Influence of a plasma on gravitational lensing by compact objects

Volker Perlick

ZARM - Center of Applied Space Technology and Microgravity, U Bremen, Germany

from the movie "Interstellar"

DPG Conference, Hamburg, 3 March 2016

Goal: Analytic treatment of light propagation in a plasma on general-relativistic spacetimes

1. Light propagation in a non-magnetised, pressure-free plasma [1]
2. Light deflection in a plasma on a spherically symmetric and static spacetime [2], in particular on Schwarzschild spacetime [1]
3. Influence of a plasma on the shadow of spherically symmetric compact objects [2]
4. Light deflection and shadow in a plasma on Kerr spacetime [3]
[1] VP: "Ray optics, Fermat's principle and applications to general relativity" Springer (2000)
[2] VP, O. Yu. Tsupko, G. S. Bisnovatyi-Kogan: "Influence of a plasma on the shadow of a spherically symmetric black hole" Phys. Rev. D 92, 104031 (2015)
[3] VP, O. Yu. Tsupko, G. S. Bisnovatyi-Kogan: in preparation
Also see talk by Karen Schulze-Koops at $3: 35$ today!

Light rays on a general-relativistic spacetime with metric $g_{i k}(x)$:

$$
\dot{x}^{i}=\frac{\partial H(x, p)}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H(x, p)}{\partial x^{i}}, \quad H(x, p)=0
$$

In vacuo:

$$
H(x, p)=\frac{1}{2} g^{i k}(x) p_{i} p_{k}
$$

Light rays are lightlike geodesics of the spacetime metric $g_{i k}$
In a non-magnetised pressure-free plasma:

$$
H(x, p)=\frac{1}{2}\left(g^{i k}(x) p_{i} p_{k}+\omega_{p}(x)^{2}\right)
$$

plasma frequency: $\omega_{p}(x)^{2}=\frac{e^{2}}{\varepsilon_{0} m_{e}} N(x)$
e : charge of the electron, m_{e} : mass of the electron $N(x)$: number density of the electrons

Light rays are timelike geodesics of the conformally rescaled metric $\omega_{p}^{-2} g_{i k}$

Rigourous derivation from Maxwell's equation, even for magnetised pressure-free plasma:
R. Breuer, J. Ehlers: Proc. Roy. Soc. London, A 370, 389 (1980), A 374, 65 (1981)
for non-magnetised pressure-free plasma:
VP: "Ray Optics, Fermat's Principle and Applications to General Relativity" Springer (2000)

A plasma is a dispersive medium; propagation of light rays depend on the frequency $\omega=-p_{i} U^{i}$

For a cold non-magnetised plasma, only the plasma frequency matters, not the 4-velocity of the electrons

Light rays are characterised by a Lorentz invariant index of refraction

$$
n(x, \omega)^{2}=1-\frac{\omega_{p}(x)^{2}}{\omega^{2}}
$$

J. Synge: "Relativity: The General Theory", North-Holland (1960)

Spherically symmetric and static case

$$
\begin{gathered}
g_{i k}(x) d x^{i} d x^{k}=-A(r) d t^{2}+B(r) d r^{2}+D(r)\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right) \\
H(x, p)=\frac{1}{2}\left(g^{i k}(x) p_{i} p_{k}+\omega_{p}(r)^{2}\right)
\end{gathered}
$$

With constant of motion $\omega_{0}=-p_{t}$, define

$$
h(r)^{2}=\frac{D(r)}{A(r)}\left(1-A(r) \frac{\omega_{p}(r)^{2}}{\omega_{0}^{2}}\right)
$$

Deflection angle

$$
\pi+\delta=
$$

$2 \int_{R}^{\infty} \frac{\sqrt{B(r)}}{\sqrt{D(r)}}\left(\frac{h(r)^{2}}{h(R)^{2}}-1\right)^{-1 / 2} d r$

VP, O. Yu. Tsupko, G. S. Bis-novatyi-Kogan: Phys. Rev. D
92, 104031 (2015)

Schwarzschild spacetime:

$$
\begin{gathered}
A(r)=B(r)^{-1}=1-\frac{2 m}{r}, \quad D(r)=r^{2}, \quad m=\frac{G M}{c^{2}} \\
\pi+\delta=2 \int_{R}^{\infty}\left(\frac{r^{2}\left(\frac{r}{r-2 m}-\frac{\omega_{p}(r)^{2}}{\omega_{0}^{2}}\right)}{R^{2}\left(\frac{R}{R-2 m}-\frac{\omega_{p}(R)^{2}}{\omega_{0}^{2}}\right)}-1\right)^{-1 / 2} \frac{d r}{\sqrt{r} \sqrt{r-2 m}}
\end{gathered}
$$

In the weak-field approximation:
D. O. Muhleman and I. D. Johnston: Phys. Rev. Lett. 17, 455 (1966)

Exact formula:

VP: "Ray optics, Fermat's principle and applications to general relativity" Springer (2000)

Astrophysical applications:
O. Yu. Tsupko and G. S. Bisnovatyi-Kogan: Phys. Rev. D 87, 124009 (2013)
X. Er and S. Mao: Mon. Not. Roy. Astron. Soc. 437, 2180 (2013)
A. Rogers: Mon. Not. Roy. Astron. Soc. 4514536 (2015)

Effect of a plasma on the shadow

Recall: Shadow in vacuum of a Schwarzschild black hole

Horizon:

$$
r_{S}=\frac{2 G M}{c^{2}}=2 m
$$

Light sphere (photon sphere)

$$
\frac{3}{2} r_{S}=\frac{3 G M}{c^{2}}=3 m
$$

Effect of a plasma on the shadow

Recall: Shadow in vacuum of a Schwarzschild black hole

Horizon:
$r_{S}=\frac{2 G M}{c^{2}}=2 m$

Light sphere (photon sphere)

$$
\frac{3}{2} r_{S}=\frac{3 G M}{c^{2}}=3 m
$$

Angular radius $\alpha_{\text {sh }}$ of the "shadow" of a Schwarzschild black hole:

$$
\sin ^{2} \alpha_{\mathrm{sh}}=\frac{27 r_{S}^{2}\left(r_{O}-r_{S}\right)}{4 r_{O}^{3}}=\frac{27 m^{2}}{r_{O}^{2}}\left(1-\frac{2 m}{r_{O}}\right)
$$

J. L. Synge, Mon. Not. R. Astr. Soc. 131, 463 (1966)

$r_{O}=1.05 r_{S}$
$r_{O}=1.3 r_{S}$
$r_{O}=3 r_{S} / 2$
$r_{O}=2.5 r_{S}$
$r_{O}=6 r_{S}$

Schwarzschild black hole produces infinitely many images:

Imaging of a point source by a Schwarzschild black hole

Perspectives of observations

Object at the centre of our galaxy:
Mass $=4 \times 10^{6} M_{\odot}$
Distance $=8 \mathrm{kpc}$
Angular diameter of the shadow by Synge's formula $\approx 54 \mu$ as
(corresponds to a grapefruit on the moon)

Object at the centre of M87:
Mass $=3 \times 10^{9} M_{\odot}$
Distance $=16 \mathrm{Mpc}$
Angular diameter of the shadow by Synge's formula $\approx 20 \mu$ as

Perhaps observable soon with VLBI (Event Horizon Telescope, BlackHoleCam)

> J.-P. Luminet (1979)

T. Müller (2012)

Interstellar (2014)

Plasma on spherical symmetric and static spacetime
Condition for photon sphere:

$$
\left.\frac{d}{d r} h(r)^{2}\right|_{r=r_{\mathrm{ph}}}=0, \quad h(r)^{2}=\frac{D(r)}{A(r)}\left(1-A(r) \frac{\omega_{p}(r)^{2}}{\omega_{0}^{2}}\right)
$$

Angular radius $\alpha_{\text {sh }}$ of shadow:

$$
\sin ^{2} \alpha_{\mathrm{sh}}=\frac{h\left(r_{\mathrm{ph}}\right)^{2}}{h\left(r_{\mathrm{O}}\right)^{2}}
$$

VP, O. Yu. Tsupko, G. S. Bisnovatyi-Kogan: Phys. Rev. D 92, 104031 (2015)

Example 1: Accretion of dust onto Schwarzschild

$$
\begin{aligned}
& \boldsymbol{g}=-\left(1-\frac{2 \boldsymbol{m}}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 m}{r}}+r^{2}\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right), \frac{\omega_{p}(r)^{2}}{\omega_{0}^{2}}=\beta_{0}\left(\frac{m}{r}\right)^{3 / 2} \\
& a: r_{\mathrm{O}}=3.3 m \\
& b: r_{\mathrm{O}}=3.8 m \\
& \boldsymbol{c}: r_{\mathrm{O}}=5 m \\
& d: r_{\mathrm{O}}=10 m \\
& e: r_{\mathrm{O}}=50 m
\end{aligned}
$$

Example 2: Ellis wormhole

$$
g=-d t^{2}+d r^{2}+\left(r^{2}+a^{2}\right)\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)
$$

H. G. Ellis, J. Math. Phys. 14, 104 (1973)

Condition for photon sphere:

$$
r\left(1-\frac{\omega_{p}(r)^{2}}{\omega_{0}^{2}}\right)=\left(r^{2}+a^{2}\right) \frac{\omega_{p}(r) \omega_{p}^{\prime}(r)}{\omega_{0}^{2}}
$$

Angular radius of shadow:

$$
\sin ^{2} \alpha_{\mathrm{sh}}=\frac{\left(r_{\mathrm{ph}}^{2}+a^{2}\right)}{\left(r_{\mathrm{O}}^{2}+a^{2}\right)} \frac{\left(\omega_{0}^{2}-\omega_{p}\left(r_{\mathrm{ph}}\right)^{2}\right)}{\left(\omega_{0}^{2}-\omega_{p}\left(r_{\mathrm{O}}\right)^{2}\right)}
$$

Homogeneous plasma $\left(\omega_{p}(r)=\right.$ const. $)$:

$$
r_{\mathrm{ph}}=0, \quad \sin ^{2} \alpha_{\mathrm{sh}}=\frac{a^{2}}{r_{\mathrm{O}}^{2}+a^{2}}
$$

Light propagation in a plasma on Kerr spacetime

$$
\begin{gathered}
g_{i k} d x^{i} d x^{k}=\varrho(r, \vartheta)^{2}\left(\frac{d r^{2}}{\Delta(r)}+d \vartheta^{2}\right)+\frac{\sin ^{2} \vartheta}{\varrho(r, \vartheta)^{2}}\left(a d t-\left(r^{2}+a^{2}\right) d \varphi\right)^{2} \\
-\frac{\Delta(r)}{\varrho(r, \vartheta)^{2}}\left(d t-a \sin ^{2} \vartheta d \varphi\right)^{2} \\
\varrho(r, \vartheta)^{2}=r^{2}+a^{2} \cos ^{2} \vartheta, \quad \Delta(r)=r^{2}-2 m r+a^{2} . \\
m=\frac{G M}{c^{2}} \text { where } M=\text { mass }, \quad a=\frac{J}{M c} \text { where } J=\text { spin }
\end{gathered}
$$

Bending angle for light rays in the equatorial plane for an r dependent plasma frequency:

VP: "Ray optics, Fermat's principle and applications to general relativity" Springer (2000)

Light deflection of a slowly rotating Kerr black hole with constant plasma density:
V. Morozova, B. Ahmedov, and A. Tursunov, Astrophys. Space Sci. 346, 513 (2013)

Still to be determined:
Bending of light in the general case
The shadow of a Kerr black hole in a plasma
Recall: Shadow of a Kerr black hole in vacuum
Shape of the shadow of a Kerr black hole for observer at infinity:
J. Bardeen in C. DeWitt and B. DeWitt (eds.): "Black holes" Gordon \& Breach (1973)

Shape and size of the shadow of Kerr black holes (and other black holes) for observer at coordinates $\left(r_{O}, \vartheta_{O}\right)$ (analytical formulas):
A. Grenzebach, VP, C. Lämmerzahl: Phys. Rev. D 89, 124004 (2014), Int. J. Mod. Phys. D 24, 1542024 (2015)

Shadow of black hole with $a=m$ for observer at $r_{O}=5 m$

$\vartheta_{O}=\frac{\pi}{2}$

$\vartheta_{0}=\frac{3 \pi}{8}$

$\vartheta_{O}=\frac{\pi}{4}$

$\vartheta_{O}=\frac{\pi}{8}$

$\vartheta_{O}=0$

Analytical formula for the shadow is based on the following facts:
The equation for lightlike geodesics is completely integrable (because of the Carter constant)

There is a "photon region" filled with spherical lightlike geodesics (which generalises the photon sphere in Schwarzschild at $r=3 m$)

$$
\text { Photon region for } a=0.75 \mathrm{~m}
$$

Boundary curve of shadow corresponds to light rays that approach a spherical lightlike geodesic

Analytical formula for the shadow follows from identifying constants of motion of a light ray with the constants of motion of its limit curve

This gives, in particular, a formula for the vertical angular radius α_{v} of the shadow:

$$
\begin{aligned}
\sin ^{2} \alpha_{v} & =\frac{27 m^{2} r_{O}^{2}\left(a^{2}+r_{O}\left(r_{O}-2 m\right)\right)}{r_{O}^{6}+6 a^{2} r_{O}^{4}+3 a^{2}\left(4 a^{2}-9 m^{2}\right) r_{O}^{2}+8 a^{6}} \\
& =\frac{27 m^{2}}{r_{O}^{2}}\left(1+O\left(m / r_{O}\right)\right), \quad \vartheta_{O}=\frac{\pi}{2}
\end{aligned}
$$

Up to terms of order $O\left(m / r_{O}\right)$, Synge's formula is still correct for the vertical diameter of the shadow

Generalisation to the plasma case requires:

Find out for which form of the plasma frequency $\omega_{p}(r, \vartheta)$
a generalised Carter constant exists
Determine, for these cases, the photon region
Derive, thereupon, an analytical formula for the shadow
VP, O. Yu. Tsupko, G. S. Bisnovatyi-Kogan: work in progress

