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I. Sequences and series of real numbers

(Cf. FLAP M1.7)

I.1. Sequences of real numbers

Here we consider only real numbers, complex numbers will be the subject of
PHYS114.

Finite sequence (= ordered N-tuple): {an}N
n=1 = {a1, a2, a3, . . . , aN}

e.g. {5,
√

2,−3} , {3, 3, 3, 7, 0, 1
2
} , . . .
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Infinite sequence: {an}∞n=1 = {a1, a2, a3, . . . }

Of course, we cannot write down infinitely many numbers. There are two ways
in which an infinite sequence can be unambiguously determined.

(i) Give the rule that assigns to each n the element an, e.g.

an = n + 3

{an}∞n=1 = {4, 5, 6, 7, . . .}

Graphical representation:

Compare with function of con-
tinuous variable f(x).

A sequence is a function of a dis-
crete variable n, with the vari-

able written as index rather than
as argument, an.

Analogy:

x 7→ f(x)

n 7→ an
1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

n

an

(ii) (“Recursive” or “inductive” definition:) Give the first element, a1, and the

rule how an+1 is constructed from an, e.g.

a1 = 4 , an+1 = an + 1

a1 = 4 , a2 = 5 , a3 = 6 , a4 = 7 , . . .
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Note:

• The index can be renamed:

{an}∞n=1 = {am}∞m=1

• One can rewrite the sequence in terms of a new index that starts with a

value different from 1:

{an}∞n=1 = {ak+1}∞k=0 = {aℓ+2}∞ℓ=−1 = . . .

It is often convenient to have the index starting at 0.

Two important types of sequences:

• Arithmetic sequence (also called “arithmetic progression”):

an+1 − an = s (with s independent of n)

{an}∞n=0 with an = a0 + n s

e.g. {an}∞n=0 = {4, 7, 10, 13, 16, . . .} , s = 3 .

• Geometric sequence (also called “geometric progression”):

an+1

an
= q (with q independent of n)

{an}∞n=0 with an = a0 qn

e.g. {an}∞n=0 = {4, 8, 16, 32, . . .} , q = 2 .
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Convergence of infinite sequences:

Rough idea: A sequence {an}∞n=n0

converges towards c if for all suf-
ficiently large n the number an is

arbitrarily close to c.

Precise definition: A sequence

{an}∞n=n0
converges towards c if for

every ε > 0 there is an n such that

|am − c| < ε for all m > n .

If {an}∞n=n0
converges towards c we

write
lim
n→∞

an = c

or equivalently

an → c for n → ∞ .

am

c

c − ε

c + ε

2ε

The essential point is that the definition allows to choose ε as small as you like.

Note that for convergence it is irrelevant what the first 5, the first 100, or the
first 1010 members of the sequence do. What matters is the behaviour of an if
n becomes arbitrarily large.

Examples of convergent sequences:

(i) an =
1

n
→ 0 for n → ∞.

This is intuitively obvious. Here is a formal proof:

Choose any ε > 0. Let n be the smallest integer such that n > 1/ε.

Then we have, for all m > n,

|am − 0| = |am| =
1

m
<

1

n
< ε .

The convergence an =
1

n
→ 0 is illustrated by the following plot.
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1 2 3 4 5 6 7 8 9

an = 1

n

n

1

1/2

1/3

1/4

1/5

In the following two examples the convergence is again intuitively obvious. It
can be formally proven in a way similar to (i).

(ii) an =
1

np
→ 0 for n → ∞ if p > 0 .

Plot for p = 2 :

1 2 3 4 5 6 7 8 9

an =
1

n2

n

1

1/4

1/9

1/16
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(iii) an = qn → 0 for n → ∞ if 0 < |q| < 1 .

Plot for

q = 1

2
:

1 2 3 4 5 6 7 8 9

an = 1

2n

n

1/2

1/4

1/8

1/16

Other limits can be reduced to these cases. Here are two examples.

(iv) an =
n3 + 3

2n3 + 5n
=

1 + 3 1

n3

2 + 5 1

n2

→ 1

2
for n → ∞

(v) an =
√

n + 1−
√

n =

(√
n + 1 − √

n
) (√

n + 1 +
√

n
)

√
n + 1 +

√
n

=

=
��n + 1 − ��n√
n + 1 +

√
n

→ 0 for n → ∞ .

Examples of non-convergent sequences:

(i) an = qn with q > 1, e.g. {an}∞n=0 = {1, 2, 4, 8, . . .} , q = 2 .

For any number c we can find an n such that an = qn is bigger than c, so

the sequence cannot converge. In this case we say that an diverges to ∞
and we write

lim
n→∞

an = ∞
or

an → ∞ for n → ∞ .

Analogously, we say that an diverges to −∞ if for any c we can find an

n such that an is smaller than c.
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(ii) an = (−1)n2, i.e. {an}∞n=1 = {−2, 2,−2, 2,−2, . . .}.
It is obvious that this sequence does not converge, because it is not confined
to an arbitrarily small interval for large n. Also, it does not diverge to
plus or minus infinity because the members of the sequence are obviously

bounded. In this case we speak of an “oscillatory sequence”.

So a sequence may converge, diverge (to +∞ or −∞), or neither. A sequence

with non-decreasing members, an+1 ≥ an, either converges or diverges to +∞.

I.2. Series of real numbers

Finite series ( = sum): a1 + . . . + aN =

N
∑

n=1

an

Σ = capital greek Sigma = summation sign.

Examples:

(a) 3+5+7+9 =

4
∑

n=1

(2n+1)

(b) 9+16+25+36 =
6

∑

n=3

n2

Note: •
N

∑

n=n0

an =

N
∑

m=n0

am .

•
N

∑

n=n0

an =

N−1
∑

m=n0−1

am+1 =

N−2
∑

ℓ=n0−2

aℓ+2 = . . .

•
N

∑

n=n0

( s an + t bn ) = s

N
∑

n=n0

an + t

N
∑

n=n0

bn .

•
N

∑

n=n0

(

M
∑

m=m0

bm

)

an =

M
∑

m=m0

(

N
∑

n=n0

an

)

bm ,

i.e., the brackets can be dropped and the order of
the sums is irrelevant.
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Infinite series :

∞
∑

n=n0

an

This does not mean to sum up infinitely many numbers (which is

impossible). Rather:
∞

∑

n=n0

an = lim
N→∞

SN where SN =

N
∑

n=n0

an .

Two important types of series:

• Arithmetic series

Recall that an arithmetic sequence is a sequence of the form an =
a0 + n s. Summing up the members of an arithmetic sequence

gives an arithmetic series:
N

∑

n=0

an =

N
∑

n=0

(a0 + ns) = (N + 1)a0 + s

N
∑

n=1

n .

Claim:
N

∑

n=1

n =
N(N + 1)

2

Proof:

N
∑

n=1

n = 1 + 2 + . . . + (N − 1) + N

N
∑

n=1

n = N + (N − 1) + . . . + 2 + 1

——— ————————————————————

2
N

∑

n=1

n = (N + 1) + (N + 1) + . . . + (N + 1) + (N + 1)

= N(N + 1)

[This result dates back to Carl-Friedrich Gauss (1777 - 1855) who
found it as a school boy when he was asked to sum up all integers

from 1 to 100.]
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• Geometric series

Recall that a geometric sequence is a sequence of the form an =
a0 qn . Summing up the members of a geometric sequence gives a

geometric series:
N

∑

n=0

an =
N

∑

n=0

a0 qn = a0

N
∑

n=0

qn .

Claim:
N

∑

n=0

qn =
1 − qN+1

1 − q

Proof: (1 − q)

N
∑

n=0

qn =

N
∑

n=0

qn − q

N
∑

n=0

qn =

=
N

∑

n=0

qn −
N

∑

n=0

qn+1 = 1 + q + . . . + qN

−
(

q + . . . + qN + qN+1
)

= 1 − qN+1 .

For 0 < |q| < 1 we have qN+1 → 0 for N → ∞. This gives the

summation formula for the infinite geometric

series

∞
∑

n=0

qn =
1

1 − q
for 0 < |q| < 1 .

For |q| ≥ 1 the geometric series does not converge.
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Here are two examples where the summation formulas for arithmetic and geo-

metric series are used.

(i) Check if
∑∞

n=1

(

2n − 1

3

)

converges.

We calculate the partial sums

SN =
N

∑

n=1

(

2n − 1

3

)

= 2
N

∑

n=1

n −
N

∑

n=1

1

3
=

= 2
N(N + 1)

2
− N

3
= N2 +

2

3
N .

Hence ∞
∑

n=1

(2n − 1

3
) = lim

N→∞
SN = lim

N→∞

(

N2 +
2

3
N

)

= ∞ ,

so the series diverges.

(ii) Check if
∑∞

n=0

(2n − 1)

3n
converges.

We calculate the partial sums

SN =

N
∑

n=0

(2n − 1)

3n
=

N
∑

n=0

(2

3

)n −
N

∑

n=0

(1

3

)n
=

1 − (2

3
)N+1

1 − 2

3

− 1 − (1

3
)N+1

1 − 1

3

.

Hence

∞
∑

n=0

(2n − 1)

3n
= lim

N→∞

( 1 − (2

3
)N+1

1 − 2

3

− 1 − (1

3
)N+1

1 − 1

3

)

= 3 − 3

2
=

3

2

so the series converges towards
3

2
.

In the following we discuss several tests which can be used to determine whether
or not a series converges. These tests are relevant, in particular, in cases where

the partial sums cannot be calculated explicitly.
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The ratio test for convergence (d’Alembert test):

Assume an > 0 for all n . Let R = lim
n→∞

an+1

an

.

If R < 1, the series
∑

∞

n=n0
an converges.

If R > 1, the series
∑

∞

n=n0
an does not converge.

If R = 1, the series
∑

∞

n=n0
an may or may not converge.

Proof:
If R < 1: For convergence it is irrelevant which n0 we choose. Let us choose n0

sufficiently large. Then there is a number q with 0 < q < 1 such that
an+1

an
≤ q for all n ≥ n0 ,

see picture. As an > 0, the inequality is preserved if both sides are multiplied with
an,

an+1 ≤ q an for all n ≥ n0 .

We write this inequality for successive values of n:

an0
= an0

an0+1 ≤ q an0

an0+2 ≤ q an0+1 ≤ q2 an0

· · ·
an0+N ≤ . . . ≤ qN an0

————————————————————

n0+N
∑

n=n0

an ≤
N

∑

m=0

qm an0

With the summation formula for the geometric series
(p.9)

n0+N
∑

n=n0

an ≤ an0

1 − qN+1

1 − q
.

Now let N → ∞. As 0 < q < 1, we have qN+1 → 0
and thus

∞
∑

n=n0

an ≤ an0

1 − q
.

So
∑

∞

n=n0
an is bounded from above by a finite value.

As an > 0, this implies that
∑

∞

n=n0
an converges.

(Note that, if an > 0, the sequence with elements
SN =

∑N
n=n0

an is increasing. Such a sequence either
converges or it diverges to +∞.)

an+1
an

R

0

q

1

2ε
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If R > 1: Again we choose n0 sufficiently large. Then there is a number q > 1 such
that

an+1

an

≥ q for all n ≥ n0 ,

see picture next page. As an > 0,

an+1 ≥ q an for all n ≥ n0 .

Again, we write this inequality for successive values of n:

an0
= an0

an0+1 ≥ q an0

an0+2 ≥ q an0+1 ≥ q2 an0

· · ·
an0+N ≥ . . . ≥ qN an0

————————————————————

n0+N
∑

n=n0

an ≥
N

∑

m=0

qm an0

Again with the summation formula for the geometric
series,

n0+N
∑

n=n0

an ≥ an0

1 − qN+1

1 − q
= an0

qN+1 − 1

q − 1

Now we let N → ∞. As q > 1, we have qN+1 → ∞,
so our inequlity implies that

∑

∞

n=n0
an diverges to

∞.

If R = 1, no information about convergence can be
gained.

an+1
an

R

1

q

2ε

Example: an =
1

n!

an+1

an
=

n!

(n + 1)!
=

1

n + 1
→ 0 for n → ∞ , so

∞
∑

n=n0

1

n!
converges.

The ratio test does not tell towards which value the series converges. We will later
see that

∞
∑

n=0

1

n!
= e

where e is the Euler number,

e = lim
n→∞

(

1 +
1

n

)n
= 2.718 . . .
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We now turn to the second test for convergence of a series.

The root test for convergence (Cauchy test):

Assume an > 0 for all n . Let Q = lim
n→∞

n
√

an .

If Q < 1, the series
∑

∞

n=n0
an converges.

If Q > 1, the series
∑

∞

n=n0
an does not converge.

If Q = 1, the series
∑

∞

n=n0
an may or may not converge.

Proof (was not given in the lecture because it is very similar to the proof of the ratio test):

If Q < 1: Choose n0 sufficiently large. Then there is
a number q with 0 < q < 1 such that

n
√

an ≤ q for all n ≥ n0 ,

see picture. As the expressions are positive, the in-
equality is preserved if both sides are raised to the
power n:

an ≤ qn for all n ≥ n0 .

We write this inequality for successive values of n:

an0
≤ qn0

an0+1 ≤ qn0+1 = q qn0

an0+2 ≤ qn0+2 = q2 qn0

· · ·
an0+N ≤ qn0+N = qN qn0

————————————————————

n0+N
∑

n=n0

an ≤
∞

∑

m=0

qm qn0

n
√

an

Q

0

q

1

2ε

With the summation formula for the geometric series:

n0+N
∑

n=n0

an ≤ qn0
1 − qN+1

1 − q

Now we let N → ∞. As 0 < q < 1, we have qN+1 → 0 and thus

∞
∑

n=n0

an ≤ qn0

1 − q
.
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So
∑

∞

n=n0
an is bounded from above by a finite value.

As an > 0, this implies that
∑

∞

n=n0
an converges.

If Q > 1: Again we choose n0 sufficiently large. Then there is a number q > 1 such
that

n
√

an ≥ q for all n ≥ n0 ,

see picture. As the expressions are positive, the inequality is preserved if both sides
are raised to the power n:

an ≥ qn for all n ≥ n0 .

Again, we write this inequality for successive values of n:

an0
≥ qn0

an0+1 ≥ qn0+1 = q qn0

an0+2 ≥ qn0+2 = q2 qn0

· · ·
an0+N ≥ qn0+N = qN qn0

————————————————————

n0+N
∑

n=n0

an ≥
N

∑

m=0

qm qn0

With the summation formula of the geometric series:

n0+N
∑

n=n0

an ≥ qn0
1 − qN+1

1 − q
= qn0

qN+1 − 1

q − 1

Now we let N → ∞. As q > 1, we have qN+1 → ∞
and thus our inequlity implies that

∑

∞

n=n0
an di-

verges to ∞.

If Q = 1, no information about convergence can be
gained.

n
√

an

Q

1

q

2ε

Example: an =
1

nn

n
√

an =
n

√

1

nn
=

( 1

nn

)1/n
=

1

n
→ 0 for n → ∞ , so

∞
∑

n=n0

1

nn
converges.

This is a particularly simple example. Usually the nth square root leads to awkward expressions.
Therefore, it is recommendable to try the ratio test first und to use the root test only in cases
where the ratio test fails.
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We now turn to the third test of convergence. As a preparation, we need some results about
the relation of series and integrals. This will then result in the socalled ‘integral test’ for
convergence.

Let f(x) be a monotonically decreasing and positive function. [ Recall that a function f(x)
is called ‘monotonically decreasing’ or simply ‘decreasing’ if f(x + ε) ≤ f(x) for ε > 0 . A
differentiable function f(x) is monotonically decreasing if and only if f ′(x) ≤ 0 . ]

Define an, for integer n, by
an = f(n) , see pictures on
the right. In the first pic-
ture, clearly the shaded area
is smaller than the area un-
der the graph of f(x). Thus,
for any integer N ,

∞
∑

n=N+1

an ≤
∫

∞

N

f(x) dx ,

which can be rewritten as

∞
∑

n=N

an − aN ≤
∫

∞

N

f(x) dx .

In the second picture, clearly
the shaded area is bigger
than the area under the
graph of f(x). This gives us
the inequlity

∫

∞

N

f(x) dx ≤
∞

∑

n=N

an .

We combine both results and
we get the following result.

N N + 1 N + 2 N + 3 N + 4

aN

aN+1

aN+2

aN+3aN+4
x

f(x)

N N + 1 N + 2 N + 3 N + 4

aN

aN+1

aN+2

aN+3aN+4
x

f(x)

The integral test inequality:

Assume that f(x) is a monotonically decreasing and positive func-
tion on the interval N ≤ x < ∞, and let an = f(n) for integer n.
Then

∫

∞

N

f(x) dx ≤
∞

∑

n=N

an ≤ aN +

∫

∞

N

f(x) dx .
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This gives us the third test for convergence.

The integral test for convergence:

Assume that f(x) is a monotonically decreasing and positive function
on the interval N ≤ x < ∞, and let an = f(n) for integer n. Then the
following is true.

If
∫

∞

N
f(x) dx is finite, the series

∑

∞

n=N an converges.

If
∫

∞

N
f(x) dx is infinite, the series

∑

∞

n=N an does not converge.

Proof: We use the integral test inequality. If
∫

∞

N
f(x) dx is finite, the inequality

∞
∑

n=N

an ≤ aN +

∫

∞

N

f(x) dx

demonstrates that
∑

∞

n=N an is bounded from above by a finite number. As the
numbers an = f(n) are positive, this implies that the series converges.

If
∫

∞

N
f(x) dx is infinite, the inequality

∫

∞

N

f(x) dx ≤
∞

∑

n=N

an

demonstrates that
∑

∞

n=N an is infinite.

Keep in mind:

• All three tests – ratio test, root test and integral test – are applicable only to series with
positive members, an > 0.

• The integral test requires, in addition, that an+1 ≤ an.

We will now investigate the convergence of the socalled ‘harmonic series’

∞
∑

n=1

1

n
= 1 +

1

2
+

1

3
+ . . .

with the help of our three tests.

• Ratio test:

an =
1

n
, an+1 =

1

n + 1
,

an+1

an

=
n

n + 1
=

1

1 + 1
n

→ 1 for n → ∞ ,

so the ratio test is indecisive.
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• Root test:

an =
1

n
, n

√
an =

n

√

1

n
=

1

n1/n

Claim: n1/n → 1 for n → ∞ .

Proof: For all real numbers x we have x1/x = eln
(

x1/x
)

= e
1

x
lnx .

Sending x → ∞ yields in the exponent an ‘undetermined expression’,

ln x

x
→ ∞

∞ for x → ∞ ,

which can be calculated with the rule of l’Hospital (or l’Hôpital):

lim
x→∞

ln x

x
= lim

x→∞

d
dx

ln x
d
dx

x
= lim

x→∞

1
x

1
= 0 .

This proves that, indeed,

x1/x = e
1

x
ln x → e0 = 1 for x → ∞ .

As a consequence,

n
√

an =
1

n1/n
→ 1 for n → ∞ ,

so the root test is indecisive.

• Integral test:

f(x) =
1

x
, an =

1

n

∫

∞

1

f(x) dx =

∫

∞

1

dx

x
=

[

ln x
]

∞

1
=

= ln∞ − ln 1 = ∞ − 0 = ∞ ,

so the harmonic series diverges,

∞
∑

n=1

1

n
= ∞ .

1 2 3

1

1/2
1/3

x

f(x) = 1
x

More generally, one can show with the integral test that

∞
∑

n=1

1

np







converges if p > 1 ,

diverges if p ≤ 1 .

[ For p = 2 see second worksheet. ]
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Remark: The alternating harmonic series converges,

∞
∑

n=1

(−1)n+1 1

n
= 1 − 1

2
+

1

3
− 1

4
+ . . . = ln 2 = 0.69 . . .

The harmonic and alternating harmonic series exemplify the following general statements:

• lim
n→∞

an = 0 is a necessary, but not a sufficient condition for convergence of
∑

∞

n=n0
an.

• If
∑

∞

n=n0
|an| converges, so does

∑

∞

n=n0
an. The converse is, in general, not true.

Applications:

a) Paradox of Achilles and the tortoise [Zeno of Elea (ca. 490 – ca. 430 BC)]

(Probably the first occasion where an infinite series occurred in human thinking.)

Speed of Achilles: v

Speed of the tortoise: q v , 0 < q < 1

The tortoise gets a head start of distance D:

Achilles

Tortoise

t = t0

t = t0 t = t1

t = t1

t = t2

t = t2

t = t3

D q D q2D

Whenever Achilles reaches the point where the tortoise was one time step before, the tortoise is
ahead of him. From this (correct) observation Zeno (incorrectly) concludes that Achilles never

reaches the tortoise.

Where is the error?

Zeno decomposes the interval until Achilles reaches the tortoise into infinitely many subinter-
vals. He implicitly assumes that summing up these infinitely many subintervals gives infinity.
This is wrong. An infinite series can have a finite sum. Here we get a geometric series. The
time T at which Achilles reaches the tortoise can be calculated as

T =
1

v

(

D + q D + q2 D + . . .
)

=
1

v

∞
∑

n=0

qn D =
D

v(1 − q)
.
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b) Reflection at mirrors

semi-transparent mirrors

first transmitted beam

second transmitted beam

third transmitted beam

fourth transmitted beam

fifth transmitted beam

At each reflection, a fraction r of the intensity is reflected, the rest is transmitted.

Intensity of first transmitted beam: I1

Intensity of second transmitted beam: I2 = r2I1

Intensity of third transmitted beam: I3 = r2I2 = r4I1

. . .

Intensity of nth transmitted beam: In = r2nI1

. . .

so the intensities I1, I2, . . . , In, . . . form a geometric sequence with common factor q = r2.

[Note that summing up the resulting geometric series,

I =
∞

∑

n=1

In =
∞

∑

n=1

r2(n−1)I1 =
∞

∑

n=0

r2nI1 =
I1

1 − r2
,

does not give the total intensity of all transmitted beams because of interference: Parts of
the transmitted beams will cancel each other, where a wave crest of one beam falls on a wave
trough of another.]
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II. Taylor series

(Cf. FLAP M4.5)

II.1. Definition and basic properties of Taylor series

Goal:

• Approximate a function f(x) by a polynomial

PN(x) = c0 + c1 x + c2 x
2 + . . . + cNx

N =
N
∑

n=0

cnx
n

(‘N th order Taylor approximation’).

• Then send N → ∞ to get ‘(infinite) Taylor series’ of f(x).

First order Taylor approximation:

Approximate function f(x) near x = 0 by
first order polynomial

P1(x) = c0 + c1x .

Graph of P1(x) is a straight line which is sup-
posed to be tangent to the graph of f(x) at
x = 0:

P1(x) = c0 + c1x ⇒ P1(0) = c0
!
= f(0)

P ′
1(x) = c1 ⇒ P ′

1(0) = c1
!
= f ′(0)

So the first order Taylor polynomial of f(x)
at x = 0 reads

P1(x) = f(0) + f ′(0)x

x

f(x)

P1(x)
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Second order Taylor approximation:

Approximate function f(x) near x = 0 by
second order polynomial

P2(x) = c0 + c1x+ c2x
2 .

Graph of P2(x) is a parabola which is sup-
posed to be as close to the graph of f(x) near
x = 0 as possible:

P2(x) = c0+c1x+c2x
2 ⇒ P2(0) = c0

!
= f(0)

P ′
2(x) = c1 + 2c2x ⇒ P ′

2(0) = c1
!
= f ′(0)

P ′′
2 (x) = 2c2 ⇒ P ′′

2 (0) = 2c2
!
= f ′′(0)

So the second order Taylor polynomial of
f(x) at x = 0 reads

P2(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2

x

f(x)

P2(x)

By iterating this procedure we find that the N th order Taylor polynomial of f(x) at x = 0 reads

PN(x) = f(0)+f ′(0)x+f ′′(0)
x2

2
+f ′′′(0)

x3

3!
+f (4)(0)

x4

4!
+ . . .+f (N)(0)

xN

N !
=

N
∑

n=0

f (n)(0)
xn

n!

f(x) ≈ PN(x) is a good approximation for small x. The higher N , the better the approximation.

Alternative notation for the nth derivative: f (n)(0) =
dnf(x)

dxn

∣

∣

∣

x = 0
.

Sending N to infinity gives the (infinite) Taylor series of f(x) about x = 0:

∞
∑

n=0

f (n)(0)
xn

n!
.

For each value of x, this is a series of real numbers which can be studied with the methods of
Section I. Convergence of this series can be investigated, e.g., with the ratio test, the root test
or the integral test. Of course, the series may converge for some values of x and not converge
for other values of x.
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The idea behind Taylor series is that with increasing N the Nth order Taylor polynomial PN(x)
becomes a better and better approximation of f(x). So one wants to have that the limit of
PN(x) for N → ∞ gives the function f(x). However, convergence of the Taylor series towards
f(x) is not guaranteed. The set of all x for which

f(x) =

∞
∑

n=0

f (n)(0)
xn

n!

is called the ‘interval of convergence’. In Section II.2 we will give examples of functions where
the interval of convergence is the whole real line and examples of functions where it is smaller.

Example:

Calculate the second order Taylor

polynomial for f(x) =
1

1 + x
at x = 0:

f(x) =
1

1 + x
⇒ f(0) = 1

f ′(x) =
−1

(1 + x)2
⇒ f ′(0) = −1

f ′′(x) =
2

(1 + x)3
⇒ f ′′(0) = 2

So the second order Taylor polynomial

of f(x) =
1

1 + x
reads

P2(x) = 1− x+ x2 .

   –1 x

f(x) =
1

1 + x

P2(x) = 1− x+ x2

The Taylor series for even functions, f(x) = f(−x) and for odd functions, f(x) = −f(−x),
have a simpler form than for arbitrary functions:

Even functions:

f(x) = f(−x)

f ′(x) = −f ′(−x) ⇒ f ′(0) = −f ′(0) ⇒ f ′(0) = 0

f ′′(x) = f ′′(−x)

f ′′′(x) = −f ′′′(−x) ⇒ f ′′′(0) = −f ′′′(0) ⇒ f ′′′(0) = 0

. . .

f (n)(0) = 0 for odd n ,
x

f(x)

so the Taylor series for an even function reduces to

f(0) + f ′′(0)
x2

2
+ f (4)(0)

x4

4!
+ . . . =

∞
∑

k=0

f (2k)(0)
x2k

(2k)!
.
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Odd functions:

f(x) = −f(−x) ⇒ f(0) = −f(0) ⇒ f(0) = 0

f ′(x) = f ′(−x)

f ′′(x) = −f ′′(−x) ⇒ f ′′(0) = −f ′′(0) ⇒ f ′′(0) = 0

f ′′′(x) = f ′′′(−x)

. . .

f (n)(0) = 0 for even n ,

x

f(x)

so the Taylor series for an odd function reduces to

f ′(0)x+ f ′′′(0)
x3

3!
+ f (5)(0)

x5

5!
+ . . . =

∞
∑

k=0

f (2k+1)(0)
x2k+1

(2k + 1)!
.

Taylor expansion of f(x) about an arbitrary point x = a :

Define y = x− a and f(x) = g(y).

Then f ′(x) = g′(y), hence f (n)(x) = g(n)(y) and thus f (n)(a) = g(n)(0).

Write the Taylor expansion of g(y) about y = 0:

g(y) = g(0) + g′(0)y + g′′(0)
y2

2
+ g′′′(0)

y3

3!
+ . . . =

∞
∑

n=0

g(n)(0)
yn

n!
.

After resubstitution, this gives the Taylor expansion of f(x) about x = a:

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2
+ f ′′′(a)

(x− a)3

3!
+ . . . =

∞
∑

n=0

f (n)(a)
(x− a)n

n!
.

Example: Calculate the second order Taylor polynomial of f(x) = sin x about x = π/4:

f(x) = sin x , f
(

π
4

)

= 1√
2

f ′(x) = cosx , f ′
(

π
4

)

= 1√
2

f ′′(x) = −sin x , f ′′
(

π
4

)

= − 1√
2

so

f(x) ≈ 1√
2
+

1√
2

(

x− π

4

)

− 1√
2

(

x− π
4

)2

2

This is a good approximation if x is close to π
4
.
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II.2. Taylor series of some standard functions

a) Exponential function

f(x) = ex , f(0) = 1

f ′(x) = ex , f ′(0) = 1

f ′′(x) = ex , f ′′(0) = 1

· · · · · ·
f (n)(x) = ex , f (n)(0) = 1

So the Taylor series of ex reads

ex =

∞
∑

n=0

xn

n!
= 1 + x+

x2

2
+

x3

3!
+

x4

4!
+ . . . x

1

P1(x) = 1 + x

P2(x) = 1 + x+ x2

2

f(x) = ex

One may use this Taylor series as the definition of the exponential function.

To make sure that the exponential function is well defined this way, one has to verify that the
Taylor series converges for all real numbers x.

To demonstrate convergence of the series

∞
∑

n=0

an(x) =

∞
∑

n=0

xn

n!
,

recall that convergence of
∑∞

n=0 |an(x)| implies convergence of
∑∞

n=0 an(x) (though
not the other way round!). Hence, it suffices to demonstrate convergence for positive
x. In this case the ratio test is applicable, and it gives convergence of the series, see
third worksheet.

Hence, the Taylor series of the exponential function converges for all x.

Setting x = 1 in the Taylor series for ex gives a series formula for e:

e =

∞
∑

n=0

1

n!
= 1 + 1 +

1

2
+

1

3!
+

1

4!
+ . . .

This can be used for calculating e = 2.71828 . . . numerically. One may use this series as the
definition of the number e. There are several alternative ways of defining e, all of which are
equivalent, e.g.

e = lim
n→∞

(

1 +
1

n

)n

or
e = lim

n→∞

n
n
√
n!

.
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b) Sine function

f(x) = sin x is an odd
function,

sin(x) = −sin(−x) ,

so it is clear from the
outset that only odd
powers of x will occur
in the Taylor series.

x

−1

1

−π π

f(x) = sin x

P1(x) = x

P3(x) = x− x3

3!

f(x) = sin x , f(0) = 0

f ′(x) = cosx , f ′(0) = 1

f ′′(x) = −sin x , f ′′(0) = 0

f ′′′(x) = −cos x , f ′′′(0) = −1

f (4)(x) = sin x , f (4)(0) = 0

· · · · · ·
f (n+4)(x) = f (n)(x) , f (n+4)(0) = f (n)(0)

Hence

f (n)(0) =











0 if n = 0, 2, 4, 6, 8, . . .

1 if n = 1, 5, 9, 13, 17, . . .

−1 if n = 3, 7, 11, 15, 19, . . .

and the Taylor series for the sine function reads

sin x =
∞
∑

k=0

(−1)k
x2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ . . .

This series converges for all x. [ The proof is similar to that for the exponential function. ]

The first order Taylor approximation

sin x ≈ x

is often used in physics. It is a good approximation if |x| is small.
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c) Cosine function

f(x) = cosx is an
even function,

cos(x) = cos(−x) ,

so it is clear from the
outset that only even
powers of x will occur
in the Taylor series.

x

−1

1

−π π

f(x) = cosx

P1(x) = 1

P2(x) = 1− x2

2

For calculating the Taylor series for the cosine function we could use the same method as for
the sine function. However, with the result for sin x already at hand, there is a quicker way:

cosx =
d

dx
sin x =

d

dx

∞
∑

k=0

(−1)k
x2k+1

(2k)!
=

=
∞
∑

k=0

(−1)k
d

dx

x2k+1

(2k + 1)!
=

∞
∑

k=0

(−1)k
(2k + 1)x2k

(2k + 1)!

where we used that the differentiation can be carried under the summation sign. [For finite
sums this is obvious; for infinite series it is true if the series converges sufficiently nicely.]

From the last expression we find the Taylor series for the cosine function:

cosx =
∞
∑

k=0

(−1)k
x2k

(2k)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

The series converges for all x. [ Again, the proof is very similar to that for the exponential
function. ]

The second order Taylor approximation

cosx ≈ 1 − x2

2

is often used in physics. It is a good approximation if |x| is small.

d) Hyperbolic functions

For the Taylor series of f(x) = sinh x and f(x) = cosh x see third worksheet.
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e) Binomial series

The Taylor series of the functions f(x) = (1 + x)r, where r is any real number, are called the
‘binomial series’. (For the case that r is a positive integer they reduce to the standard binomial
formula.)

f(x) = (1 + x)r

f ′(x) = r (1 + x)r−1

f ′′(x) = r (r − 1) (1 + x)r−2

f ′′(x) = r (r − 1) (r − 2) (1 + x)r−3

· · ·
f (n)(x) = r (r− 1) · · · (r− n+1) (1+ x)r−n

f(0) = 1

f ′(0) = r

f ′′(0) = r (r − 1)

f ′′(0) = r (r − 1) (r − 2)

· · ·
f (n)(0) = r (r − 1) · · · (r − n + 1)

We define the binomial coefficients

(

r
n

)

=
r (r − 1) · · · (r − n+ 1)

n!

which some authors (e.g. FLAP) denote by rCn instead.

Then the Taylor series for (1 + x)r becomes

(1 + x)r =
∞
∑

n=0

(

r
n

)

xn = 1 + r x + r (r − 1)
x2

2!
+ r (r − 1) (r − 2)

x3

3!
+ . . .

If r is a non-negative integer, this is a finite sum (i.e., a polynomial) because then

(

r
n

)

= 0 for n ≥ r + 1 .

For all other values of r it is an infinite series. This series converges for −1 < x < 1. [ This can
be proven with the ratio test, quite similarly as for the exponential function. ]

The first order approximation

(1+x)r ≈ 1+ r x

is often used in physics. It is a good approximation if |x| is small. E.g., one has

√
1 + x = (1 + x)1/2 ≈ 1 +

1

2
x ,

1
√

1 + x
3 = (1 + x)−3/2 ≈ 1 − 3

2
x .
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Applications:

a) Relativistic energy

In special relativity the energy of a particle with rest mass m that moves at speed v is

E =
mc2

√

1− v2

c2

where c is the vacuum speed of light. We want to get an approximation for E by Taylor
expansion up to second order with respect to v/c.

We use the binomial series approximation (1 + x)r = 1 + r x + . . . . Setting x = v2/c2 we
have

E = mc2
(

1 − x
)−1/2

= mc2
(

1 +
1

2
x + . . .

)

= mc2 + mc2
1

2

v2

c2
+ . . . = mc2 +

m

2
v2 + . . .

The first term is the rest energy, the second term is the non-relativistic kinetic energy. Neglect-
ing the terms indicated by . . . gives a good approximation for E if v/c is sufficiently small.

b)Planck’s radiation formula

If a non-reflecting (“black”) body is heated to temperature T , it emits electromagnetic radiation
whose intensity is given, as a function of the wave length λ, by Planck’s formula

I(λ) =
2 h c2

λ5

1
(

e
hc

kTλ − 1
)

where h, c and k are constants of nature:

h = Planck’s constant,

c = vacuum velocity of light,

k = Boltzmann’s constant.

The first picture on the next page shows the graph of I(λ) for two different temperatures T .
For the higher temperature the intensity is bigger over the whole wave length range, and the
maximum is at a smaller wave length (“bluer”).
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λ

I(λ)

λ1 λ2

T = 4000K

T = 3000K

For large wave lengths λ,
the dimensionless quan-

tity
hc

kTλ
is small.

We can then use a first
order Taylor approxima-
tion:

e
hc

kTλ ≈ 1 +
hc

kTλ
,

I(λ) ≈ 2 h c2

λ5

k T λ

h c
=

=
2 c k T

λ4
. λ

I(λ)

2 c k T

λ4
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III. Ordinary differential equations

(Cf. FLAP M6.1, M6.2, M6.3)

III.1. Introducing differential equations

A differential equation is an equation for an unknown function which involves derivatives of the
unknown function, e.g.

dy

dx
+ x y = x2

is a differential equation for the unknown function y(x);

u5 d
2u

dt2
+ cosu = 0

is a differential equation for the unknown function u(t).

When dealing with differential equations it is recommendable to use the notation
d

dx
for deriva-

tives, rather than ( · )′ or ( · )·.

Distinguish:

• ordinary differential equation (ODE) ↔ partial differential equation (PDE)

In an ODE the unknown function depends on one variable only, e.g. y(x); an ODE

involves ordinary derivatives, e.g.
dy

dx
.

In a PDE the unknown function depends on an least two variables, e.g. y(x1, x2); a PDE

involves partial derivatives, e.g.
∂y

∂x1
and

∂y

∂x2
.

• (single) differential equation ↔ system of differential equations

A (single) differential equation is one equation for one unknown function, e.g. y(x).

A system of differential equations consists of several equations for several unknown func-
tions, e.g. y1(x), y2(x), . . .

In PHYS113 we will be concerned only with (single) ordinary differential equations, i.e., we
will not deal with systems of differential equations and not with partial differential equations.
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The order of a differential equation is the order of the highest occurring derivative, e.g

dy

dx
+ x y = x2

is a first order ODE for the unknown function y(x);

u5 d
2u

dt2
+ cosu = 0

is a second order ODE for the unknown function u(t).

Differential equations in physics:

• Newton’s second law for a particle on the x-axis

m
d2x

dt2
= F

(
x ,

dx

dt
, t

)

is a second order ODE for x(t).

• Newton’s second law for a particle in 3-dimensional space

m
d2

dt2
r = F

(
r ,

d

dt
r , t

)

is a system of second order ODE for the three unknown functions r(t) =
(
x(t), y(t), z(t)

)
.

• Schroedinger’s equation in quantum mechanics and Maxwell’s equations in electrodynam-
ics are examples of partial differential equations.

III.2 Solving first order ODE

There is no universal method (no ‘algorithm’) for solving differential equations. In this section
we discuss two methods of how to solve particular types of first order ODE.

First method: “Separation of variables”

Consider the first order ODE
dy

dx
= x y :

“Separate the variables” (i.e., y to the left-hand side and x to the right-hand side)

dy

y
= x dx
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∫
dy

y
=

∫

x dx (indefinite integrals)

ln y + C1 =
x2

2
+ C2

With C = C2 − C1 : ln y =
x2

2
+ C

y(x) = e
x
2

2
+C .

The general solution to a first order ODE involves an arbitrary constant C.

A particular choice for C gives a particular solution.

C can be fixed by prescribing an initial condition

y(0) = y0 .

In our example the initial condition fixes C according to

y0 = e0+C = eC ,

so

y(x) = y0 e
x
2

2 .

Separation of variables is possible for a first order ODE whenever it can be brought into the
form

dy

dx
= q(x) p(y) .

In this case the first order ODE is called “separable”.

Two more examples:

•

dw

ds
+ w sin s = 0 is separable:

dw

w
= − sin s ds

∫
dw

w
= −

∫

sin s ds

lnw + C1 = cos s + C2
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With C = C2 − C1 : w(s) = ecos s+C

Check that the differential equation is, indeed, identically satisfied if this w(s) is inserted!

•

dy

dx
+ x y = x2 is not separable; so we need another method.

Second method: “Method of integrating factor”

Consider a first order ODE of the form

dy

dx
+ g(x) y = h(x) .

This is called a linear first order ODE, because it is linear with respect to the
unknown function y and its derivative dy/dx. (Note that the attribute ‘linear’
only refers to the dependent variable, here y, and its derivatives. The independent
variable, here x, may enter into the differential equation in a non-linear way.)

We multiply the differential equation with a factor I(x):

I(x)
dy

dx
+ I(x) g(x) y = I(x) h(x) . (∗)

This is true for any I(x). If we choose I(x) such that

d

dx
I(x) = I(x) g(x) , (∗∗)

(∗) can be rewritten as

d

dx

(
I(x) y

)
= I(x) h(x) ,

so the left-hand side can be integrated,

I(x) y =

∫

I(x) h(x) dx .

For this reason, a function I(x) that satisfies (∗∗) is called an “integrating factor”
for our linear ODE. Solving the last equation for y gives the general solution

y(x) =
1

I(x)

∫

I(x) h(x) dx .

Note that there is an arbitrary constant hidden in the indefinite integral.
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Example:
dy

dx
+ x

︸︷︷︸

g(x)

y = e−
x
2

2

︸ ︷︷ ︸

h(x)

.

The integrating factor is determined by (∗∗) which, in our case, reads

dI(x)

dx
= I(x) x ,

∫
dI

I
=

∫

x dx ,

ln I =
x2

2
+ A .

We need just one function which does the job, so we can set the integration constant
A equal to zero. This gives us the integrating factor

I(x) = e
x
2

2 .

Upon multiplying our differential equation with this I(x) we get

e
x
2

2

dy

dx
+ e

x
2

2 x y = e
x
2

2 e−
x
2

2 ,

d

dx

(
e

x
2

2 y
)
= 1 ,

e
x
2

2 y =

∫

dx = x + C .

So the general solution to the differential equation is

y(x) = e−
x
2

2 ( x+ C ) .

Check that the differential equation is, indeed, identically satisfied if this y(x) is
inserted!

Summary of first order ODE, F
(
x , y ,

dy

dx

)
= 0 :

• The general solution y(x) involves one arbitrary constant.

• This constant can be fixed by choosing an initial condition y(0) = y0.

• A first order ODE of the form
dy

dx
= q(x) p(y)

can be solved by separation of variables.
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• A first order ODE of the form

dy

dx
+ g(x) y = h(x)

can be solved by multiplying with an integrating factor I(x), determined by
dI(x)

dx
=

I(x) g(x) , which allows to directly integrate the left-hand side.

• Other types of first order ODE require more sophisticated methods not to be treated
here.

Application:

Radioactive decay:
dN

dt
= −λN .

N = number of nuclei of the decaying substance

λ = decay rate (= positive constant characteristic of the radioactive substance)

dN

N
= −λ dt ,

∫
dN

N
= −λ

∫

dt ,

lnN = −λ t + lnC ,

N(t) = C e−λt . t

N

N(0) = C
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III.3 Solving second order ODE

General form of a second order ODE : F
(
x , y ,

dy

dx
,
d2y

dx2

)
= 0 .

Here we will discuss two special cases of second order ODE.

First case: F
(
x ,

dy

dx
,
d2y

dx2

)
= 0 , i.e., y does not enter into the ODE; e.g.

d2y

dx2
+

1

x

dy

dx
= 0 .

Then we can substitute

v =
dy

dx
,

dv

dx
=

d2y

dx2
.

This makes the second order ODE for y(x) into a first order ODE for v(x),

dv

dx
+

1

x
v = 0 ,

which can be solved by separation of variables,

∫
dv

v
= −

∫
dx

x
, ln v = − ln x + lnC1 ,

v =
C1

x
=

dy

dx
, C1

∫
dx

x
=

∫

dy , C1 ln x = y + C2 .

So the general solution is

y(x) = C1 lnx − C2

where C1 and C2 are arbitrary constants. These constants can be fixed by choosing

initial conditions y
∣
∣
x=x0

= y0 and
dy

dx

∣
∣
∣
x=x0

= v0.

Reduction to a first order ODE by substituting v = dy/dx is possible for any second

order ODE of the form F
(
x ,

dy

dx
,
d2y

dx2

)
= 0 .

It is a characteristic of all second order ODE that the general solution involves two arbitrary
constants.
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Second case: Linear second order ODE with constant coefficients,

a
d2y

dx2
+ b

dy

dx
+ c y = h(x) , a 6= 0 .

“linear” refers to the fact that the dependent variable and its derivatives (here y,
dy/dx and d2y/dx2) enter linearly;

“with constant coefficients” refers to the fact that a, b and c are constants;

if h(x) = 0, the differential equation is called “homogeneous”;

if h(x) 6= 0, the differential equation is called “inhomogeneous”;

We consider the homogeneous equation first,

a
d2y

dx2
+ b

dy

dx
+ c y = 0 . (∗)

Observation: If y1(x) and y2(x) are solutions to (∗), so is y(x) = C1 y1(x) +C2 y2(x),
where C1 and C2 are arbitrary constants. [ This follows immediately by inserting
this expression into the differential equation and using the linearity with respect
to y and its derivatives. ] Hence, if y1(x) and y2(x) are linearly independent (which
means that one isn’t just a constant multiple of the other), we get the general
solution by taking linear combinations of them. So our goal is to find two linearly
independent solutions to (∗).

Ansatz: y(x) = epx . Then (∗) yields a p2��epx + b p��epx + c��epx = 0 , hence

p2 +
b

a
p +

c

a
= 0 .

This quadratic equation is called the “characteristic equation” or the “auxiliary
equation” of (∗). It has two solutions,

p1/2 = − b

2a
±

√

b2

4a2
− c

a
.

Case A :
b2

4a2
− c

a
> 0 .

In this case p1 and p2 are real, and p1 6= p2 .

Our ansatz gives us two linearly independent solutions

y1(x) = ep1x and y2(x) = ep2x .

So in this case the general solution to (∗) is

y(x) = C1 y1(x) + C2 y2(x) = C1 e
p1x + C2 e

p2x .
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Case B :
b2

4a2
− c

a
= 0 .

In this case p1 = p2 = − b

2a
.

Our ansatz gives us only one solution,

y1(x) = e−
bx

2a .

It is easy to verify that a second, linearly independent, solution is

y2(x) = x e−
bx

2a .

So in this case the general solution to (∗) is

y(x) =
(
C1 + xC2

)
e−

bx

2a .

Case C :
b2

4a2
− c

a
< 0 .

In this case p1 and p2 are complex. [ For complex numbers see PHYS114 . ]

So our ansatz does not give any (real) solution.

In this case the general solution turns out to be

y(x) = e−
bx

2a

(

C1 cos(Ωx) + C2 sin(Ωx)
)

where Ω2 =
c

a
− b2

4a2
(> 0 )

[ Verify that this expression, indeed, satisfies (∗) identically ! ]

Examples:

• d2u

dt2
+ 6

du

dt
− 7 u = 0 .

The ansatz u(t) = ept gives the characteristic (or auxiliary) equation

p2 + 6 p − 7 = 0 , p1/2 = − 3 ±
√

9 + 7 =

{
+1

− 7

So the general solution is

u(t) = C1 e
t + C2 e

−7t .

• d2x

dt2
+ ω2 x = 0 , (“harmonic oscillator”, “simple harmonic motion”)

This is of the form of (∗) (where y has to be replaced by x and x has to be
replaced by t), with a = 1 , b = 0 , c = ω2 .
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As ω2 > 0 , we are in case C, so the general solution is

x(t) = e−
bt

2a

(

C1 cos(Ωt) + C2 sin(Ωt)
)

where Ω2 =
c

a
− b2

4a2
.

Inserting the above values for a, b and c we find that the general solution for
the harmonic oscillator equation is

x(t) = C1 cos(ωt) + C2 sin(ωt) .

We now turn to the inhomogeneous equation

a
d2y

dx2
+ b

dy

dx
+ c y = h(x) . (∗∗)

Let • yc(x) be the general solution to the homogeneous equation (∗) [ in this
situation yc(x) is sometimes called the “complementary function” of (∗∗);
note that it involves two arbitrary constants];

• yp(x) be one particular solution to the inhomogeneous equation (∗∗).

Then
y(x) = yc(x) + yp(x)

is the general solution to the inhomogeneous equation (∗∗). [ This is true because
y(x) obviously satisfies (∗∗) identically and involves two arbitrary constants, hidden
in yc(x) . ]

We have learned above how to find yc(x). By contrast, there is no methodical way
of how to determine yp(x). So yp(x) must be found for each case by “intelligent
guesswork”.

Example:
d2u

dt2
+ 6

du

dt
− 7 u = 7 .

Here the general solution to the homogeneous equation is known from
above,

uc(t) = C1 e
t + C2 e

−7t .

A particular solution to the inhomogeneous equation can be found by
guessing (and checking that it does the job!),

up(t) = − 1 .

So the general solution is

u(t) = uc(t) + up(t) = C1 e
t + C2 e

−7t − 1 .
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Application:

Consider a mass between two springs, subject to an additional driving force.

Newton’s second law:

m
d2x

dt2
= − k x

︸ ︷︷ ︸

force of springs

+ f0 cos(Ω0t)
︸ ︷︷ ︸

external driving force

where m is the particle’s mass, k is the
spring constant, and f0 and Ω0 are con-
stants.

0 x

m

If rewritten as
d2x

dt2
+

k

m
x =

f0
m

cos(Ω0t) ,

the differential equation is of the form (∗∗) (where y has to be replaced by x and x has to be
replaced by t) with

a = 1 , b = 0 , c =
k

m
, h(t) =

f0
m

cos(Ω0t) .

The general solution to the homogeneous equation ( harmonic oscillator equation ) is known
from above,

xc(t) = C1 cos(Ωt) + C2 sin(Ωt) where Ω2 =
k

m
.

A particular solution to the inhomogeneous equation can be found with the ansatz xp(t) =
α cos(Ω0t). Upon inserting this into the inhomogeneous equation we get

α
( k

m
− Ω2

0

)

=
f0
m

,

hence

xp(t) =
f0

m
(

k
m

− Ω2
0

) cos(Ω0t) .

So the general solution for the driven oscillator is

x(t) = xc(t) + xp(t) = C1 cos(Ωt) + C2 sin(Ωt) +
f0

m
(

k
m

− Ω2
0

) cos(Ω0t) .

The constants C1 and C2 can be fixed by choosing initial conditions x(0) = x0 and
dx

dt
(0) = v0.

In the “resonance case” Ω2
0 = k/m the amplitude becomes infinite. This is known as the

“resonance catastrophe”. If friction is taken into account, we get a damping term into the
differential equation (i.e., a term proportional to dx/dt). Then even in the resonance case
the amplitude does not become infinite, although it may become very large. If you drive an
oscillator with the resonance frequency, Ω0 =

√

k/m , the amplitude can become so large that
it may even destroy the system.
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