
− i is given.
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Consider simplest case first:

Normal incidence

k
−

i k
−

r

k
−

t

n =
√

εr

n′ =
√

ε′
r

• z-axis can be chosen perpendicular to boundary:

k
− i = − ki ẑ

−
, k

− r = kr ẑ
−

, k
− t = − kt ẑ

−
.

• Waves are transverse and the situation is symmetric with respect to the k
− i − E

− i−plane,

so we can choose the x− and y−axes such that

E
− 0i = Ei x̂

−
, E

− 0r = Er x̂
−

, E
− 0t = Et x̂

−
.

(Ei, Er and Et can be positive or negative.)
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Et and Er are determined by Ei in the following way:

• Continuity at boundary of tangential component of E
−

requires

Ei + Er = Et . (∗)

• Energy flux of EM wave is ∼ n|E
−

|2. (This was calculated in the third worksheet,

Problem 1.) So conservation of energy requires

n E2
i = n E2

r + n′ E2
t . (∗∗)

If we eliminate Er from (∗) and (∗∗) we get (n′ + n) Et = 2 n Ei .

This equation implies that Et has the same sign as Ei, i.e. E
− t and E

− i are in phase.

If we eliminate Et from (∗) and (∗∗) we get (n′ + n) Er = (n − n′) Ei .

Thus
if n > n′: E

− r and E
− i are in phase.

if n < n′: E
− r gets a phase shift of π relative to E

− i.

This was already mentioned, as an observational fact, on p.133 and p.136. Nowe we

have derived it from Maxwell’s equations.

Ratio of reflected energy flux to incident energy flux gives the reflectance (cf. p.141):

r2 =
n E2

r

n E2
i

=
(n − n′)2

(n + n′)2
.
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Air-glass: n = 1, n′ = 1.5 ⇒ r2 = 0.04

Air-diamond: n = 1, n′ = 2.5 ⇒ r2 = 0.18

Not easy to fake!

Note: For non-normal incidence, R increases, r → 1 for Θ → π/2.

Application: Antireflective coating

Assume n > n′ > n′′, (approximately) normal incidence.

d

air n

coating n′

glass n′′

Destructive interference occurs for the two reflected waves if n′d = λ/4.
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The picture on the right is actually

not correct because it ignores the

phase jump of π for the two reflected

waves. (However, as both reflected

waves get the same phase jump, the

relative phase and, thus, the cancel-

lation effect comes out correctly.)

picture from http://rick
−
oleson.tripod.com/coating

For n′d = λ/4, the two reflected waves cancel completely if they have the same

amplitude. This turns out to be the case if

n′ =
√

n n′′ .

For n = 1 (air) and n′′ = 1.52 (glass), one wants to have n′ =
√

nn′′ = 1.23. The

closest one gets is cryolite (Na3Al F6) with n′ = 1.31.

With multi-layer films one can achieve anti-reflective coatings that reflect less than

0.1 % (and high-reflective coatings that reflect more than 99.9 %).

Example: Computer screens
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Generalisation to non-normal incidence:

k
−

i
k
−

r

k
−

t

ΘΘ

Θ′

n =
√

εr

n′ =
√

ε′
r

k
− i, k

− r and k
− t define “plane of incidence”.

Decompose E
−

into component in the plane of incidence (||) and component perpen-

dicular to the plane of incidence (⊥). Then an argument analogous to the above

yields the Fresnel equations, shown on the next page. (Nobody expects you to know

them by heart!)
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E
−

= E
− ⊥ :

Et⊥

Ei⊥
=

2 cos Θ

cos Θ +
√

(

n′
n

)2 − sin2Θ

Er⊥

Ei⊥
=

cos Θ −
√

(

n′
n

)2 − sin2Θ

cos Θ +
√

(

n′
n

)2 − sin2Θ

E
−

= E
− || :

Et||

Ei||
=

2 n′
n

cos Θ
(

n′
n

)2
cosΘ +

√

(

n′
n

)2 − sin2Θ

Er||

Ei||
=

(

n′
n

)2
cosΘ −

√

(

n′
n

)2 − sin2Θ

(

n′
n

)2
cos Θ +

√

(

n′
n

)2 − sin2Θ

Et⊥ = 0 only if Θ = π/2.

Er⊥ = 0 only if n′ = n.

Et|| = 0 only if Θ = π/2.

Er||
?
= 0 leads to “Brewster angle”:
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Define

tan ΘB =
n′

n
, Brewster angle ΘB

With Snells’ law,

sin Θ′ =
n

n′ sin Θ

we find for Θ = ΘB,

sinΘ′
B =

sinΘB

tan ΘB

= cos ΘB

=⇒ Θ′
B =

π

2
− ΘB .

Hence, for Θ = ΘB the transmit-

ted ray is perpendicular to the re-

flected ray.

n

n′

ΘB ΘB

Θ′
B

90o
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As the definition of the Brewster angle implies
(

n′
n

)2
cosΘB =

√

(

n′
n

)2 − sin2ΘB , the

Fresnel equations yield for Θ = ΘB:

Et⊥ =
2 n2

n2 + n′2 Ei⊥ , Et|| =
n

n′ Ei|| , Er⊥ =
n2 − n′2

n2 + n′2 Ei⊥ , Er|| = 0.

Thus:

If unpolarised light is incident under the Brew-

ster angle, the reflected light is linearly po-

larised perpendicular to the plane of incidence.

(The transmitted ray is partially polarised.)

Air-glass: n = 1, n′ = 1.5 ⇒ ΘB ≈ 57o.

For Θ 6= ΘB, the reflected ray is partially po-

larised. picture from

http://content.answers.com/main

173



The following picture was taken with a polarisation filter. Two effects are observable:

• The intensity over the glass surface varies stronger than when seen with the naked

eye (because the degree of polarisation depends on the angle of incidence).

• The mirror image in the lower right-hand corner is clearer than when seen with

the naked eye (because the polarisation filter was rotated such that the polarised

wave reflected in this area was maximally transmitted).

picture from http://en.wikipedia.org
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β) Scattering

Scattering of light can be microscopically explained in the following way:

• An incident electromagnetic wave causes electrons to oscillate around the nucleus

to which they are bound.

• These oscillating particles radiate the acquired energy away (dipole radiation).

We speak of Rayleigh scattering if the wave length is much larger than the elongation

of the radiating particles, λ >> r0,

r(t) = r0 cos(ωt + α) , ω =
2πc

λ

The radiated power is proportional to the square of the particle’s acceleration (“Lar-

mor formula”), P (t) ∼ | r̈(t) |2 = ω4 r2
0 cos2(ωt + α)

For Rayleigh scattering, the radiation from various sources adds up incoherently, so

the averaged radiated power is P ∼ ω4r2
0. Hence:

For Rayleigh scattering, the averaged radiated power is

proportional to ω4 ∼ λ−4.

E.g., 400-nm light (violet) is scattered approximately 10 times as much as 700-nm

light (red).

That is why the sky is blue and the sun is yellow (or even red, if viewed through a

thick layer of atmosphere). If viewed from space, the sun is perfectly white.
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For scattering by bigger particles, the situation is different. If the elongation of

the particles is bigger than λ, the radiation adds up coherently within an area,

transverse to the ray, of order λ2. It turns out that then P ∼ ω4λ4 = (2πc)4, i.e.,

P is independent of the frequency.

This is why

• milk is white (droplets of fat suspended in water);

• clouds are white (droplets of water suspended in air).

What has all this to do with polarisation?

• An oscillating dipole radiates in all directions except the direction of oscillation.

• Electromagnetic waves are transverse.

Both observations together imply the following.

By scattering, unpolarised light becomes partly polarised:

Along the incident direction, the scattered light is unpolarised.

In the transverse directions, the longitudinal components are suppressed.

At intermediate angles, there is a partial polarisation effect.
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The following picture of a clear sky was taken with a polarisation filter. The polari-

sation of skylight is maximal if we observe in directions that make a right angle with

the direction to the sun. Bees use this effect for orientation.

picture from www.weather-photography.com
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γ) Absorption

For microwaves, polarisation by absorption can be realised in the following way:

Consider a grid with grid stepping g << λ. (This can be realised with wires only

for microwaves, not for light.)

Then E
−

along the wire is absorbed by the grid, so incoming unpolarised waves become

polarised across the grid.

This is contrary to intuition. The reason is that the electrons in the wire can freely

move along the wire, so E
−

−fields pointing in the direction along the wire are ab-

sorbed.

For optical wave lengths, a somewhat similar effect is produced by the molecular

structure of certain materials. Such materials are called dichroic.

“Dichroism” means polarisation by selective absorption.

Polarisation filters (e.g. for photography) and also some types of sunglassses are

made from dichroic materials.

The first polarisation filters, consisting of polymer films with embedded crystals,

were produced in 1933 by E. H. Land under the brand name “Polaroid”.
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Two polarisation filters (“polariser” and “analyser”):

picture from http://courses.dce.harvard.edu/∼physe1b

Intensity of transmitted light de-

pends on Θ:

Malus′ law : I =
1

2
I0 cos2Θ

polariser and analyser parallel:

maximal intensity

polariser and analyser across:

darkness
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Derivation of Malus’ law:

transmission axis

E
−

0

|E
−

0| cos ϕ

ϕ

Assume incoming

light is polarised at

angle ϕ with respect

to first polariser,

with amplitude

vector E
−

0.

(We will later aver-

age over all possible

values of ϕ.)

Amplitude after

first polariser:

|E
−

0| cos ϕ.
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transmission axis

|E
−

0| cos ϕ cos Θ

|E
−

0| cos ϕ

Θ

Angle between the

transmission axes of

the two polarisers:

Θ

Amplitude after

second polariser:

|E
−

0| cos ϕ cosΘ.

Intensity after

second polariser:

Iϕ = I0 cos2ϕ cos2Θ

Averaging over all

angles ϕ (recall:

average of cos2

function is 1/2)

gives Malus’ law:

I = 1
2
I0 cos2Θ
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δ) Birefringence (= double refraction)

Anisotropic materials (crystals, polymers, ... ) have different indices of refraction,

depending on the polarisation direction of the incoming ray.

Here we consider only the simplest case, a uniaxial crystal. In such a crystal, there

is a prefered axis; the laws of light propagation are rotationally symmetric around

this axis.

• If the wave vector k
−

(i.e., the ray direction) is parallel to the axis, the velocity

of light is independent of the polarisation direction.

• If the wave vector is perpendicular to the axis, the velocity of light is different

for E
−

parallel to the axis and E
−

perpendicular to the axis.

Thus, for light that propagates non-parallel to the axis, there are two different indices

of refraction. The difference is maximal for rays perpendicular to the axis.

As a consequence, on refraction an incoming ray splits into two.

One ray is called the ordinary ray (o-ray, E−vector perpendicular to optical axis),

the other one the extraordinary ray (e-ray).
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Calcite (Iceland spar): n|| = 1.486 , n⊥ = 1.658

picture from http://www.star.le.ac.uk/∼rw
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Double refraction of calcite:

picture from http://www.casdn.neu.edu/∼geology/department/staff/colgan

Double refraction was first described in 1669 by

Danish scientist Erasmus Bartholinus.
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Phase retarder: Cut birefringent material (e.g. mica) parallel to optical axis. Choose

thickness d such that phase difference of ordinary and extraordinary ray is a specific

fraction of 2π (e.g., π/2 or π). Then the difference in optical path length is a specific

fraction of the vacuum wave length (e.g., λ/4 or λ/2).

Quarter wave plate (λ/4 plate):

|n|| − n⊥| d = λ/4

In: linear polarisation

under 45o with respect

to the optical axis

Out: circular polarisa-

tion
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Half wave plate (λ/2 plate):

|n|| − n⊥| d = λ/2

In: linear polarisation

Out: linear polarisation

polarisation direction

rotated by π/2
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Some isotropic materials become anisotropic and thus birefringent under stress. This

phenomenon is called photoelasticity. The degree of birefringence is proportional to

the strain, so the strain in the material becomes visible in a polariscope, if white

light is used. The colors are produced by interference of ordinary and extraordinary

beams, with the optical path length proportional to the strain, so different strains

give maximal intensity for different wave lengths.

picture from http://www.rit.edu/∼andpph

187



One speaks of circular birefringence if the propagation velocity of circularly polarised

waves is different for right-handed and left-handed waves.

Some media become circular birefringent if a magnetic field is applied (“Faraday

effect”). The Faraday effect is observed, e.g., in the interstellar medium. Linearly

polarised light remains linearly polarised, but the polarisation direction is rotated.

picture from http://en.wikipedia.org
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VI. Lasers
(cf. Pedrotti and Pedrotti, Chapters 21 [and 22, 23])

Lasers cannot be understood in terms of classical (ray or waves) optics; the quantum

theory of light is required.

Light quanta were introduced by A. Einstein in 1905 (Nobel Prize 1922).

The name photon for the light quantum was introduced by G. Lewis in 1926.

energy of photon ←→ frequency of light

E = h ν

h = Planck’s constant= 6.626 · 10−34 J · s (has dimension energy × time)

Visible light: ν ≈ 1015 Hz

Why is a medium (e.g., a hot gas) emitting light ?

• Electrons in atoms occupy different energy levels.

• In equilibrium, higher energy levels are less populated than lower ones.

• If an electron jumps from a higher level to a lower level, the energy difference is

emitted as a photon.
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There are two different ways of emission, spontaneous and stimulated:

Emission may occur spontaneously, with a certain probability; the resulting phases

vary randomly, so the emitted light is incoherent.

spontaneous emission

E2

E1

hν = E2 − E1

If light with frequency ν = 1
h
(E2 − E1) comes in, emission of a photon with the same

frequency is stimulated. Phase and direction coincide with that of the incoming

light. In this way one can produce coherent light.

stimulated emission

E2

E1

hν = E2 − E1

hν = E2 − E1hν = E2 − E1

laser = light amplification by stimulated emission of radiation

• requires population inversion (“pumping”), i.e., a higher level must be more

populated than a lower level;

• amplification is reached by placing the medium in a “resonator” (“optical cavity”)

such that the light is constantly reflected back and forth through the medium.
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Historical remarks:

• Stimulated emission was discovered by A. Einstein in 1916.

“A splendid light has dawned on me about the absorption and emission of

radiation.”

A. Einstein in a letter to Michele Besso (1916)

• The first realization was with microwaves, called

maser = microwave amplification by stimulated emission of radiation

by C. Townes in 1954 (Nobel Prize with N. Basow and A. Prokhorov in 1964)

• The basic ideas of how to transfer this to optical wave lengths are due to

C. Townes and A. Schawlow (1957): “optical maser”

G. Gould (1957): “laser”

• The first lasers that were actually built were by

T. Maiman (1960): ruby laser

A. Javan (1960): HeNe laser

• In the 1980s, G. Gould after a long legal battle got the most important patents

for the invention of the laser.
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Basic elements of a laser:

• medium: determines wave length (ruby: 693 nm, neon: 633 nm, CO2: 11 µm)

– gas

– solid (crystal doped with ions, semi-conductor, ... )

– liquid (dye, ... )

• pumping: energy source that produces population inversion

– optical

– electrical

– thermal

– nuclear

• resonator: plane or (slightly) curved mirrors

Resonance: d = mλ/2 , m integer (recall Fabry-Perot)

picture from http://www.merck.de/servlet/PB
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Laser energy cycle (for 4-level system):

E2

E1

hν = E2 − E1

hν = E2 − E1

hν = E2 − E1(1)

(2)

(3)

(4)

pump level

ground level

(1) Electrons are pumped to the pump level.

(2) The pump level quickly (≈ 10−8s) decays.

(3) The metastable (life time ≈ 10−3s) level at E2 decays by stimulated emission;

this is the process one is interested in.

(4) E1 quickly decays to the ground level, so that the laser process can go on.
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Intensity of laser beam over beam

cross section ( “burning pattern”)

Ground mode and higher order

modes excited in cavity

picture from http://de.wikipedia.org
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Characteristics of laser light:

• Monochromaticity: The frequency is determined by E2 − E1. The spread

of the radiated frequency in a laser is up to 10−7 times smaller than for

the same transition occurring spontaneously.

• Coherence: For some lasers, the coherence length is more than 1000 km.

• Directionality: Laser light is highly collimated and can be forced into an

area with radius of order λ.

• Intensity: The Nova Laser at the Lawrence Livermore Laboratory (Berke-

ley, California) could send pulses of ≈ 105J in ≈ 2.5 ns. At a star in 50

light years distance, in this time 8 photons per square meter would be

received. (From our sun, in the same time only 0.00025 photons per

square meter would be received.)

Laser light can be (linearly) polarised by inserting “Brewster windows”.
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Some laser types:

Gas lasers:

• HeNe laser: λ = 633 nm (red), power up to 50 mW, beam diameter > 0.5 mm

picture from http://en.wikipedia.org
picture from http://en.wikipedia.org

• CO2 laser

λ = 10.6 µm (infrared), power up to 100 W, beam diameter > 3 mm

Used e.g. for industrial cutting
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Solid state lasers:

• Ruby laser

Ruby = aluminium oxide crystal doped with chromium

λ = 694 nm (red), energy up to 100 J per pulse, beam diameter > 2.5 cm

• Nd-YAG laser

YAG = Yttrium – Aluminium – Garnet

Y3Al5O12 crystal doped with Neodymium

λ = 1.1 µm (infrared), power up to 600 W, beam diameter > 6 mm

Semiconductor lasers (laser diodes):

• Gallium-arsenide laser diode

λ = 780 – 900 nm (red), power up to 40 mW, beam diverges rapidly

Laser diodes are used in CD players, laser pointers (should be limited to 5 mW),

laser printers, ...

Dye lasers:

Discovered accidentally by F. Schäfer in 1966, wave length tunable, used e.g. in laser

spectroscopy
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Free electron laser:

Completely different from all other laser types discussed above

Uses beam of free electrons (not bound in atoms)

Electrons radiate when accelerated very intense beam

Wave length is tunable

Used e.g. for studies in solid state physics and in medicine

picture from http://en.wikipedia.org
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Some applications of lasers (very incomplete list):

• cutting, welding, etc. of materials

• printing

• medicine (e.g. eye surgery)

• science, e.g.

– laser spectroscopy

– laser gyroscope for measuring rotations

– lunar laser ranging

– gravitational wave detectors

• CD and DVD players

• laserscanners

• military applications

• arts and entertainment

• holography
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VII. Holography
This part was not presented in the lectures, for lack of time, and will not be the

subject of any exam questions

(cf. Pedrotti and Pedrotti, Chapter 13)

Ordinary photograph:

• 2-dimensional

• no information about depths

• information only about intensity coming from various directions, not about phase

Hologram:

• information on intensity and phase

• allows to reconstruct the complete wave field near the observer’s eye

• gives spatial (3-dimensional) impression of object

holos (greek): the whole, everything graphein (greek): to write

holography: writing the whole (information about an object to a photographic plate)

• Principle idea of holography:

D. Gábor (1947), Nobel Prize 1971

• Realization with laser and invention of off-axis technique:

E. Leith and J. Upatnieks (1962)
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Hologram of point source:

Reference beam and light from point

source at O give interference pattern

on photograhic plate

Difference in optical path length at

point P : OP − OX

Interference maxima if

OP − OX = mλ

with m = 0,±1,±2, . . .

So one gets a circular interference

pattern (“Gábor zone plate”):

O

P

X
point source

reference beam

photographic plate

If the photographic plate has

been developed, it is again

brought in the same position with

respect to the reference beam,

but now without the point source

at O.
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Diffraction pattern of the Gábor zone plate reproduces a virtual image of the point

source at O and a real image at the mirror-symmetric point O′.

O
O′

reference beam

photographic plate

observer’s eye

• The observer’s eye sees a virtual image at O. That is what one wants.

• The real image at O′ is unwanted.

• There are also unwanted higher order images, corresponding to higher order

diffraction maxima.
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One uses the socalled off-axis technique to separate the virtual image from the un-

wanted images:

• reference beam comes in at an angle

• real and virtual images are separated in direction

Hologram of an extended 3-dimensional scene is the superposition of the holograms

of its points.

laser

mirrormirror

mirror

semi-transparent

object

photographic

plate

reference

beam

scattered light

from object
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Reconstruction:

developed

photographic
plate

reference

beam

observer’s

eye

Observer’s eye sees 3-dimensional virtual image of object

Making hologram:

• Photographic plate perpendicular to line to object

• Reference beam makes angle α 6= 0 with this line

Viewing hologram:

• View line perpendicular to photographic plate

• Reference beam comes in at angle α
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picture from http://www.holography.dragonseye.com

Characteristic features of holograms:

• The reconstructed image is 3-dimensional.

• If observer position is changed, objects move relative to each other, like when

viewing the real scene.

• Every part of a hologram contains information about the whole scene.

• Making a hologram requires a coherent light source (laser).

• Viewing a hologram with an ordinary light source (light bulb) gives slightly

blurred image; if white light is used, image has colored fringes.

• If reference beam for viewing has other λ than reference beam for making the

hologram, the object is displaced.

•White light holograms that reproduce objects in natural colors can be produced

with thick emulsions (“volume holograms”).
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Modifications:

• Instead of transmisson holograms, one can also produce reflection holograms.

• Other recording materials than photographic plates are used, e.g. photothermo-

plastics and polymers.

• Dynamic holograms, rather than static ones, have been produced.

Some applications:

• Arts and entertainment

• Measurements of small displacements

• Microscopy

• Data storage

• Security feature on credit cards etc.
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Notes on exam preparation:

The exam will be in May 2010. There will be a revision seminar

two or three weeks before the exam. Here are some suggestions

for exam preparation.

• Look at past exam papers. Concentrate on the years

2007/2008/2009 (before that the course was taught by some-

one else who partly emphasised other things). You will see

that several questions frequently reoccur, with minor modi-

fications.

•Work through the lecture notes. I know that it is a lot of

material. I tried to highlight particularly relevant things by

red frames.

• Revise the worksheet questions. About 40 % of the exam

questions will be similar to worksheet questions. The rest are

socalled bookwork problems, like “State Fermat’s Principle”

or “Sketch a Fabry-Perot interferometer”.
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