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1 Historic introduction

1905 A. Einstein establishes special relativity. According to this theory, signals cannot prop-
agate faster than light in vacuum. This makes it necessary to modify the Newtonian
theory of gravity. According to the latter, gravity is an action-at-a-distance: joggling a
mass here is immediately felt as an action on a mass there. Einstein (and others) worked
for ten years on a modified theory of gravity according to which the gravitational action
propagates at a finite speed, similarly to electromagnetic waves.

1915 A. Einstein establishes the field equation of general relativity.

1916 A. Einstein demonstrates that the linearised vacuum field equation admits wavelike so-
lutions which are rather similar to electromagnetic waves.

1918 A. Einstein derives the quadrupole formula according to which gravitational waves are
produced by a time-dependent mass quadrupole moment.

1925 H. Brinkmann finds a class of exact wavelike solutions to the vacuum field equation with
plane wavefronts; they were independently rediscovered in the 1950s by by J. Ehlers and
W. Kundt who called them pp-waves (“plane-fronted waves with parallel rays”)

1925 G. Beck finds a class of exact wavelike solutions to the vacuum field equation with cylin-
drical wavefronts; they were independently rediscovered by A. Einstein and N. Rosen, see
next two items, and are now usually (though unjustly) called Einstein-Rosen waves.

1936 A. Einstein submits, together with N. Rosen, a manuscript to Physical Review in which
they claim that gravitational waves do not exist.

1937 After receiving a critical referee report, A. Einstein withdraws the manuscript with the
erroneous claim and publishes, together with N. Rosen, a strongly revised manuscript
where they present what is now called Einstein-Rosen waves in the Journal of the Franklin
Institute.

1957 F. Pirani gives an invariant (i.e., coordinate-independent) characterisation of gravitational
radiation.

1960 I. Robinson and A. Trautman discover a class of exact solutions to Einstein’s vacuum
field equation that describe outgoing gravitational radiation.

1960 J. Weber starts his (unsuccessful) search for gravitational waves with the help of resonant
bar detectors (“Weber cylinders”).

1962 M. E. Gertsenshtein and V. I. Pustovoit publish a seminal paper on using interferometers
as gravitational wave detectors.

1974 R. Hulse and J. Taylor (Nobel prize 1993) discover the binary pulsar PSR B1913+16 and
interpret the energy loss of the system as an indirect proof of the existence of gravitational
waves.

2002 The first laser interferometric gravitational wave detectors go into operation (GEO66,
LIGO, VIRGO,...).
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2014 The BICEP2 team erroneously announces the discovery of primordial gravitational waves.

2015 On 14 September 2015 the LIGO detectors in the USA register a gravitational wave signal
that perfectly fits the theoretical predictions of the merger of two black holes of about 30
Solar masses each; the discovery is announced in February 2016.

2 Brief review of general relativity

A general-relativistic spacetime is a pair (M, g) where:

M is a four-dimensional manifold; local coordinates will be denoted (x0, x1, x2, x3) and Ein-
stein’s summation convention will be used for greek indices µ, ν, σ, . . . = 0, 1, 2, 3 and for latin
indices i, j, k, . . . = 1, 2, 3.

g is a Lorentzian metric on M , i.e. g is a covariant second-rank tensor field, g = gµνdx
µ ⊗ dxν ,

that is

(a) symmetric, gµν = gνµ, and

(b) non-degenerate with Lorentzian signature, i.e., for any p ∈ M there are coordinates
defined near p such that g|p = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

We can, thus, introduce contravariant metric components by

gµνgνσ = δµσ .

We use gµν and gστ for raising and lowering indices, e.g.

gρτA
τ = Aρ , Bµνg

ντ = Bµ
τ .

The metric contains all information about the spacetime geometry and thus about the gravi-
tational field. In particular, the metric determines the following.

• The causal structure of spacetime:

A curve s 7→ x(s) =
(
x0(s), x1(s), x2(s), x3(s)

)
is

called

spacelike

lightlike

timelike




⇐⇒ gµν

(
x(s)

)
ẋµ(s)ẋν(s)





> 0

= 0

< 0

Timelike curves describe motion at subluminal
speed and lightlike curves describe motion at the
speed of light. Spacelike curves describe motion at
superluminal speed which is forbidden for signals.

t

s

l
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For a timelike curve, we usually use proper time τ for the parameter which is defined by

gµν
(
x(τ)

)
ẋµ(τ) ẋµ(τ) = − c2 .

A clock that shows proper time along its worldline is called a standard clock. All exper-
iments to date are in agreement with the assumptions that atomic clocks are standard
clocks.

The motion of a material continuum, e.g. of a fluid, can be described by a vector field
U = Uµ∂µ with gµνU

µUν = −c2. The integral curves of U are to be interpreted as the
worldlines of the fluid elements parametrised by proper time.

• Geodesics and covariant derivative:

By definition, the geodesics are the solutions to the Euler-Lagrange equations

d

ds

∂L(x, ẋ)

∂ẋµ
− ∂L(x, ẋ)

∂xµ
= 0

of the Lagrangian

L
(
x, ẋ
)

=
1

2
gµν(x)ẋµẋν .

These Euler-Lagrange equations take the form

ẍµ + Γµνσ(x)ẋν ẋσ = 0

where

Γµνσ =
1

2
gµτ
(
∂νgτσ + ∂σgτν − ∂τgνσ

)

are the so-called Christoffel symbols.

The Lagrangian L(x, ẋ) is constant along a geodesic (see Worksheet 1), so we can speak
of timelike, lightlike and spacelike geodesics. Timelike geodesics (L < 0) are to be inter-
preted as the worldlines of freely falling particles, and lightlike geodesics (L = 0) are to
be interpreted as light rays.

The Christoffel symbols define a covariant derivative that makes tensor fields into tensor
fields,

∇νU
µ = ∂νU

µ + ΓµντU
τ ,

∇νAµ = ∂νAµ − ΓρνµAρ ,

and so on. For each upper index there is one Γ term with a plus sign and for each lower
index there is a Γ term with a minus sign.

In Minkowski spacetime (i.e., in the “flat” spacetime of special relativity), we can choose
coordinates such that gµν = ηµν on the whole spacetime, where we have used the standard
abbreviation (ηµν) = diag(−1, 1, 1, 1). In this coordinate system, the Christoffel symbols
obviously vanish. Conversely, vanishing of the Christoffel symbols on an open neigh-
bourhood implies that the gµν are constants; one can then perform a linear coordinate
transformation such that gµν = ηµν .
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• The curvature:

The Riemannian curvature tensor is defined, in coordinate notation, by

Rτ
µνσ = ∂µΓτ νσ − ∂νΓ

τ
µσ + ΓρνσΓτ µρ − ΓρµσΓτ νρ .

This defines, indeed, a tensor field, i.e., if Rτ
µνσ vanishes in one coordinate system, then

it vanishes in any coordinate system. The condition Rτ
µνσ = 0 is true if and only if there

is a local coordinate system, around any one point, such that gµν = ηµν and Γµνσ = 0 on
the domain of the coordinate system.

The Riemannian curvature tensor has the symmetry properties

Rτ
µνσ = −Rτ

νµσ , Rτµνσ = −Rσνµτ ,

and satisfies the Bianchi identities

Rτ
µνσ +Rτ

νσµ +Rτ
σµν = 0 , ∇ρR

τ
µνσ +∇µR

τ
νρσ +∇νR

τ
ρµσ = 0 .

The curvature tensor determines the relative motion of neighbouring geodesics: If X =
Xµ∂µ is a vector field whose integral curves are geodesics, and if J = Jν∂ν connects
neighbouring integral curves of X (i.e., if the Lie bracket between X and J vanishes),
then the equation of geodesic deviation or Jacobi equation holds:
(
Xµ∇µ

)(
Xν∇ν

)
Jσ = Rσ

µνρX
µJνXρ .

If the integral curves of X are timelike, they
can be interpreted as worldlines of freely
falling particles. In this case the curvature
term in the Jacobi equation gives the tidal
force produced by the gravitational field.

If the integral curves of X are lightlike,
they can be interpreted as light rays. In
this case the curvature term in the Jacobi
equation determines the influence of the
gravitational field on the shapes of light
bundles.

• The curvature:

The Riemannian curvature tensor is defined, in coordinate notation, by

R⌧
µ⌫� = @µ�

⌧
⌫� � @⌫�

⌧
µ� + �⇢⌫��

⌧
µ⇢ � �⇢µ��

⌧
⌫⇢ .

This defines, indeed, a tensor field, i.e., if R⌧
µ⌫� vanishes in one coordinate system, then

it vanishes in any coordinate system. The condition R⌧
µ⌫� = 0 is true if and only if there

is a local coordinate system, around any one point, such that gµ⌫ = ⌘µ⌫ and �µ
⌫� = 0 on

the domain of the coordinate system.

The Riemannian curvature tensor has the symmetry properties

R⌧
µ⌫� = �R⌧

⌫µ� , R⌧µ⌫� = �R�⌫µ⌧ ,

and satisfies the Bianchi identities

R⌧
µ⌫� + R⌧

⌫�µ + R⌧
�µ⌫ = 0 , r⇢R

⌧
µ⌫� + rµR

⌧
⌫⇢� + r⌫R

⌧
⇢µ� = 0 .

The curvature tensor determines the relative motion of neighbouring geodesics: If X =
Xµ@µ is a vector field whose integral curves are geodesics, and if J = J⌫@⌫ connects
neighbouring integral curves of X (i.e., if the Lie bracket between X and J vanishes),
then the equation of geodesic deviation or Jacobi equation holds:

�
Xµrµ

��
X⌫r⌫

�
J� = R�

µ⌫⇢X
µJ⌫X⇢ .

If the integral curves of X are timelike, they
can be interpreted as worldlines of freely
falling particles. In this case the curvature
term in the Jacobi equation gives the tidal
force produced by the gravitational field.

If the integral curves of X are lightlike, they
can be interpreted as light rays. In this case
the curvature term in the Jacobi equation
determines the influence of the gravitational
field on the shapes of light bundles.

�
Xµrµ

��
X⌫r⌫

�
J� = R�

µ⌫⇢X
µJ⌫X⇢ .

If the integral curves of X are timelike, they
can be interpreted as worldlines of freely
falling particles. In this case the curvature
term in the Jacobi equation gives the tidal
force produced by the gravitational field.

If the integral curves of X are lightlike, they
can be interpreted as light rays. In this case
the curvature term in the Jacobi equation
determines the influence of the gravitational
field on the shapes of light bundles.

X

J

• Einstein’s field equation:

The fundamental equation that relates the spacetime metric (i.e., the gravitational field)
to the distribution of energy is Einstein’s field equation:

Rµ⌫ �
R

2
gµ⌫ + ⇤gµ⌫ = Tµ⌫

where

– Rµ⌫ = R�
µ�⌫ is the Ricci tensor ;

– R = Rµ⌫g
µ⌫ is the Ricci scalar ;

– Tµ⌫ is the energy-momentum tensor which gives the energy density Tµ⌫U
µU⌫ for any

observer field with 4-velocity Uµ normalised to gµ⌫U
µU⌫ = �c2;

– ⇤ is the cosmological constant;

–  is Einstein’s gravitational constant which is related to Newton’s gravitational con-
stant G through  = 8⇡G/c4.

Einstein’s field equation can be justified in the following way: One looks for an equation
of the form (Dg)µ⌫ = Tµ⌫ where D is a di↵erential operator acting on the metric. One
wants to have Dg satisfying the following two properties:

(A) Dg contains partial derivatives of the metric up to second order.

(B) rµ(Dg)µ⌫ = 0.

Condition (A) is motivated by analogy to the Newtonian theory: The Poisson equation
is a second-order di↵erential equation for the Newtonian gravitational potential �, and
the metric is viewed as the general-relativistic analogue to � . Condition (B) is motivated
in the following way: For a closed system, in special relativity the energy-momentum
tensor field satisfies the conservation law @µTµ⌫ = 0 in inertial coordinates. By the rule
of minimal coupling, in general relativity the energy-momentum tensor field of a closed
system should satisfy rµTµ⌫ = 0. For consistency, the same property has to hold for the
left-hand side of the desired equation.

5

• Einstein’s field equation:

The fundamental equation that relates the spacetime metric (i.e., the gravitational field)
to the distribution of energy is Einstein’s field equation:

Gµ⌫ + ⇤gµ⌫ = Tµ⌫
where

– Gµ⌫ = Rµ⌫ �
R

2
gµ⌫ is the Einstein tensor ;

– Rµ⌫ = R�
�µ⌫ is the Ricci tensor ;

5

• Einstein’s field equation:

The fundamental equation that relates the spacetime metric (i.e., the gravitational field)
to the distribution of energy is Einstein’s field equation:

Gµν + Λgµν = κTµν
where

– Gµν = Rµν −
R

2
gµν is the Einstein tensor ;

– Rµν = Rσ
σµν is the Ricci tensor ;
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– R = Rµνg
µν is the Ricci scalar ;

– Tµν is the energy-momentum tensor which gives the energy density TµνU
µUν for any

observer field with 4-velocity Uµ normalised to gµνU
µUν = −c2;

– Λ is the cosmological constant;

– κ is Einstein’s gravitational constant which is related to Newton’s gravitational con-
stant G through κ = 8πG/c4.

Einstein’s field equation can be justified in the following way: One looks for an equation
of the form (Dg)µν = Tµν where D is a differential operator acting on the metric. One
wants to have Dg satisfying the following two properties:

(A) Dg contains partial derivatives of the metric up to second order.

(B) ∇µ(Dg)µν = 0.

Condition (A) is motivated by analogy to the Newtonian theory: The Poisson equation
is a second-order differential equation for the Newtonian gravitational potential φ, and
the metric is viewed as the general-relativistic analogue to φ . Condition (B) is motivated
in the following way: For a closed system, in special relativity the energy-momentum
tensor field satisfies the conservation law ∂µTµν = 0 in inertial coordinates. By the rule
of minimal coupling, in general relativity the energy-momentum tensor field of a closed
system should satisfy ∇µTµν = 0. For consistency, the same property has to hold for the
left-hand side of the desired equation.

D. Lovelock has shown in 1972 that these two conditions (A) and (B) are satisfied if and
only if Dg is of the form

(Dg)µν =
1

κ

(
Rµν −

R

2
gµν + Λgµν

)

with some constants Λ and κ, i.e., if and only if the desired equation has indeed the form
of Einstein’s field equation.

For vacuum (Tµν = 0), Einstein’s field equation reads

Rµν −
R

2
gµν + Λgµν = 0 .

By contraction with gµν this implies R = 4Λ, so the vacuum field equation reduces to

Rµν = Λgµν

Present-day cosmological observations suggest that we live in a universe with a positive
cosmological constant whose value is Λ ≈ (1026m)−2 ≈ (1016ly)−2. As the diameter of
our galaxy is approximately 105ly, for any distance d within our galaxy the quantity
d2Λ < 10−22 is negligibly small. As a consequence, the Λ term can be safely ignored for
considerations inside our galaxy. Then the vacuum field equation takes the very compact
form

Rµν = 0

which, however, is a complicated system of ten non-linear second-order partial differential
equations for the ten independent components of the metric.

Gravitational waves travelling through empty space are wavelike solutions of the equation
Rµν = 0.
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3 Gravitational waves in the linearised theory about flat

spacetime

In 1916 Einstein predicted the existence of gravitational waves, based on his linearised vacuum
field equation. In 1918 he derived his famous quadrupole formula which relates emitted grav-
itational waves to the quadrupole moment of the source. In this chapter we will review this
early work on gravitational waves which is based on the linearised Einstein theory about flat
spacetime. As a consequence, the results are true only for gravitational waves whose amplitudes
are small. We will see that, to within this approximation, the theory of gravitational waves is
very similar to the theory of electromagnetic waves.

3.1 The linearisation of Einstein’s field equation

We consider a metric that takes, in an appropriate coordinate system, the form

gµν = ηµν + hµν .

In the following we will linearise Einstein’s field equation with respect to the hµν and their
derivatives. This gives a valid approximation of Einstein’s theory of gravity if the hµν and their
derivatives are small, i.e., if the spacetime is very close to the spacetime of special relativity.

Our assumptions fix the coordinate system up to transformations of the form

xµ 7→ x̃µ = aµ + Λµ
νx

ν + fµ(x) (C)

where (Λµ
ν) is a Lorentz transformation, Λµ

νΛ
ρ
σηµρ = ηνσ, and the fµ and their derivatives

are so small that terms of second or higher order in these quantities can be neglected.

We agree that, in this chapter, greek indices are lowered and raised with ηµν and ηµν , respec-
tively. As an abbreviation, we write

h := hµν η
µν = hµ

µ = hνν .

Then the inverse metric is of the form

gνρ = ηνρ − hνρ .

Proof:
(
ηµν + hµν

) (
ηνρ − hνρ

)
= ηµνη

νρ + hµνη
νρ − ηµνh

νρ + . . . = δρµ + hµ
ρ − hµ

ρ = δρµ ,
where the ellipses stand for a second-order term that is to be neglected, according to our
assumptions. �
We will now derive the linearised field equation. As a first step, we have to calculate the
Christoffel symbols. We find

Γρµν =
1

2
gρσ
(
∂µgσν + ∂νgσµ − ∂σgµν

)
=

1

2
ηρσ
(
∂µhσν + ∂νhσµ − ∂σhµν

)
+ . . .
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Thereupon, we can calculate the components of the Ricci tensor:.

Rµν = ∂µΓρρν − ∂ρΓ
ρ
µν + . . . =

1

2
ηρσ ∂µ

(
��

��∂ρhσν + ∂νhσρ − ∂σhρν
)

− 1

2
ηρσ ∂ρ

(
��

��∂µhσν + ∂νhσµ − ∂σhµν
)

=
1

2

(
∂µ∂νh − ∂µ∂

ρhρν − ∂σ∂νhσµ + �hµν
)
.

Here, � denotes the wave operator (d’Alembert operator) that is formed with the Minkowski
metric,

� = ηµν∂µ∂ν = ∂ν∂ν .

From the last expression we can calculate the scalar curvature:

R = gµνRµν = ηµνRµν + . . . =
1

2
ηµν
(
∂µ∂νh − ∂µ∂

ρhρν − ∂σ∂νhσµ + �hµν
)

=
1

2

(
�h − ∂ν∂ρhρν − ∂σ∂µhσµ + �h

)
= �h − ∂σ∂µhσµ .

Hence, the linearised version of Einstein’s field equation (without a cosmological constant)

2Rµν − Rgµν = 2κTµν , κ =
8πG

c4

reads

∂µ∂νh − ∂µ∂
ρhρν − ∂σ∂νhσµ + �hµν − ηµν

(
�h − ∂σ∂τhστ

)
= 2κTµν . (∗)

This is a system of linear partial differential equations of second order for the hµν . It can be
rewritten in a more convenient form after substituting for hµν the quantity

γµν = hµν −
h

2
ηµν .

As the relation between hµν and γµν is linear, the hµν are small of first order if and only if the
γµν are small of first order. In order to express the hµν in terms of the γµν , we calculate the
trace,

γ := ηµνγµν = h − 1

2
4h = −h , hµν = γµν −

γ

2
ηµν .

Upon inserting this expression into the linearised field equation (∗), we find

−����∂µ∂νγ − ∂µ∂
ργρν +

��
��

��
�

1

2
ηρν∂µ∂

ργ − ∂σ∂νγσµ + ���
���

�1

2
ησµ ∂

σ∂νγ +

+�γµν −
��

��
��1

2
ηµν �γ − ηµν

(
− ���γ − ∂σ∂τγστ + ���

���
�1

2
ηστ∂

σ∂τγ
)

= 2κTµν ,

�γµν − ∂µ∂
ργρν − ∂ν∂

ργρµ + ηµν ∂
σ∂τγστ = 2κTµν . (∗∗)

This equation can be simplified further by a coordinate transformation (C) with aµ = 0 and
Λµ

ν = δµν ,
xµ 7→ xµ + fµ(x)
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where the fµ are small of first order. For such a coordinate transformation, we have obviously

dxµ 7→ dxµ + ∂ρf
µdxρ

and thus
∂σ 7→ ∂σ − ∂σf

τ∂τ .

Proof:
(
dxµ + ∂ρf

µdxρ
) (

∂σ − ∂σf
τ∂τ
)

= dxµ(∂σ) + ∂ρf
µdxρ(∂σ) − ∂σf

τdxµ(∂τ ) + . . . =
δµσ + ���

�∂ρf
µδρσ − ����∂σf

τδµτ . �

With the help of these equations, we can now calculate how the gµν , the hµν , and the γµν behave
under such a coordinate transformation:

gµν = g
(
∂µ, ∂ν

)
7→ g

(
∂µ − ∂µf τ∂τ , ∂ν − ∂νfσ∂σ

)
= gµν − ∂µf τgτν − ∂νfσgµσ ,

hµν = gµν − ηµν 7→ gµν − ∂µf τgτν − ∂νfσgµσ − ηµν = hµν − ∂µf τητν − ∂νfσηµσ + . . .

γµν = hµν −
1

2
ηµνh 7→ hµν − ∂µfν − ∂νfµ −

1

2
ηµν
(
h− 2∂τf

τ
)

= γµν − ∂µfν − ∂νfµ + ηµν∂τf
τ .

For the divergence of γµν , which occurs three times in (∗∗), this gives the following transfor-
mation behaviour:

∂µγµν 7→ ∂µγµν − ∂µ∂µfν −����∂µ∂νfµ +���
���ηµν∂

µ∂τf
τ = ∂µγµν −�fν .

This shows that, if it is possible to choose the fν such that

�fν = ∂µγµν ,

then ∂µγµν is transformed to zero. Such a choice is, indeed, possible as the wave equation on
Minkowski spacetime,

�fν = Φν ,

has solutions for any Φν . This is well-known from electrodynamics. (If Φν is compactly sup-
ported or falls off sufficiently fast, a solution is provided by the retarded potentials, see below.
In any case, a solution can be found by prescribing arbitrary initial values for fν and ∂0fν on a
hypersurface x0 = constant and then solving the Cauchy problem for the inhomogeneous wave
equation.)

We have thus shown that, by an appropriate coordinate transformation, we can put the lin-
earised field equation (∗∗) into the following form:

�γµν = 2κTµν .

Now the γµν have to satisfy the additional condition

∂µγµν = 0

which is known as the Hilbert gauge. The transformation of γµν under a change of coordinates
is analogous to a gauge transformation of the four-potential Aµ in electrodynamics. Even after
imposing the Hilbert gauge condition, there is still the freedom to make coordinate transforma-
tions (C) with �fµ = 0. In particular, the theory is invariant under Lorentz transformations.
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The linearised Einstein theory is a
Lorentz invariant theory of the grav-
itational field on Minkowski space-
time. It is very similar to Maxwell’s
vacuum electrodynamics, which is a
(linear) Lorentz invariant theory of
electromagnetic fields on Minkowski
spacetime. The table illustrates
the analogy. Here “electrodynam-
ics” stands for “electrodynamics on
Minkowski spacetime in vacuum,
Gµν = µ−1

0 Fµν”. Roughly speaking,
the main difference is in the fact that
the gravitational equations have one
index more.

lin. Einstein theory electrodynamics

γµν Aµ

Tµν Jµ

Hilbert gauge ∂µγµν = 0 Lorenz gauge ∂µAµ = 0

�γµν = 2κTµν �Aµ = µ−1
0 Jµ

Of course, one has to keep in mind that the linearised Einstein theory is only an approximation;
an exact Lorentz invariant theory of gravity on Minkowski spacetime cannot be formulated.

The linearised Einstein theory has been used as the starting point for developing a quantum
theory of gravitation, in analogy to quantum electrodynamics which is the fairly well understood
quantised version of Maxwell’s electrodynamics on Minkowski spacetime. While the quanta
associated with the field Aµ are called photons, the quanta associated with the field γµν (or
hµν) are called gravitons. The fact that Aµ is a tensor field of rank one while γµν is a tensor
field of rank two has the consequence that photons have spin one while gravitons have spin
two. Apart from the fact that it is far from clear if quantising the linearised theory is a
reasonable way of quantising gravity, one encounters technical problems related to the fact that
the coupling constant of gravity has a dimension (whereas in the electromagnetic case we have
the dimensionless fine structure constant).

Here we are interested only in the classical aspects of the linearised Einstein theory. In the
next section we discuss wavelike solutions to the source-free linearised field equation.

3.2 Plane-harmonic-wave solutions to the linearised vacuum field
equation without sources

In this section we consider the linearised vacuum field equation without sources (i.e., in regions
where Tµν = 0) in the Hilbert gauge,

�γµν = 0 , ∂µγµν = 0 .

In analogy to the electrodynamical theory, we can write the general solution as a superposition
of plane harmonic waves. In our case, any such plane harmonic wave is of the form

γµν(x) = Re
{
Aµνe

ikρxρ
}

with a real wave covector kρ and a complex amplitude Aµν = Aνµ.

10



Such a plane harmonic wave satisfies the linearised vacuum field equation if and only if

0 = ηστ∂σ∂τγµν(x) = Re
{
ηστAµνikσikτe

ikρxρ
}
.

This holds for all x, with (Aµν) 6= (0), if and only if

ηστkσkτ = 0 .

In other words, (k0, k1, k2, k3) has to be a lightlike covector with respect to the Minkowski
metric. This result can be interpreted as saying that, to within the linearised Einstein theory,
gravitational waves propagate on Minkowski spacetime at the speed c, just as electromagnetic
waves in vacuum.

Our plane harmonic wave satisfies the Hilbert gauge condition if and only if

0 = ηµτ∂τγµν(x) = Re
{
ηµτAµνikτe

ikρxρ
}

which is true, for all x = (x0, x1, x2, x3), if and only if

kµAµν = 0 (H) .

For a given kµ, the Hilbert gauge condition restricts the possible values of the amplitude Aµν ,
i.e., it restricts the possible polarisation states of the gravitational wave. For electromagnetic
waves, it is well known that there are two polarisation states (“left-handed and right-handed”,
or “linear in x-direction and linear in y-direction”) from which all possible polarisation states
can be formed by way of superposition. We will see that also for gravitational waves there are
two independent polarisation states; however, they are of a different geometric nature which
has its origin in the fact that γµν has two indices while the electromagnetic four-potential Aµ
has only one.
In order to find all possible polarisation states of a gravitational wave, we begin by counting the
independent components of the amplitude: The Aµν form a (4×4)-matrix which has 16 entries.
As Aµν = Aνµ, only 10 of them are independent; the Hilbert gauge condition (H) consists of
4 scalar equations, so one might think that there are 6 independent components and thus six
independent polarisation states. This, however, is wrong. The reason is that we can impose
additional conditions onto the amplitudes, even after the Hilbert gauge has been chosen: The
Hilbert gauge condition is preserved if we make a coordinate transformation of the form

xµ 7→ xµ + fµ(x) mit �fµ = 0 .

We can use this freedom to impose additional conditions onto the amplitudes Aµν .

Claim: Assume we have a plane-harmonic-wave solution

γµν(x) = Re
{
Aµνe

ikρxρ
}

of the linearised vacuum field equation in the Hilbert gauge. Let (uµ) be a constant four-velocity
vector, ηµνu

µuν = − c2 . Then we can make a coordinate transformation such that the Hilbert
gauge condition is preserved and such that

uµAµν = 0 , (T1)

ηµνAµν = 0 , (T2)

in the new coordinates (TT gauge, transverse-traceless gauge).

11



Proof: We perform a coordinate transformation

xµ 7→ xµ + fµ(x) , fµ(x) = Re
{
i Cµeikρx

ρ}

with the wave covector (kρ) from our plane harmonic wave solution and with some complex
coefficients Cµ. Then we have �fµ = 0, i.e., the Hilbert gauge condition is satisfied in the new
coordinates as well. We want to choose the Cµ such that in the new coordinates (T1) and (T2)
hold true. As a first step, we calculate how the amplitudes Aµν transform. We start out from
the transformation behaviour of the γµν which was calculated above,

γµν 7→ γµν − ∂µfν − ∂νfµ + ηµν∂ρf
ρ ,

hence

Re
{
Aµνe

ikρxρ
}
7→ Re

{(
Aµν − i i kµCν − i i kνCµ + ηµνi i kρC

ρ
)
eikρx

ρ}
,

Aµν 7→ Aµν + kµCν + kνCµ − ηµν kρC
ρ .

We want to choose the Cµ such that the equations

0 = uµ
(
Aµν + kµCν + kνCµ − ηµν kρC

ρ
)
, (T1)

0 = ηµν
(
Aµν + kµCν + kνCµ − ηµν kρC

ρ
)

= ηµν Aµν − 2 kρC
ρ (T2)

hold. To demonstrate that such a choice is possible, we choose the coordinates such that

(
uµ
)

=




c
0
0
0


 .

This can be done by a Lorentz transformation which, as a linear coordinate transformation,
preserves all the relevant properties of the coordinate system. Then the spatial part of the
desired condition (T1) reads:

(T1) for ν = j : 0 = A0j + k0Cj + kjC0 ⇐⇒ Cj = − k−1
0 (A0j + kjC0) .

These equations show that the Cj are determined by C0. We have thus only to determine C0

in such a way that the temporal part of (T1) holds:

(T1) for ν = 0 : 0 = A00 + 2 k0C0 + ηρσ kρCσ = A00 + ��2 k0C0 − ���k0C0 + ηij kiCj

= A00 + k0C0 − ηij ki k
−1
0

(
A0j + kjC0

)
= A00 + k0C0 − ηij ki k

−1
0 A0j + η00 k0��k0 ��

�k−1
0 C0

⇐⇒ 0 = − k0A00 + ηij kiA0j = ηµνkµA0ν .

12



The last expression vanishes, because of the Hilbert gauge condition (H) that is satisfied by
assumption, so the ν = 0 component of (T1) is identically satisfied if the Cj are chosen as
required by the ν = j components of (T1). This leaves C0 arbitrary. We now turn to the
second desired condition (T2).

(T2) : 0 = ηµν Aµν + 2 k0C0 − 2 ηij kiCj = Aµ
µ + 2 k0C0 + 2 ηij ki k

−1
0

(
A0j + kjC0

)

= Aµ
µ + 2 k0C0 + 2 ηij ki k

−1
0 A0j − 2 η00 k0�

�k−1
0 ��k0 C0 = Aµ

µ + 4 k0C0 + 2 ηij ki k
−1
0 A0j

⇐⇒ C0 =
−Asµµ k0 − 2 ηij kiA0j

4 k2
0

.

If we choose C0 according to this equation, and then the Cj as required above, (T1) and (T2)
are indeed satisfied in the new coordinates. �
In the TT gauge we have γ = 0 and thus hµν = γµν . As a consequence, the metric is of the
form

gµν = ηµν + γµν , γµν = Re
{
Aµνe

ikρxρ
}

and the amplitudes are restricted by the conditions

kµAµν = 0 , uµAµν = 0 , ηµνAµν = 0 .

If we choose the coordinates such that

(
uµ
)

=




c
0
0
0


 ,

(
kρ
)

=




ω/c
0
0
ω/c




which can be reached by a Lorentz transformation, the amplitudes Aµν satisfy

(H) 0 = kµAµν =
ω

c
(A0ν + A3ν) ,

(T1) 0 = uµAµν = cA0ν ,

(T2) 0 = ηµν Aµν = −A00 + A11 + A22 + A33

in the TT gauge. The first two conditions together imply that A0ν = 0 and A3ν = 0 vor
all ν. The last condition then requires A22 = −A11 and the symmetry of the metric requires
A12 = A21. So in this representation there are only two non-zero (compex!) components of
Aµν ,

A11 = −A22 =: A+ =
∣∣A+

∣∣ eiϕ ,

A12 = A21 =: A× =
∣∣A×

∣∣ eiψ .

The fact that only the 1- and the 2-components are non-zero demonstrates that gravitational
waves are transverse. There are only two independent polarisation states, the plus mode (+)
and the cross mode (×).

13



For the physical interpretation of these two modes we need the following result.

Claim: The x0-lines, i.e. the worldlines xµ(τ) with ẋµ(τ) = uµ, are geodesics.

Proof: From ẋµ(τ) = uµ we find ẍµ(τ) = 0 . The Christoffel symbols read

Γµνσ =
1

2
gµτ
(
∂νgτσ + ∂σgτν − ∂τgνσ

)
=

1

2
ηµτ
(
∂νγτσ + ∂σγτν − ∂τγνσ

)
=

=
1

2
ηµτ Re

{ (
i kν Aτσ + i kσ Aτν − i kτ Aνσ

)
eikρx

ρ }
.

This implies that

ẍµ + Γµνσ ẋ
ν ẋν = 0 +

1

2
ηµτ Re

{ (
i kν Aτσ u

σ

︸ ︷︷ ︸
= 0

uν + i kσ Aτν u
ν

︸ ︷︷ ︸
= 0

uσ− i kτ Aνσ u
σ

︸ ︷︷ ︸
= 0

uν
)
eikρx

ρ }
= 0 .

�

In other words, the x0-lines are the worldlines
of freely falling particles. For any such particle
the (x1, x2, x3)-coordinates remain constant. This
does, of course, not mean that the gravitational
wave has no effect on freely falling particles. The
distance, as it is measured with the metric, be-
tween neighbouring x0-lines is not at all constant.
We calculate the square of the distance between
an x0-line at the spatial origin (0, 0, 0) and at spa-
tial (x1, x2, x3) for the case that the xi are so small
that the metric can be viewed as constant between
(x0, 0, 0, 0) and (x0, x1, x2, x3):

gij(x
0, 0, 0, 0)xi xj =

(
δij + γij(x

0, 0, 0, 0)
)
xi xj .

For the physical interpretation of these two modes we need the following result.
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)
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1
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{ (
i kν Aτσ + i kσ Aτν − i kτ Aνσ

)
eikρxρ }

.

This implies that

ẍµ + Γµ
νσ ẋν ẋν = 0 +

1

2
ηµτ Re

{ (
i kν Aτσ uσ︸ ︷︷ ︸

= 0

uν + i kσ Aτν uν︸ ︷︷ ︸
= 0

uσ− i kτ Aνσ uσ︸ ︷︷ ︸
= 0

uν
)
eikρxρ }

= 0 .
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In other words, the x0-lines are the worldlines
of freely falling particles. For any such particle
the (x1, x2, x3)-coordinates remain constant. This
does, of course, not mean that the gravitational
wave has no effect on freely falling particles. The
distance, as it is measured with the metric, be-
tween neighbouring x0-lines is not at all constant.
We calculate the square of the distance between
an x0-line at the spatial origin (0, 0, 0) and at spa-
tial (x1, x2, x3) for the case that the xi are so small
that the metric can be viewed as constant between
(x0, 0, 0, 0) and (x0, x1, x2, x3):

gij(x
0, 0, 0, 0) xi xj =

(
δij + γij(x

0, 0, 0, 0)
)
xi xj . xi

x0

If we introduce new spatial coordinates

yi = xi +
1

2
γi

k(x
0, 0, 0, 0)xk,

we see that δijy
iyj =

(
δij + γij(x

0, 0, 0, 0)
)
xixj , i.e., for a particle at constant yi the distance

from the origin remains constant.

We calculate

δijy
iyj = δijx

ixj + Re
{
A+

(
(x1)2 − (x2)2

)
e−iωt

}
+ Re

{
2 A× x1 x2e−iωt

}
=

= δijx
ixj +

∣∣A+

∣∣ (
(x1)2 − (x2)2

)
cos

(
ϕ− ωt

)
+ 2

∣∣A×
∣∣ x1 x2 cos

(
ψ − ωt

)
.

This equation tells how for freely falling particles (i.e., for particles with constant xi) the
distance from the origin changes in dependence of the time t. We demonstrate this in a
y1 − y2−diagram. The pictures on the next page illustrate what happens to particles that
are arranged on a small spherical shell and then released to free fall: Both the plus mode and
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the cross mode of the gravitational wave produce a time-periodic elliptic deformation in the
plane perpendicular to the propagation direction. For the plus mode, the main axes of the
ellipse coincide with the coordinate axes, for the cross mode they are rotated by 45 degrees.
This explains the origin of the names “plus mode” and “cross mode”.

For an animation of the effect of the plus mode on freely falling particles see

https://en.wikipedia.org/wiki/Gravitational wave

Of course, what is called the plus mode and what is called the cross mode depends on the chosen
coordinates. If the coordinate system is rotated by 45o, the two modes interchange. This is
in analogy to electromagnetic waves, where there are waves linearly polarised in x direction
and waves linearly polarised in y direction; if we rotate the coordinate system by 90o, they
interchange their role.

Plus mode (A+ 6= 0 , A× = 0):Plus mode (A+ ̸= 0 , A× = 0):

x1

x2

ω t = ϕ

x1

x2

ω t = ϕ + π

x1

x2

ω t = ϕ + 2 π

Cross mode (A+ = 0 , A× ̸= 0):

x1

x2

ω t = ψ

x1

x2

ω t = ψ + π

x1

x2

ω t = ψ + 2 π

The motion of test paticles under the influence of a gravitational wave can also be derived
as a solution of a differential equation. We will derive this differential equation, which is a
specification to the situation at hand of the Jacobi equation, in Worksheet 2. It will show that
the “driving force” that generates the change of distances between neighbouring free particles
is the curvature tensor.

We have found, as our main result, that a gravitational wave produces a change of the distances
between freely falling particles in the plane perpendicular to the propagation direction. There
are two types of gravitational wave detectors that try to measure this effect :

• Resonant bar detectors: The first gravitational wave detectors of this type were de-
veloped by J. Weber in the 1960s. They were aluminium cylinders of about 1.5 m length.
A gravitational wave of an appropriate frequency would excite a resonant oscillation of
such a cylinder. With the uprise of laser interferometric gravitational wave detectors, the
bar detectors have lost their relevance. However, some of them are still used.
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We have thus found, as our main result, that a gravitational wave produces a change of the
distances between freely falling particles in the plane perpendicular to the propagation direction.
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There are two types of gravitational wave detectors that try to measure this effect :

Bar detectors: The first gravitational wave detectors of this type were developed by J. Weber
in the 1960s. They were aluminium cylinders of about 1.5 m length. A gravitational wave of an
appropriate frequency would excite a resonant oscillation of such a cylinder. With the uprise
of interferometric gravitational wave detectors, the bar detectors have lost their relevance.
However, some of them are still used.

Interferometric gravitational wave detectors: They are Michelson interferometers with
an effective arm length of a few hundred meters at least. The mirrors of such instruments
are suspended in a way that they can freely move in the horizontal direction. An incoming
gravitational wave would change the distances between the mirrors and the beam splitter (i.e.,
the travel times of the laser beams) and thus produce a change in the interference pattern.
Several such detectors are in operation since the early 2000s. The biggest ones are the two
LIGO detectors in the US which made the first direct discovery of a gravitational wave signal
on 14 September 2015. This will be discussed in detail below.

3.3 Relating gravitational waves to the source

We will now discuss what sort of sources would produce a gravitational wave. We will see that,
in the far-field approximation, the gravitational wave field is determined by the second time-
derivative of the quadrupole moment of the source. In other words, gravitational radiation
predominantly is quadrupole radiation. By contrast, it is well known that electromagnetic
radiation predominantly is dipole radiation.

We now have to consider the linearised field equation with a non-vanishing source term, Tµν 6= 0.
Again, we choose the Hilbert gauge, so we have to solve the equations

�γµν = 2κT µν , ∂µγ
µν = 0 .

Clearly, these two equations require the energy-momentum tensor to satisfy the condition

∂µT
µν =

1

2κ
∂µ� γµν =

1

2κ
� ∂µγ

µν = 0 . (CL)

Recall that in the full non-linear theory of general relativity it is the covariant divergence of the
energy-momentum tensor that vanishes. In the linearised version it is the ordinary divergence,
formed with the partial derivatives, that vanishes, as in special relativity for a closed system.
In contrast to the covariant divergence condition, the one with the partial derivative can be
integrated over so that the usual “pill-box argument” gives an integrated conservation law:
The temporal change of the energy within a 3-dimensional volume is given by the flow of the
energy over the boundary. The conservation law (CL) is crucial for the linearised theory of
gravitational waves.
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For given Tµν , the general solution to the inhomogeneous wave equation �γµν = 2κT µν is the
general solution to the homogeneous wave equation (superposition of plane harmonic waves)
plus a particular solution to the inhomogeneous equation. Such a particular solution can be
written down immediately by analogy with the retarded potentials from electrodynamics:

γµν
(
t, ~r
)

=
1

4π

∫

R3

2κT µν
(
t − |~r

′ − ~r |
c

, ~r ′
)
dV ′

|~r ′ − ~r | . (RP)

Here and in the following we write

x0 = c t , (x1, x2, x3) = ~r , r = |~r |
and dV ′ is the volume element with respect to the primed coordinates, dV ′ = dx′1 dx′2 dx′3 .

As in electrodynamics one shows by differentiating twice that the γµν from (RP) satisfy, indeed,
the equation �γµν = 2κT µν and that the Hilbert gauge condition holds true provided that
the energy-momentum tensor satisfies the conservation law (CL).

The general solution to the inhomogeneous wave equation is given by adding an arbitrary
superposition of plane-harmonic waves that satisfy the homogeneous equation, see Section 3.2.
If there are no waves coming in from infinity, (RP) alone gives the physically correct solution.

We will now discuss this solution far away from the sources. To that end, we assume that T µν

is different from zero only in a compact region of space. We can then surround this region by
a sphere KR of radius R around the origin, such that

T µν(t, ~r ) = 0 if r ≥ R .

We are interested in the field γµν at a point ~r with r � R .

The general solution to the inhomogeneous wave equation is given by adding an arbitrary
superposition of plane-harmonic waves that satisfy the homogeneous equation, see Chapter 4.
If there are no waves coming in from infinity, (RP) alone gives the physically correct solution.
We will now discuss this solution far away from the sources. To that end, we assume that T µν

is different from zero only in a compact region of space. We can then surround this region
by a sphere KR of radius R around the origin, such that T µν = 0 outside of KR and on the
boundary. We are interested in the field γµν at a point r⃗ with |r⃗ | ≫ R .

r⃗

r⃗ ′

T µν ̸= 0

T µν = 0R
ϑ

KR

Then

|r⃗ ′ − r⃗ | =

√(
r⃗ ′ − r⃗

)
·
(
r⃗ ′ − r⃗

)
=

√
r⃗ ′ · r⃗ ′ + r⃗ · r⃗ − 2 r⃗ ′ · r⃗ =

=

√
r′2 + r2 − 2 r′ r cosϑ = r

√
1 − 2

r′

r
cosϑ +

r′2

r2
= r

(
1 + O(r′/r)

)
.

Inserting the result into (RP) yields

γµν
(
ct, r⃗

)
=

κ

2 π

∫

R3

T µν
(
c t − r

(
1 + O(r′/r)

)
, r⃗ ′ ) d3r⃗ ′

r
(
1 + O(r′/r)

) .

If r ≫ R, the O(r′/r)-terms can be neglected, as r′ ≤ R on the whole domain of integration.
This is known as the far-field approximation,

γµν
(
ct, r⃗

)
=

κ

2 π r

∫

R3

T µν
(
c t − r , r⃗ ′ ) d3r⃗ ′ . (FF )

In this approximation, the γµν depend on r⃗ only in terms of its modulus r = |r⃗ |, i.e., the
wave fronts are spheres, r = constant. As the radii of these spheres are large, they can be
approximated as planes on a sufficiently small neighbourhood of any point r⃗. This means that,
on any such neighbourhood, our gravitational wave resembles a plane wave of the type we have
studied in Chapter 4.
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r′2

r2
= r

(
1 + O(r′/r)

)
.

17



Inserting the result into (RP) yields

γµν
(
t, ~r
)

=
κ

2π

∫

KR

T µν
(
t − r

c

(
1 +O(r′/r)

)
, ~r ′

)
dV ′

r
(
1 +O(r′/r)

) .

If r � R, the O(r′/r)-terms can be neglected, as r′ ≤ R on the whole domain of integration.
This is known as the far-field approximation,

γµν
(
t, ~r
)

=
κ

2 π r

∫

KR

T µν
(
t − r

c
, ~r ′

)
dV ′ . (FF )

In this approximation, the γµν depend on ~r only in terms of its modulus r = |~r|, i.e., the
wave fronts are spheres, r = constant. As the radii of these spheres are large, they can be
approximated as planes on a sufficiently small neighbourhood of any point ~r. This means
that, on any such neighborhood, our gravitational wave resembles a plane wave. If the time-
dependence of the source is harmonic, it resembles a plane harmonic wave of the type we have
studied in Sec. 3.2.

We will now investigate which properties of the source determine the spatial components γij

in the far-field approximation. To that end we introduce the multipole moments of the source.
They are defined in analogy to electrodynamics, with the charge density replaced by the energy
density T00 = −T0

0 = T 00.

M(t) =

∫

KR

T 00
(
t, ~r
)
dV (monopole moment) ,

Dk(t) =

∫

KR

T 00
(
t, ~r
)
xk dV (dipole moment) ,

Qk`(t) =

∫

KR

T 00
(
t, ~r
)
xk x` dV (quadrupole moment) ,

. . .

Instead of Qk` one often uses the trace-free part

Qk` = Qk` − 1

3
Qi

iδk`

which is known as the reduced quadrupole moment.

We calculate the first and second time derivative of the quadrupole moments. To that end, use
the conservation law (CL). We find

d

dt
Qk`(t) =

∫

KR

c ∂0T
00(t, ~r )xk x` dV = − c

∫

KR

∂iT
i0(t, ~r )xk x` dV =

= − c
∫

KR

(
∂i
(
T i0(t, ~r )xk x`

)
− T i0(t, ~r ) δki x

` − T i0(t, ~r )xk δ`i

)
dV .

18



The first integral can be rewritten, with the Gauss theorem, as a surface integral over the
boundary ∂KR of KR,

∫

KR

∂i
(
T i0(t, ~r )xk x`

)
dV =

∫

∂KR

T i0(t, ~r )xk x`dSi

where dSi is the surface element on ∂KR. As the sphere KR surrounds all sources, T µν is equal
to zero on ∂KR, so the last integral vanishes. Hence

d

dt
Qk`(t) = c

∫

KR

(
T k0(t, ~r )x` + T `0(t, ~r )xk

)
dV .

Analogously we calculate the second derivative.

d2

dt2
Qk`(t) = c2

∫

KR

(
∂0T

k0(t, ~r )x` + ∂0T
`0(t, ~r )xk

)
dV =

= c2

∫

KR

(
− ∂iT

ki(t, ~r )x` − ∂iT
`i(t, ~r )xk

)
dV =

= c2

∫

KR

(
− ∂i

(
T ki(t, ~r )x`

)
+ T ki(t, ~r ) δ`i − ∂i

(
T `i(t, ~r )xk

)
+ T `i(t, ~r ) δki

)
dV =

= 0 + c2

∫

KR

T k`(t, ~r ) dV − 0 + c2

∫

KR

T `k(t, ~r ) dV = 2 c2

∫

KR

T k`(t, ~r′ ) dV ′ .

Upon inserting this result into (FF) we find that, in the far-field approximation

γk`(t, ~r ) =
κ

2π r

∫

R3

T k`
(
t − r

c
, ~r ′
)
dV ′ =

κ

2 π r

1

2 c2

d2Qk`

dt2

(
t − r

c

)
.

If Einstein’s gravitational constant is expressed with the help of Newton’s gravitational con-
stant, κ = 8πG/c4, the result reads

γk`(t, ~r ) =
2G

c6 r

d2Qk`

dt2

(
t − r

c

)
.

Recall from Sec. 3.2 that, far away from the sources, a gravitational wave detector responds
to the temporal change of the spatial components γk` transverse to the propagation direction
of the wave. We have just calculated that these are given by the second time derivative of the
quadrupole moment at a retarded time. In this sense, gravitational radiation is quadrupole
radiation. By contrast, electromagnetic radiation is dipole radiation: A calculation analogous
to the above relates the electromagnetic four-potential to the first time derivative of the dipole
moment of the charge distribution at a retarded time. The difference has, of course, its origin
in the fact that γµν and T µν have two indices, while the analogous quantities Aµ and Jµ in
electrodynamics have only one index.
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Note that, according to our results on the preceding page, only the spatial components γk` are
given by the second time derivative of the quadrupole moment. What about the time-time and
the time-space components?

Claim: For a source T µν that is confined to a finite sphere for all times, in the far-field the
components γi0 vanish and the component γ00 is time-independent and falls off like r−1.

Proof: See Worksheet 3.

For this reason, the components γ0µ give no contribution to the radiation field in the far
zone. The time-independent γ00 contribution to the far field is, of course, just the Newtonian
gravitational field of the source.

In the next two sections we calculate the loss of energy of a system that emits gravitational
waves.

3.4 Energy and momentum of a gravitational wave

The question of how to assign energy and momentum to a gravitational wave is conceptually
subtle. According to general relativity, the gravitational field is not to be considered as a field
on the spacetime, it is coded in the geometry of the spacetime itself. The energy-momentum
tensor on the right-hand side of Einstein’s field equation comprises everything with the exception
of the gravitational field. An energy-momentum tensor of the gravitational field is not defined
and cannot be defined. This is in correspondence with the equivalence principle according to
which the gravitational field (coded in the Christoffel symbols which act as the “guiding field”
for test particles and light) can be transformed to zero in any one point. As a non-zero tensor is
non-zero in any coordinates, this is a clear indication that something like an energy-momentum
tensor of the gravitational field cannot exist.

However, a (non-tensorial) quantity that describes energy and momentum of a gravitational
field can be defined with respect to a background metric. We assume that we have a spacetime
metric which takes, in the chosen coordinates the form

gµν(x) = ηµν + hµν(x) .

For the time being, we do not assume that the hµν are small. The coordinates are then fixed
up to Lorentz transformations

xµ 7→ x̃µ = Λµ
νx

ν , Λµ
σΛν

τηµν = ηστ . (LT)

The Ricci tensor of the metric g is then of the form

Rµν(h) = R(1)
µν (h) +R(2)

µν (h) + . . .

where R
(n)
µν (h) comprises all terms of nth order in the hρσ and their first and second derivatives.
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Similarly, the Einstein tensor is of the form

Gµν(h) = Rµν(h) − 1

2
gµν g

ρ σRρσ(h) = G(1)
µν (h) +G(2)

µν (h) + . . .

where

G(1)
µν (h) = R(1)

µν (h)− 1

2
ηµνη

ρσR(1)
ρσ (h) ,

G(2)
µν (h) = R(2)

µν (h)− 1

2
ηµνη

ρσR(2)
ρσ (h)− 1

2
hµνη

ρσR(1)
ρσ (h) +

1

2
ηµνh

ρσR(1)
ρσ (h) ,

and so on. Here we have used that gρσ = ηρσ − hρσ + . . .
We assume that our metric gµν = ηµν + hµν satisfies Einstein’s field equation, with a source
term Tµν , exactly,

Gµν(h) = κTµν .

We rewrite this equation by keeping only the first-order terms on the left-hand side and shifting
all higher-order terms to the right-hand side,

G(1)
µν (h) = κ

(
Tµν + tµν

)
, (FEB)

tµν = − 1

κ

(
Gµν(h)−G(1)

µν (h)
)

= − 1

κ

(
G(2)
µν (h) + . . .

)

According to (FEB), h satisfies the linearised field equation with a source term Tµν + tµν . Of
course, this is still the same Einstein equation which is non-linear. We have just renamed the
non-linear terms into tµν and re-interpreted them as additional sources.

The tµν are not the components of a tensor; it is easy to check that the G
(1)
µν and hence the tµν

transform as tensor components under Lorentz transformations (LT), but not under arbitrary
coordinate changes. tµν is called the energy-momentum pseudotensor of the gravitational field.

The following observation is crucial.

Claim: The combined source term Tµν + tµν satisfies the continuity equation

∂µ
(
Tµν + tµν

)
= 0 . (CL)

Proof: See Worksheet 3.

This conservation law is not a covariant equation. It holds only in the special coordinates in
which our background metric has components ηµν . However, it really gives rise to a conservation
law in integral form if integrated over a spacetime region (“the change of the energy content
inside a spatial volume equals the energy flux over the boundary”). By contrast, the covariant
divergence law ∇µTµν , which is satisfied by our true matter source, is only a conservation law
in “infinitesimally small regions”; it does not give rise to a conservation law in integral form.

If our matter source loses energy, exactly the same amount of energy must be carried away
in the form of gravitational waves according to the conservation law (CL). This is the way in
which the observations of the Hulse-Taylor pulsar are interpreted (which will be discussed in
detail below): One observes that the system loses energy and one concludes that this energy is
caried away in the form of gravitational waves.
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Linearising the field equation with respect to the hµν and their derivatives is tantamount to
setting tµν equal to zero. In this approximation, Tµν alone satisfies the conservation law (CL).
We have to go at least to the second order if we want to have a non-trivial tµν . In the second-
order theory, we write the metric as

gµν = ηµν + h(1)
µν + h(2)

µν + . . .

where h
(1)
µν is a solution to the linearised field equation. The h

(1)
µν are small of first order while

the h
(2)
µν are small of second order. In other words, terms linear in the h

(2)
µν are treated at the

same footing as terms quadratic in the h
(1)
µν .

Expanding both sides of (FEB) up to second order results in

G(1)
µν (h(1) + h(2)) = κ

(
Tµν + tµν

)
, tµν = − 1

κ
G(2)
µν (h(1)) .

In other words, we get the energy-momentum pseudotensor of a gravitational field in its lowest
non-trivial approximation if we insert the corresponding solution to the linearised field equation
h

(1)
ρσ into G

(2)
µν . We will now carry out this calculation for a plane-harmonic wave of the kind we

have considered in Section 3.2. On the basis of this result, we will then determine the power
that is radiated away from a source that is confined to a finite sphere, as we have considered
in Section 3.3.

As before, we raise and lower indices with ηµν and ηµν , respectively. We need to calculate

R
(2)
µν (h) which is a bit tedious. We begin with the Christoffel symbols

Γρµν =
1

2
gρσ
(
∂µgσν + ∂νgσµ − ∂σgµν

)
=

1

2

(
ηρσ − hρσ + . . .

)(
∂µhσν + ∂νhσµ − ∂σhµν

)
.

The Ricci tensor is

Rµν = Rρ
ρµν = ∂ρΓ

ρ
µν − ∂µΓρρν + ΓρσρΓ

σ
µν − ΓρσµΓσρν ,

hence

R(2)
µν (h) = − 1

2
∂ρ
(
hρσ(∂µhσν + ∂νhσµ − ∂σhµν)

)
+

1

2
∂µ
(
hρσ(��

��∂ρhσν + ∂νhσρ −��
��∂σhρν)
)

+
1

4
ηρτ
(
∂σhτρ +��

��∂ρhτσ −��
��∂τhσρ
)
ησλ
(
∂µhλν + ∂νhλµ − ∂λhµν

)

− 1

4
ηρτ
(
∂σhτµ + ∂µhτσ − ∂τhσµ

)
ησλ
(
∂ρhλν + ∂νhλρ − ∂λhρν

)
.

The energy current density of the gravitational wave is given by the time-space components of
the energy-momentum pseudotensor

t0j = − 1

κ
G

(2)
0j (h(1)) .

We want to calculate this expression for a plane-harmonic wave in the TT gauge,

h(1)
µν (x) = γµν(x) = Re

{
Aµνe

ikρxρ
}

where kµk
µ = 0 , γµν(x)kν = 0 , γµ

µ(x) = 0 , γ0ν(x) = 0 .
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We find

−κ t0j = R
(2)
0j (h(1)) + 0 + 0 + 0 = − 1

2
∂ρ
(
γρσ(∂0γσj + ∂j γσ0︸︷︷︸

= 0

− ∂σ γ0j︸︷︷︸
= 0

)
)

+
1

2
∂0

(
γρσ∂jγσρ

)
+

1

4
ηρτ∂σγτρη

σλ
(
∂0γλj + ∂j γλ0︸︷︷︸

= 0

− ∂λ γ0j︸︷︷︸
= 0

)

− 1

4
ηρτ
(
∂σ γτ0︸︷︷︸

= 0

+ ∂0γτσ − ∂τ γσ0︸︷︷︸
= 0

)
ησλ
(
∂ργλj + ∂jγλρ − ∂λγρj

)

= − 1

2
∂ρ
(
γρσ∂0γσj

)
+

1

2
∂0

(
γρσ∂jγσρ

)
+

1

4
∂σ γτ

τ

︸︷︷︸
= 0

∂0γ
σ
j −

1

4
∂0γ

ρλ
(
��
�∂ργλj + ∂jγλρ −���∂λγρj

)

= 0 − 1

2
γρσ∂ρ∂0γσj︸ ︷︷ ︸
∼ γρσkρ = 0

+
1

2
∂0γ

ρσ∂jγσρ +
1

2
γρσ∂0∂jγσρ −

1

4
∂0γ

ρλ∂jγλρ

=
1

2
γρσ∂0∂jγσρ +

1

4
∂0γ

ρλ∂jγλρ =
1

2
γk`∂0∂jγk` +

1

4
∂0γ

k`∂jγk`

=
1

2
Re
{
Ak`eikρx

ρ}
Re
{
− Ak`k0kje

ikρxρ
}

+
1

4
Re
{
Ak`ik0e

ikρxρ
}

Re
{
Ak`ikje

ikρxρ
}

= − k0kj
8

(
Ak` eikρx

ρ

+ Ak` e−ikρx
ρ)(

Ak` e
ikρxρ + Ak` e

−ikρxρ)

+
k0kj
16

(
Ak` i eikρx

ρ − Ak` i e−ikρxρ
)(
Ak` i e

ikρxρ − Ak` i e−ikρx
ρ)

= − 3k0kj
16

(
Ak`Ak` e

2ikρxρ + Ak`Ak` e
−2ikρxρ

)
− k0kj

8
Ak`Ak`

= − 3k0kj
8

(
Re
{
Ak`Ak`

}
cos
(
2kρx

ρ
)
− Im

{
Ak`Ak`

}
sin
(
2kρx

ρ
))
− k0kj

8
Ak`Ak` .

where an overbar means complex conjugation. The first two terms, which are proportional to
cos(2kρx

ρ) = cos(2kix
i− 2ωt) and sin(2kρx

ρ) = sin(2kix
i− 2ωt), respectively, vary periodically

with time around zero. If we consider the time-average, denoted by 〈·〉, they drop out,

κ 〈t0j〉 =
k0kj

8
Ak`Ak` .
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3.5 Einstein’s quadrupole formula

With the help of the results of the preceding section we will now derive Einstein’s famous
quadrupole formula which relates the total power radiated away by a source of gravitational
waves to the third time derivative of its quadrupole moment.

We have seen that in lowest non-trivial approximation for a plane-harmonic gravitational wave
in TT gauge,

γµν = Re
{
Aµνe

ikσxσ
}
,

the time average of the time-space component of the energy-momentum pseudotensor is given
by the formula

κ 〈t0j〉 =
k0kj

8
Ak`Ak` .

We introduce the covector

nj = −kj
k0

which is parallel to the spatial wave covektor kj and normalised, because

njn
j =

kjk
j

k2
0

=
kρk

ρ − k0k
0

k2
0

=
0 + k2

0

k2
0

= 1 .

Then the time average of the energy current density of the gravitational wave

sj = −uρtρj = −u0t0j = −ctoj

reads

〈sj〉 = − c 〈t0j〉 =
c k2

0nj
8κ

Ak`Ak` .

In the theory of gravitational waves, sj plays the same role as the Poynting vector in the theory
of electromagnetic waves. The last expression can be rewritten as

〈sj〉 =
c nj
4κ

〈
∂0γ

k`∂0γk`
〉

(EC)

as follows from comparison with

〈
∂0γ

k`∂0γk`
〉

=
〈
Re
{
Ak` i k0 e

ikρxρ
}

Re
{
Ak` i k0 e

ikσxσ
}〉

=
k2

0

4

〈(
Ak` i eikρx

ρ − Ak` i e−ikρxρ
)(
Ak` i e

ikσxσ − Ak` i e−ikσx
σ)〉

=
k2

0

2
Ak`Ak` .

We now turn back to the situation of an energy-momentum tensor field which has support
inside a sphere of radius R, for all time, see picture on p.17. We know from Section 3.3 that
the solution to the linearised field equation in the Hilbert gauge satisfies in the far zone

γk`(t, ~r ) =
κ

4 π r c2

d2Qk`

dt2

(
t − r

c

)
.
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(γ0k and γ00 give no contribution to the wave field, recall Worksheet 3.) This γk`may be viewed,
in a sufficiently small neighbourhood of any one point in the far zone, as a superposition of
plane-harmonic waves propagating in the direction nj, where nj is the unit vector in the radial
direction. Here it is important to realise that our expression of γk` satisfies the Hilbert gauge
but not in general the TT gauge. Therefore, we cannot apply (EC) directly for calculating the
time-averaged energy current of this gravitational wave, because (EC) holds only for a plane-
harmonic wave in the TT gauge. We have to project onto the transverse-traceless part of γk`

first.

Here “transverse” means “orthogonal to the propagation direction nj”, i.e., the transverse part
of γk` is

γTk` = Pk
iP`

jγij

where Pi
j is the orthogonal projection onto the orthocomplement of nj,

Pi
j = δji − ninj .

Note that Pi
j satisfies the projection property (“idempotency”)

Pi
jPj

k =
(
δji − ninj

)(
δkj − njnk

)
= δki − nink −���nin

k +��
�nin
k = Pi

k

and the symmetry property
P rs = δrs − nrns = P sr .

γTk` is a second-rank tensor field on the 2-space orthogonal to nj. We have to subtract the trace
part of this tensor field to get the transverse-traceless part of γk`,

γTTk` = γTk` −
1

2
Pk` P

rsγTrs = Pk
iP`

jγij −
1

2
Pk`P

rsPr
iPs

jγij = Pk
iP`

jγij −
1

2
Pk`P

ijγij .

Here we have used that on the 2-space orthogonal to nj the tensor Pk` plays the role of the
metric (which corresponds to the fact that on thsi 2-space Pi

j is the identity operator).

For applying (EC) to our gravitational field in the far zone we need to calculate

∂0γ
TTk`∂0γ

TT
k` = ∂0

(
P kmP `nγmn −

1

2
P k`Pmnγmn

)
∂0

(
Pk

rP`
sγrs −

1

2
Pk`P

rsγrs
)

=
(
P kmP `nPk

rP`
s − 1

2
P kmP `nPk`P

rs − 1

2
P k`PmnPk

rP`
s +

1

4
P k`PmnPk`P

rs
)
∂0γmn∂0γrs

=
(
PmrP ns − 1

2
PmnP rs − 1

2
P rsPmn +

1

4
Pk

kPmnP rs
)
∂0γmn∂0γrs

=
(
PmrP ns−PmnP rs +

1

4
(δkk − nknk)︸ ︷︷ ︸

= 2

PmnP rs
)
∂0γmn∂0γrs =

(
PmrP ns− 1

2
PmnP rs

)
∂0γmn∂0γrs

Note that nj is the unit vector in radial direction, so the Pmr depend on ~r but not on t.
Therefore, when we calculate the time average the Pmr are not affected. When time-averaging
∂0γrs we have to be careful because these expressions are not usually harmonic in time. E.g.,
in a binary system the two constituents orbit each other with a frequency Ω but this frequency
is constant only approximately over sufficiently short time intervals. On a larger time scale the
frequency increases because the system loses energy in the form of gravitational waves, so the
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two constituents spiral towards each other. When we do the time-averaging we do this over
sufficiently short intervals, keeping the (“adiabatic”) time dependence which results from the
loss of energy. In the following, time-averaging is always meant in this sense. (This problem
does not occur if we consider systems where, with the help of external forces, a strictly periodic
motion is maintained. We consider two problems of the latter kind in Worksheet 4. For binary
systems, which will be treated in the next section, however, the loss of energy is a crucial
feature.)
We find for the time-averaged energy current density

〈sj〉 (t, ~r) =
c nj
4κ

(
PmrP ns − 1

2
PmnP rs

)
〈∂0γmn∂0γrs〉 (t, ~r) .

With

PmrP ns − 1

2
PmnP rs = (δmr − nmnr)(δns − nnns)− 1

2
(δmn − nmnn)(δrs − nrns)

= δmrδns − δmnδrs

2
− 2δmrnnns + δmnnrns +

nmnnnrns

2

and

∂0γk`(t, ~r ) = ∂0

{ κ

4π r c2

d2Qk`

dt2

(
t − r

c

)}
=

κ

4 π r c3

d3Qk`

dt3

(
t − r

c

)

this results in
〈sj〉 (t, ~r) =

κnj
64π2r2c5

(
δmrδns − δmnδrs

2
− 2δmrnnns + δmnnrns +

nmnnnrns

2

)〈d3Qmn

dt3
d3Qrs

dt3

〉(
t− r

c

)
.

This equation holds at any point ~r in the far zone where nj denotes the unit vector in radial
direction at this point. We can integrate this equation over a sphere of radius r(� R) to get
the radiated power (energy per time) that passes through this sphere

P (t, r) =

2π∫

0

π∫

0

〈sj〉 (t, ~r)r2njsinϑ dϑ dϕ =

2π∫

0

π∫

0

(
δmrδns− δ

mnδrs

2
−2δmrnnns+δmnnrns+

nmnnnrns

2

)κnj��r2njsinϑ dϑ dϕ

64π2��r2c5

〈
d3Qmn

dt3
d3Qrs

dt3

〉(
t− r

c

)

and, with njn
j = 1,

P (r, t) =

κ

64π2c5

2π∫

0

π∫

0

(
δmrδns− δ

mnδrs

2
−2δmrnnns+δmnnrns+

nmnnnrns

2

)
sinϑ dϑ dϕ

〈
d3Qmn

dt3
d3Qrs

dt3

〉(
t− r

c

)
.

For evaluating the integrals we need the following results.
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Claim:
2π∫
0

π∫
0

nkn`sinϑ dϑ dϕ =
4π

3
δk` and

2π∫
0

π∫
0

nkn`nrnssinϑ dϑ dϕ =
4π

15
(δk`δrs+δkrδ`s+δksδr`).

Proof: We calculate for all (ξ1, ξ2, ξ3) ∈ R3,

π∫

0

2π∫

0

ξiξjn
injsinϑ dϕ dϑ =

∫ π

0

∫ 2π

0

(
ξ1sinϑ cosϕ+ ξ2sinϑ sinϕ+ ξ3cosϑ

)2
sinϑ dϕ dϑ

= ξ2
1

π∫

0

sin3ϑ dϑ

2π∫

0

cos2ϕdϕ

︸ ︷︷ ︸
=π

+ ξ2
2

π∫

0

sin3ϑ dϑ

2π∫

0

sin2ϕdϕ

︸ ︷︷ ︸
=π

+ ξ2
3

π∫

0

cos2ϑ sinϑ dϑ

2π∫

0

dϕ

︸ ︷︷ ︸
= 2π

.

For all other terms the ϕ integration gives zero. Hence

π∫

0

2π∫

0

ξiξjn
injdϕ dϑ =

(
π ξ2

1 + π ξ2
2

) π∫

0

sin3ϑ dϑ

︸ ︷︷ ︸
= 4/3

+ 2π ξ2
3

π∫

0

cos2ϑ sinϑ dϑ

︸ ︷︷ ︸
= 2/3

=
4π

3

(
ξ2

1 + ξ2
2 + ξ2

3

)
=

4π

3
δijξiξj .

Similarly,

π∫

0

2π∫

0

ξiξjξkξ`n
injnkn`sinϑ dϕ dϑ =

∫ π

0

∫ 2π

0

(
ξ1sinϑ cosϕ+ ξ2sinϑ sinϕ+ ξ3cosϑ

)4
sinϑ dϕ dϑ

= ξ4
1

π∫

0

sin5ϑ dϑ

2π∫

0

cos4ϕdϕ

︸ ︷︷ ︸
= 3π/4

+ ξ4
2

π∫

0

sin5ϑ dϑ

2π∫

0

sin4ϕdϕ

︸ ︷︷ ︸
= 3π/4

+ 6ξ2
1ξ

2
2

π∫

0

sin5ϑ

2π∫

0

cos2ϕ sin2ϕdϕ

︸ ︷︷ ︸
=π/4

+6ξ2
1ξ

2
3

π∫

0

cos2ϑ sin3ϑ dϑ

2π∫

0

cos2ϕdϕ

︸ ︷︷ ︸
=π

+6ξ2
2ξ

2
3

π∫

0

cos2ϑ sin3ϑ dϑ

2π∫

0

sin2ϕdϕ

︸ ︷︷ ︸
=π

+ξ4
3

π∫

0

cos4ϑ sinϑ dϑ

2π∫

0

dϕ

︸ ︷︷ ︸
= 2π

=
3π

4

(
ξ4

1 + ξ4
2 + 2ξ2

1ξ
2
2

) π∫

0

sin5ϑ dϑ

︸ ︷︷ ︸
= 16/15

+ 6π(ξ2
1 + ξ2

2)ξ2
3

π∫

0

cos2ϑ sin3ϑ dϑ

︸ ︷︷ ︸
= 4/15

+ 2 π ξ4
3

π∫

0

cos4ϑ sinϑ dϑ

︸ ︷︷ ︸
= 2/5

=
4π

5

(
ξ2

1 + ξ2
2 + ξ2

3

)2
=

4π

5
δijδk`ξiξjξkξ` .

Symmetrisation of the coefficients gives the desired result. �
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Hence
P (t, r) =

κ

16πc5

(
δmrδns− δ

mnδrs

2
− 2δmrδns

3
+
δmnδrs

3
+
δmnδrs + δmrδns + δmsδrn
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)〈d3Qmn

dt3
d3Qrs

dt3

〉(
t− r

c

)

=
κ

16πc5

(2δmrδns

5
− 2δmnδrs

15

)〈d3Qmn

dt3
d3Qrs

dt3

〉(
t− r

c

)

=
κ

40πc5

(
δmrδns − δmnδrs

3

)〈d3Qmn

dt3
d3Qrs

dt3

〉(
t− r

c

)

=
κ

40πc5

〈
d3Qmn

dt3
d3Qmn

dt3
− 1

3

d3Qm
m

dt3
d3Qr

r

dt3

〉(
t− r

c

)
.

This can be rewritten more conveniently if we introduce the reduced quadrupole moment Qk`

which is defined as the trace-free part of Qk`,

Qk` = Qk` −
1

3
δk`Qj

j .

Then the energy flux through the sphere of radius r reads

P (t, r) =
κ

40πc5

〈
d3

dt3

(
Qmn +

1

3
δmnQk

k
) d3

dt3

(
Qmn +

1

3
δmnQ`

`
)
− 1

3

d3Qm
m

dt3
d3Qr

r

dt3

〉(
t− r

c

)

=
κ

40πc5

〈
d3Qmn

dt3
d3Qmn

dt3
+ 0 + 0 +���

���
���1

9
3
d3Qk

k

dt3
d3Q`

`

dt3
−����

���
�1

3

d3Qk
k

dt3
d3Q`

`

dt3

〉(
t− r

c

)

which eventually gives us Einstein’s quadrupole formula

P (t, r) =
κ

40πc5

〈
d3Qmn

dt3
d3Qmn

dt3

〉(
t− r

c

)
.

This formula allows us to calculate the power that is radiated away by a time-dependent
matter source. In electrodnamics, a similar formula holds where instead of the (reduced)
energy quadrupole moment one has the charge dipole moment and instead of third derivatives
one has second derivatives.

If we want to apply Einstein’s quadrupole formula, we need to know the reduced energy
quadrupole moment of the source,

Qk` = Qk` −
1

3
δk`Qj

j , Qk`(t) =

∫

R3

T00(t, ~r)xkx`d
3~r .
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This, in turn, requires to know the energy density T00. The latter contains the whole energy
content of the source which is difficult to determine. For slowly moving bodies the biggest
contribution to the energy density comes from the mass density µ(t, ~r). As long as the source
involves only motions that are slow in comparison to the speed of light, we can write as a valid
approximation

T00(t, ~r) ≈ c2µ(t, ~r) .

We can then replace the reduced energy quadrupole moment Qk` by the reduced mass quadrupole
moment

Ik` = Ik` −
1

3
δk`Ij

j ,

Ik`(t) =

∫

R3

µ(t, ~r)xkx`d
3~r .

With the aproximation
Qk` ≈ c2 Ik`

Einstein’s quadrupole formula reads

P (t, r) =
κ

40 π c

〈
d3Imn
dt3

d3Imn

dt3

〉(
t− r

c

)

or, with κ = 8πG/c4,

P (t, r) =
G

5 c5

〈
d3Imn
dt3

d3Imn

dt3

〉(
t− r

c

)
.

This is the form in which the formula is usually applied. In this version, the quadrupole formula
involves the following approximations.

• The energy-momentum pseudotensor was calculated only to within second order (which is
the lowest non-trivial order); the solution to the field equation that is needed to calculate
this order is a first-order solution, i.e., a solution to the linearised field equation.

• The formula holds in the far zone, i.e., it gives the energy flux per time through a sphere
of radius r which is big in comparison to the radius R of the sphere to which the matter
source Tµν is confined.

• The formula is based on the assumption that all motions inside the source are slow in
comparison to the speed of light.

In addition, the formula involves a time-averaging over an interval that covers the periods of
all Fourier components that contribute to the gravitational wave but is short enough so that
the loss of energy during this time interval can be neglected.

In the next section we will apply Einstein’s quadrupole formula to binary systems. This will
allow us to calculate the energy loss that has been observed with the Hulse-Taylor pulsar. For
this observation, which is generally accepted as an indirect detection of gravitational waves,
Hulse and Taylor won the Nobel prize in 1994.

In Worksheet 4 we will consider the gravitational radiation for two simpler systems, where we
will also give an estimate demonstrating that gravitational waves of detectable strength cannot
be produced in the laboratory.
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3.6 Gravitational waves from a binary source

We want to calculate, with the help of Einstein’s quadrupole formula, the gravitational radiation
produced by a binary system. A typical example we have in mind is the Hulse-Taylor pulsar
and his companion which will be discussed below. In this case we have two neutron stars
which are very close in comparison to binary systems that consist of ordinary (main sequence)
stars, but still so far apart that the orbits may be calculated in terms of Newtonian gravity.
We will recall the solution to the Newtonian two-body problem and then use this solution for
calculating the mass quadrupole moment of the binary system which is needed for Einstein’s
quadrupole formula.

The Newtonian two-body problem can be given in terms of the Lagrangian

L =
M1

2

∣∣~̇r1

∣∣2 +
M1

2

∣∣~̇r1

∣∣2 +
GM1M2∣∣~r1 − ~r2

∣∣

where M1 and M2 are the masses and ~r1 and ~r2 are the position vectors of the two bodies in
an inertial system. Introducing the position vector of the centre of mass

~r0 =
M1~r1 +M2~r2

M1 +M2

and the relative position vector

~r12 = ~r1 − ~r2

allows to express the position vectors of the two bodies as

~r1 = ~r0 +
M2 ~r12

M1 +M2

, ~r2 = ~r0 −
M1 ~r12

M1 +M2

,

hence

L =
M1

2

∣∣∣∣∣~̇r0 +
M2 ~̇r12

M1 +M2

∣∣∣∣∣

2

+
M2

2

∣∣∣∣∣~̇r0 −
M1 ~̇r12

M1 +M2

∣∣∣∣∣

2

+
GM1M2∣∣~r12

∣∣

=
M1 +M2

2

∣∣~̇r0

∣∣2 +
M1M2���

���(M1 +M2)

2 (M1 +M2)�2

∣∣~̇r12

∣∣2 +
GM1M2∣∣~r12

∣∣ .

The Euler-Larange equations with respect to the components of ~r0 give ~̈r0 = 0, i.e., the centre
of mass is in uniform rectilinear motion. It is, thus, possible to transform to another inertial
system in which the centre of mass is at rest, ~r0 = 0. Then

~r1 =
M2 ~r12

M1 +M2

, ~r2 = − M1 ~r12

M1 +M2

, (R1)

and

L =
M1M2

2 (M1 +M2)

∣∣~̇r12

∣∣2 +
GM1M2∣∣~r12

∣∣ .
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We choose the coordinate axes such that

~r12 = r12




cosφ
sinφ

0


 , (R2)

see the picture. Then

~̇r12 = ṙ12




cosφ
sinφ

0


+ r12 φ̇



−sinφ
cosφ

0


 ,

and the Lagrangian reads

We choose the coordinate axes such that

~r12 = r12

0
@

cos�
sin�

0

1
A , (R2)

see the picture. Then

~̇r12 = ṙ12

0
@

cos�
sin�

0

1
A+ r12 �̇

0
@
�sin�
cos�

0

1
A ,

and the Lagrangian reads

x1

x2

�
~r1

~r2

L =
M1M2

2 (M1 + M2)

�
ṙ2
12 + r2

12 �̇
2
�

+
G M1M2

r12

.

The Euler-Lagrange equations with respect to r12 and � are

M1M2

(M1 + M2)
r̈12 �

M1M2

(M1 + M2)
r12 �̇

2 +
G M1M2

r2
12

= 0 ,

M1M2

(M1 + M2)
r2
12 �̇ = L = constant . (K2)

Inserting the second equation, which is just Kepler’s second law for the relative position vector,
into the first one yields

M1M2

(M1 + M2)
r̈12 � ⇢

⇢M1⇢
⇢M2��r12 L2(M1 + M2)�

2

⇠⇠⇠⇠⇠⇠
(M1 + M2)M�2

1 M�2
2 r�4 3

12

+
G M1M2

r2
12

= 0

We rewrite the first term with the chain rule,

M1M2

(M1 + M2)
�̇

d

d�

⇣
�̇

dr12

d�

⌘
� L2(M1 + M2)

M1M2r3
12

+
G M1M2

r2
12

= 0

Re-expressing �̇ in terms of the conserved angular momentum L with the help of (K2) results
in

⇢
⇢M1⇢

⇢M2 L⇠⇠⇠⇠⇠⇠
(M1 + M2)

⇠⇠⇠⇠⇠⇠
(M1 + M2)⇢

⇢M2⇢
⇢M2�

�r2
12

d

d�

⇣L(M1 + M2)

M1M2r2
12

dr12

d�

⌘
� L2(M1 + M2)

M1M2r�
3
12

+
G M1M2

�
�r2
12

= 0 ,

� L2(M1 + M2)

M1M2

d2

d�2

⇣ 1

r12

⌘
� L2(M1 + M2)

M1M2r12

+ G M1M2 = 0 ,

d2

d�2

⇣ 1

r12

⌘
+

1

r12

=
G M2

1 M2
2

L2(M1 + M2)
.
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L =
M1M2

2 (M1 +M2)

(
ṙ2

12 + r2
12 φ̇

2
)

+
GM1M2

r12

.

The Euler-Lagrange equations with respect to r12 and φ are

M1M2

(M1 +M2)
r̈12 −

M1M2

(M1 +M2)
r12 φ̇

2 +
GM1M2

r2
12

= 0 ,

M1M2

(M1 +M2)
r2

12 φ̇ = L = constant . (K2)

Inserting the second equation, which is just Kepler’s second law for the relative position vector,
into the first one yields

M1M2

(M1 +M2)
r̈12 −�

�M1�
�M2��r12 L

2(M1 +M2)�2

���
���(M1 +M2)M�21M�

2
2 r�

4 3
12

+
GM1M2

r2
12

= 0

We rewrite the first term with the chain rule,

M1M2

(M1 +M2)
φ̇
d

dφ

(
φ̇
dr12

dφ

)
− L2(M1 +M2)

M1M2r3
12

+
GM1M2

r2
12

= 0

Re-expressing φ̇ in terms of the conserved angular momentum L with the help of (K2) results
in

�
�M1�
�M2 L���

���(M1 +M2)

���
���(M1 +M2)�

�M2�
�M2�
�r2
12

d

dφ

(L(M1 +M2)

M1M2r2
12

dr12

dφ

)
− L2(M1 +M2)

M1M2r�
3
12

+
GM1M2

�
�r2
12

= 0 ,

− L
2(M1 +M2)

M1M2

d2

dφ2

( 1

r12

)
− L2(M1 +M2)

M1M2r12

+GM1M2 = 0 ,

d2

dφ2

( 1

r12

)
+

1

r12

=
GM2

1M
2
2

L2(M1 +M2)
.
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This is an inhomogeneous linear differential equation. The general solution to the homogeneous
equation is

1

r12

= A cosφ+B sinφ

and a particular solution to the inhomogeneous equation is

1

r12

=
GM1M2

L2(M1 +M2)
.

We choose the initial conditions such that B = 0. Then the solution is

1

r12

= A cosφ+
GM1M2

L2(M1 +M2)
=

GM1M2

L2(M1 +M2)

(
1 +

AL2(M1 +M2)

GM1M2

cosφ
)
,

hence

r12 =
a (1− ε2)

1 + ε cosφ
(K1)

where

a(1− ε2) =
L2(M1 +M2)

GM2
1M

2
2

(E1)

and

ε =
AL2(M1 +M2)

GM2
1M

2
2

.

(K1) is the equation of an ellipse with semi-major axis a and eccentricity ε where A has to be
chosen such that 0 ≤ ε ≤ 1. The equation (K1) gives Kepler’s first law for the relative position
vector in the centre-of-mass system.

(K1) and (K2) allow us to express the angular momentum as

L =
M1M2

(M1 +M2)
r2

12φ̇ =
M1M2

(M1 +M2)

a2(1− ε)2

(1 + ε cosφ)2
φ̇ .

Integration over one period results in

∫ T

0

Ldt =
M1M2

(M1 +M2)
a2(1− ε)2

∫ 2π

0

dφ

(1 + ε cosφ)2

=
M1M2

(M1 +M2)
a2(1− ε)2 2π

(1− ε2)3/2
,

L T =
M1M2a

2 2π
√

1− ε2

(M1 +M2)
. (E2)
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With (E1) we find

a���
��(1− ε2) = �

���
��(M1 +M2)�

�M2
1�
�M2
2a

44π2
���

��(1− ε2)

G�
�M2
1�
�M2
2T

2(M1 +M2)�2

hence

T 2

a3
=

4 π2

G (M1 +M2)
(K3)

which is Kepler’s third law. This allows us to eliminate T from (E2),

L =
M1M2a

2��2π
√

1− ε2
√
G(M1 +M2)

(M1 +M2)a3/2��2 π
=
M1M2

√
aG
√

1− ε2

√
M1 +M2

.

As a consequence, (K2) may be rewritten as

φ̇ =
L (M1 +M2)

M2M2r2
12

= �
�M1�
�M2

√
aG
√

1− ε2 (M1 +M2)(1 + ε cosφ)2

√
M1 +M2�

�M1�
�M2a2(1− ε2)2

,

hence

φ̇ =

√
(M1 +M2)G√
a3(1− ε2)3

(1 + ε cosφ)2 . (E3)

We will make use of this equation in what follows.

We now calculate the mass quadrupole tensor in the co-rotating system, that is, in the body-
fixed coordinate system. Then we transform into the non-rotating observer system. At last,
the third time-derivative of this mass quadrupole tensor has to be inserted into the radiation
formula. From that we can calculate the change of the orbital parameters of the system due to
the loss of energy.

We denote quantities in the body-fixed coordinate system by a prime. Then (R1) and (R2)
give

~r ′1 =
M2 ~r

′
12

M1 +M2

, ~r ′2 = − M1 ~r
′
12

M1 +M2

, ~r ′12 = r12




1
0
0


 .

Calculating the mass quadrupole tensor

I ′k` =

∫

R3

µ(~r ′)x′kx
′
` d

3~r ′ =

∫

R3

(
M1δ

(
~r ′ − ~r ′1

)
+M2δ

(
~r ′ − ~r ′2

))
x′k x

′
` d

3~r ′

yields

I ′11 = M1
M2

2 r
2
12

(M1 +M2)
+M2

M2
1 r

2
12

(M1 +M2)
=
M1M2���

���(M1 +M2) r2
12

(M1 +M2)�2

=
M1M2a

2(1− ε2)2

(1 + ε cosφ)2(M1 +M2)
=: I1 .
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All the other components are equal to zero,

(
I ′k`
)

=



I1 0 0
0 0 0
0 0 0


 .

Transformation in the observer system gives

(
Ik`
)

=




cosφ −sinφ 0
sinφ cosφ 0

0 0 0





I1 0 0
0 0 0
0 0 0






cosφ sinφ 0
−sinφ cosφ 0

0 0 0




=




cosφ −sinφ 0
sinφ cosφ 0

0 0 0





I1cosφ I1sinφ 0

0 0 0
0 0 0




=




I1cos2φ I1cosφ sinφ 0
I1cosφ sinφ I1sin2φ 0

0 0 0


 =

I1

2




1 + cos(2φ) sin(2φ) 0
sin(2φ) 1− cos(2φ) 0

0 0 0


 .

The traceless part is

(
Ik`
)

=
I1

2




1 + cos(2φ) sin(2φ) 0
sin(2φ) 1− cos(2φ) 0

0 0 0


− 1

3




1 0 0
0 1 0
0 0 1


 I1

�2
�2

=
I1

6




1 0 0
0 1 0
0 0 −2


+

I1

2




cos(2φ) sin(2φ) 0
sin(2φ) −cos(2φ) 0

0 0 0


 .

For the quadrupole formula we need the expression

...
I k`

...
I k` =

(...
I 11

)2
+
(...
I 22

)2
+
(...
I 33

)2
+ 2

(...
I 12

)2

=
∣∣...I 11 + i

...
I 12

∣∣2 +
∣∣...I 22 + i

...
I 12

∣∣2 +
(...
I 33

)2

=
(I1

6
+
I1

2
e2iφ
)...(I1

6
+
I1

2
e−2iφ

)...
+
(I1

6
− I1

2
e−2iφ

)...(I1

6
− I1

2
e2iφ
)...

+

(...
I 1

)2

9

=
2

36

(...
I 1

)2
+

2

4

∣∣∣
(
I1e

2iφ
)...∣∣∣

2

+

(...
I 1

)2

9
=

1

6

(...
I 1

)2
+

1

2

∣∣∣
(
I1e

2iφ
)...∣∣∣

2

. (∗∗)
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We see that we need to know the third time derivatives of I1 and of I1e
2iφ. With the help of

(E3) we calculate

I1 =
M1M2a

2(1− ε2)2

(
M1 +M2

)(
1 + ε cosφ

)2

İ1 =
M1M2a

2(1− ε2)2 2 ε sinφ φ̇
(
M1 +M2

)(
1 + ε cosφ

)3 =
2M1M2

√
Ga(1− ε2) ε sinφ√

M1 +M2

(
1 + ε cosφ

) ,

Ï1 =
2M1M2

√
Ga(1− ε2) ε

(
cosφ+ ε

)
φ̇

√
M1 +M2

(
1 + ε cosφ

)2 =
2M1M2Gε

(
cosφ+ ε

)

a (1− ε2)
,

...
I 1 =

−2M1M2Gε sinφ φ̇

a (1− ε2)
,

and

(
I1e

2iφ
)˙ = e2iφ

(
İ1 − 2iφ̇I1

)

= e2iφ

(
2M1M2

√
Ga(1− ε2) ε sinφ√

M1 +M2

(
1 + ε cosφ

) +
2iM1M2a

2(1− ε2)2
√
G(M1 +M2)���

���
��(

1 + ε cosφ
)2

(M1 +M2)���
���

��(
1 + ε cosφ

)2√
a3(1− ε2)3

)

=
2M1M2

√
Ga(1− ε2)√

M1 +M2

e2iφ

(
ε sinφ

1 + ε cosφ
+ i

)

(
I1e

2iφ
)̈

=
2M1M2

√
Ga(1− ε2)√

M1 +M2

e2iφ φ̇

(
ε
(
cosφ+ ε

)
(
1 + ε cosφ

)2 +
2 i ε sinφ

1 + ε cosφ
− 2

)

=
2M1M2

√
Ga(1− ε2)

√
G���

���√
M1 +M2

(
1 + ε cosφ

)2

���
���√

M1 +M2

√
a3(1− ε2)3

e2iφ

(
ε
(
cosφ+ ε

)
(
1 + ε cosφ

)2 +
2 i ε sinφ

1 + ε cosφ
− 2

)

=
2M1M2G

a(1− ε2)
e2iφ

(
ε cosφ+ ε2 − 2(1 + ε cosφ)2 + 2 i ε sinφ(1 + ε cosφ)

)

(
I1e

2iφ
)...

=
2M1M2G

a(1− ε2)
e2iφ φ̇

(
−ε sinφ+((((

((((
(((
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(
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=
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.
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Upon inserting these results into (∗∗), we find

...
I jk

...
I jk =

4M2
1M

2
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2ε2sin2φ φ̇2
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+
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2
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)2
)

=
2M2

1M
2
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2φ̇2

3 a2(1− ε2)2

(
ε2sin2φ+ 3 ε2sin2φ+ 48
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)2
)

=
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2
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√
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(
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√
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(
ε2sin2φ+ 12

(
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)2
)

Time averaging over a period yields

〈...I jk
...
I jk〉 =

=
8M2

1M
2
2

√
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3
√
a7(1− ε2)7

1

T

T∫

0

(
1 + ε cosφ

)2
(
ε2
(
1− cos2φ

)
+ 12

(
1 + ε cosφ

)2
)
φ̇ dt

=
8M2

1M
2
2

√
G5(M1 +M2)

3
√
a7(1− ε2)7

√
G(M1 +M2)

2 π
√
a3

2π∫

0

(
ε2 + 12 +

(
71ε2 + ε4

)
cos2φ+ 11ε4cos4φ

)
dφ .

In the last step we have used Kepler’s third law, and we have considered only even powers
of cosφ under the integral because odd powers of cosφ give zero when integrated over a full
period. Upon calculating the integrals we find

〈...I jk
...
I jk〉 =

4M2
1M

2
2G

3(M1 +M2)

3 a5(1− ε2)7/2�π

(
(ε2 + 12)2�π +

(
71ε2 + ε4

)
�π + 11ε4 3�π

4

)

=
32M2

1M
2
2G

3(M1 +M2)

a5(1− ε2)7/2

(
1 +

73ε2

24
+

37ε4

96

)
.

The power that is radiated through a sphere of (big) radius r at time t is given, to within our
approximations, by Einstein’s quadrupole formula

P (t, r) =
G

5c5
〈...I jk

...
I jk〉

(
t− r

c

)

=
32M2

1M
2
2G

4(M1 +M2)

5c5a5(1− ε2)7/2

(
1 +

73ε2

24
+

37ε4

96

)(
t− r

c

)
.

Note that G4/c5 is a very small number in conventional units. As the masses are in the
numerator and the semi-major axis is in the denominator, the latter even with a power of
5, we see that a measurable effect can be expected only for compact binaries that are close
together, i.e., not for main sequence stars or planets, but for neutron stars or black holes. The
eccentricity has an influence on the order of magnitude only if it is extremely close to 1.
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In the last equation for P (t, r) we have to assume that the orbital parameters a and ε vary
(slowly) with time and that they have to be taken on the right-hand side at the retarded time:
As nobody feeds energy from the outside into a binary system, the energy conservation law
∂µ(Tµν + tµν) (recall Worksheet 3) can be satisfied only if the radiated energy is compensated
for by the fact that the binary system loses energy. If we exclude the possibility that (rest)
mass might be converted into some other kind of energy (i.e., that M1 or M2 might change),
the time-dependence must be in a and/or ε.
In order to specify this time-dependence we have to calculate how the energy of the binary de-
pends on the orbital parameters. From the Lagrangian given above we can read the expressions
for kinetic and potential energy which gives us the total energy as

E =
M1M2

2(M1 +M2)

(
ṙ2

12 + r2
12φ̇

2
)
− GM1M2

r12

.

With (K1) for r12 and (E3) for φ̇ this can be rewritten as

E =
M1M2ṙ

2
12

2(M1 +M2)
+
GM1M2a(1− ε2)

2r2
12

− GM1M2

r12

.

Evaluating this equation at the periastron, ṙ12 = 0 and r12 = a(1 + ε), yields

E =
GM1M2a(1− ε2)

2a2(1 + ε)2
− GM1M2

a(1 + ε)
=
GM1M2

a

(
���

�(1 + ε) (1− ε)
2(1 + ε)�2

− 1

1 + ε

)
=
−GM1M2

2 a
.

So we see that the energy depends on a but not on ε, hence the assumed (slow) time-variation
of E corresponds to a (slow) time-variation of a according to

dE(t)

dt
=
GM1M2

2 a(t)2

da(t)

dt
.

As a consequence, the equation

P (t, r) = −dE
dt

(
t− r

c

)

gives us the time-dependence of the semi-major axis

da(t)

dt
=

2 a(t)2

GM1M2

dE(t)

dt
=
−64M1M2G

3(M1 +M2)

5 c5a(t)3(1− ε(t)2)7/2

(
1 +

73ε(t)2

24
+

37ε(t)4

96

)
. (D1)

Here we have to face the problem that not only the semi-major axis a but also the eccentricity ε
changes (slowly) over time, so we have to combine the last equation with a first-order differential
equation for ε to get a well-posed initial-value problem. For deriving this differential equation
for ε one has to determine the loss of angular momentum of the system. The calculation is
analogous to the calculation of the loss of energy, but even more tedious, and will not be given
here. One finds that

−dL
dt

=
32M2

1M
2
2G

7/2(M1 +M2)1/2

5 c5a7/2(1− ε2)2

(
1 +

7ε2

8

)
.
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The formula for dE/dt was derived by P. C. Peters and J. Mathews [Phys. Rev. 131, 435
(1963)] and the one for dL/dt by P. C. Peters [Phys. Rev. 136, 1224 (1964)]. We will use the
formula for dL/dt for deriving the differential equation for the eccentricity in Worksheet 5. We
will see that an orbit that is initially circular (i.e., ε = 0 at time t = 0) will remain circular (i.e.,
ε = 0 for all times t). Anticipating this result, we will consider circular orbits in the rest of this
section. They will give us a good idea about the time scales over which the size of the orbit and
the period change, even for eccentric orbits as long as the eccentricity is not extremely close to
1.

For a circular orbit we have

r12 = a , φ̇ =

√
G(M1 +M2)

a3/2
=: Ω .

Equation (D1), which gives the (slow) variation of the semi-major axis, simplifies to

a(t)3da(t)

dt
= − 64G3M1M2(M1 +M2)

5 c5
=: −A

which can be easily integrated,

1

4

da(t)4

dt
= −A , a(t)4 = a4

0 − 4A t

where a0 = a(0). This can be rewritten, if we introduce the inspiral time

tsp =
a4

0

4A
=

5 c5a4
0

256G3M1M2(M1 +M2)
,

as

a(t) = a0

(
1− t

tsp

)
. (D2)

tsp is the time the system needs to inspiral completely. Of course, for the final stage of the
inspiralling process our simple model of two Newtonian point masses is no longer valid: Neutron
stars would deform each other when their surfaces come very close together, and in the case
of black holes the horizons would merge. Nonetheless, tsp gives a good estimate of the lifetime
of binary systems. For a typical system of two neutron stars, M1 and M2 are in the order of
a Solar mass and a0 is in the order of a few Solar radii. In such cases the inspiral time equals
several hundred million years, see the next section and Worksheet 5.

If we combine (D2) for the decay of the radius with Kepler’s third law (K3) we get an equation
for the (slow) time variation of the period T ,

T (t) =
2π a(t)3/2

√
G (M1 +M2)

=
2 π a

3/2
0√

G (M1 +M2)

(
1− t

tsp

)3/8

which implies

dT (t)

dt
= − 3 π a

3/2
0

4
√
G (M1 +M2) tsp

(
1− t

tsp

)−5/8

.
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The quantity dT (t)/dt is plotted against t in the diagram below. A similar time-dependence of
the period holds for eccentric orbits. It was this time-dependence that was observed with the
Hulse-Taylor pulsar, see the next section.

The quantity dT (t)/dt is plotted against t in the diagram below. A similar time-dependence of
the period holds for eccentric orbits. It was this time-dependence that was observed with the
Hulse-Taylor pulsar, see the next section.
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The period T immediately gives the frequency

⌦(t) =
2 ⇡
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p
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The time derivative of the frequency,

d⌦(t)

dt
=

3
p

G (M1 + M2)

8 a
3/2
0 tsp

✓
1 � t

tsp

◆�11/8

,

is often called the chirp. Obviously, this refers to the analogy to sound waves where a positive
time derivative of the frequency corresponds to an increasing pitch.

For circular orbits, the quadrupole moment can be written as

�
Ik`(t)

�
=

I1

2

0
@

1 + cos(2⌦t) sin(2⌦t) 0
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1
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.

In this case it is easy to calculate the second time derivative,
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�
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0
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The period T immediately gives the frequency

Ω(t) =
2π

T (t)
=

√
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3/2
0

(
1− t

tsp

)−3/8

. (D3)

The time derivative of the frequency,
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dt
=
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)−11/8

,

is often called the chirp. Obviously, this refers to the analogy to sound waves where a positive
time derivative of the frequency corresponds to an increasing pitch.

For circular orbits, the quadrupole moment can be written as
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In this case it is easy to calculate the second time derivative,

(
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)
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
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Thereupon, we find the gravitational field in the far zone

(
γk`(t, ~r )

)
=
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c4r

(
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With Kepler’s third law (K3) this can be rewritten as
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For an observer on the 3-axis,

~r = r ~n , ~n =




0
0
1


 ,

we verify that obviously γk` = γTTk` in the notation used on p. 25. For such an observer we can
thus immediately apply our results for waves in the TT gauge. We see that the wave is the
superposition of a plus mode

− 4G2M1M2

c4r a
cos
(
2Ωt− 2Ωr/c

)



1 0 0
0 −1 0
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and a cross mode
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c4r a
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(
2Ωt− 2Ωr/c− π/2

)

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 .

Frequency and wave vector are given, for both modes, by

ω = 2 Ω , ~k =
2 Ω

c
~n ,

and the amplitudes are

A+ = − 4G2M1M2

c4r a
, A× = A+e

−iπ/2 .

If we take the (slow) time variation of a and Ω into account, we see that both modes give a
signal at the position of the observer that varies with time according to

h(t) = − 4G2M1M2

c4r a(t)
cos
(
2Ω(t)t+ ψ

)

where ψ is time-independent. With a(t) and Ω(t) from (D2) and (D3), respectively, this can
be rewritten as
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h(t) = h0

(
1− t/tsp

)−1/4
cos
(
β (1− t/tsp)−3/8t+ ψ

)

where h0 and β are time-independent. This is a typical chirp signal, see plot below: Both the
amplitude and the frequency grow with time, i.e., in the acoustical analogy the sound becomes
louder and higher pitched. In our over-idealised setting, both the amplitude and the frequency
even go to infinity if t approaches tsp.

h(t) = h0

�
1 � t/tsp

��1/4
cos
�
� (1 � t/tsp)

�3/8t +  
�

where h0 and � are time-independent. This is a typical chirp signal, see plot below: Both the
amplitude and the frequency grow with time, i.e., in the acoustical analogy the sound becomes
louder and higher pitched. In our over-idealised setting, both the amplitude and the frequency
even go to infinity if t approaches tsp.

h(t)

t

For realistically calculating the final stage of the merger of two neutron stars, or of two black
holes, it is of course necessary to go beyond our over-idealised model of two Newtonian point
particles. Then, instead of growing to infinity, the gravitational wave signal shows a ring-
down until the system settles in an (approximately) stationary state. The usual method of
calculating such mergers is to use the Newtonian equations we have derived here as a zeroth-
order approximation and then to add post-Newtonian (PN) correction terms up to a certain
order. Here one speaks of the “kth order PN approximation” if one takes all terms up to
order c�2k into account. As odd powers of c do occur, k is in general a half-integer. PN
calculations have been worked out for spinning binaries up to order 3.5 which is extremely
challenging. These analytical approximation methods are complemented by numerical studies.
The templates that have been calculated for gravitational waves produced by coalescing black
holes or neutron stars with prescribed properties are the results of such combined e↵orts.
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3.7 Indirect evidence for gravitational waves from binary pulsars

Before coming to binary pulsars, we will briefly recall what pulsars are and how they were
discovered.

Pulsars were discovered in 1967 by Jocelyn Bell, later Jocelyn Bell-Burnell, then a PhD student
in the group of Antony Hewish at Cambridge University. The picture below shows Hewish in
front of the do-it-yourself radio telescope with which the discovery was made.

Jocelyn Bell (1941 - )
from cwp.library.ucla.edu/

Antony Hewish (1924 - )
from www.mrao.cam.ac.uk/

After having constructed the radio telescope, together with other students, with her own hands,
Jocelyn Bell concentrated in her PhD work on the search for quasars with the scintillation
method. The observation was often affected by interferences caused by terrestrial sources such
as cars. On 6 August 1967 Jocelyn Bell observed some “scruff”, as she later put it, that
appeared to be different from these usual interferences, see picture below. She discussed the
observation with her supervisor. After having verified that the source remained fixed with
respect to the stars it seemed certain that it was an astronomical object. Hewish and Bell
decided to look at it more closely.

Discovery of the mysterious signal on 6 August 1967
from pulsar.ca.astro.it/
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On 28 November 1967 Jocelyn Bell observed the mysterious object at a different frequency
with a higher time resolution, see the picture below. It showed highly regular pulses with a
period of 1.337 seconds. Whereas the shape of the pulses changed considerably, the period
remained stable with an incredible accuracy. It was seriously discussed in the group whether
the signal could come from an alien civilisation, and it was only half-jocular that the object
was initially called LGM-1, with LGM standing for Little Green Men. Later, the object was
given the systematic name PSR B1919+21. Here PSR stands for Pulsating Source of Radio
emission, which was soon abbreviated as pulsar and the numbers give the celestial coordinates
of the source, a point in the constellation Vulpecula: 19h19m is the right ascension and +21o is
the declination; the letter B is added for coordinates refering to the epoch 1950 while a letter
J is added for the epoch 2000.

Within a few weeks the Cambridge group found three more similar objects. In early 1968,
they published their observations, see A. Hewish, J. Bell, J. Pilkington, P. Scott and R. Collins
[“Observation of a rapidly pulsating radio source” Nature 217, 709 (1968)].

Signals from the pulsar PSR B1919+21 on 28 November 1968

from www.bbc.co.uk/

Passionate discussions started about the nature of the radiation. A majority, including Hewish,
first thought that it might come from radial oscillations of a white dwarf. However, it turned
out that not even a white dwarf, let alone a main sequence star, could perform oscillations with
such a high frequency. After about a year, it was the prevailing opinion that the radiation comes
from a rotating neutron star. Thomas Gold was the first to suggest such a model in 1968 [T.
Gold: “Rotating neutron stars as the origin of the pulsating radio sources” Nature 218, 731-732
(1968)], which was initially ridiculed by many astrophysicists. The idea was that the neutron
star has a magnetic field that is not aligned with the rotation axis. Radiation is emitted in a
cone around the magnetic field axis, and this cone rotates like the beacon of a lighthouse. The
observer registers a pulse whenever the cone hits the Earth. Neutron stars had been introduced,
as a theoretical possibility, in 1934 by Walter Baade and Fritz Zwicky, but up to the discovery
of pulsars there was no indication that they actually exist in Nature. An animation of the
lighthouse model can be found in Section 2.1 of D. Lorimer [“Binary and Millisecond Pulsars”,
Living Rev. Relativity 11, (2008), http://www.livingreviews.org/lrr-2008-8].
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Within a few years after the discovery of
PSR B1919+21, several dozens of pulsars
were found. 14 of them are shown in the
plaques that are on board the spacecraft
Pioneer 10 and 11. They were launched in
1972 and 1973 and are the first spacecraft
to leave the Solar system. The positions
of the pulsars are shown, relative to the
Earth, in the diagram in the left part of
the plaque, see picture. This should tell
an extraterrestrial civilisation where the
spacecraft came from, in case that Pioneer
10 or 11 is intercepted by them.

Plaque on board Pioneer 10 and 11
from en.wikipedia.org

The best known example of a pulsar is the neutron star at the centre of the Crab Nebula. It is
the remnant of a supernova that was observed from the Earth in 1054. It is also visible in the
optical and X-ray parts of the spectrum. There are also some pulsars that emit gamma rays,
e.g. the Vela pulsar.

In 1974 Hewish received the Nobel Prize for the discovery of pulsars. Some people thought
that it would have been fair if Jocelyn Bell had shared the prize. By now more than 2000
radio pulsars are known. Most of them are within our galaxy, but there are also a few in the
Magellanic Clouds. The periods vary from a few milliseconds to about 10 seconds.

After these remarks on pulsars in general, we turn now to binary pulsars. This term refers to
binary systems in which at least one partner is a pulsar. About 10 % of all known pulsars have
a companion. The first binary pulsar, PSR B1913+16, was discovered in 1974. It was again
the work of a PhD student and a supervisor, this time Russell Hulse and Joseph Taylor from
Cornell University. In contrast to the earlier story, both were awarded the Nobel Prize in 1993.

Russel Hulse (1950 - ) and Joseph Taylor (1941 - )
from th.physik.uni-frankfurt.de/
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The discovery was made with the 305-meter Arecibo radio telescope, see picture, which is placed
in a natural karst sinkhole and is not movable. PSR B1913+16 is a pulsar with a period of 59
milliseconds. Evidence for the existence of a companion, which is dark and mute, came from
the fact that the arrival time of the pulses varied periodically. If this is interpreted as a Doppler
effect, it means that the pulsar is moving towards us, then away from us, then again towards
us, and so on.

The Arecibo telescope in Puerto Rico
from en.wikipedia.org from Hulse and Taylor, loc. cit.

The plot of the radial velocity above is taken from the original paper by R.Hulse and J. Taylor
[“Discovery of a pulsar in a binary system” Astrophys. J. 195, L51 (1975)]. After correcting
for the motion of the Earth, for dispersion in the intergalactic medium and for other effects,
Hulse and Taylor fitted the observed time dependence of the radial velocity to a Kepler orbit.
There is a certain degeneracy, i.e., not all orbital elements can be uniquely determined, but the
following parameters of the system were found. The numbers are taken, again, from the paper
by Hulse and Taylor but adapted to our notation.

T 7.75 hours

ε 0.61

aM2

M1 +M2

sin i 1.0R�

(M2 sin i )3

(M1 +M2)2
0.13M�

Here an index 1 stands for the pulsar and an index 2 stands for the invisible companion. i
is the inclination angle. From the Newtonian analysis one cannot determine the individual
masses M1 and M2. However, this is possible with the help of relativistic corrections, using the
post-Newtonian (PN) approximation which was mentioned alreday at the end of the preceding
section. Roughly speaking, this is an expansion in powers of v/c. If relativistic effects are
taken into account, in particular the transverse Doppler effect and the gravitational Doppler
effect, the individual masses and all orbital parameters can be determined. The method, which
was worked out by V. Brumberg, Y. Zeldovich, I. Novikov and N. Shakura [“Determination of
the component masses and inclination of a binary system containing a pulsar from relativistic
effects”, Sov. Astr. Lett. 1, 2 (1975)], is sketched in Straumann’s book.
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One finds

M1 1.44M�

M2 1.39M�

a 2.80R�

i 45o

periastron shift 4.2 o/yr = 1.7”/T

For the sake of comparison, we recall that the perihelion shift of Mercury is 43”/cty = 0.1”/T .
With reference to the orbital period T (7.75 hours in the case of the binary pulsar and 88 days
in the case of Mercury), the difference is not very big.

From the orbital elements one finds that at periastron the separation of the two stars is only 1.1
Solar radii, while at apastron it is 4.5 Solar radii. The companion is thought to be a neutron
star as well. We do not know the radii of the two stars precisely, but typically neutron stars
have radii between 10 and 20 km. The picture below compares the orbits of PSR B1913+16
and two other binary pulsars to the size of the Sun.

from http://www.usra.edu

From the orbital elements and the two masses we can calculate the inspiralling time tsp. (Recall
that we have worked out a formula for tsp only for the case of a circular orbit; however, the
binary pulsar’s eccentricity is not so close to 1 that it would have a significant impact.) We
find that tsp is about 300 million years.

Already in the original Hulse-Taylor paper it is remarked that the system should be a highly
promising candidate for testing general relativity. In the above-mentioned paper by Brumberg
et al. it was noted that it could provide indirect evidence for the existence of gravitational
waves: With the masses and the orbital elements known, one could check if the period T
depends on time according to the formula derived from general relativity.
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from Taylor and Weisberg, loc. cit. from www.ast.cam.ac.uk

Such a dependence of T on time was reported by J. Taylor, L. Fowler and P. McCulloch
[“Measurements of general relativistic effects in the binary pulsar PSR 1913+16” Nature 277,
437 (1979)] and confirmed, on the basis of more data, by J. Taylor and J. Weisberg [“A new test
of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16” Astrophys.
J. 253, 908 (1982)]. The plot on the left is taken from the latter paper. It clearly shows the
decrease of the orbital period. The solid line gives the prediction according to general relativity,
on the basis of the determined orbital parameters. In the course of time, the agreement between
observation and theory became very impressive, see plot on the right. It is to be emphasised
that this is not a fit: The curve is calculated with Einstein’s quadrupole formula from the
orbital elements and the masses as they have been found from the observed Doppler redshifts.
There is no free parameter to which the data points could be fitted. This agreement between
theoretical prediction and observation is one of the best confirmation of general relativity. It
was generally accepted as (indirect) proof of the existence of gravitational waves beyond any
reasonable doubt.

After the discovery of the Hulse-Taylor pulsar, several other binary pulsars were detected. They
are used on a regular basis for testing general relativity and alternative theories of gravity. Up
to now, general relativity has passed all tests with flying colours, whereas severe restrictions
have been found for many alternative theories.

In addition to the Hulse-Taylor pulsar, there are some other binary pulsars that deserve special
attention.

• In 2003, Marta Burgay et al. found a double pulsar, PSR J0737-3039A and PSR J0737-
3039B, i.e., a binary system in which both stars are pulsars. This allows for even more
precise tests of general relativity. Pulsar A has a period of 23 Milliseconds, pulsar B of
2.8 seconds. The masses are MA = 1.34M� and MB = 1.25M�. The period is only 2.4
hours. Correspondingly, the separation of the two stars is even smaller than for PSR
B1913+16 and its companion; the whole system would fit within the Sun. As the orbital
plane is seen almost edge-on, there are eclipses. The apparent irregularity of the eclipses
caused a puzzle for a while.

47



from Breton et al., loc. cit.

A model that could solve this puzzle was brought forward by R. Breton, V. Kaspi, M.
McLaughlin, M. Lyutikov, M. Kramer, I. Stairs, S. Ransom, R. Ferdman, F. Camilo and
A. Possenti [“The double pulsar eclipses. I. Phenomenology and multi-frequency analysis”
Astrophys. J. 747, 89, (2012)]. According to this model, pulsar B is surrounded by a
doughnut-shaped magnetosphere which, in the course of its rotation, sometimes eclipses
pulsar A. The picture above is taken from the paper by Breton et al. Since March 2008
the radio pulses from pulsar B are invisible because, as a consequence of the precession
of the spin axis, the beam misses the Earth.

• In 2013, a magnetar (i.e., a neutron star with a very strong magnetic field) was found at an
angular distance of only 3 arcseconds from the centre of our galaxy, PSR J1745-2900. Of
course, in terms of the Schwarzschild radius of the supermassive black hole at the centre
of our galaxy, this is still a fairly large distance; the Schwarzschild radius corresponds to
about 10 microarcseconds. Therefore, there is not a strong gravitational coupling of this
magnetar to the centre. Finding a pulsar that is in a close orbit around a black hole is
considered as the Holy Grail of pulsar research.

• In 2014, a ternary pulsar was discovered, PSR J0337+1715. Both companions are white
dwarfs. Already in the late 1990s a pulsar in a triple system had been found, but the
separations were quite large with orbital periods of several decades. The newly found
system is much closer so that it is a much more promising candidate for additional tests
of general relativity.
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4 Gravitational wave detectors

In the preceding chapter we have discussed the generation of gravitational waves. As the most
important results, we have found that, to within certain approximations, the gravitational
field in the far zone is determined by the second time-derivative of the (mass) quadrupole
tensor of the source and that the radiated power is determined by the third time-derivative of
this quadrupole tensor. In this chapter we will now introduce various types of gravitational
wave detectors that have been conceived and we will discuss for what kind of sources they are
sensitive.

4.1 Resonant bar detectors

Resonant bar detectors are vibrating systems in which a gravitational wave would excite a
resonant oscillation. The idea was brought forward in 1960 by Joseph Weber [“Detection and
generation of gravitational waves”, Phys. Rev. 117, 306 (1960)]. A few years later, the first
resonant bar detectors constructed by Weber went into operation. Some more sophisticated
resonant bar detectors are still in use.

To explain the basic idea, we begin by considering the simplest vibrating system that can be
used as a gravitational wave detector, namely two masses connected by a spring. This simple
example is also treated in the first part of Weber’s 1960 paper and it is dicussed in fairly great
detail in the book by Misner, Thorne and Wheeler.

We have to recall some of our earlier results. In Worksheet 2 we derived a differential equation
for the motion of freely falling particles under the influence of a gravitational wave,

d2y`(t)

c2dt2
= R`

0k0

(
ct,~0

)
yk(t) , (J)

where the curvature tensor can be expressed as

R`
0k0

(
ct,~0

)
=

1

2
∂2

0γ
`
k

(
ct,~0

)
.

Here γ`k is a plane-harmonic gravitational wave in the TT gauge, with the four-velocity uµ of
the chosen observer tangent to the x0-lines. The coordinates yk are chosen such that the freely
falling particle at yk(t) has distance

√
yk(t)yk(t) from the freely falling particle at the origin.

The differential equation is linearised with respect to yk(t), i.e., it is valid only as long as this
quantity is sufficiently small.

(J) is a version of the Jacobi equation (or equation of geodesic deviation). If looked at with
Newtonian eyes, the right-hand side of (J) is to be interpreted as the gravitational force. The
solutions to (J) give, for γ`k either a plus mode or a cross mode, the familiar patterns from
p. 15.
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We will now consider a particle with mass m that is acted on by an additional (i.e., non-
gravitational) force f `(t). Then we have to replace (J) with the equation of motion

d2y`(t)

dt2
= c2R`

0k0

(
ct,~0

)
yk(t) +

1

m
f `(t) .

We will now consider a particle with mass m that is acted on by an additional (i.e., non-
gravitational) force f `(t). Then we have to replace (J) with the equation of motion

d2y`(t)

dt2
= c2R`

0k0

�
ct,~0

�
yk(t) +

1

m
f `(t) .

x1

x2

x3

#

'

~k

y`(t) = s` + ⇠`(t)

For a system of two masses with m1 = m2 = m connected by a spring, the position y`(t) of
mass m1 satisfies this equation with

y`(t) = s` + ⇠`(t) , f `(t) = �k ⇠`(t) � �
d⇠`(t)

dt
,

see the figure above. Here s` gives the position of m1 in the equilibrium state, �k ⇠`(t) is the
restoring force with a spring constant k, and ��d⇠`(t)/dt is the damping force with a damping
constant �. The equation of motion reads

d2⇠`(t)

dt2
= c2R`

0k0

�
ct,~0

��
sk + ⇠k(t)

�
� k

m
⇠`(t) � �

m

d⇠`(t)

dt
.

If the elongation of the spring from the equilibrium state is small, we can neglect ⇠k(t) in
comparison to sk, i.e.

d2⇠`(t)

dt2
+
�

m

d⇠`(t)

dt
+

k

m
⇠`(t) = c2R`

0k0

�
ct,~0

�
sk .
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For a system of two masses with m1 = m2 = m connected by a spring, the position y`(t) of
mass m1 satisfies this equation with

y`(t) = s` + ξ`(t) , f `(t) = −k ξ`(t)− γ dξ
`(t)

dt
,

see the figure above. Here s` gives the position of m1 in the equilibrium state, −k ξ`(t) is the
restoring force with a spring constant k, and −γdξ`(t)/dt is the damping force with a damping
constant γ. The equation of motion reads

d2ξ`(t)

dt2
= c2R`

0k0

(
ct,~0

)(
sk + ξk(t)

)
− k

m
ξ`(t)− γ

m

dξ`(t)

dt
.

If the elongation of the spring from the equilibrium state is small, we can neglect ξk(t) in
comparison to sk, i.e.

d2ξ`(t)

dt2
+
γ

m

dξ`(t)

dt
+
k

m
ξ`(t) = c2R`

0k0

(
ct,~0

)
sk .

As given above, we can express the curvature tensor by the second derivative of the γ`k. With

γ`k
(
ct, ~r

)
= Re

{
A`ke

i(~k·~r−ωt )
}
,

∂2
0γ

`
k

(
ct, ~r

)
=

1

c2
Re
{
− ω2A`ke

i(~k·~r−ωt )
}
,
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c2R`
0k0

(
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)
=

1

2
∂2

0γ
`
k

(
ct,~0

)
= − ω

2

2
Re
{
A`ke

−iωt} .

If we assume that the masses at the ends of the spring can be displaced only in the longitudinal
direction of the spring, we have

ξ`(t) = ξ(t)
s`

s
,

where, according to the figure on p. 50,

(
s`
)

= s




cosϕ sinϑ
sinϕ sinϑ

cosϑ


 ,

(
ξ`(t)

)
= ξ(t)




cosϕ sinϑ
sinϕ sinϑ

cosϑ


 .

Then the equation of motion reads

s`

s

(d2ξ(t)

dt2
+
γ

m

dξ(t)

dt
+
k

m
ξ(t)

)
= − ω

2

2
Re
{
A`ks

ke−iωt
}
,

or, after multiplication with s`/s,

��
�s`s`

��s2

(d2ξ(t)

dt2
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m

dξ(t)
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+
k

m
ξ(t)
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= − ω

2

2
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k s`
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e−iωt
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We evaluate the right-hand side for a pure plus mode. The gravitational wave is assumed to
propagate in the x3 direction, as indicated in the figure on p. 50 by the wave vector ~k. We find

(
A`k
)

=



A+ 0 0
0 −A+ 0
0 0 0


 ,

s`A
`
ks
k = s




cosϕ sinϑ
sinϕ sinϑ

cosϑ


 ·



A+ 0 0
0 −A+ 0
0 0 0


 s
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cosϕ sinϑ
sinϕ sinϑ

cosϑ


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= s2
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cosϕ sinϑ
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cosϑ
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 ·
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−A+sinϕ sinϑ

0


 = s2A+

(
cos2ϕ− sin2ϕ

)
sin2ϑ = s2A+cos(2ϕ) sin2ϑ .

This gives us the equation of motion in its final form,

d2ξ(t)

dt2
+
γ

m

dξ(t)

dt
+
k

m
ξ(t) = − s ω

2

2
A+ cos(2ϕ) sin2ϑ cos(ωt) ,

which is the equation of a one-dimensional damped harmonic oscillator with a driving force. In
the last step we have assumed that A+ is real. This is no loss of generality because a non-zero
phase of A+ can be compensated for by a shift of the zero on the time axis.

Solving this equation is an elementary text-book matter. The general solution to the inhomo-
geneous ODE is the general solution of the homogeneous ODE plus a particular solution to the
inhomogeneous ODE.
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To solve the homogeneous ODE,

d2ξ(t)

dt2
+
γ

m

dξ(t)

dt
+
k

m
ξ(t) = 0 ,

we insert the ansatz
ξ(t) = C eκt .

This gives us

C eκt
(
κ2 +

γ κ

m
+
k κ

m

)
= 0 ,

hence

κ1/2 = − γ

2m
±
√

γ2

4m2
− k

m
.

As long as the damping is undercritical,

0 <
k

m
− γ2

4m2
=: ω2

0 ,

we have
κ1/2 = − γ

2m
± i ω0 ,

and the general solution to the homogeneous equation is

ξhom = C1e
κ1t + C2e

κ2t = e−γt/(2m)
(
C1e

iω0t + C2e
−iω0t

)
.

C1 and C2 are determined by initial conditions. Whatever the initial conditions are, the solution
dies down in the course of time.

We have now to find one particular solution to the inhomogeneous equation

d2ξ(t)

dt2
+
γ

m

dξ(t)

dt
+
k

m
ξ(t) = − s ω

2

2
cos(2ϕ) sin2ϑRe

{
A+ e

−iωt} .

With the ansatz
ξ(t) = Re

{
a e−iωt

}

we get

Re
{
a e−iωt

(
− ω2 − iωγ

m
+
k

m

)}
= −s ω

2

2
cos(2ϕ) sin2ϑRe

{
A+ e

−iωt} ,

Re
{
e−iωt

(
a
(
ω2 − k

m
+
i ω γ
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)
− s ω2A+

2
cos(2ϕ) sin2ϑ

)}
= 0 ,

a =
s ω2A+cos(2ϕ) sin2ϑ

ω2 − k

m
+
i ω γ

m

.

Therefore, if we wait until the solution to the homogeneous equation has died down, the oscil-
lation of our spring system driven by the gravitational wave is given by

ξ(t) = Re
{
a e−iωt

}
= s ω2cos(2ϕ) sin2ϑRe

{ A+ e
−iωt

ω2 − k

m
+
i ω γ

m

}
.
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The amplitude

∣∣a
∣∣ =

s
∣∣A+

∣∣ ∣∣cos(2ϕ)
∣∣ sin2ϑω2

∣∣∣ω2 − k

m
+
i ω γ

m

∣∣∣
=

s
∣∣A+

∣∣ ∣∣cos(2ϕ)
∣∣ sin2ϑω2

√(
ω2 − k

m

)2

+
ω2 γ2

m2
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In the case of vanishing damping, γ = 0, the amplitude is even infinite at ωres =
√
k/m, see

the diagram.
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lation of our spring system driven by the gravitational wave is given by
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In the case of vanishing damping, � = 0, the amplitude is even infinite at !res =
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k/m, see
the diagram.
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The optimal orientation of the spring is transverse to the direction of the incoming gravitational
wave, sin2# = 1. In the case of longitudinal orientation, sin2# = 0, the amplitude is zero. With
respect to the ' dependence, which gives the orientation in the plane perpendicular to the
propagation direction of the wave, there is not only a 2⇡ periodicity but even a ⇡ periodicity.
This reflects the fact that the (linearised) gravitational field has spin 2, cf. Problem 1 of
Worksheet 3.

If the damping could be made arbitrarily small, a gravitational wave would produce a signal of
arbitrarily large amplitude, at least near the resonance frequency. In practice the damping is
of course limited. One often expresses the damping in terms of the Q factor

Q =

p
km

�

which, for undercritical damping, ranges from 1/2 to infinity. For oscillating mechanical systems
the Q factor is limited by about 105.
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The optimal orientation of the spring is transverse to the direction of the incoming gravitational
wave, sin2ϑ = 1. In the case of longitudinal orientation, sin2ϑ = 0, the amplitude is zero. With
respect to the ϕ dependence, which gives the orientation in the plane perpendicular to the
propagation direction of the wave, there is not only a 2π periodicity but even a π periodicity.
This reflects the fact that the (linearised) gravitational field has spin 2, cf. Problem 1 of
Worksheet 3.

If the damping could be made arbitrarily small, a gravitational wave would produce a signal of
arbitrarily large amplitude, at least near the resonance frequency. In practice the damping is
of course limited. One often expresses the damping in terms of the Q factor

Q =

√
km

γ

which, for undercritical damping, ranges from 1/2 to infinity. For oscillating mechanical systems
the Q factor is limited by about 105.

We have used the spring system to explain the basic idea of how to use vibrating systems
for detecting gravitational waves. The resonant bar detectors which were built by Weber and
others are based on the same idea. However, instead of masses connected by a spring one uses
elastic solids, traditionally with a cylindrical shape.

53



In this case, y`(t) denotes the position vector of an arbitray mass element of the solid with
respect to a body-fixed reference point. Again, we write y`(t) = s` + ξ`(t) where s` gives the
position in equilibrium. One introduces a second rank tensor ε`k(t) by the equation ξ`(t) =
ε`k(t)s

k . The antisymmetric part of ε`k(t) describes a rotation of the mass element, while the
symmetric part describes expansion and shear. The symmetric part of ε`k(t) is known as the
strain tensor. By assuming again a linear restoring force (i.e., Hooke’s law now in the version
of continuum mechanics) and a linear damping, one gets a differential equation for the strain
tensor which is very similar to the damped oscillator equation for the spring system. As a
consequence, a cylinder that is positioned transverse to a plane-harmonic gravitational wave
undergoes periodic deformations as shown in the picture below.

Oscillating Weber cylinder

ωt = 0, π, 2π, . . .

ωt =
π

2
,
3π

2
,
5π

2
, . . .

Weber’s first gravitational wave detector was an aluminium cylinder with a weight of 1.5 tons
(150 centimeters long, 60 centimeters in diameter). The fundamental resonance frequency
was at about 1660 Hertz. Quartz crystals glued to the surface were used for measuring the
deformations; as quartz crystals are piezoelectric, they transform a strain into a voltage which
can be measured. Below the picture on the left shows the principal method, the picture on the
right shows Joseph Weber with one of his resonant bar detectors.

from J. Levine, Phys. Perspect. 6, 42 (2004) from physics.aps.org
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Weber operated his resonant bar detectors in pairs, searching for coincidences. In the beginning
he had two detectors on the campus of Maryland University, then he moved one of them to
Chicago. He claimed that he had found significant statistical evidence for coincident events
which he thought to be gravitational wave signals. Nowadays there is agreement that his
detectors were too crude to measure gravitational waves. Weber also had the idea of using
the Moon as a resonator. To that end he sent a gravimeter (essentially nothing but a highly
sensitive spring balance) to the Moon with the Apollo 17 mission. The Moon is seismically very
quiet, and its resonance frequency is at about 10−3 Hz, i.e., much lower than that of the Weber
cylinders. This would make gravitational waves of low frequencies observable. Apollo 17 indeed
placed Weber’s gravimeter on the Moon but unfortunately the instrument malfunctioned.

Joseph Weber died in the year 2000. By that time, attempts to detect gravitational waves had
shifted to interferometric methods, see next section. However, there are still a few resonant bar
detectors in operation. While in the beginning Weber did his observations at room temperature,
all modern resonant bar detectors are operated at a temperature of a few millikelvins to reduce
thermal noise. The picture below on the left shows the AURIGA instrument near Padova
in Italy which was operational until 2009. It was a resonant bar detector of the traditional
cylindrical shape, situated inside a tank to keep it at cryogenic temperatures. The picture below
on the right shows the MiniGRAIL instrument at the Kamerlingh Onnes Institute in Leiden in
the Netherlands. It has a spherical shape, so it can detect gravitational waves from all spatial
directions. There is a similar instrument, named after the late physicist Mario Schenberg, in
Brazil. These are the only two resonant detectors that are in operation at present.

from www.auriga.lnl.infn.it from www.minigrail.nl

Resonant bar detectors can detect waves only in a narrow frequency band around the resonance
frequency which is above or slightly below 1 kHz. Inspiralling binaries have a considerably lower
frequency. Spinning bumpy neutron stars could produce gravitational waves with a frequency
close to 1 kHz, see Worksheet 6, but their amplitude would probably be too low for being
detected with resonant bar detectors. Therefore, the search with such instruments concentrates
on burst sources such as core-collapse supernovae.
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For measuring a gravitational wave signal with the help of a resonant bar detector it is not
sufficient that the amplitude of the signal is big enough to be observable; it is also necessary
that it is bigger than the noise level. For resonant bar detectors, there is in particular seismic
noise and thermal noise. For characterising the noise level, which is frequency dependent, one
proceeds in the following way. Let us assume that we have a detector just under the influence of
noise, i.e., with no real gravitational wave signal coming in. Then we could measure the strain
n(t1) at time t1 and the strain n(t2) at time t2. If the detector and the noise sources have no
explicit time dependence, only the time difference τ =

∣∣t2 − t1
∣∣ will matter. So if we do these

measurements very often, always with the same time difference τ , we can form an ensemble
average

〈n(t1)n(t2)〉 = κ(τ) .

For determining the frequency dependence one performs a one-sided Fourier expansion, i.e.,
one defines

Sh(ω) =





1

2

∫ ∞

0

κ(τ) eiωτ dτ if ω > 0

0 if ω < 0 .

The quantity
√
Sh(ω) is known as the power spectral density of the strain or as the strain

sensitivity. This quantity, which has the dimension 1/
√

Hz, is usually plotted against ω. A
signal must lie above the graph of this function for being observable; if it lies below this graph
it is drowned in the noise.

The picture below shows the sensitivity of the MiniGRAIL instrument. One sees that ths
instrument can detect a signal only near 3 kHz.

from A. de Waard et al, Class. Quant. Grav. 22, S215 (2005)
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4.2 Interferometric gravitational wave detectors

With the help of a Michelson interferometer, tiny distance changes can be measured. The idea
to use this well-known fact for the detection of gravitational waves came up in the early 1960s.
The first published paper on the subject was by M. Gertsenshtein and V. Pustovoit [“On the
detection of low-frequency gravitational waves”, Sov. Phys. JETP 16, 433 (1962)]. The idea
was strongly supported by V. Braginsky who became the leading figure in gravitational wave
research in the Soviet Union and later in Russia, but no powerful gravitational wave detector
was ever built there. Concrete plans for constructing an interferometric gravitational wave
detector were brought forward in the US and in Western Europe in the 1970s. J. Forward
actually built a small model detector in the mid-1970s. The construction of big instruments
(GEO600, LIGO, VIRGO etc., see below) started in the 1990s. Many people were instrumental.
The GEO600 project was initiated by H. Billing and later advanced by K. Danzmann. The
first LIGO directors were R. Weiss, R. Drever and K. Thorne. All of them lived long enough to
witness the detection of gravitational waves in 2015, but H. Billing and R. Drever passed away
in 2017.

For understanding the basic idea of how an interferometric gravitational wave detector works,
we have to recall what a Michelson interferometer is.
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M1

M2

B

D

d1

d2

A laser beam is sent through the beam splitter B. One beam is reflected at mirror M1, the other
one at mirror M2. When arriving at the detector D the two beams have a phase di↵erence that
can be observed in terms of an interference pattern. If the instrument is operated in vacuo, the
phase di↵erence is

�� =
2⇡

�
2 (d1 � d2)

where � is the wave length of the laser. The gravitational wave detectors LIGO, VIRGO and
GEO600 are operated with an Nd:YAG Laser at � = 1064 nm which is in the infrared, just
outside of the visible part of the spectrum.
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A laser beam is sent through the beam splitter B. One beam is reflected at mirror M1, the other
one at mirror M2. When arriving at the detector D the two beams have a phase difference that
can be observed in terms of an interference pattern. If the instrument is operated in vacuo, the
phase difference is

∆φ =
2π

λ
2 (d1 − d2)

where λ is the wave length of the laser. The gravitational wave detectors LIGO, VIRGO and
GEO600 are operated with an Nd:YAG Laser at λ = 1064 nm which is in the infrared, just
outside of the visible part of the spectrum.
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To use such a device as a gravitational wave detector, we think of the beam splitter B, the
mirror M1 and the mirror M2 as being suspended with the help of files in such a way that they
can move freely in the plane of the interferometer. For their motion in this plane, we can thus
use the equation of motion for freely falling particles. Under the influence of a gravitational
wave whose propagation direction is orthogonal to the plane of the interferometer, they will
move according to the patterns from p. 15. Here we should identify the beam splitter with
the particle at the centre of the coordinate system, and the mirrors M1 and M2 with particles
on the x1 axis and on the x2 axis, respectively. For determining the time-dependence of the
distances d1 and d2, and thus of the phase difference, we use our results from p. 14 where we
assume, for simplicity, a pure plus mode,

δk`y
k(t)y`(t) = δk`x

kx` +
∣∣A+

∣∣ ((x1)2 − (x2)2
)

cos
(
ωt− ϕ

)
.

If we assume that in the unperturbed state both arms have the same length d0, for the mirror
M1 we have x1 = d0, x

2 = x3 = 0, hence

d1(t)2 = d2
0

(
1 +

∣∣A+

∣∣ cos
(
ωt− ϕ

))
,

and for the mirror M2 we have x2 = d0, x
1 = x3 = 0, hence

d2(t)2 = d2
0

(
1−

∣∣A+

∣∣ cos
(
ωt− ϕ

))
.

As a consequence, the phase difference reads

∆φ(t) =
4π

λ

(
d1(t)− d2(t)

)
=

4π

λ
d0

(√
1 +

∣∣A+

∣∣ cos
(
ωt− ϕ

)
−
√

1−
∣∣A+

∣∣ cos
(
ωt− ϕ

))

which, according to our general agreement to linearise all expressions with respect to the grav-
itational wave, simplifies to

∆φ(t) =
4π

λ
d0

(
1 +

1

2

∣∣A+

∣∣ cos
(
ωt− ϕ

)
− 1 +

1

2

∣∣A+

∣∣ cos
(
ωt− ϕ

)
+ . . .

)

=
4π

λ
d0

∣∣A+

∣∣ cos
(
ωt− ϕ

)
.

Clearly, the phase difference is proportional to the amplitude |A+| of the incoming gravitational
wave. It is also proportional to the armlength d0 of the interferometer. This is the reason why
gravitational wave detectors need a long armlength, several hundred meters at least. As always
with Michelson interferometers, the phase difference is proportional to the inverse of the wave
length λ of the laser. λ is not to be confused with the wave length of the gravitational wave.
The frequency ω of the gravitational wave enters into the formula for the phase shift only
insofar as it gives the periodicity with which the interference pattern changes. In contrast to
the resonant bar detectors, interferometric detectors are not restricted to a narrow frequency
band. The observable frequency ω is mainly limited by seismic noise which, for ground-based
interferometric detectors, will render gravitational wave signals of less than 1 Hz practically
unobservable.

In addition to the noise produced by seismic vibrations and by a (time-dependent) gradient
of the gravitational acceleration, resulting from the fact that the Earth is not a perfect ho-
mogeneous sphere, there are several other sources of noise. Thermal noise has the effect that
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interferometric gravitational wave detectors have to be cooled down if they are to operate be-
low ≈ 30 Hz. The first-generation detectors (TAMA300, GEO600, LIGO, VIRGO, see below)
operate at room temperature, but the next generation of detectors will use cryogenic techniques
to reach lower frequencies. At the upper end of the frequency band, quantum noise plays a
major role. The elementary theoretical explanation of how an interferometer works is based
on a classical wave theory of light. If it is taken into account that, actually, light consists of
quantum particles (photons), deviations from the classical interference patterns occur. Roughly
speaking, the mirrors in the interferometer are hit not by a classical wave but rather by a stream
of photons, similar to a stream of pellets from a shot gun. The resulting deviations from the
classical interference pattern are known as shot noise. These deviations are small if the laser
beam consists of many photons, i.e., if the laser power is high. Noise resulting from the quan-
tum nature of light restricts the existing interferometric wave detectors to frequencies below
≈ 10 kHz.

We now give a brief overview on the existing and planned interferometric gravitational wave
detectors. The first small model detector of this type was built by J. Forward in Malibu,
USA, in 1970. This was followed by a number of similar detectors at a laboratory scale,
too small to actually detect gravitational waves but useful for testing the technology, e.g. in
Garching, Germany, and in Glasgow, UK. In the mid-nineties the construction of detectors
with an armlength of at least a few hundred meters began. In chronological order of the date
when they became operational, these are the following.

TAMA300: This was a detector of 300 m arm length, located at the Mitaka Campus in Tokyo,
Japan. It was operational from 1999 until 2004. As a comparatively small instrument its
main purpose was to develop advanced technologies to be used in bigger detectors.

GEO600: This is a German-British project, originally planned to be realised near Munich.
Finally, the detector was built near Ruthe near Sarstedt near Hannover in the middle of
nowhere in Northern Germany. It became operational in 2001.

GEO600
from http://www.questhannover.de

59



The design is quite inconspicuous. In the picture on the preceding page we see the two
vacuum tubes around the two arms of the interferometer, each of which has a length of
600 m. The two tubes meet at the main building.

GEO600 vacuum containers
from http://www.2physics.com

The main building hosts the laser, the beam splitter and several additional mirrors, e.g.
for power recyling and for mode cleaning, each in a vacuum container, see figure above.
The figure below gives an inside view of the container that houses the beam splitter.

GEO600 beam splitter
from http://u-182-ls004.am10.uni-tuebingen.de

GEO600 is sensitive in the frequency band between 50 Hz and 1.5 kHz. It is operated with
an Nd:Yag laser with an output power of 10 W at a wavelength of λ = 1064 nm. With the
help of power recycling, the laser power that is actually circulating in the interferometer
is much bigger, namely ≈ 10 kW. Since 2011 GEO600 uses a second laser that produces
squeezed light for reducing quantum noise. This second laser beem is seen in the figure
above. Squeezed light is light in a state that minimises Heisenberg’s uncertainty relation
in such a way that the uncertainty in space is very small while the uncertainty in Fourier

60



space is correspondingly big. The reduction of quantum noise is achieved by feeding
this squeezed light into the interferometer (from below in the figure), in addition to the
light from the main laser (which comes from the left in the figure). GEO600 is sensitive
enough to detect length changes d1 − d2 in the order of 10−18 m. Recall for the sake of
comparison that the diameter of a proton is about 10−15 m. In contrast to other existing
interferometric gravitational wave detectors, GEO600 has no Fabry-Perrot cavities in the
arms. During the time when LIGO and VIRGO underwent their upgrade to Advanced
LIGO and Advanced VIRGO respectively, GEO600 was operational. It will be upgraded,
afterwards, to GEO-HF.

LIGO: There are two LIGO sites, one in Hanford, Washington, USA, and one in Livingston, Lou-
isiana, USA. At each site there is an interferometer with 4 km arm length. At the Hanford
site there is a second interferometer with 2 km arm length in the same vacuum tube.

LIGO Hanford (Washington)
from https://www.ligo.caltech.edu

LIGO Livingston (Louisiana)
from https://www.ligo.caltech.edu
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LIGO went operational in 2002. The vacuum tubes of 4 km length and 1.2 m diameter
are the biggest existing ultra-high vacua. LIGO operates in the range between 30 Hz and
7 kHz. Having two smilar instruments working in parallel allows searching for coincident
events. With the help of Fabry-Perot cavities in the arms the effective arm length of the
LIGO detectors is raised to about 1600 km. The data of LIGO and GEO600 are pooled
and analysed jointly. The data analysis team is known as the LIGO Scientific Collab-
oration (LSC). Amateurs are included in the data analysis. Within the Einstein@home
project, everybody is invited to provide his or her computer for analysing scientific data.
Einstein@home was already very succesful in analysing data from the radio telescopes at
Arecibo and at Green Banks; more than a dozen new pulsars were found by amateurs. Af-
ter being upgraded, LIGO became operational again under the name of Adanced LIGO in
Summer 2015. At one of the very first runs after the update, which was not even planned
as a science run originally, on 14 September 2015 a gravitational wave signal from a black-
hole merger was detected, see next section. – A third detector of the Advanced-LIGO
type is going to be built in India.

VIRGO: This is an Italian-French gravitational wave detector at Cascina near Pisa in Italy
that became operational in 2007. The geometrical arm length is 3 km, but the effective
arm length can be extended up to 100 km. VIRGO is operated at frequencies between
10 Hz and 10 kHz. At present, VIRGO is shut down. It will return after being upgraded
under the name of Advanced VIRGO later in 2017.

VIRGO
from http://www.ego-gw.it

These are the interferometric gravitational wave detectors that already exist. Future plans
include the following two ground-based detectors:

KAGRA: The original name of this Japanese project was LCGT (Large Scale Cryogenic
Gravitational Wave Telescope). As suggested by the C in the name, it is a detector
that will use cryogenic materials such that it can be operated at low temperatures. The
instrument is to be built in tunnels of the Kamioka mine, with an arm length of 3 km. It
is planned to become operational in 2018.
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Einstein Telescope: This is a joint project of eight European institutions, including the Al-
bert Einstein Institute in Hannover, Germany. At the moment it is unclear if, when and
where the project will be realised.

Einstein Telescope
from http://physicsworld.com

Similarly to KAGRA, it will be an underground detector (at a depth of 100−200 m) and
it will use cryogenic materials for low thermal noise.

The sensitivity of existing and planned ground-based interferometric gravitational wave detec-
tors is shown in the picture below. The resonant bar detector AURIGA is included for the sake
of comparison.

from S. Hild, Class. Quantum Grav. 29, 124006 (2012)
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As mentioned above, ground-based interferometers are limited to frequencies above 1 Hz, be-
cause of seismic noise. Therefore, e.g. gravitatonal waves emitted by the Hulse-Taylor pulsar
(with a frequency of less than ≈ 10−4 Hz) or by similar binary pulsars are outside of the range
of such detectors. There are plans for space-based interferometric gravitational wave detectors
that could overcome this limit. They include the following.

LISA: This is a long-standing project, designed already in the 1990s, for a space-based inter-
ferometric detector. LISA (Laser Interferometer Space Antenna) was originally planned
as a joint project of NASA and ESA.

from http://lisa.nasa.gov

In this original version, LISA should consist of three satellites, see the picture, arranged
in an equilateral triangle with a side length of 5 million kilometers. (That’s about 12
times the separation of the Earth and the Moon.) This triangular array was supposed
to fly along the orbit of the Earth around the Sun, trailing the Earth by 20 degrees.
The inclination of the plane of the triangle with respect to the ecliptic was planned
to be 60 degress. Each of the three satellites was to host two laser sources and two
test masses, so that from each satellite a laser beam could be sent to a test mass in
either of the two others. As it is impossible to receive a reflected laser beam with a
measurable intensity over a distance of 5 million kilometers, it was planned that each
satellite should host two transponders which would send back, after receiving a laser
beam from a partner satellite, coherently a laser beam with the same frequency. In 2011,
NASA stopped funding for LISA. Since then, it was a European-only project. Under
the name NGO (New Gravitational wave Observatory) it entered into ESA’s L1 mission
selection, together with two competitors: The Jupiter Icy Moon Explorer (JUICE) and
the X-ray observatory ATHENA. The winner was JUICE. NGO was re-designed and was
elected as an L3 mission under the name eLISA (evolved LISA). It was planned as a
system of a mother spacecraft with two daughter spacecraft. The mother would emit
laser beams that are sent back from transponders on board the daughters. There would
be no laser beam between the two daughters. The separation between the spacecraft was
down-sized to 1 million kilometers. With the detection of gravitational waves by LIGO
the plan for a space-based interferometric antenna got a strong boost. There are hopes
that LISA, in a version close to the original plan with three arms, might eventually fly
around 2030. LISA would be sensitive in the range between 0.1 mHz und 1 Hz where
ground-based detectors cannot operate.
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from http://sci.esa.int/lisa

The picture above shows the orbit of LISA, according to the original plan.

As a preparation for the (e)LISA mission, a spacecraft called LISA Pathfinder was
launched in December 2015. It houses laser and test masses at a separation of ≈ 40 cm
in one spacecraft. The main purpose of the project is to test the technology for LISA
(drag-free control, transponders for laser beams, etc.) under space conditions. The fact
that LISA pathfinder, which is still in operation, works extremely well gives further hopes
that LISA will eventually be launched around 2030.

LISA Pathfinder
from http://news.softpedia.com
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The picture below shows the sensitivity of (e)LISA. Note that this detector could operate
at much lower freqencies than the ground-based detectors.

from P. Amaro et al., Class. Quantum Grav. 29,

124016 (2012)

DECIGO: The acronym stands for DECI-Hertz Interferometer Gravitational wave Observa-
tory. It is a proposed Japanese space-based instrument. The name refers to the fact that
this detector is planned to operate in the frequency range between 0.1 Hz and 10 Hz (a
decihertz). At present, it is unclear if and when this project will be actually realised.

BBO: The Big Bang Observer is a far-future project that has been suggested by physicists
from the USA. As the name suggests, its main goal is the detection of gravitational waves
that came into existence shortly after the big bang. The proposed instrument consists of
12 spacecraft, arranged into 4 LISA-type triangular patterns. It is written in the stars if
BBO wil ever fly.

4.3 Pulsar timing arrays

A pulsar emits radio pulses at a rate that is highly stable. For millisecond pulsars, the stability
of the pulse frequency is comparable to the stablity of the best clocks we have. This, however,
does not mean that the pulses arrive with a constant frequency here on Earth. Changes in
the times of arrival are caused e.g. by the relative motion of the pulsar and the Earth, by the
influence of the gravitatonal field of the Sun and of other masses the signal might pass, and by
the interstellar medium. All these known influences are taken into account in the socalled timing
formulas used by radio astronomers for evaluating their observations. Remaining differences
between theory and observation are known as timing residuals. A gravitational wave should
produce such residuals.

The idea of searching for signatures from gravitational waves in the timing residuals of pulsars
was brought forward by M. Sazhin [“Opportunities for detecting ultralong gravitational waves”
Astron. Zh. 55, 65 (1978)] and further developed by S. Detweiler [“Pulsar timing measurements
and the search for gravitational waves” Astrophys. J. 234, 1100 (1979)].
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Here we will give a calculation under highly idealised assumptions, just to outline the basic
idea. We treat the pulsar and the Earth as at rest in a Minkowski background, and we ignore
the influence of the interstellar medium. The gravitational wave is considered as a perturbation
of the Minkowski background within the linearised theory,

gµν(x) = ηµν + hµν(x) ,

where hµν is assumed, for simplicity, to be a pure plus mode,

hµν = Re
{
Aµν e

ikσxσ
}

with

(
kµ
)

=




−ω/c
0
0
ω/c


 ,

(
Aµν

)
=




0 0 0 0
0 A+ 0 0
0 0 −A+ 0
0 0 0 0


 .

We assume that the worldlines of the pulsar and of the Earth are both t lines. From the form
of the metric,

gµν(x)dxµdxν = −c2dt2 + δijdx
idxj + hij(x)xidxj ,

we read that along these worldlines the time coordinate t coincides with proper time. Therefore,
we can identify frequencies with respect to the time coordinate t with frequencies with respect
to proper time of the pulsar or of the Earth. We assume that the pulsar emits signals at a fixed
frequency νP . They will arrive at the Earth with a frequency νE(tE) that depends on the time
of arrival, tE. It is our goal to determine this function νE(tE).

Here we will give a calculation under highly idealised assumptions, just to outline the basic
idea. We treat the pulsar and the Earth as at rest in a Minkowski background, and we ignore
the influence of the interstellar medium. The gravitational wave is considered as a perturbation
of the Minkowski background within the linearised theory,

gµ⌫(x) = ⌘µ⌫ + hµ⌫(x) ,

where hµ⌫ is assumed, for simplicity, to be a pure plus mode,

hµ⌫ = Re
�
Aµ⌫ eik�x� 

with
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�
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0
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�!/c
0
0
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1
CCA ,
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0 0 0 0
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We assume that the worldlines of the pulsar and of the Earth are both t lines. From the form
of the metric,

gµ⌫(x)dxµdx⌫ = �c2dt2 + �ijdxidxj + hij(x)xidxj ,

we read that along these worldlines the time coordinate t coincides with proper time. Therefore,
we can identify frequencies with respect to the time coordinate t with frequencies with respect
to proper time of the pulsar or of the Earth. We assume that the pulsar emits signals at a fixed
frequency ⌫P . They will arrive at the Earth with a frequency ⌫E(tE) that depends on the time
of arrival, tE. It is our goal to determine this function ⌫E(tE).
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0
Fig. 6.25: Position of the pulsar and of the Earth

Along a light ray from the pulsar to the Earth, we must have

0 = �c2dt2 + �ijdxidxj + hij(x)dxidxj

and thus

c2

✓
dt

d`

◆2

= 1 + hij(x)
dxi

d`

dxj

d`

where ` denotes arclength with respect to the flat background metric, i.e.

d`2 = �ijdxidxj .

Without a gravitational wave, the light ray moves on a straight line from the pulsar to the Earth,
i.e., dxi/d` is a constant unit vecor ni. With a gravitational wave, we have

dxi

d`
= ni + O(h)

and thus

c
dt

d`
=
q

1 + hij(x)ninj + O(h2) ,

d` = c
⇣
1 + hij(x)ninj + O(h2)

⌘�1/2

dt = c
⇣
1 � 1

2
hij(x)ninj + . . .

⌘
dt

where the ellipses indicate terms of quadratic and higher order that will be neglected in the
following. Integration over the path of the light ray, from its emission time tP to the arrival time
tE , yields Z tE

tP

⇣
1 � 1

2
hij(x)ninj

⌘
dt =

L

c

where L is the distance from the pulsar to the Earth measured in the flat background. This
equation gives tE as a function of tP . Di↵erentiation with respect to tP yields

dtE
dtP

⇣
1 � 1

2
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⌘
�
⇣
1 � 1

2
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⌘
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2
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⌘
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2
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Along a light ray from the pulsar to the Earth, we must have
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and thus
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Along a light ray from the pulsar to the Earth, we must have

0 = −c2dt2 + δijdx
idxj + hij(x)dxidxj

and thus

c2

(
dt

d`

)2

= 1 + hij(x)
dxi

d`

dxj

d`

where ` denotes arclength with respect to the flat background metric, d`2 = δijdx
idxj .
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Without a gravitational wave, the light ray moves on a straight line from the pulsar to the
Earth, i.e., dxi/d` is a constant unit vecor ñi. With a gravitational wave, we have

dxi

d`
= ñi + O(h)

and thus

c
dt

d`
=
√

1 + hij(x)ñiñj +O(h2) ,

d` = c
(

1 + hij(x)ñiñj +O(h2)
)−1/2

dt = c
(

1− 1

2
hij(x)ñiñsj + . . .

)
dt

where the ellipses indicate terms of at least second oorder which, in the linearised theory
considered throughout, will be neglected. Integration over the path of the light ray, from its
emission time tP to the arrival time tE, yields

∫ tE

tP

(
1− 1

2
hij(x)ñiñj

)
dt =

L

c

where L is the distance from the pulsar to the Earth measured in the flat background. This
equation gives tE as a function of tP . Differentiation with respect to tP yields
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We have thus found that the pulses, which are emitted with a constant frequency νP , arrive
with a frequency νE(tE) where the redshift is given by

νP − νE(tE)

νP
= 1− dtP

dtE
=

ñiñj

2

(
hij(ctE, ~rE) − hij(ctP , ~rP )

)
.

We now insert the special form of hij which was assumed to be a pure plus mode, propagating
in x3 direction. If we parametrise the unit vector ñi in the usual way by spherical polar
coordinates,
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we find
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As

k0(x0
P − x0

E) = − ω
c

(ctP − ctE) =
ω L

c
+O(h)

and

~k ·
(
~rP − ~rE

)
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the latter equation results in
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this can be rewritten as
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i.e.,
νE
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This is a sinusoidal function of tE. The amplitude

A(ϑ, ϕ) =
∣∣A+

∣∣ sin2ϑ cos(2ϕ) sin
(
ωL
2c

(1− cosϑ)
)

has the usual π-periodic ϕ-dependence, via a factor of cos(2ϕ), we are used to. The ϑ-
dependence is more complicated. In addition to the usual sin2ϑ term it involves a factor
that depends on ωL/c. If ωL/c is smaller than π, this factor has the only effect of shifting
the maximum of the characteristic away from the equatorial plane; if ωL/c is bigger than π, it
changes the qualitative features of the characteristic completely, see pictures on the next page.
For gravitational wave searches with pulsar timing arrays we may assume that ω > 10−10Hz
and L > 1 kpc, hence ωL/c > 10.

69



This is a sinusoidal function of tE . The amplitude

A(#, ') = sin2# cos(2') sin
�
!L
2c

(1 � cos#)
�

has the usual ⇡-periodic '-dependence, via a factor of cos(2'), we are used to. The
#-dependence is more complicated. In addition to the usual sin2# term it involves a
factor that depends on !L/c. If !L/c is smaller than ⇡, this factor has the only e↵ect
of shifting the maximum of the characteristic away from the equatorial plane; if !L/c
is bigger than ⇡, it changes the qualitative features of the characteristic completely,
see pictures. For gravitational wave searches with pulsar timing arrays we may assume
that ! > 10�9Hz and L > 1 kpc, hence !L/c > 10.
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Pulsar timing arrays are used for many applications; the search for gravitational waves is only
one of them. Three pulsar timing arrays have been established which routinely observe the
times of arrival of signals from many pulsars:

• Parkes Pulsar Timing Array (PPTA): This uses the Parkes Telescope in Australia and
takes data since 2005.

• European Pulsar Timing Array (EPTA): This uses data from five radio telescopes in
Europe, namely E↵elsberg, Jodrell Bank, Westerbork, Nançay, and a new one in Sardinia.

• North American Nanohertz Observatory for Gravitational Waves (NanoGRAV): This is
an Americal pulsar timing array using data from Arecibo and Green Bank.

They are now joined into an International Pulsar Timing Array (IPTA), see G. Hobbs et
al. [“The International Pulsar Timing Array project: using pulsars as a gravitational wave
detector” Class. Quantum Grav. 27, 084013 (2010)] for a review. Great progress with pulsar
timing data is expected from the Square Kilometer Array (SKA), an array of radio telescopes
in the Southern hemisphere with an e↵ective aperture of a square kilometer that is planned to
be operational around 2020.
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from G. Hobbs et al., loc. cit.

Pulsar timing arrays are sensitive to gravitational waves at very low frequencies, between 10−6

and 10−10 Hz; the amplitudes needed are considerably bigger than e.g. for the LIGO detectors,
see the picture above. Possible sources that could be detected with this method are supermas-
sive black hole binaries. Two galaxies that may host a supermassive black hole binary at the
centre are indicated in the diagram: The BL Lac object OJ287 with an orbital period of about
12 years and the radio galaxy 3C66B with an orbital period of about one year.

4.4 Doppler tracking of satellites:

Resonant bar detectors and interferometric detectors are instruments that are constructed for
the sole purpose of detecting gravitational waves. In particular the advanced interferometric
detectors are rather expensive instruments. In this section we will discuss a method of searching
for gravitational waves that, similarly to the use of Pulsar Timing Arrays discussed in the
preceding section, does not require to build any expensive new instruments but uses equipment
that already exists. The method uses spacecraft which have been launched for some other
purpose, in particular spacecraft investigating the outer parts of our Solar system like Voyager,
Pioneer 10, Pioneer 11 and Cassini.

The path of such a spacecraft is routinely monitored with the help of Doppler tracking. The
idea is to search in the Doppler tracking data for signatures of gravitational waves. This is
very similar to the search for changes in the frequency of pulsar signals: The difference is that
Doppler tracking with satellites is a two-way method: From the Earth a signal is sent to the
spacecraft; there a transponder multiplies the frequency with a certain factor and then sends
the signal back to the Earth where the change in the frequency is measured. In essence, all
the formulas from the preceding section can be taken over; we just have to apply them twice:
Once for the outgoing signal and then for the returning signal. Of course, as in the case of
pulsar timing all other effect that produce a frequency shift have to be taken into account,
in particular the relative motion of the Earth and the Satellite and the gravitational redshift
produced by the Sun.
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The idea of using Doppler tracking data for detecting gravitational waves came up in the early
1970s. The mathematical formalism was worked out by F. Estabrook and H. Wahlquist [Gen.
Rel. Grav. 6, 439 (1975)]. A comprehensive overview of the method can be found in the Living
Review by J. Armstrong [“Low-frequency gravitational wave searches using spacecraft Doppler
tracking”, Living Rev. Relativity 9, (2006), http://www.livingreviews.org/lrr-2006-1.]

Searches for gravitational waves with the help of Doppler tracking have been carried through,
e.g., with Voyager 1 and 2, with Pioneer 10 and 11, and in particular with the Cassini spacecraft
that was launched in 1997 and reached Saturn in 2004. From the picture below we can read the
frequencies and the amplitudes of gravitational waves that could have been detected by Doppler
tracking of the Cassini spacecraft. We see that this method is sensitive only for frequencies near
10−3 Hz (similarly to LISA) and for big amplitudes (similarly to the Pulsar Timing Arrays).

from http://www.livingreviews.org/lrr-2006-1

The radio links with spacecraft in the outer region of our Solar system are established with a
system of radio telscopes that is known as the Deep Space Network (DSN). It comprises sites
in the USA, in Spain and in Australia such that at any time of the day at least one of the
stations can communicate with the spacecraft.

4.5 Influence of gravitational waves on electromagnetic waves

All the methods we have discussed so far were based on measuring the effect of a gravitational
wave onto massive bodies, either onto vibrating masses or onto free test masses. Electromag-
netic waves were used in some of these methods, but only as a tool for measuring the effect
onto the massive bodies.

In this section we briefly discuss the possibility of detecting a gravitational wave by its effect
onto an electromagnetic wave. One such method was suggested by M. Cruise [“An interaction
between gravitational and electromagnetic waves” Mon. Not. Roy. Astron. Soc. 204, 485
(1983)]. It is based on the observation that a gravitational wave causes a rotation of the
polarisation plane of an electromagnetic field.
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In an arbitrary general-relativistic spacetime, the polarisation vector Π of a linearly polarised
electromagnetic wave in vacuo is parallely transported along each ray. This can be deduced from
Maxwell’s equations in the high-frequency limit (i.e., in the geometric optics approximation).
If we denote the tangent vector to the ray by K, the polarisation vector satisfies the equation

∇KΠ = 0

or, in coordinate notation,
Kµ∂µΠρ + ΓρντK

νΠτ = 0 .

The vectors K and Π span the polarisation plane. This plane always contains the direction
tangent to the ray, so the only thing it can do is to rotate about this direction. We see that,
with respect to the coordinate system used, such a rotation is caused by the Christoffel symbols.
For a gravitational wave in TT gauge, we already know that the Christoffel symbols read

Γρντ =
1

2
ηρσ Re

{(
kνAστ + kτAσν − kσAντ

)
i eikµx

µ}

where kµ is the wave covector of the gravitational wave. According to this equation, a gravita-
tional wave would cause a rotation of the polarisation plane of an electromagnetic wave.

from http://www.sr.bham.ac.uk/gravity

The expected rotation angle is tiny. Therefore, Cruise designed a gravitational wave detector
that would enhance this rotation by making use of a resonance effect. The electromagnetic
wave is a radio wave in a wave-guide that is bent into a loop. The resonance frequency of the
system is 100 MHz. If a gravitational wave with the same frequency comes in, the polarisation
plane is periodically kicked by a tiny rotation angle in such a way that these tiny rotations add
up. Cruise built two such instruments in Birmingham so that he could look for coincidences,
see the figure above. Note that these detectors would be sensitive at a frequency of about
100 MHz, i.e., at an extremely high frequency in comparison to all other gravitational wave
detectors.
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In addition to the possibility of constructing non-orthodox gravitational wave detectors, the
effect of a gravitational wave onto electromagnetic waves is of crucial relevance in view of the
cosmic background radiation. In recent years several experiments are analysing the polarisation
of the cosmic background radiation. In analogy to decomposing a vector field into rotation-
free and divergence-free parts, the Fourier components of the cosmic background radiation are
decomposed into electric (E) and magnetic (B) modes. Primordial gravitational waves that have
come into existence through quantum fluctuations in the very early universe would produce a
specific signature of B modes. These B modes from primordial gravitational waves could have
a measurable amplitude only if our universe underwent an inflationary period, i.e., a period in
which the universe expanded exponentially.

from http://www.astro.gla.ac.uk

In March 2014 it was announced that
the BICEP2 experiment had found B
modes from primordial gravitational
waves in the cosmic background radi-
ation. BICEP2 was a radio telescope
near the South Pole that was oper-
ational from 2010 to 2012. If true,
the BICEP2 result would have given
strong support for the idea that quan-
tum fluctuations in the early universe
have produced gravitational waves and
that there was an inflationary period.

The idea of primordial gravitational waves, resulting from quantum fluctuations, was devel-
oped already in the 1970s by L. Grishchuk and others. The idea of an inflationary universe,
brought forward by A. Starobinsky, A. Guth, F. Englert, A. Linde and others around 1980,
allowed for an increase in the amplitudes of these primordial gravitational waves that could
make them measurable. However, it was realised after a while that the BICEP2 team had
misinterpreted their observations: The B modes they had found had not been produced by
primordial gravitational waves but rather by dust in the foreground.

The figure on the right
summarises the differ-
ent types of gravita-
tional wave detectors,
the frequency range in
which they are sensi-
tive and the types of
sources they could de-
tect.

The figure on the right
summarises the di↵er-
ent types of gravita-
tional wave detectors,
the frequency range in
which they are sensi-
tive and the types of
sources they could de-
tect.

from http://www.astro.gla.ac.uk
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5 LIGO detection of gravitational waves

As of June 2017, the two LIGO instruments have registered three signals that were sufficiently
high above the noise level so that the LIGO team announced them as detected gravitational
waves. They are named GW150914, GW151226 and GW170104, where “GW” stands for
“Gravitational Wave” and the numbers give the date: The signals were received on 14 Septem-
ber 2015, 26 December 2015 and 4 January 2017. All three events were most likely produced
by the merger of two black holes. Another event, known as LVT151012, was made public but
the LIGO team found it too close to the noise level for calling it a gravitational wave signal.
(The abbreviation “LVT” stands for “LIGO-Virgo Trigger” and is used for all events that are
considered as candidates for a gravitational wave signal.)

the gravitational-wave signal extraction by broadening the
bandwidth of the arm cavities [51,52]. The interferometer
is illuminated with a 1064-nm wavelength Nd:YAG laser,
stabilized in amplitude, frequency, and beam geometry
[53,54]. The gravitational-wave signal is extracted at the
output port using a homodyne readout [55].
These interferometry techniques are designed to maxi-

mize the conversion of strain to optical signal, thereby
minimizing the impact of photon shot noise (the principal
noise at high frequencies). High strain sensitivity also
requires that the test masses have low displacement noise,
which is achieved by isolating them from seismic noise (low
frequencies) and designing them to have low thermal noise
(intermediate frequencies). Each test mass is suspended as
the final stage of a quadruple-pendulum system [56],
supported by an active seismic isolation platform [57].
These systems collectively provide more than 10 orders
of magnitude of isolation from ground motion for frequen-
cies above 10 Hz. Thermal noise is minimized by using
low-mechanical-loss materials in the test masses and their

suspensions: the test masses are 40-kg fused silica substrates
with low-loss dielectric optical coatings [58,59], and are
suspended with fused silica fibers from the stage above [60].
To minimize additional noise sources, all components

other than the laser source are mounted on vibration
isolation stages in ultrahigh vacuum. To reduce optical
phase fluctuations caused by Rayleigh scattering, the
pressure in the 1.2-m diameter tubes containing the arm-
cavity beams is maintained below 1 μPa.
Servo controls are used to hold the arm cavities on

resonance [61] and maintain proper alignment of the optical
components [62]. The detector output is calibrated in strain
by measuring its response to test mass motion induced by
photon pressure from a modulated calibration laser beam
[63]. The calibration is established to an uncertainty (1σ) of
less than 10% in amplitude and 10 degrees in phase, and is
continuously monitored with calibration laser excitations at
selected frequencies. Two alternative methods are used to
validate the absolute calibration, one referenced to the main
laser wavelength and the other to a radio-frequency oscillator

(a)

(b)

FIG. 3. Simplified diagram of an Advanced LIGO detector (not to scale). A gravitational wave propagating orthogonally to the
detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening
the other during one half-cycle of the wave; these length changes are reversed during the other half-cycle. The output photodetector
records these differential cavity length variations. While a detector’s directional response is maximal for this case, it is still significant for
most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth). Inset (a): Location and
orientation of the LIGO detectors at Hanford, WA (H1) and Livingston, LA (L1). Inset (b): The instrument noise for each detector near
the time of the signal detection; this is an amplitude spectral density, expressed in terms of equivalent gravitational-wave strain
amplitude. The sensitivity is limited by photon shot noise at frequencies above 150 Hz, and by a superposition of other noise sources at
lower frequencies [47]. Narrow-band features include calibration lines (33–38, 330, and 1080 Hz), vibrational modes of suspension
fibers (500 Hz and harmonics), and 60 Hz electric power grid harmonics.
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from B. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

Recall the the LIGO detectors are most sensitive at frequencies of a few hundred Hz. This
was exactly the frequency range in which the three confirmed gravitational wave signals have
been observed. Only signals that are registered in both LIGO detectors (in Hanford and
in Livingston) are taken into account. The two LIGO detectors are approximately 3000 km
apart, so a signal that travels at the speed of light needs about 10 ms from one to the other.
Therefore, a gravitational wave whose wave vector is parallel to the line that connects the two
LIGO sites should be registered in both detectors with a time delay of about 10 ms. If the wave
vector makes an angle different from zero with this connection line, the time delay is smaller.
Measuring the time delay locates the source on a circle on the sky. As this circle is given only to
within a finite accuracy, and as the LIGO detectors cannot receive signals from all directions,
the source can actually be located in a banana-shaped region. This region is very big: If one
wants to locate the source with a likelihood of 90 %, one gets a banana-shaped region in the sky
that is about as big as the constellation Orion. So we do not really know from which direction
the three observed gravitational-wave signals have come. If additional detectors have become
operational (Virgo, KAGRA, LIGO India, ... ), we will be able to locate the sources with much
higher accuracy.

75



We now look at the three signals GW150914, GW151226 and GW170104 one by one. The
discovery of GW150914 was announced in February 2016 which was a major media event, with
a press conference that can be watched on YouTube. It was the first direct observation of
gravitational waves. The signal was received during one of the first runs of the two LIGO
detectors after the upgrade from original LIGO to advanced LIGO; this run was not even
planned as a science run. The signal was unexpectedly strong, and it showed the expected
signature of a binary merger so cleanly that many LIGO scientists in the beginning thought
that it was an injection. Four members of the LIGO team are supposed to inject mock signals
from time to time into the detectors; the idea is that one wants to see if the data analysis works
sufficiently well to detect such signals. The rule is that all the evaluation of the signal has to
be finished; only then will the responsible member from the injection team confess whether or
not it was a mock signal. In the case of GW150914, no such confession was made, and after
painstakingly interviewing all possible suspects the LIGO team became convinced that this
signal was not an injection.

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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from B. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

The picture above shows the signals as they were received in Hanford (left) and in Livingston
(right). From the time axis at the bottom we read that everything happened within 0.2 seconds.
In the first row, the signals are shown as they were received, with the only modification that
frequencies outside an interval from 35 to 350 Hz have been filtered away. (The Earth-bound
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interferometric detectors are too strongly affected by seismic noise at lower frequencies and by
shot noise at higher frequencies.) On the right, the Livingston signal (blue) is overlaid with the
Hanford signal (red), but with the latter shifted backwards by 6.9 ms and inverted. The time
shift reflects the fact that the signal arrived first in Livingston and then 6.9 ms later in Hanford;
this time delay gives the angle ϑ = arccos(6.9/10) ≈ 460 under which the signal came in with
respect to the connection line of the two detectors. The inversion is necessary because the two
detectors are oriented under 90o with respect to each other. The second row compares the signal
with a black-hole merger, calculated with numerical relativity, where the parameters of the two
inspiralling black holes have been fitted to the observation as closely as possible. The third row
shows the residual, i.e., the signal one has to subtract from the observation for matching it with
the theoretical prediction; if the interpretation is correct, this residual is just noise. We see that
the noise level is about 0.3×10−21 Hz−1/2. While the signal lies well above the noise level during
the merger, the ring-down is practically drowned in the noise. So we cannot really compare
the ringdown phase with the theoretical prediction for a black-hole merger. The last row shows
the frequency as a function of time. We see that we have a typical “chirp signal”, i.e., a signal
where the frequency grows with time: It begins at about 35 Hz and it reaches a maximum,
immediately before the merger, at about 150 Hz. As the frequency of the gravitational wave
is always twice the frequency of the source motion (ω = 2Ω in the notation we have used
throughout), this means that the orbital motion was at about 75 Hz immediately before the
merger. If translated from gravitational waves to sound waves, the signal is in the audible
range, i.e., you can mimic it by a buzz that increases up to a maximum in frequency and in
amplitude. A sound bite can be found at https://www.ligo.caltech.edu/video/ligo20160211v2.

Why do we believe that GW150914 was the merger of two black holes? The reason is not
that the shape of the signal favours a black-hole merger: The inspiralling and merger phases
are similar for all types of binaries, and the ringdown phase has not really been observed, as
emphasised above. The motivation comes from the masses involved: One can derive, from
lowest-order post-Newtonian theory, the following relation between the so-called “chirp mass”
Mchirp and the frequency f = ω/(2π) of the gravitational wave:

Mchirp :=
(M1M2)3/5

(M1 +M2)1/5
=
c3

G

(
5 ḟ

96 π8/3 f 11/3

)3/5

.

In the Newtonian approximation for the source motion, which we have used above, it is impos-
sible to extract from the observed data an expression that involves M1 and M2 alone, but in the
lowest-order post-Newtonian approximation it is: f and ḟ are directly measurable, and from
these data one can calculate the chirp mass. For GW150914 one finds that Mchirp ≈ 30M�. As
(M1 +M2)2 ≥ 4M1M2, the chirp mass gives a lower bound for the sum of the two masses,

M1 +M2 ≥ 43/5Mchirp ≈ 70M� .

This rules out the possibility that it was a merger of two neutron stars: The heaviest neutron
star that has been detected so far has a mass of just over 2 M�. Conservative estimates indicate
that this is close to the maximal mass a neutron star can have, and even (speculative) theories
about exotic equations of state for neutron stars certainly limit their masses to well below 10
M�.
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Could it have been a merger of a black hole with a neutron star? Then it would have been a
black hole of not much less than 70 M�. For such a binary, the frequency of the inspiralling
before the merger would have been much lower than 75 Hz, so this doesn’t work either.

Could it have been a merger of some exotic objects, e.g. the merger of two boson stars? To be
honest, this possibility cannot be completely ruled out on the basis of the observed data. How-
ever, boson stars (and all other alternatives that might come to mind) are very exotic objects;
most astrophysicists do not believe that they exist. By contrast, there is now overwhelming
evidence that black holes do exist. Even very down-to-earth observing astronomers speak about
black holes as if they were the most natural things in the world. (This was completely different
20 years ago.) Using Occam’s razor, it seems therefore well justified to assume that GW150914
was a black-hole merger. If one accepts this idea as a working hypothesis, it is amazing how
well everything fits together.

For black-hole mergers, templates for emitted gravitational waves have been produced numer-
ically, for various choices of the parameters. This important numerical work is supported by
analytical approximation methods, using post-Newtonian expansions up to a certain order.
(Unfortunately, these analytical approximation methods are so awfully involved that I feel un-
able to present them here.) Comparing the GW150914 data with these templates led to the
conclusion that the observations can be very well explained if one assumes that the gravitational
wave signal was produced by a black-hole merger with the following data:

For robustness and validation, we also use other generic
transient search algorithms [41]. A different search [73] and
a parameter estimation follow-up [74] detected GW150914
with consistent significance and signal parameters.

B. Binary coalescence search

This search targets gravitational-wave emission from
binary systems with individual masses from 1 to 99M⊙,
total mass less than 100M⊙, and dimensionless spins up to
0.99 [44]. To model systems with total mass larger than
4M⊙, we use the effective-one-body formalism [75], which
combines results from the post-Newtonian approach
[11,76] with results from black hole perturbation theory
and numerical relativity. The waveform model [77,78]
assumes that the spins of the merging objects are aligned
with the orbital angular momentum, but the resulting
templates can, nonetheless, effectively recover systems
with misaligned spins in the parameter region of
GW150914 [44]. Approximately 250 000 template wave-
forms are used to cover this parameter space.
The search calculates the matched-filter signal-to-noise

ratio ρðtÞ for each template in each detector and identifies
maxima of ρðtÞwith respect to the time of arrival of the signal
[79–81]. For each maximum we calculate a chi-squared
statistic χ2r to test whether the data in several different
frequency bands are consistent with the matching template
[82]. Values of χ2r near unity indicate that the signal is
consistent with a coalescence. If χ2r is greater than unity, ρðtÞ
is reweighted as ρ̂ ¼ ρ=f½1þ ðχ2rÞ3&=2g1=6 [83,84]. The final
step enforces coincidence between detectors by selecting
event pairs that occur within a 15-ms window and come from
the same template. The 15-ms window is determined by the
10-ms intersite propagation time plus 5 ms for uncertainty in
arrival time of weak signals. We rank coincident events based
on the quadrature sum ρ̂c of the ρ̂ from both detectors [45].
To produce background data for this search the SNR

maxima of one detector are time shifted and a new set of
coincident events is computed. Repeating this procedure
∼107 times produces a noise background analysis time
equivalent to 608 000 years.
To account for the search background noise varying across

the target signal space, candidate and background events are
divided into three search classes based on template length.
The right panel of Fig. 4 shows the background for the
search class of GW150914. The GW150914 detection-
statistic value of ρ̂c ¼ 23.6 is larger than any background
event, so only an upper bound can be placed on its false
alarm rate. Across the three search classes this bound is 1 in
203 000 years. This translates to a false alarm probability
< 2 × 10−7, corresponding to 5.1σ.
A second, independent matched-filter analysis that uses a

different method for estimating the significance of its
events [85,86], also detected GW150914 with identical
signal parameters and consistent significance.

When an event is confidently identified as a real
gravitational-wave signal, as for GW150914, the back-
ground used to determine the significance of other events is
reestimated without the contribution of this event. This is
the background distribution shown as a purple line in the
right panel of Fig. 4. Based on this, the second most
significant event has a false alarm rate of 1 per 2.3 years and
corresponding Poissonian false alarm probability of 0.02.
Waveform analysis of this event indicates that if it is
astrophysical in origin it is also a binary black hole
merger [44].

VI. SOURCE DISCUSSION

The matched-filter search is optimized for detecting
signals, but it provides only approximate estimates of
the source parameters. To refine them we use general
relativity-based models [77,78,87,88], some of which
include spin precession, and for each model perform a
coherent Bayesian analysis to derive posterior distributions
of the source parameters [89]. The initial and final masses,
final spin, distance, and redshift of the source are shown in
Table I. The spin of the primary black hole is constrained
to be < 0.7 (90% credible interval) indicating it is not
maximally spinning, while the spin of the secondary is only
weakly constrained. These source parameters are discussed
in detail in [39]. The parameter uncertainties include
statistical errors and systematic errors from averaging the
results of different waveform models.
Using the fits to numerical simulations of binary black

hole mergers in [92,93], we provide estimates of the mass
and spin of the final black hole, the total energy radiated
in gravitational waves, and the peak gravitational-wave
luminosity [39]. The estimated total energy radiated in
gravitational waves is 3.0þ0.5

−0.5M⊙c2. The system reached a
peak gravitational-wave luminosity of 3.6þ0.5

−0.4 × 1056 erg=s,
equivalent to 200þ30

−20M⊙c2=s.
Several analyses have been performed to determine

whether or not GW150914 is consistent with a binary

TABLE I. Source parameters for GW150914. We report
median values with 90% credible intervals that include statistical
errors, and systematic errors from averaging the results of
different waveform models. Masses are given in the source
frame; to convert to the detector frame multiply by (1þ z)
[90]. The source redshift assumes standard cosmology [91].

Primary black hole mass 36þ5
−4M⊙

Secondary black hole mass 29þ4
−4M⊙

Final black hole mass 62þ4
−4M⊙

Final black hole spin 0.67þ0.05
−0.07

Luminosity distance 410þ160
−180 Mpc

Source redshift z 0.09þ0.03
−0.04
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Here the (luminosity) distance has been calculated from Einstein’s quadrupole formula: If the
masses and the orbital elements have been determined by fitting the data to an appropriate
template, the amplitude of the gravitational wave determines the distance.

From the table one reads that the sum of the two progenitor black holes exceeds the mass of the
final black hole by about three solar masses: In other words, during the merger, whose essential
phase lasted less than 20 ms, the energy equivalent of 3 solar masses was radiated away. This
means that GW150914 was by far the most powerful event in our universe that has ever been
observed. The radiated power (energy per time) is about 50 times the power that is emitted,
in terms of electromagnetic radiation, by all visible stars in all galaxies

An intensive search has taken place for electromagnetic counter-parts of GW150914, i.e., one
has been looking for electromagnetic signals (from the radio over the optical to the gamma ray
regime) emitted at the same time from the same region. The only candidate was a very weak
gamma-ray burst, observed by the Fermi Gamma-Ray Space Telescope within a millisecond of
GW150914 from a location in the sky that is within the region from which GW150914 could
have come. However, this signal was very weak, and it was not observed by the INTEGRAL
and the AGILE instruments which were operational at the time; therefore, it is most likely that
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it was just some background and not a real gamma-ray burst. Actually, we wouldn’t expect
a black-hole merger to be accompanied by a strong electromagnetic signal. It is different for
merging neutron stars: A neutron star has a surface, and if something hits this surface this is
likely to produce an electromagnetic (X-ray) signal.

We now turn to the second gravitational wave signal GW151226 which is known as the “boxing
day event”. (In the UK and in the US 26 December is called the boxing day, referring to the
gift boxes that are unpacked on this date.)

VI. ASTROPHYSICAL IMPLICATIONS

The inferred black hole masses are within the range of
dynamically measured masses of black holes found in x-ray
binaries [76–80], unlike GW150914. For the secondary
black hole, there is a probability of 4% that it lies in the
posited 3–5M⊙ gap between observed neutron star and
black hole masses [76,77], and there is no support for the
primary black hole to have a mass in this range.
Binary black hole formation has been predicted through a

range of different channels involving either isolated binaries
or dynamical processes in dense stellar systems [81]. At
present all types of formation channels predict binary black
hole merger rates and black hole masses consistent with the
observational constraints from GW150914 [82–84]. Both
classical isolated binary evolution through the common
envelope phase and dynamical formation are also consistent
with GW151226, whose formation time and time delay to
merger cannot be determined from the merger observation.
Given our current understanding of massive-star evolution,
the measured black hole masses are also consistent with any
metallicity for the stellar progenitors and a broad range of
progenitor masses [85,86].
The spin distribution of the black holes in stellar-mass

binary black holes is unknown; the measurement of a spin
magnitude for at least one companion greater than 0.2 is an
important first step in constraining this distribution.
Predictions of mass ratios and spin tilts with respect to
the orbital angular momentum differ significantly for
different channels. However, our current constraints on
these properties are limited; implications for the

evolutionary history of the observed black hole mergers
are further discussed in [5].
The first observing period of Advanced LIGO provides

evidence for a population of stellar-mass binary black holes
contributing to a stochastic background that could be
higher than previously expected [87]. Additionally, we
find the rate estimate of stellar-mass binary black hole
mergers in the local Universe to be consistent with the
ranges presented in [88]. An updated discussion of the rate
estimates can be found in [5].
A comprehensive discussion of inferred source param-

eters, astrophysical implications, mass distributions, rate
estimations, and tests of general relativity for the binary
black hole mergers detected during Advanced LIGO’s first
observing period may be found in [5].

VII. CONCLUSION

LIGO has detected a second gravitational-wave signal
from the coalescence of two stellar-mass black holes with
lower masses than those measured for GW150914. Public
data associated with GW151226 are available at [89]. The
inferred component masses are consistent with values
dynamically measured in x-ray binaries, but are obtained
through the independent measurement process of gravita-
tional-wave detection.Although it is challenging to constrain
the spins of the initial black holes, we can conclude that at
least one black hole had spin greater than 0.2. These recent
detections in Advanced LIGO’s first observing period have
revealed a population of binary black holes that heralds the
opening of the field of gravitational-wave astronomy.

FIG. 5. Estimated gravitational-wave strain from GW151226 projected onto the LIGO Livingston detector with times relative to
December 26, 2015 at 03:38:53.648 UTC. This shows the full bandwidth, without the filtering used for Fig. 1. Top: The 90% credible
region (as in [57]) for a nonprecessing spin waveform-model reconstruction (gray) and a direct, nonprecessing numerical solution of
Einstein’s equations (red) with parameters consistent with the 90% credible region. Bottom: The gravitational-wave frequency f (left
axis) computed from the numerical-relativity waveform. The cross denotes the location of the maximum of the waveform amplitude,
approximately coincident with the merger of the two black holes. During the inspiral, f can be related to an effective relative velocity
(right axis) given by the post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where M is the total mass.
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The picture above shows that, in comparison to GW150914, the amplitude was lower but the
event lasted longer (about a second in comparison to 0.2 seconds). Whereas GW150914 could
be followed for about 8 cycles before the merger, it was 55 cycles for the boxing day event.
This already indicates that the masses involved were lower.

The table below shows the parameters that, according to comparison with the templates, fits
the data best.

GW151226 was detected with a network matched-filter
SNR of 13 by both searches. Figure 2 shows the detection
statistic values assigned to GW151226 by the two searches
and their respective noise background distributions. At the
detection statistic value assigned to GW151226, the
searches estimate a false alarm probability of < 10−7

(> 5σ) [14] and 3.5 × 10−6 (4.5σ) [17] when including
candidate events in the background calculation. This
procedure strictly limits the probability of obtaining a false
positive outcome in the absence of signals [56]. The
estimates from the two searches are consistent with expect-
ations for a compact binary coalescence signal, given the
differences in methods of data selection and candidate
event ranking. When excluding search candidate events
from the background calculation, a procedure that yields a
mean-unbiased estimate of the distribution of noise events,
the significance is found to be greater than 5σ in both
searches. Further details of the noise background and
significance estimation methods for each search are given
in [18] and discussions specific to GW151226 are in [5].

V. SOURCE DISCUSSION

To estimate the source parameters, a coherent Bayesian
analysis [21,57] of the data was performed using two
families of waveform models. Both models are calibrated to
numerical simulations of binary black holes in general
relativity. One waveform model includes spin-induced
precession of the binary orbital plane [58], created by
rotating the model described in [59]. The other waveform
model restricts the component black hole spins to be
aligned with the binary orbital angular momentum
[42,43]. Both are publicly available [60]. Table I shows
source parameters for GW151226 including the initial and
final masses of the system. The parameter uncertainties
include statistical and systematic errors from averaging
posterior probability samples over the two waveform
models, in addition to calibration uncertainties. Here, we
report the median and 90% credible intervals.
The initial binary was composed of two stellar-mass black

holes with a source-frame primary mass m1 ¼ 14.2þ8.3
−3.7M⊙,

secondary mass m2 ¼ 7.5þ2.3
−2.3M⊙, and a total mass of

21.8þ5.9
−1.7M⊙. The binary merged into a black hole of mass

20.8þ6.1
−1.7M⊙, radiating 1.0þ0.1

−0.2M⊙c2 in gravitational waves
with a peak luminosity of 3.3þ0.8

−1.6 × 1056 erg=s. These
estimates of the mass and spin of the final black hole, the
total energy radiated in gravitational waves, and the peak
gravitational-wave luminosity are derived from fits to
numerical simulations [39,63–65]. The source localization
is refined to 850 deg2, owing to the different methods used
[21], and refined calibration.
The long inspiral phase of GW151226 allows accurate

estimates of lower-order post-Newtonian expansion param-
eters, such as the chirp mass [26,45]. However, only loose
constraints can be placed on the total mass and mass ratio

(m2=m1) because the merger and ringdown occur at
frequencies where the detectors are less sensitive.
Figure 3 shows the constraints on the component masses
of the initial black hole binary. The component masses

TABLE I. Source parameters for GW151226. We report median
values with 90% credible intervals that include statistical and
systematic errors from averaging results of the precessing and
nonprecessing spin waveform models. The errors also take into
account calibration uncertainties. Masses are given in the source
frame; to convert to the detector framemultiply by (1þ z) [61]. The
spins of the primary and secondary blackholes are constrained to be
positive. The source redshift assumes standard cosmology [62].
Further parameters of GW151226 are discussed in [5].

Primary black hole mass 14.2þ8.3
−3.7M⊙

Secondary black hole mass 7.5þ2.3
−2.3M⊙

Chirp mass 8.9þ0.3
−0.3M⊙

Total black hole mass 21.8þ5.9
−1.7M⊙

Final black hole mass 20.8þ6.1
−1.7M⊙

Radiated gravitational-wave energy 1.0þ0.1
−0.2M⊙c2

Peak luminosity 3.3þ0.8
−1.6 × 1056 erg=s

Final black hole spin 0.74þ0.06
−0.06

Luminosity distance 440þ180
−190 Mpc

Source redshift z 0.09þ0.03
−0.04

FIG. 3. Posterior density function for the source-frame masses
msource

1 (primary) and msource
2 (secondary). The one-dimensional

marginalized distributions include the posterior density functions
for the precessing (blue) and nonprecessing (red) spin waveform
models where average (black) represents the mean of the two
models. The dashed lines mark the 90% credible interval for the
average posterior density function. The two-dimensional plot
shows the contours of the 50% and 90% credible regions plotted
over a color-coded posterior density function.
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The third event, GW170104, was announced on 1 June 2017 (one day before this lecture was
delivered). The black hole masses are in between the ones from GW150914 and GW151226,
and the distance is more than twice as much.

After the first observing run, both LIGO detectors under-
went commissioning to reduce instrumental noise, and to
improve duty factor and data quality (see Sec. I in the
Supplemental Material [11]). For the Hanford detector, a
high-power laser stage was introduced, and as the first step
the laser power was increased from 22 to 30 W to reduce
shot noise [10] at high frequencies. For the Livingston
detector, the laser power was unchanged, but there was a
significant improvement in low-frequency performance
mainly due to the mitigation of scattered light noise.
Calibration of the interferometers is performed by

inducing test-mass motion using photon pressure from
modulated calibration lasers [12,13]. The one-sigma

calibration uncertainties for strain data in both detectors
for the times used in this analysis are better than 5% in
amplitude and 3° in phase over the frequency range 20–
1024 Hz.
At the time of GW170104, both LIGO detectors were

operating with sensitivity typical of the observing run to
date and were in an observation-ready state. Investigations
similar to the detection validation procedures for previous
events [2,14] found no evidence that instrumental or
environmental disturbances contributed to GW170104.

III. SEARCHES

GW170104 was first identified by inspection of low-
latency triggers from Livingston data [15–17]. An auto-
mated notification was not generated as the Hanford
detector’s calibration state was temporarily set incorrectly
in the low-latency system. After it was manually deter-
mined that the calibration of both detectors was in a
nominal state, an alert with an initial source localization
[18,19] was distributed to collaborating astronomers [20]
for the purpose of searching for a transient counterpart.
About 30 groups of observers covered the parts of the sky
localization using ground- and space-based instruments,
spanning from γ ray to radio frequencies as well as high-
energy neutrinos [21].
Offline analyses are used to determine the significance of

candidate events. They benefit from improved calibration
and refined data quality information that is unavailable to
low-latency analyses [5,14]. The second observing run is
divided into periods of two-detector cumulative coincident
observing time with ≳5 days of data to measure the false
alarm rate of the search at the level where detections can be
confidently claimed. Two independently designed matched
filter analyses [16,22] used 5.5 days of coincident data
collected from January 4, 2017 to January 22, 2017.
These analyses search for binary coalescences over a range

of possible masses and by using discrete banks [23–28] of
waveform templates modeling binaries with component
spins aligned or antialigned with the orbital angular momen-
tum [29]. The searches can target binary black hole mergers
with detector-frame totalmasses2M⊙≤Mdet≲100–500M⊙,
and spin magnitudes up to∼0.99. The upper mass boundary
of the bank is determined by imposing a lower limit on the
duration of the template in the detectors’ sensitive frequency
band [30]. Candidate events must be found in both detectors
by the same templatewithin 15ms [4]. This 15-mswindow is
determined by the 10-ms intersite propagation time plus an
allowance for the uncertainty in identified signal arrival times
of weak signals. Candidate events are assigned a detection
statistic value ranking their relative likelihood of being a
gravitational-wave signal: the search uses an improved
detection statistic compared to the first observing run [31].
The significance of a candidate event is calculated by
comparing its detection statistic value to an estimate of
the background noise [4,16,17,22]. GW170104was detected

FIG. 1. Time–frequency representation [9] of strain data from
Hanford and Livingston detectors (top two panels) at the time of
GW170104. The data begin at 1167559936.5 GPS time. The
third panel from the top shows the time-series data from each
detector with a 30–350 Hz bandpass filter, and band-reject filters
to suppress strong instrumental spectral lines. The Livingston
data have been shifted back by 3 ms to account for the source’s
sky location, and the sign of its amplitude has been inverted to
account for the detectors’ different orientations. The maximum-
likelihood binary black hole waveform given by the full-pre-
cession model (see Sec. IV) is shown in black. The bottom panel
shows the residuals between each data stream and the maximum-
likelihood waveform.
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with a network matched-filter signal-to-noise ratio (SNR) of
13. At the detection statistic value assigned to GW170104,
the false alarm rate is less than 1 in 70 000 years of coincident
observing time.
The probability of astrophysical origin Pastro for a candi-

date event is found by comparing the candidate’s detection
statistic to a model described by the distributions and rates of
both background and signal events [8,32,33]. The back-
ground distribution is analysis dependent, being derived from
the background samples used to calculate the false alarm rate.
The signal distribution can depend on themass distribution of
the source systems; however, we find that different models
of the binary black hole mass distribution (as described in
Sec. VI) lead to negligible differences in the resulting value of
Pastro. At the detection statistic value of GW170104, the
background rate in bothmatched filter analyses is dwarfed by
the signal rate, yielding Pastro > 1 − ð3 × 10−5Þ.
An independent analysis that is not based on matched

filtering, but instead looks for generic gravitational-wave
bursts [2,34] and selects events where the signal frequency
rises over time [35], also identified GW170104. This
approach allows for signal deviations from the waveform
models used for matched filtering at the cost of a lower
significance for signals that are represented by the consid-
ered templates. This analysis reports a false alarm rate of
∼1 in 20 000 years for GW170104.

IV. SOURCE PROPERTIES

The source parameters are inferred from a coherent
Bayesian analysis of the data from both detectors [36,37].
As a cross-check, we use two independent model-waveform
families. Both are tuned to numerical-relativity simulations
of binary black holes with nonprecessing spins, and intro-
duce precession effects through approximate prescriptions.
One model includes inspiral spin precession using a single
effective spin parameter χp [38–40]; the other includes the
generic two-spin inspiral precession dynamics [41–43]. We
refer to these as the effective-precession and full-precession
models, respectively [44]. The two models yield consistent
results. Table I shows selected source parameters for
GW170104; unless otherwise noted, we quote the median
and symmetric 90% credible interval for inferred quantities.
The final mass (or equivalently the energy radiated), final
spin, and peak luminosity are computed using averages of fits
to numerical-relativity results [45–49]. The parameter uncer-
tainties include statistical and systematic errors from aver-
aging posterior probability distributions over the two
waveform models, as well as calibration uncertainty [37]
(and systematic uncertainty in the fit for peak luminosity).
Statistical uncertainty dominates the overall uncertainty as a
consequence of the moderate SNR.
For binary coalescences, the gravitational-wave frequency

evolution is primarily determined by the component masses.
For highermass binaries, merger and ringdown dominate the

signal, allowing good measurements of the total mass M ¼
m1 þm2 [53–57]. For lower mass binaries, like GW151226
[3], the inspiral is more important, providing precision
measurements of the chirp mass M ¼ ðm1m2Þ3=5=M1=5

[58–61]. The transition between the regimes depends upon
the detectors’ sensitivity, and GW170104 sits between the

TABLE I. Source properties for GW170104: median values
with 90% credible intervals. We quote source-frame masses; to
convert to the detector frame, multiply by (1þ z) [50,51]. The
redshift assumes a flat cosmology with Hubble parameter H0 ¼
67.9 km s−1 Mpc−1 and matter density parameter Ωm ¼ 0.3065
[52]. More source properties are given in Table I of the
Supplemental Material [11].

Primary black hole mass m1 31.2þ8.4
−6.0M⊙

Secondary black hole mass m2 19.4þ5.3
−5.9M⊙

Chirp mass M 21.1þ2.4
−2.7M⊙

Total mass M 50.7þ5.9
−5.0M⊙

Final black hole mass Mf 48.7þ5.7
−4.6M⊙

Radiated energy Erad 2.0þ0.6
−0.7M⊙c2

Peak luminosity lpeak 3.1þ0.7
−1.3 × 1056erg s−1

Effective inspiral spin parameter χeff −0.12þ0.21
−0.30

Final black hole spin af 0.64þ0.09
−0.20

Luminosity distance DL 880þ450
−390 Mpc

Source redshift z 0.18þ0.08
−0.07

FIG. 2. Posterior probability density for the source-framemasses
m1 and m2 (with m1 ≥ m2). The one-dimensional distributions
include the posteriors for the two waveform models, and their
average (black). The dashed lines mark the 90% credible interval
for the average posterior. The two-dimensional plot shows the
contours of the 50% and 90% credible regions plotted over a color-
coded posterior density function. For comparison, we also show
the two-dimensional contours for the previous events [5].
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They use to say: Two observations may be a coincidence, but three observations are a pattern.
We now clearly see the pattern, and it gave us a few surprises. To be sure, the fact that there
are gravitational waves was no surprise at all. More or less everybody in the field was convinced
that gravitational waves exist, at least since the observations of the Hulse-Taylor pulsar. The
surprises are the following: Black holes with masses between 50 and 100 solar masses seem to
be abundant, and mergers of such black holes (in galaxies that are a few hundred Megaparsecs
away) seem to be more likely to observe than mergers of neutron stars (within our galaxy).
Before the gravitational-wave observations we had good evidence for the existence of stellar
black holes with masses between 1 solar mass and 25 solar masses and of supermassive black
holes with masses of at least a few million solar masses. Stellar black holes in the range between
50 and 100 solar masses had not been expected. This could have important consequences. Even
the debate of whether or not the mysterious “dark matter” could be made up of black holes
has been revived, see S. Bird et al. [“Did LIGO detect dark matter?” Phys. Rev. Lett. 116,
201301 (2016)], co-authored by Nobel-prize laureate Adam Riess.

With Virgo, KAGRA and LIGO India coming online soon, we expect the observation of grav-
itational waves to become a matter of routine within a few years. This will give us a “second
eye” (in addition to the observation of electromagnetic signals) to the universe. Clearly, this
will allow us to study events in the universe about which we wouldn’t have received any infor-
mation with the help of ordinary (radio, optical, X-ray, ... ) telescopes. It is this perspective
of establishing a “gravitational wave astronomy” that gives the enormous importance to the
LIGO discovery of gravitational waves.

6 Gravitational waves in the linearised theory around

curved spacetime

In this section we consider gravitational waves that are small perturbations of a curved back-
ground. We will in particular treat the case that the background is the Schwarzschild spacetime.
However, we begin by deriving the linearised field equation around an unspecified curved back-
ground

6.1 Linearisation of Einstein’s field equation on a curved background

We assume that the metric is of the form

gµν = gµν + hµν

where gµν is an arbitray Lorentzian (background) metric and the perturbation is assumed to
be so small that all terms of second or higher order with respect to hµν or its derivatives can
be neglected.
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We want to work out the field equation (without a cosmological constant),

Rµν −
R

2
gµν = κTµν ,

in this linearised theory. As a first step, we have to calculate the Christoffel symbols.

For this entire chapter we agree to raise and to lower indices with the background metric. Then,
to within our linear approximation, the inverse metric is of the form

gνρ = gνρ − hνρ .

Proof: gµν
(
gνρ − hνρ

)
=
(
gµν + hµν

)(
gνρ − hνρ

)
= δρµ + hµ

ρ − hµρ = δρµ.

Let Γρµν denote the Christoffel symbols of the background metric and let ∇ be the covariant
derivative with respect to the background metric. Then the Christoffel symbols of the perturbed
spacetime are

Γρµν =
1

2
gρσ
(
∂µgσν + ∂νgσµ − ∂σgµν

)

=
1

2

(
gρσ − hρσ

)(
∂µ
(
gσν + hσν

)
+ ∂ν

(
gσµ + hσµ

)
− ∂σ

(
gµν + hµν

))

=
1

2
gρσ
(
∂µgσν + ∂νgσµ− ∂σgµν

)
+

1

2
gρσ
(
∂µhσν + ∂νhσµ− ∂σhµν

)
− 1

2
hρσ
(
∂µgσν + ∂νgσµ− ∂σgµν

)

= Γρµν +
1

2
gρλ
(
∂µhλν + ∂νhλµ − ∂λhµν

)
− 1

2
gρλgστhλτ

(
∂µgσν + ∂νgσµ − ∂σgµν

)

= Γρµν +
1

2
gρλ
(
∂µhλν + ∂νhλµ − ∂λhµν − 2Γτ µνhλτ

)

= Γρµν +
1

2
gρλ
(
∇µhλν +���

��Γτ µλhτν +���
��Γτ µνhλτ +∇νhλµ +���

��Γτ νλhτµ +���
��Γτ νµhλτ

−∇λhµν −�����Γτ λµhτν −�����Γτ λνhµτ −����
�

2Γτ µνhλτ

)
= Γρµν +

1

2

(
∇µh

ρ
ν +∇νh

ρ
µ −∇ρhµν

)

We write this result as
Γρµν = Γρµν + δΓρµν

where

δΓρµν =
1

2

(
∇µh

ρ
ν +∇νh

ρ
µ −∇ρhµν

)

is a tensor field. (Recall that the difference of the Christoffel symbols of two connections is a
tensor field.)

Next we calculate the curvature tensor.

Rµ
νρσ = ∂νΓ

µ
ρσ − ∂ρΓ

µ
νσ + ΓµνκΓ

κ
ρσ − ΓµρκΓ

κ
νσ = ∂ν

(
Γµρσ + δΓµρσ

)
− ∂ρ

(
Γµνσ + δΓµνσ

)

+
(

Γµνκ + δΓµνκ

)(
Γκρσ + δΓκρσ

)
−
(

Γµρκ + δΓµρκ

)(
Γκνσ + δΓκνσ

)

= Rµ
νρσ + ∂νδΓ

µ
ρσ − ∂ρδΓ

µ
νσ + ΓµνκδΓ

κ
ρσ + ΓκρσδΓ

µ
νκ − ΓµρκδΓ

κ
νσ − ΓκνσδΓ

µ
ρκ .
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This gives us the curvature tensor in the form

Rµ
νρσ = Rµ

νρσ + δRµ
νρσ

where

δRµ
νρσ = ∂νδΓ

µ
ρσ − ∂ρδΓ

µ
νσ + ΓµνκδΓ

κ
ρσ + ΓκρσδΓ

µ
νκ − ΓµρκδΓ

κ
νσ − ΓκνσδΓ

µ
ρκ

= ∇νδΓ
µ
ρσ − ΓµνκδΓ

κ
ρσ + ΓκνρδΓ

µ
κσ + ΓκνσδΓ

µ
κρ

−∇ρδΓ
µ
νσ + ΓµρκδΓ

κ
νσ − ΓκρνδΓ

µ
κσ − ΓκρσδΓ

µ
κν

+ ΓµνκδΓ
κ
ρσ + ΓκρσδΓ

µ
νκ − ΓµρκδΓ

κ
νσ − ΓκνσδΓ

µ
ρκ

= ∇νδΓ
µ
ρσ − ∇ρδΓ

µ
νσ .

With our earlier result for δΓµρσ this can be rewritten as

δRµ
νρσ =

1

2
∇ν

(
∇ρh

µ
σ +∇σh

µ
ρ −∇µhρσ

)
− 1

2
∇ρ

(
∇νh

µ
σ +∇σh

µ
ν −∇µhνσ

)

=
1

2

(
∇ν∇ρh

µ
σ +∇ν∇σh

µ
ρ −∇ν∇µhρσ −∇ρ∇νh

µ
σ −∇ρ∇σh

µ
ν +∇ρ∇µhνσ

)
.

Contraction gives the Ricci tensor

Rρσ = Rρσ + δRρσ

where

δRρσ = δRµ
µρσ =

1

2

(
∇µ∇ρh

µ
σ +∇µ∇σh

µ
ρ −∇µ∇µhρσ −����

��∇ρ∇µh
µ
σ −∇ρ∇σh

µ
µ +���

��∇ρ∇µhµσ

)

=
1

2

(
∇µ∇ρh

µ
σ +∇µ∇σh

µ
ρ −�hρσ −∇ρ∇σh

)
.

Here we have introduced the trace of the perturbation,

h = hµµ = gµνhµν ,

and the wave operator of the background metric,

� = ∇µ∇µ = gµν∇µ∇ν .

If we contract another time we get the Ricci scalar

R = R + δR

with

δR = δRρ
ρ =

1

2

(
∇µ∇ρh

µρ +∇µ∇ρhµρ −�hρρ −∇ρ∇ρh
)

= ∇µ∇ρh
µρ −�h .
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Finally, the Einstein tensor Gρσ = Rρσ −
R

2
gρσ reads

Gρσ = Gρσ + δGρσ

where

δGρσ = δ
(
Rρσ −

1

2
Rgρσ

)

= δRρσ −
1

2
Rδgρσ −

1

2
δR gρσ = δRρσ −

1

2
Rhρσ −

1

2
δR gρσ

=
1

2

(
∇µ∇ρh

µ
σ +∇µ∇σh

µ
ρ −�hρσ −∇ρ∇σh−Rhρσ − gρσ

(
∇µ∇νh

µν −�h .
))
.

Now we use that the commutator of covariant derivatives can be expressed in terms of the
curvature tensor,

(
∇µ∇ρ −∇ρ∇µ

)
hµσ = Rτ

µρσh
µ
τ −Rµ

µρτh
τ
σ .

We find

∇µ∇ρh
µ
σ +∇µ∇σh

µ
ρ = ∇ρ∇µh

µ
σ +Rτ

µρσh
µ
τ −Rµ

µρτh
τ
σ +∇σ∇µh

µ
ρ +Rτ

µσρh
µ
τ −Rµ

µστh
τ
ρ .

This can be rewritten, with the first Bianchi identity

Rτ
µσρ +Rτ

ρµσ +Rτ
σρµ = 0

as

∇µ∇ρh
µ
σ+∇µ∇σh

µ
ρ = ∇ρ∇µh

µ
σ+∇σ∇µh

µ
ρ+R

τ
µρσh

µ
τ−Rτ

ρµσh
µ
τ−Rτ

σρµh
µ
τ−Rρτh

τ
σ−Rστh

τ
ρ

and, further, with the curvature identity

Rτ
ρµσ = −Rτ

µρσ ,

as

∇µ∇ρh
µ
σ +∇µ∇σh

µ
ρ = ∇ρ∇µh

µ
σ +∇σ∇µh

µ
ρ + 2Rτ

µρσh
µ
τ −Rτσρµh

µτ

︸ ︷︷ ︸
= 0

−Rρτh
τ
σ −Rστh

τ
ρ

where the underbraced term vanishes because of the curvature identity Rτσρµ = −Rµσρτ . In-
serting this expression into our result for δGµν gives

2 δGρσ = ∇ρ∇µh
µ
σ +∇σ∇µh

µ
ρ + 2Rτ

µρσh
µ
τ −Rρτh

τ
σ −Rστh

τ
ρ

−�hρσ −∇ρ∇σh−Rhρσ − gρσ
(
∇µ∇νh

µν −�h
)
.

This is the general expression for δGµν on an arbitrary background spacetime. It gives us the
linearised field equation in the form

Gρσ + δGρσ = κTρσ .
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From now on we specify to the case that the background spacetime satisfies the vacuum field
equation (without a cosmological constant),

Rµν = 0 .

Then

2 δGρσ = ∇ρ∇µh
µ
σ +∇σ∇µh

µ
ρ + 2Rτ

µρσh
µ
τ −�hρσ −∇ρ∇σh− gρσ

(
∇µ∇νh

µν −�h
)
.

This expression can be simplified if we use the gauge freedom. We follow our treatment in the
case of a flat background (see p. 8) as closely as possible. We introduce

γµν = hµν −
h

2
gµν

which implies

γ := gµνγµν = h − 1

2
4h = −h ,

hence
hµν = γµν −

γ

2
gµν .

Then our expression for δGµν reads

2 δGρσ = ∇ρ∇µ

(
γµσ −

γ

2
δµσ

)
+∇σ∇µ

(
γµρ −

γ

2
δµρ

)
+ 2Rτ

µρσ

(
γµτ −

γ

2
δµτ

)

−�
(
γρσ −

γ

2
gρσ

)
+∇ρ∇σγ − gρσ

(
∇µ∇νγ

µν −∇µ∇ν
γ

2
gµν + �γ

)

= ∇ρ∇µγ
µ
σ −
��

��
�1

2
∇ρ∇σγ +∇σ∇µγ

µ
ρ −
��

��
�1

2
∇σ∇ργ + 2Rτ

µρσγ
µ
τ − γ Rµ

µρσ︸ ︷︷ ︸
= 0

−�γρσ +
��

��
�1

2
gρσ�γ +���

�∇ρ∇σγ − gρσ∇µ∇νγ
µν +

��
��
�1

2
gρσ�γ −��

��gρσ�γ

= −�γρσ + 2Rτ
µρσγ

µ
τ +∇ρ∇µγ

µ
σ +∇σ∇µγ

µ
ρ − gρσ∇µ∇νγ

µν .

The last three terms all involve the covariant divergence ∇µγ
µν . We will now demonstrate that

this can be transformed to zero by a gauge transformation, generalising the Hilbert gauge we
already know from the linearisation around flat spacetime.

As before, by a gauge transformation we mean a coordinate transformation

xµ 7→ xµ + fµ(x)

where fµ(x) is small of first order, i.e., so small that only terms linear in fµ and its derivatives
have to be kept.
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Then the metric transforms as

gµν(x)dxµdxν 7→ gµν
(
x+ f

)(
dxµ + ∂ρf

µ(x)dxρ
)(
dxν + ∂σf

ν(x)dxσ
)

= gµν(x)dxµdxν + ∂σgµν(x)fσ(x)dxµdxν + ∂ρf
µ(x)gµν(x)dxρdxν + ∂σf

ν(x)gµν(x)dxµdxσ + . . .

=
(
gµν(x) + ∂σgµν(x)fσ(x) + ∂µf

ρ(x)gρν(x) + ∂νf
σ(x)gµσ(x)

)
dxµdxν

i.e.
gµν + hµν 7→ gµν + hµν + fσ∂σgµν + gρν∂µf

ρ + gµσ∂νf
σ + . . .

hence
hµν 7→ hµν + fσ∂σgµν + gρν∂µf

ρ + gµσ∂νf
σ + . . .

= hµν + f τ∂τgµν + gρν
(
∇µf

ρ − Γρµτf
τ
)

+ gµσ
(
∇νf

σ − Γσντf
τ
)

= hµν+∇µfν+∇νfµ+f τ
(
∂τgµν−

1

2
gρνg

ρσ
(
∂µgστ+∂τgσµ−∂σgµτ

)
−1

2
gµσg

σρ
(
∂νgρτ+∂τgρν−∂ρgντ

))

= hµν +∇µfν +∇νfµ + f τ
(
��
�∂τgµν −

1

2

(
��
�∂µgντ +��

�∂τgνµ −��
�∂νgµτ
)
− 1

2

(
��
�∂νgµτ +��

�∂τgµν −��
�∂µgντ
))

= hµν +∇µfν +∇νfµ .

This implies
h 7→ h+ 2∇σf

σ

or equivalently
γ 7→ γ − 2∇σf

σ ,

and

γµν = hµν −
h

2
gµν 7→ hµν +∇µfν +∇νfµ−

1

2

(
h+ 2∇σf

σ
)
gµν = γµν +∇µfν +∇νfµ−∇σf

σgµν .

Hence, the covariant divergence of γµν transforms according to

∇µγµν 7→ ∇µγµν +∇µ∇µfν +∇µ∇νfµ −∇µ∇σf
σgµν

= ∇µγµν + �fν +∇σ∇νf
σ −∇ν∇σf

σ = ∇µγµν + �fν +Rσ
σντ︸ ︷︷ ︸

= 0

f τ .

If fµ is chosen such that

�fν = −∇µγµν , (WE)
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the covariant divergence of γµν is transformed to zero. If initial data for fν and ∂0fν are given on
a spacelike hypersurface x0 = constant, a unique solution to the wave equation (WE) exists on
a neighbourhood of this hypersurface. If the spacetime is what is called “globally hyperbolic”,
we may choose this hypersurface such that the solution exists globally. The domain of outer
communication of the Schwarzschild spacetime (i.e., the region outside the horizon) is globally
hyperbolic. Details on the initial value problem for the wave equation on a curved background
can be found in the book by R. Wald [“General Relativity” University of Chicago Press (1984)].

On a globally hyperbolic spacetime with vanishing Ricci tensor we can thus transform ∇µγµν
to zero. This is called the (generalised) Hilbert gauge. Then the linearised field equation reads

− 1

2
�γµν +Rτ

ρµνγτ
ρ = κTµν , ∇µγµν = 0 .

This still leaves the freedom of making gauge transformations xµ → xµ + fµ(x) with �fµ = 0.

6.2 “Geometric optics” of gravitational waves on a curved back-
ground

We will now discuss how gravitational waves propagate, on a curved background, in the high-
frequency limit. This is the gravitational-wave analogue of geometric optics. In the last section
we have seen that, in a gauge with ∇µhµν = 0, the linearised vacuum field equation reads

�γµν − 2Rτ
ρµνγτ

ρ = 0 .

On a flat background, we have found plane-wave solutions which are of the form

hµν(x) = Re
{
Aµνe

kσxσ
}

with a constant complex amplitude Aµν and a constant real wave covector kµ. In the case of a
curved background, exact solutions of this form do not exist. However, we may consider one-
parameter families of metric perturbations that describe approximate plane-harmonic waves.
We write this, with a real parameter α, as

γµν(x) = Re
{(
aµν(x) + α bµν +O(α2)

)
eiS(x)/α

}

where aµν(x) and bµν(x) are complex-valued functions of x and S(x) is a real-valued function
of x. For the interpretation of this ansatz, we expand the function S on a neighbourhood of a
point x0 in a Taylor series,

S(x) = S(x0) +∇µS(x0)
(
xµ − xµ0

)
+ · · · = S0 +∇µS(x0)xµ + . . .

where S0 = S(x0)−∇µS(x0)xµ0 . We choose the neighbourhood so small that the higher-order
terms, indicated by ellipses, may be neglected and that the leading-order amplitude satisfies
aµν(x) ≈ aµν(x0) on this neighbourhood. For α sufficiently small, our ansatz then gives indeed
approximately a plane-harmonic wave with amplitude aµν(x0)eiS0/α and wave covector kµ =
∇µS(x0)/α. Clearly, the smaller α the more maxima our wave has in the chosen neighbourhood.
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As this construction can be done around any point, the function kµ(x) = ∇µS(x)/α can be
interpreted as the wave covector field of our approximate plane-harmonic wave. With respect
to an observer with 4-velocity Uµ, we may interpret −Uµ∇µS/α as the frequency and the part
of ∇µS/α that is perpendicular to Uµ as the spatial wave covector.
We will now assume that our approximate plane-harmomnic wave family satisfies the linearised
vacuum field equation, for all α, and we will evaluate this condition in leading and next-to-
leading order of 1/α. The Hilbert gauge condition requires

0 = Re
{
eiS/α

( i
α

(
∇µS aµν +O(α)

))}
.

For non-constant S, this can be true only if

∇µSaµν = 0 .

The field equation requires

0 = ∇σRe
{
eiS/α

( i
α
∇σS aµν +∇σaµν + i∇σS bµν +O(α)

)}
− Re

{
eiS/α

(
2Rτ

ρµν a
ρ
τ +O(α)

)}

= Re
{
eiS/α

(
− 1

α2
∇σS∇σS aµν +

i

α
∇σ∇σS aµν +

2 i

α
∇σS∇σaµν −

1

α
∇σS∇σS bµν +O(α0)

)}
.

We find in leading order (α−2)
∇σS∇σS aµν = 0

and in next-to-leading order (α−1)

∇σS∇σaµν + 2∇σS∇σaµν + i∇σS∇σS bµν = 0 .

As we want to have a wave with non-zero amplitude, the leading order gives us the condition

∇µS∇µS = 0 .

The integral curves of the vector field kµ = ∇µS are called the rays of the approximate plane-
harmonic wave family. The latter condition says that the rays are lightlike geodesics of the
background metric.

Proof: Clearly, the condition 0 = ∇µS∇µS = kµkµ = gµνk
µkν says that the integral curves of

kµ are lightlike. We have to prove that they are geodesics, i.e., that kµ∇µk
σ = 0. To that end,

we apply the operator ∇ρ to both sides of the equation 0 = gµνk
µkν . This results in

0 = 2gµνk
µ∇ρk

ν = 2 kµ∇ρkµ = 2 kµ∇ρ∇µS = 2 kµ∇µ∇ρS = 2 kµ∇µkρ

where we have used the fact that covariant derivatives commute if they are applied to a scalar
function. Multiplication with gρσ/2 yields indeed 0 = kµ∇µk

σ. �
The fact that the rays are lightlike geodesics may be interpreted as saying that gravitational
waves propagate at the speed of light. Note that the condition kµ∇µS = 0 means that the
vector field kµ is tangential to the surfaces S = constant, see the picture on the next page:
From ordinary geometry with a positive definite metric we are used to the fact that the gradient
of a function S is transverse to the surfaces S = constant; in the case of an indefinite metric,
however, the gradient may be lightlike and then it is tangential to the surfaces S = constant.
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S = constant

S = constant

kµ
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We now evaluate the next-to-leading order. With the result from the leading order this may
be rewritten as

∇σkσ aµν + 2kσ∇σaµν = 0 .

This is a transport law for the amplitude aµν along the rays. We may write it in a more
convenient form if we multiply aµν with a scalar function u,

kσ∇σ

(
u aµν

)
= aµνk

σ∇σu+ u kσ∇σaµνs =
(
kσ∇σu− u

1

2
∇σk

σ
)
aµν .

If we choose the function u such that it satisfies along each ray the first-order differential
equation

kσ∇σu = u
1

2
∇σk

σ

we have
kσ∇σ

(
u aµν

)
= 0 ,

i.e., u aµν is parallelly transported along each ray.

We summarise the findings of this section for gravitational waves that travel on a Ricci-flat
background: The rays are lightlike geodesics of the background metric, i.e., the gravitational
radiation travels at the speed of light. The amplitude is parallely transported along each ray if
multiplied with an appropriate normalisation factor.

Note that we have assumed that the background geometry is kept fixed. This scheme is appro-
priate if the wavelength of the gravitational wave is much shorter than a typical length scale
on which the background geometry changes. As an alternative to our scheme, one may assume
that the background metric and, thus, the curvature tensor Rτ

µρσ also depend on the param-
eter α. If the curvature tensor is proportional to 1/α, the result that the rays are lightlike
geodesics is still true but the transport law for the amplitude is modified. If the curvature
tensor is proportional to 1/α2, the rays are no longer lightlike geodesics. If the wavelength of
the gravitational wave is of the same order of magnitude as a typical curvature radius, or even
longer, then our original scheme is not applicable.
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6.3 Linearised field equation on Schwarzschild spacetime

In Section 6.1 we have derived the linearised vacuum field equation on a Ricci-flat curved
background in the form

�hµν − 2Rτ
ρµνhτ

ρ = 0

which is valid only in a gauge such that ∇µhµν = 0 and h = 0 . As an alternative, we can write
the linearised vacuum field equation in the form

0 = δRνσ = δRµ
νµσ = ∇νδΓ

µ
µσ − ∇µδΓ

µ
νσ

which is true in any gauge, see p. 83. In the following we will use the latter form because it
leaves us the freedom of making arbitrary gauge transformations.

It is our goal to evaluate this equation for the case that the background metric is the Schwarzschild
spacetime,

gµνdx
µdxν = −

(
1− rS

r

)
c2dt2 +

dr2

(
1− rS

r

) + r2
(
dϑ2 + sin2ϑ dϕ2

)

where rS is parameter with the dimension of a length, called the Schwarzschild radius. Recall
that the Schwarzschild metric describes the vacuum region outside a spherically symmetric
gravitating body. The Schwarzschild radius is related to the mass M by the equation

rS =
2GM

c2
.

The central body may be a star, in which case the metric is valid in the domain r∗ < r < ∞
where r∗ > rS denotes the physical radius of the star, or it may be a black hole, in which case
the metric is valid in the domain 0 < r <∞ with a (coordinate) singularity at r = rS.

For later purpose, we list the non-vanishing Christoffel symbols of the Schwarzschild spacetime:

Γtrt = Γttr =
rS

2r2
(

1− rS
r

) ,

Γrrr =
− rS

2r2
(

1− rS
r

) , Γrtt =
c2rS
2r2

(
1− rS

r

)
, Γrϕϕ = −r

(
1− rS

r

)
sin2ϑ , Γrϑϑ = − r

(
1− rS

r

)

Γϑrϑ = Γϑϑr =
1

r
, Γϑϕϕ = − sinϑ cosϑ

Γϕϑϕ = Γϕϕϑ = cotϑ , Γϕrϕ = Γϕϕr =
1

r

As the Schwarzschild spacetime is static and spherically symmetric, we can separate off the time
part and the angle part so that, in the end, we are left with an ordinary differential equation
for the radial part. The procedure is quite analogous to solving the Schrödinger equation with
a time-independent spherically symmetric potential: One splits off the time part

(
∼ eiωt

)

and the angle part
(
∼ Y`m(ϑ, ϕ)

)
and is then left with an ordinary differential equation for

the radial part; in the case of the Coulomb potential, this radial differential equation has the
Laguerre polynomials as the solutions.
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In the case at hand, the situation is considerably more complicated than in the case of the
Schrödinger equation as our unknown function is not a scalar field ψ but a tensor field hµν .
Therefore, we have to deal with (co)vectorial and tensorial spherical harmonics in addition to
the ordinary (scalar) spherical harmonics Y`m(ϑ, ϕ). Also, the gauge freedom has to be taken
into account. We proceed in the following five steps.

Step 1: Expand hµν(t, r, ϑ, ϕ) in terms of spherical harmonics.

Step 2: Decompose hµν(t, r, ϑ, ϕ) into parts that are even and odd, respectively, with respect
to parity transformations.

Step 3: Restrict to the odd parts. Simplify hµν(t, r, ϑ, ϕ) with the help of an appropriate gauge
transformation.

Step 4: Insert this simplified expression into the linearised vacuum field equation. After an
appropriate substitution this results in a partial differential equation for a function that
depends on t and r, known as the time-dependent Regge-Wheeler equation.

Step 5: Separate off the time part to get an ordinary differential equation for a funcion that
depends on the radial variable r only, known as the time-independent Regge-Wheeler
equation.

Here we restrict to perturbations that are odd with respect to parity transformations, following
a pioneering paper by T. Regge and J. Wheeler [“Stability of a Schwarzschild singularity” Phys.
Rev. 108, 1063 (1957)].

The treatment of even perturbations is considerably more difficult. We will not work this out
here. In the end, also in this case one arrives at a Regge-Wheeler type equation for a radial
function with an effective potential. It is called the Zerilli equation and was found only 13 years
after the Regge-Wheeler paper by F. Zerilli [“Effective potential for even-parity Regge-Wheeler
gravitational perturbation equations”, Phys. Rev. Lett. 24, 737 (1970)].

We will now carry through our step-by-step procedure.

Step 1: As a preparation for expanding the metric perturbation into spherical harmonics, we
write it in the form

hµν(t, r, ϑ, ϕ)dxµdxν = hAB(t, r, ϑ, ϕ)︸ ︷︷ ︸
scalar

dxAdxB

+ 2hAΣ(t, r, ϑ, ϕ)dxΣ

︸ ︷︷ ︸
covector

dxA + hΣΩ(t, r, ϑ, ϕ)dxΣdxΩ

︸ ︷︷ ︸
second−rank tensor

.

Here and in the following, indices A,B,C, . . . take values r and t while indices Σ,Ω,∆, . . .
take values ϑ and ϕ. Recall that we write two covector fields without a symbol between
them when we mean the symmetrised tensor product, dxAdxΣ = 1

2

(
dxA ⊗ dxΣ + dxΣ ⊗

dxA
)
. We see that, with respect to the angular part, the perturbation splits into three

scalar functions hAB, two covector fields hAΣdx
Σ and a symmetric second-rank tensor

field hΣΩdx
ΣdxΩ. We do the expansion into spherical harmonics for these three cases

separately.
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Scalar part: For fixed (t, r), we have three scalar functions htt, hrt = htr and hrr on the
sphere. These can be expanded into the usual (scalar-valued) spherical harmonics. For
non-negative m, they are defined as

Y`m(ϑ, ϕ) = C`mP`m
(
cosϑ

)
eimϕ

where the P`m are the associated Legendre polynomials,

P`m(x) = (−1)m(1− x2)m/2
( d
dx

)m
P`(x) ,

the P` are the Legendre polynomials,

P`(x) =
1

2``!

( d
dx

)`(
x2 − 1

)`
,

and the C`m are normalisation factors,

C`m =

√
(2`+ 1)(l −m)!

4π(`+m)!
.

The definition is extended to the case of negative m by requiring

Y`(−m)(ϑ, ϕ) = (−1)mY`m(ϑ, ϕ)

where overlining means complex conjugation. ` runs over all integers from 0 to∞ and m
runs, for fixed `, over all integers from −` to `.

The case ` = 0 (monopole perturbation) and the case ` = 1 (dipole perturbation) are
special and will, therefore, be excluded from the following discussion of scalar, covector
and tensor perturbations. By the Jebsen-Birkhoff theorem, perturbations with ` = 0
cannot do anything else but changing the mass parameter of the Schwarzschild black
hole. With some more effort, it can be shown that the case ` = 1 covers a shift of the
origin and the introduction of a non-zero spin of the black hole; as we consider only linear
perturbations, the resulting metric will be the Kerr metric linearised with respect to the
spin parameter a. So one finds that the cases ` = 0 and ` = 1 result in a perturbed
metric that is still stationary (time-independent), i.e, that it has nothing to do with
gravitational waves. This is in parallel with our earlier observation, when we considered
linear perturbations around flat spacetime, that the monopole term and the dipole term
do not contribute to gravitational waves in the far field.

As we omit the monopole and the dipole term, the general form of a scalar perturbation
is

hAB(t, r, ϑ, ϕ) =
∞∑

`=2

∑̀

m=−`
uAB`m(t, r)Y`m(ϑ, ϕ) ,

so for each (`,m) with ` ≥ 2 the scalar part of the perturbation is characterised by three
functions utt`m(t, r), utr`m(t, r) = urt`m(t, r) and urr`m(t, r).
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Covector part: For fixed (t, r), we have two covector fields htΣdx
Σ and hrΣdx

Σ on
the sphere. The coefficients hAΣ are scalar-valued functions on the sphere, so one could
expand them in terms of the scalar-valued spherical harmonics Y`m. However, this would
not be meaningful because the hAΣ are not invariant scalar functions; they change if
a new coordinate basis is chosen on the sphere. To get an expansion that respects the
invariance properties of the mathematical objects, one needs (co)vector-valued spherical
harmonics. As the sphere is two-dimensional, we need two such basis covector fields for
each (`,m). Of course, there are different choices for such a basis. Here we choose the
same basis as Regge and Wheeler: For the first basis covector field we choose the gradient
of the scalar function Y`m, which is indeed a non-zero covector field for all values of `
under consideration, ` ≥ 2,

Ψ`mΣ(ϑ, ϕ)dxΣ = ∇ΣY`m(ϑ, ϕ)dxΣ .

The second basis covector field is constructed orthogonal to the first one,

Φ`mΣ(ϑ, ϕ)dxΣ = εΣΩ∇ΩY`m(ϑ, ϕ)dxΣ ,

where
εΣΩdx

Σ ⊗ dxΩ = r2sinϑ
(
dϑ⊗ dϕ− dϕ⊗ dϑ

)

is the Levi-Civita tensor field (volume form) on the sphere. The latter is uniquely char-
acterised by the properties that it is anti-symmetric, εΣΩ = −εΩΣ, and that it evaluates
to unity on an orthonormal basis,

(
εΣΩdx

Σ ⊗ dxΩ
)( ∂ϑ√

gϑϑ
,
∂ϕ√
gϕϕ

)
=

εϑϕ√
gϑϑ gϕϕ

=
r2sinϑ√
r2r2sin2ϑ

= 1 .

As the covariant derivative of a scalar function is the same as the partial derivative, the
(co)vector-valued spherical harmonics can be rewritten as

Ψ`mΣ(ϑ, ϕ)dxΣ = ∂ϑY`m(ϑ, ϕ)dϑ + ∂ϕY`m(ϑ, ϕ)dϕ ,

Φ`mΣ(ϑ, ϕ)dxΣ = εϑϕg
ϕϕ∂ϕY`m(ϑ, ϕ)dϑ + εϕϑg

ϑϑ∂ϑY`m(ϑ, ϕ)dϕ

= ��r
2���sinϑ

1

��r2sin�2ϑ
∂ϕY`m(ϑ, ϕ)dϑ − ��r2sinϑ

1

��r2
∂ϑY`m(ϑ, ϕ)dϕ

=
1

sinϑ
∂ϕY`m(ϑ, ϕ)dϑ − sinϑ ∂ϑY`m(ϑ, ϕ)dϕ .

If we expand the covector parts of the metric perturbation with respect to this basis,

hAΣdx
Σ =

∞∑

`=2

∑̀

m=−`

(
v̂A`m(t, r)Ψ`mΣ + vA`m(t, r)Φ`mΣ

)
dxΣ ,

it is characterised for each (`,m) by four functions v̂t`m(t, r), v̂r`m(t, r), vt`m(t, r) and
vr`m(t, r).
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Tensor part: For fixed (t, r), we have a symmetric second-rank tensor field hΣΩdx
ΣdxΩ

on the sphere. On a two-dimensional space, a symmetric second-rank tensor has three
independent components, so for each (`,m) we need three linearly independent tensor-
valued spherical harmonics for a basis. Again, we choose the basis in the same way
as Regge and Wheeler. As the second covariant derivative of a scalar function gives a
symmetric second-rank tensor field, we choose for the first basis tensor field

Ψ`mΣΩ(ϑ, ϕ)dxΣdxΩ =
(
∇Σ∇ΩY`m

)
(ϑ, ϕ)dxΣdxΩ .

As the angular part of the metric, gΣΩ, is a symmetric second-rank tensor field propor-
tional to r2, we choose for the second basis tensor field

Φ`mΣΩ(ϑ, ϕ)dxΣdxΩ =
(
Y`m

gΣΩ

r2

)
(ϑ, ϕ)dxΣdxΩ .

The third basis tensor field we construct, as in the covector case, orthogonal to the Ψ`mΣΩ,

χ`mΣΩ(ϑ, ϕ)dxΣdxΩ =
1

2

(
εΣ∆∇∆∇ΩY`m + εΩ∆∇∆∇ΣY`m

)
(ϑ, ϕ) dxΣ dxΩ .

It is not difficult to verify that, for all (`,m) with ` ≥ 2, these three second-rank tensor
fields are indeed linearly independent. With the help of the Christoffel symbols listed at
the beginning of this section, we rewrite the tensor-valued spherical harmonics as

Ψ`mΣΩ(ϑ, ϕ)dxΣdxΩ = ∇ϑ∇ϑY`m(ϑ, ϕ)dϑ2 + 2∇ϑ∇ϕY`m(ϑ, ϕ)dϑdϕ+∇ϕ∇ϕY`m(ϑ, ϕ)dϕ2

= ∂2
ϑY`m(ϑ, ϕ)dϑ2+2

(
∂ϑ∂ϕY`m−Γϕϑϕ∂ϕY`m

)
(ϑ, ϕ)dϑdϕ+

(
∂2
ϕY`m−Γϑϕϕ∂ϑY`m

)
(ϑ, ϕ)dϕ2

= ∂2
ϑY`m(ϑ, ϕ)dϑ2 + 2

(
∂ϑ∂ϕY`m(ϑ, ϕ)− cotϑ ∂ϕY`m(ϑ, ϕ)

)
dϑdϕ

+
(
∂2
ϕY`m(ϑ, ϕ) + sinϑ cosϑ ∂ϑY`m(ϑ, ϕ)

)
dϕ2 ,

Φ`mΣΩ(ϑ, ϕ)dxΣdxΩ = Y`m(ϑ, ϕ)
(gϑϑ
r2
dϑ2 +

gϕϕ
r2
dϕ2
)

= Y`m(ϑ, ϕ)
(
dϑ2 + sin2ϑ dϕ2

)
,

χ`mΣΩ(ϑ, ϕ)dxΣdxΩ =
(
εϑϕg

ϕϕ∇ϕ∇ϑY`m

)
(ϑ, ϕ)dϑ2 +

(
εϑϕg

ϕϕ∇ϕ∇ϕY`m

)
(ϑ, ϕ)dϑdϕ

+
(
εϕϑg

ϑϑ∇ϑ∇ϑY`m

)
(ϑ, ϕ)dϕdϑ+

(
εϕϑg

ϑϑ∇ϑ∇ϕY`m

)
(ϑ, ϕ)dϕ2

=
��r2���sinϑ

��r2sin�2ϑ

(
∂ϕ∂ϑY`m − Γϕϕϑ∂ϕY`m

)
(ϑ, ϕ)dϑ2 +

��r2���sinϑ

��r2sin�2ϑ

(
∂2
ϕY`m − Γϑϕϕ∂ϑY`m

)
(ϑ, ϕ)dϑdϕ

−��r
2sinϑ

��r2
∂2
ϑY`m(ϑ, ϕ)dϑdϕ−��r

2sinϑ

��r2

(
∂ϑ∂ϕY`m(ϑ, ϕ)− Γϕϑϕ∂ϕY`m

)
dϕ2

=
1

sinϑ

(
∂ϕ∂ϑY`m(ϑ, ϕ)− cotϑ ∂ϕY`m(ϑ, ϕ)

)(
dϑ2 − sin2ϑ dϕ2

)

+
1

sinϑ

(
∂2
ϕY`m(ϑ, ϕ)− sin2ϑ ∂2

ϑY`m(ϑ, ϕ) + sinϑ cosϑ ∂ϑY`m(ϑ, ϕ)
)
dϑdϕ .

We expand the tensorial part of the metric perturbation in the form

hΣΩ(t, r, ϑ, ϕ)dxΣdxΩ =
∞∑

`=2

∑̀

m=−`

(
ŵ`m(t, r)Ψ`mΣΩ(ϑ, ϕ) + w̃`m(t, r)Φ`mΣΩ(ϑ, ϕ) + w`m(t, r)χ`mΣΩ(ϑ, ϕ)

)
dxΣdxΩ .
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Step 2: We will now investigate the transformation behaviour of our various spherical har-
monics with respect to parity transformations (i.e., reflections at the origin)

(ϑ, ϕ) 7→ (π − ϑ, ϕ+ π) .

Obviously, under such a transformation

cosϑ 7→ − cosϑ , sinϑ 7→ sinϑ , eimϕ 7→ eimϕeimπ = eimϕ
(
eiπ
)m

= eimϕ(−1)m ,

dϑ 7→ − dϑ , dϕ 7→ dϕ , ∂ϑ 7→ − ∂ϑ , ∂ϕ 7→ ∂ϕ ,

We also need to know that

P`(−x) =
1

2``!

(
− d

dx

)`
P`
(
x2 − 1

)`
= (−1)`P`(x) ,

P`m(−x) = (−1)m(1− x2)m/2
(
− d

dx

)m
P`(−x) = (−1)m(−1)`P`m(x) .

We introduce the following terminology. A function F`m(ϑ, ϕ) is said to be

• even under parity transformations if F`m(π − ϑ, ϕ+ π) = (−1)`F`m(ϑ, ϕ),

• odd under parity transformations if F`m(π − ϑ, ϕ+ π) = (−1)`+1F`m(ϑ, ϕ).

Instead of even/odd, some authors say polar/axial, electric/magnetic or poloidal/toroidal.

With the help of the above transformation rules, we will now demonstrate that

Y`m(ϑ, ϕ) is even,

Ψ`mΣ(ϑ, ϕ)dxΣ is even,

Φ`mΣ(ϑ, ϕ)dxΣ is odd,

Ψ`mΣΩ(ϑ, ϕ)dxΣdxΩ is even,

Φ`mΣΩ(ϑ, ϕ)dxΣdxΩ is even,

χ`mΣΩ(ϑ, ϕ)dxΣdxΩ is odd.

Proof: Under a parity transformation,

Y`m(ϑ, ϕ) = C`mP`m
(
cosϑ

)
eimϕ

7→ C`mP`m
(
−cosϑ

)
eimϕeimπ = C`m(−1)m(−1)`P`m

(
cosϑ

)
eimϕ(−1)m = (−1)`Y`m(ϑ, ϕ) ,

Ψ`mΣ(ϑ, ϕ)dxΣ = ∂ϑY`m(ϑ, ϕ)dϑ + ∂ϕY`m(ϑ, ϕ)dϕ

7→ (−1)`(−∂ϑ)Y`m(ϑ, ϕ)(−dϑ) + (−1)`∂ϕY`m(ϑ, ϕ)dϕ = (−1)`Ψ`mΣ(ϑ, ϕ)dxΣ ,

Φ`mΣdx
Σ =

1

sinϑ
∂ϕY`m(ϑ, ϕ)dxϑ − sinϑ ∂ϑY`m(ϑ, ϕ)dxϕ

7→ (−1)`

sinϑ
∂ϕY`m(ϑ, ϕ)(−dxϑ) + sinϑ (−∂ϑ)Y`m(ϑ, ϕ)dxϕ = (−1)`+1Φ`mΣdx

Σ ,
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Ψ`mΣΩ(ϑ, ϕ)dxΣdxΩ = ∂2
ϑY`m(ϑ, ϕ)dϑ2

+ 2
(
∂ϑ∂ϕY`m(ϑ, ϕ)− cotϑ∂ϕY`m(ϑ, ϕ)

)
dϑdϕ+

(
∂2
ϕY`m(ϑ, ϕ) + sinϑ cosϑ∂ϑY`m(ϑ, ϕ)

)
dϕ2

7→ (−1)`∂2
ϑY`m(ϑ, ϕ)dϑ2 + 2(−1)`

(
− ∂ϑ∂ϕY`m(ϑ, ϕ) + cotϑ∂ϕY`m(ϑ, ϕ)

)
(−dϑ)dϕ

+(−1)`
(
∂2
ϕY`m(ϑ, ϕ) + sinϑ cosϑ∂ϑY`m(ϑ, ϕ)

)
dϕ2 = (−1)`Ψ`mΣΩdx

ΣdxΩ ,

Φ`mΣΩ(ϑ, ϕ)dxΣdxΩ = Y`m(ϑ, ϕ)
(
dϑ2 + sin2ϑ dϕ2

)

7→ (−1)`Y`m(ϑ, ϕ)
(
dϑ2 + sin2ϑ dϕ2

)
= (−1)`Φ`mΣΩ(ϑ, ϕ)dxΣdxΩ ,

χ`mΣΩ(ϑ, ϕ)dxΣdxΩ =
1

sinϑ

(
∂ϕ∂ϑY`m(ϑ, ϕ)− cotϑ ∂ϕY`m(ϑ, ϕ)

)(
dϑ2 − sin2ϑ dϕ2

)

+
2

sinϑ

(
∂2
ϕY`m(ϑ, ϕ)− sin2ϑ ∂2

ϑY`m(ϑ, ϕ) + sinϑ cosϑ ∂ϑY`m(ϑ, ϕ)
)
dϑdϕ

7→ (−1)`

sinϑ

(
− ∂ϕ∂ϑY`m(ϑ, ϕ) + cotϑ ∂ϕY`m(ϑ, ϕ)

)(
dϑ2 − sin2ϑ dϕ2

)

+
2(−1)`

sinϑ

(
∂2
ϕY`m(ϑ, ϕ)− sin2ϑ ∂2

ϑY`m(ϑ, ϕ) + sinϑ cosϑ ∂ϑY`m(ϑ, ϕ)
)

(−dϑ)dϕ

= (−1)`+1χ`mΣΩ(ϑ, ϕ)dxΣdxΩ

�

Step 3:

We restrict to odd metric perturbations,

hAB(t, r, ϑ, ϕ) = 0 ,

hAΣ(t, r, ϑ, ϕ)dxΣ =
∞∑

`=2

∑̀

m=−`
vA`m(t, r)Φ`mΣdx

Σ ,

hΣΩ(t, r, ϑ, ϕ)dxΣdxΩ =
∞∑

`=2

∑̀

m=−`
w`m(t, r)χ`mΣΩ(ϑ, ϕ)dxΣdxΩ .

We fix ` and m, i.e., we consider one partial wave,

hµν(t, r, ϑ, ϕ)dxµdxν = 2 vA`m(t, r)Φ`mΣ(ϑ, ϕ)dxAdxΣ + w`m(t, r)χ`mΣΩ(ϑ, ϕ)dxΣdxΩ .

This partial wave is determined by three scalar functions, vt`m(t, r), vr`m(t, r) and w`m(t, r).
We will use the gauge freedom for transforming w`m(t, r) to zero.
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To that end, we recall that under a gauge transformation

xµ 7→ xµ + fµ(x) = xµ + gµν(x)fν(x)

the metric perturbation changes according to

hµν 7→ hµν +∇µfν +∇νfµ .

We choose a gauge function of the form

fA(t, r, ϑ, ϕ) = 0 , fΣ(t, r, ϑ, ϕ) = Λ`m(t, r)
(
εΣ

Ω∇ΩY`m
)
(ϑ, ϕ)

with a function Λ`m(t, r) to be determined. Note that such a gauge transformation de-
pends on ` and m, i.e., it is done for the chosen partial wave. Our gauge transformation
preserves the equation hAB = 0, because with the Christoffel symbols listed at the begin-
ning of this section we find

hAB 7→ hAB+∇AfB+∇BfA = 0+∂AfB−ΓµABfµ+∂BfA−ΓµBAfµ = 0−2 ΓΣ
AB︸ ︷︷ ︸

= 0

fΣ = 0 .

The tensorial part transforms as

hΣΩ(t, r, ϑ, ϕ) = w`m(t, r)χ`mΣΩ(ϑ, ϕ) 7→
(
w`m(t, r) + Λ`m(t, r)

)
χ`mΣΩ(ϑ, ϕ) .

Proof: We first observe that

∇Σ

(
Λ`mεΩ

∆
)

= εΩ
∆∇ΣΛ`m + Λ`m∇ΣεΩ

∆ = εΩ
∆∂ΣΛ`m︸ ︷︷ ︸

= 0

+ Λ`mg
∆Φ∇ΣεΩΦ︸ ︷︷ ︸

= 0

= 0 .

Here we have used the fact that the scalar function Λ`m is independent of ϑ and ϕ and
that the Levi-Civita tensor is covariantly constant,

∇ΣεΩ∆ = 0 .

The latter can be proven in the following way.

∇Σε∆Ω = ∂Σε∆Ω − ΓΠ
Σ∆εΠΩ − ΓΠ

ΣΩε∆Π

demonstrates that the left-hand side is zero for ∆ = Ω. This follows from the fact that
then, because of the antisymmetry of ε∆Ω, the first term on the right-hand side vanishes
and the other two compensate each other. Therefore, we only have to consider the case
that ∆ 6= Ω:

−∇ϑεϕϑ = ∇ϑεϑϕ = ∂ϑεϑϕ − Γϑϑϑεϑϕ − Γϕϑϕεϑϕ

= ∂ϑ
(
r2sinϑ

)
− 0− cotϑ r2sinϑ = r2cosϑ− r2cosϑ = 0 ,

−∇ϕεϕϑ = ∇ϕεϑϕ = ∂ϕεϑϕ − Γϑϕϑεϑϕ − Γϕϕϕεϑϕ = 0− 0− 0 = 0 .

With this result at hand, it is now easy to complete the proof.
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hΣΩ 7→ hΣΩ +∇ΣfΩ +∇ΩfΣ

= w`mχ`mΣΩ +∇Σ

(
Λ`mεΩ

∆∇∆Y`m
)

+∇Ω

(
Λ`mεΣ

∆∇∆Y`m
)

= w`m

(
εΣ∆∇∆∇ΩY`m + εΩ∆∇∆∇ΣY`m

)
+ Λ`mεΩ

∆∇Σ∇∆Y`m + Λ`mεΣ
∆∇Ω∇∆Y`m

= w`m

(
εΣ

∆∇∆∇ΩY`m + εΩ
∆∇∆∇ΣY`m

)
+ Λ`mεΩ

∆∇∆∇ΣY`m + Λ`mεΣ
∆∇∆∇ΩY`m

=
(
w`m + Λ`m

)(
εΣ

∆∇∆∇ΩY`m + εΩ
∆∇∆∇ΣY`m

)
.

�

If we choose Λ`m(t, r) = −w`m(t, r), the tensorial part is transformed to zero and in the
new gauge the metric perturbation is determined by just two scalar functions vt`m(t, r)
and vr`m(t, r),

hµν(t, r, ϑ, ϕ)dxµdxν = 2hAΣ(t, r, ϑ, ϕ)dxAdxΣ = 2 vA`m(t, r)Φ`mΣ(ϑ, ϕ)dxAdxΣ .

As the diagonal elements of hµν vanish, it is obvious that the condition of vanishing trace
is satisfied

gµνhµν = 0 .

The generalised Hilbert gauge condition is, however, not satisfied,

∇µhµν 6= 0

in general. Note that our choice of gauge, which is known as the Regge-Wheeler gauge, is
done for a particular (`,m).

Step 4:

Now comes the hard part of the construction. We plug our metric perturbation hµν ,
whose only non-vanishing components are hAΣ(t, r, ϑ, ϕ) = vA`m(t, r)Φ`mΣ(ϑ, ϕ), into the
linearised field equation. We use the latter in the gauge-independent form

0 = ∇νδΓ
µ
µσ − ∇µδΓ

µ
νσ

where

2δΓνρσ = gνλ
(
∇ρhλσ +∇σhλρ −∇λhρσ

)

= gνλ
(
∂ρhλσ−�����Γτ ρλhτσ−Γτ ρσhλτ +∂σhλρ−�����Γτ σλhτρ−Γτ σρhλτ−∂λhρσ+���

��Γτ λρhτσ+���
��Γτ λσhρτ

)

= gνλ
(
∂ρhλσ + ∂σhλρ − ∂λhρσ − 2Γτ ρσhλτ

)
.

We will show that, owing to our choice of gauge, δΓµµσ = 0. We consider first the case
σ = A = t, r, then the case σ = Σ = ϑ, ϕ.
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With the help of the Christoffel symbols listed at the beginning of this section we find

δΓµµA = gµλ
(
����∂µhλA + ∂Ahλµ −����∂λhµA − 2Γτ µAhλτ

)

= gCD∂AhCD︸ ︷︷ ︸
=0

+ gΣΩ∂AhΣΩ︸ ︷︷ ︸
=0

− 2gCDΓΩ
CA︸ ︷︷ ︸

=0

hDΩ − 2gΣΩΓBΣA︸ ︷︷ ︸
=0

hΩB = 0 ,

δΓµµΣ = gµλ
(
����∂µhλΣ + ∂Σhλµ −����∂λhµΣ − 2Γτ µΣhλτ

)

= gCD∂ΣhCD︸ ︷︷ ︸
=0

+ gΩ∆∂ΣhΩ∆︸ ︷︷ ︸
=0

− 2gCDΓ∆
CΣhD∆ − 2gΩ∆ΓBΩΣh∆B

= −2gCD
1

r
δrCδ

∆
ΣhD∆ + 2gΩ∆r

(
1− rS

r

)gΩΣ

r2
δBr h∆B

= −2grr
1

r
hrΣ +

2

r

(
1− rS

r

)
hrΣ = 0 .

This means that the linearised field equation simplifies to

0 = ∇µδΓ
µ
νσ .

As a preparation for working out the ten components of this tensor equation, we cal-
culate the δΓνρσ. In this calculation, we constantly use the Christoffel symbols of the
Schwarzschild metric, and we will also need the eigenvalue equation of the angular mo-
mentum operator which reads

L2Y`m = −~2(sinϑ)−1
(
∂ϑ
(
sinϑ ∂ϑY`m

)
+ (sinϑ)−1∂2

ϕY`m

)
= ~2`(`+ 1)Y`m

in standard quantum mechanics notation. We find

2δΓCAB = gCD
(
∂AhDB︸ ︷︷ ︸

= 0

+ ∂BhDA︸ ︷︷ ︸
= 0

− ∂DhAB︸ ︷︷ ︸
= 0

− 2ΓΣ
AB︸ ︷︷ ︸

= 0

hDΣ

)
= 0 ,

2δΓ∆
AB = g∆Λ

(
∂AhΛB + ∂BhΛA − ∂ΛhAB︸ ︷︷ ︸

= 0

− 2ΓCABhΛC

)

=
(
∂AvB`m + ∂BvA`m − 2ΓCABvC`m

)
g∆ΛΦ`mΛ

=
(
∂AvB`m + ∂BvA`m − 2ΓCABvC`m

)
︸ ︷︷ ︸

=: 2 qAB

g∆ΛεΛΩg
ΩΠ∇ΠY`m ,

2δΓCAΣ = gCD
(
∂AhDΣ + ∂ΣhDA︸ ︷︷ ︸

= 0

− ∂DhAΣ − 2Γ∆
AΣ︸ ︷︷ ︸

1
r
δrAδ

∆
Σ

hD∆

)

= gCD
(
∂AvD`m − ∂DvA`m −

2

r
δrAvD`m

)
︸ ︷︷ ︸

=: 2 pAD

Φ`mΣ ,
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2δΓ∆
AΣ = g∆Λ

(
∂AhΛΣ︸ ︷︷ ︸

= 0

+ ∂ΣhΛA − ∂ΛhAΣ − 2ΓCAΣ︸ ︷︷ ︸
= 0

hΛC

)
= vA`mg

∆Λ
(
∂ΣΦ`mΛ − ∂ΛΦ`mΣ

)

= vA`mg
∆Λ
(
∂ϑΦ`mϕ − ∂ϕΦ`mϑ

)(
δϑΣδ

ϕ
Λ − δϕΣδϑΛ

)

= vA`mg
∆Λ
(
∂ϑ
(
εϕϑg

ϑϑ∂ϑY`m
)
− ∂ϕ

(
εϑϕg

ϕϕ∂ϕY`m
)) εΣΛ

r2sinϑ

= vA`mg
∆Λ
(
− ∂ϑ

(
sinϑ∂ϑY`m

)
− ∂ϕ

(
(sinϑ)−1∂ϕY`m

)) εΣΛ

r2sinϑ

= vA`mg
∆ΛεΣΛ

1

r2
`(`+ 1)Y`m ,

2δΓCΣΩ = gCD
(
∂ΣhDΩ + ∂ΩhDΣ − ∂DhΣΩ︸ ︷︷ ︸

= 0

− 2Γ∆
ΣΩhD∆

)

= gCDvD`m

(
∂ΣΦ`mΩ + ∂ΩΦ`mΣ − 2Γ∆

ΣΩΦ`m∆

)
= gCDvD`m

(
∇ΣΦ`mΩ +∇ΩΦ`mΣ

)

= 2gCDvD`mχ`mΣΩ ,

2δΓ∆
ΣΩ = g∆Λ

(
∂ΣhΛΩ︸ ︷︷ ︸

= 0

+ ∂ΩhΛΣ︸ ︷︷ ︸
= 0

− ∂ΛhΣΩ︸ ︷︷ ︸
= 0

− 2ΓCΣΩhΛC

)
= −2g∆ΛΓCΣΩΦ`mΛvC`m

= −2g∆ΛΦ`mΛ

(
− vr`mr

(
1− rS

r

)
δϑΣδ

ϑ
Ω − vr`mr

(
1− rS

r

)
sin2ϑ δϕΣδ

ϕ
Ω

)

= 2g∆ΛΦ`mΛvr`mr
(
1− rS

r

)gΣΩ

r2
= 2g∆ΛΦ`mΛvr`m

(
1− rS

r

)gΣΩ

r
.

We are now ready to calculate the covariant derivatives

∇CδΓ
C
ρσ = ∂CδΓ

C
ρσ + ΓCCµδΓ

µ
ρσ − ΓµCρδΓ

C
µσ − ΓµCσδΓ

C
ρµ

and
∇∆δΓ

∆
ρσ = ∂∆δΓ

∆
ρσ + Γ∆

∆µδΓ
µ
ρσ − Γµ∆ρδΓ

∆
µσ − Γµ∆σδΓ

∆
ρµ

for all index combinations ρ, σ. On the right-hand sides we split the sum over µ = t, r, ϑ, ϕ
into two sums, over A = t, r and Ω = ϑ, ϕ, and collect all non-zero terms. We find

∇CδΓ
C
AB = 0 ,

∇∆δΓ
∆
AB = ∂∆δΓ

∆
AB + Γ∆

∆ΩδΓ
Ω
AB − ΓΩ

∆AδΓ
∆

ΩB − ΓΩ
∆BδΓ

∆
AΩ

= ∂∆

(
g∆ΛΦ`mΛqAB

)
+ Γ∆

∆Ωg
ΩΛΦ`mΛqAB − δrA

1

r
δΩ

∆δΓ
∆

ΩB − δrB
1

r
δΩ

∆δΓ
∆

ΩA

= qAB∇∆

(
g∆ΛΦ`mΛ

)
− δrA

1

r
δΓΩ

ΩB︸ ︷︷ ︸
= 0

− δrB 1
r
δΓΩ

ΩA︸ ︷︷ ︸
= 0

= qAB∇∆

(
g∆ΛεΛΣg

ΣΠ∇ΠY`m
)

= qAB εΛΣ︸︷︷︸
=− εΣΛ

g∆ΛgΣΠ∇∆∇ΠY`m︸ ︷︷ ︸
=∇Π∇∆Y`m

= 0 ,
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∇CδΓ
C
AΣ = ∂CδΓ

C
AΣ − ΓBCAδΓ

C
BΣ − ΓΩ

CΣδΓ
C
AΩ = ∂C

(
gCDpADΦ`mΣ

)

−ΓBCAg
CDpBDΦ`mΣ−δrC

1

r
δΩ

Σg
CDpADΦ`mΩ = Φ`mΣ

(
∂C
(
gCDpAD

)
−ΓBCAg

CDpBD−
1

r
grrpAr

)
,

∇∆δΓ
∆
AΣ = ∂∆δΓ

∆
AΣ + Γ∆

∆ΩδΓ
Ω
AΣ − ΓΩ

∆ΣδΓ
∆
AΩ︸ ︷︷ ︸

=`(`+1)
vA`m
2 r2

∇∆

(
g∆ΛεΣΛY`m

)
− ΓΩ

∆AδΓ
∆

ΩΣ + Γ∆
∆CδΓ

C
AΣ

−ΓC∆ΣδΓ
∆
AC = `(`+ 1)

vA`m
2 r2

g∆ΛεΣΛ∇∆Y`m − δrA
1

r
δΩ

∆g
∆ΛΦ`mΛgΩΣ

vr`m
r

(
1− rS

r

)

+δrC
2

r
gCDpADΦ`mΣ + δCr

1

r

(
1− rS

r

)
g∆Σg

∆ΛΦ`mΛqAC

= `(`+ 1)
vA`m
2 r2

Φ`mΣ − δrAΦ`mΣ
vr`m
r2

(
1− rS

r

)
+

2

r
grrpArΦ`mΣ +

1

r

(
1− rS

r

)
Φ`mΣqAr

= Φ`mΣ

(
`(`+ 1)

vA`m
2 r2

− δrA
vr`m
r2

(
1− rS

r

)
+

2

r
grrpAr +

1

r

(
1− rS

r

)
qAr

)
,

∇CδΓ
C

ΣΩ = ∂CδΓ
C

ΣΩ − Γ∆
CΣδΓ

C
∆Ω − Γ∆

CΩδΓ
C

Σ∆

=
1

r
δ∆

Ω g
CDvD`mχ`mΣ∆ = χ`mΣΩ

(
∂C
(
gCDvD`m

)
− 2

r
grrvr`m

)
,

∇∆δΓ
∆

ΣΩ = ∂∆δΓ
∆

ΣΩ + Γ∆
∆ΠδΓ

Π
ΣΩ − ΓΠ

∆ΣδΓ
∆

ΠΩ − ΓΠ
∆ΩδΓ

∆
ΣΠ + Γ∆

∆CδΓ
C

ΣΩ

=
vr`m
r

(
1− rS

r

)
∇∆

(
g∆ΛΦ`mΛgΣΩ

)
︸ ︷︷ ︸

= 0

+ δrC
2

r
gCDvD`mχ`mΣΩ =

2

r
grrvr`mχ`mΣΩ .

Hence

∇µδΓ
µ
AB = 0 ,

∇µδΓ
µ
AΣ = Φ`mΣ

(
∂C
(
gCDpAD

)
− ΓBCAg

CDpBD −
�
�
�
��1

r
grrpAr

+`(`+ 1)
vA`m
2 r2

− δrA
vr
r2

(
1− rS

r

)
+
��2

r
grrpAr +

1

r

(
1− rS

r

)
qAr

)
,

∇µδΓ
µ

ΣΩ = χ`mΣΩ∂C
(
gCDvD`m

)
.

We see that the (AB) components of the linearised field equation are identically satisfied.
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We now turn to the (tΣ) and (rΣ) components.

0 = ∂r
(
grrptr

)
− Γtrtg

rrptr − Γrttg
ttprt + `(`+ 1)

vt`m
2 r2

+
1

r
grrptr +

1

r

(
1− rS

r

)
qtr

=
1

2
∂r

((
1− rS

r

)(
∂tvr`m− ∂rvt`m

))
− rS

4r2

(
∂tvr`m− ∂rvt`m

)
+
rS
4r2

(
∂rvt`m− ∂tvr`m−

2

r
vt`m

)

+`(`+ 1)
vt`m
2 r2

+
1

2r

(
1− rS

r

)(
∂tvr`m −����∂rvt`m

)
+

1

2r

(
1− rS

r

)(
∂tvr`m +����∂rvt`m − 2Γttrvt`m

)

=
1

2

(
1− rS

r

)
∂r
(
∂tvr`m − ∂rvt`m

)
+
(
1− rS

r

)∂tvr`m
r

+ `(`+ 1)
vt`m
2 r2
− rSvt`m

r3
, (F1)

0 = ∂r
(
grrprr

)
+∂t

(
gttprt

)
−Γrrrg

rrprr+`(`+1)
vr`m
2 r2
−vr`m

r2

(
1− rS

r

)
+

1

r
grrprr+

1

r

(
1− rS

r

)
qrr

= −
���

���
���

�
∂r

((
1− rS

r

)vr`m
r

)
−
∂t
(
∂rvt`m − ∂tvr`m −

2

r
vt`m

)

2 c2
(
1− r

rS

) −rSvr`m
2 r3

+`(`+1)
vr`m
2 r2
−vr`m

r2

(
1−
�
��
rS
r

)

−
���

���
��(

1− rS
r

)vr`m
r2

+
1

r

(
1− rS

r

)(
���

�∂rvr`m − Γrrrvr`m
)

= −
∂t
(
∂rvt`m − ∂tvr`m −

2

r
vt`m

)

2 c2
(
1− r

rS

) −
�
�
��rSvr`m

2 r3
+ `(`+ 1)

vr`m
2 r2
− vr`m

r2
+
�
�
��rSvr`m

2 r3

= −
∂t∂rvt`m − ∂2

t vr`m −
2

r
∂tvt`m

2 c2
(
1− r

rS

) +

(
`(`+ 1)− 2

)
vr`m

2 r2
. (F2)

The (ΣΩ) component of the linearised field equation gives one equation,

0 = ∂r
(
grrvr`m

)
+ ∂t

(
gttvt`m

)
= ∂r

((
1− rS

r

)
vr`m

)
− ∂tvt`m

c2
(
1− rS

r

) . (F3)

The field equations (F1), (F2) and (F3) can be decoupled. To that end we replace vr`m
with

Q`m =
(
1− r

rS

)vr`m
r

which allows to rewrite (F3) as

∂tvt`m
c2

=
(
1− rS

r

)
∂r
(
r Q`m

)
=
(
1− rS

r

)
Q`m +

(
1− rS

r

)
r ∂rQ`m . (F3’)

Differentiation with respect to r yields

∂r∂tvt`m
c2

=
rS
r2
Q`m + 2

(
1− rS

r

)
∂rQ`m + r ∂r

((
1− rS

r

)
∂rQ`m

)
. (F3”)
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With the help of (F3’) and (F3”), (F2) can be rewritten as an equation for Q`m alone,

0 =
1

r

(
1− rS

r

)(∂t∂rvt`m
c2

− ∂2
t vr`m
c2

− 2∂tvt`m
r c2

)
−
(
1− rS

r

)2

(
`(`+ 1)− 2

)
vr`m

r3

=
1

r

(
1− rS

r

){rS
r2
Q`m +

���
���

���
2
(
1− rS

r

)
∂rQ`m + r ∂r

((
1− rS

r

)
∂rQ`m

)}

−∂
2
tQ`m

c2
− 2

r2

(
1− rS

r

)2
(
Q`m +���

��r ∂rQ`m

)
−
(
1− rS

r

)(`(`+ 1)− 2
)
Q`m

r2

=
(
1− rS

r

)
∂r

((
1− rS

r

)
∂rQ`m

)
− ∂2

tQ`m

c2
− 1

r2

(
1− rS

r

)((
`(`+ 1)− 3rS

r

))
Q`m .

If we introduce Wheeler’s tortoise coordinate

r∗ = r + rS ln
( r
rS
− 1
)
, ∂r∗ =

(
1− rS

r

)
∂r∂r∗ =

(
1− rS

r

)
∂r ,

which shifts the horizon to r∗ = −∞, we have derived the standard form of the time-
dependent Regge-Wheeler equation

∂2
r∗Q`m −

1

c2
∂2
tQ`m − V`(r∗)Q`m = 0.

Here the Regge-Wheeler potential V`(r∗) is given implicitly by

V`(r∗) =
1

r2

(
1− rS

r

)(
`(`+ 1)− 3rS

r

)
.

Note that the potential depends on ` but not on m. This means that we could drop the
index m on Q`m, i.e., Q`m′ = Q`m =: Q`. (Actually, this could have been anticipated
because of the spherical symmetry.) This implies that vr`m and vt`m can be replaced with
vr` and vt`, respectively.

Step 5: Finally, we separate the time coordinate with the help of the ansatz

Q`(t, r∗) = e−iωtZ`(r∗) .

Inserting this expression into the time-dependent Regge-Wheeler equation yields

d2Z`
dr2
∗
e−iωt +

ω2

c2
Z`e

−iωt − V`(r∗)Z`e−iωt = 0, ,

−d
2Z`
dr2
∗

+ V`(r∗)Z` =
ω2

c2
Z` .
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This is the time-independent Regge-Wheeler equation. It is very similar to the radial part
of the time-independent Schrödinger equation with a spherically symmetric potential.
There are some differences, however. (i) The frequency occurs quadratic, rather than
linear, because the Regge-Wheeler equation is of second order in time. (ii) The radius
coordinate r∗ ranges from −∞ to ∞, rather than from 0 to ∞. (iii) We have to impose
the condition on our complex function Z` that the corresponding metric perturbations
hµν are real. (iv) In contrast to the wave function in quantum mechanics, there is no
physical reason why Z` should have to satisfy a square-integrability condition; instead,
one has to impose physically motivated boundary conditions.

The Regge-Wheeler potential describes a potential barrier rather than a potential well,
see the picture below (and Worksheet 10). Correspondingly, there are no bound states.
We know already that monopole perturbations (ℓ = 0) and dipole perturbations (ℓ = 1)
cannot describe gravitational waves. Therefore, we omit these cases and plot the potential
for ℓ = 2 (solid), ℓ = 3 (dashed) and ℓ = 4 (dotted). The maximum of the potential is
near the light sphere at r = 3rS/2. In the limit ℓ → ∞ it approaches this value.

r∗

Vℓ(r∗)

r = 3rS/2

Two interesting types of problems are related with the Regge-Wheeler equation (and,
analogously, with the Zerilli equation for even modes). Firstly, one can study the way in
which an incoming wave is scattered by the black hole. To a large extent, mathematical
techniques can be taken over from the quantum-mechanical scattering theory. We will not
discuss this here. Secondly, one can study quasi-normal modes. The latter are defined
as solutions of the time-independent Regge-Wheeler equation with a complex ω satisfying
the boundary conditions that nothing is coming in from infinity or from the horizon. In
physical terms, they describe what happens if a black hole is perturbed and then left alone.
What one expects is that the perturbation dies down in the course of time. That is exactly
what comes out. One speaks of quasi-normal modes, rather than of normal modes, because
ω is non-real. Solutions with real ω cannot satisfy the prescribed boundary conditions.
With our convention of writing the exponential factor as e−iωt, the imaginary part of ω
describes exponential damping if it is negative and it describes exponential growth if it is
positive. In other words, a positive imaginary part would indicate that a small perturbation
of a Schwarzschild black hole becomes bigger and bigger in the course of time.
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The Regge-Wheeler potential describes a potential barrier rather than a potential well,
see the picture. Correspondingly, we do not expect any bound states to exist. As we have
omitted monopole perturbations (` = 0) and dipole perturbations (` = 1), which cannot
describe gravitational waves, we plot the potential for ` = 2 (solid), ` = 3 (dashed) and
` = 4 (dotted). The maximum of the potential is near the light sphere at r = 3rS/2. In
the limit `→∞ it approaches this value.

From any solution Q`(t, r∗) = Z`(r∗)e−iωt of the Regge-Wheeler equation we can construct
the metric perturbations vr` and vt` in the following way. vr` is given directly as

vr` = Q`mr
(
1− rS

r

)−1

and vt` follows if we plug the ansatz vt`(t, r∗) = U`e
−iωt into (F3’),

1

c2
∂tvt` =

(
1− rS

r

)
Q` + r∂r∗Q` ,

− iω
c2
U` =

(
1− rS

r

)
Z` + r

dZ`
dr∗

.

It can be shown that then the field equation (F1), which has not been used so far, is
automatically satisfied.
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From time-harmonic solutions to the Regge-Wheeler equation we can construct more
general odd linear perturbations of the Schwarzschild metric by forming superpositions of
solutions with different ω and different (`,m). Note that such a superposition is indeed
possible, although we have chosen a gauge (i.e., a coordinate system) that depends on
(`,m); the reason is that in the representation hµν(x)dxµdxν of the metric perturbation
the x = (x0, x1, x2, x3) denote the unperturbed Schwarzschild coodinates. (As the hµν are
small of first order, the difference between their values at the perturbed coordinates and
at the unperturbed coordinates is of second order and hence to be neglected.) Therefore
the hµν can be superimposed, even if we use different perturbed coordinates for different
(`,m).

The general solution to the Regge-Wheeler equation cannot be written in terms of ele-
mentary functions. However, by an appropriate substitution it can be transformed into
a confluent Heun equation, a differential equation that was studied in the 19th century
by German mathematician Karl Heun. The general solution of this equation can be
expressed in terms of the so-called HeunC function which is implemented, e.g., in Maple.

In Worksheet 8 we will demonstrate that the Regge-Wheeler potential falls off exponen-
tially for r∗ → −∞. This implies that, near the horizon, the Regge-Wheeler equation can
be approximated by

− d

dr2
∗
Z`(r∗) ≈

ω2

c2
Z`(r∗)

which is solved by e±iωr∗/c. Therefore there must be two solutions of the Regge-Wheeler
equation that behave asymptotically as

ZI
` (r∗) ∼ e−iωr∗/c for r∗ → −∞ ,

ZO
` (r∗) ∼ eiωr∗/c for r∗ → −∞ .

These two solutions are called the IN mode and the OUT mode, respectively. As they
are linearly independent, and as the set of solutions to a linear second-order differential
equation is a two-dimensional complex vector space, any solution to the Regge-Wheeler
equation must be a linear combination of the IN mode and the OUT mode with constant
complex coefficients. We have characterised here the IN mode and the OUT mode by
their asymptotic behaviour only; actually, they can be written in terms of infinite power
series that converge on a certain neighbourhood of the horizon (but not at the horizon).

In Worksheet 8 we will also show that the Regge-Wheeler potential falls off like r−2
∗ for

r∗ →∞, As a consequence, the approximation

− d

dr2
∗
Z`(r∗) ≈

ω2

c2
Z`(r∗)

is valid near infinity as well. This gives rise to two other solutions of the Regge-Wheeler
equation that behave asymptotically as

ZD
` (r∗) ∼ e−iωr∗/c for r∗ →∞ ,

ZU
` (r∗) ∼ eiωr∗/c for r∗ →∞ .
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These two solutions are called the DOWN mode and the UP mode, respectively. Again,
they are linearly independent, so they may be used as a basis for the set of all solutions.
The DOWN mode and the UP mode may also be written in terms of power series that
converge on an interval up to (but not including) infinity; in the following we will only
need the asymptotic behaviour of these modes.

Two interesting types of problems are related with the Regge-Wheeler equation (and,
analogously, with the Zerilli equation for even modes). Firstly, one can study quasi-
normal modes, and secondly one can study scattering problems.

A quasi-normal mode is a solution which is a pure IN mode and, at the same time, a pure
UP mode. This means that nothing comes out of the black hole and nothing comes in
from infinity. We will demonstrate in Worksheet 8 that such a solution does not exist for
real frequencies ω and also not for frequencies with a non-zero real part and a positive
imaginary part. In the first case Q`(t, r∗) = Z`(r∗)e−iω t would describe a stationary
oscillation and in the second case a solution that grows exponentially in time. Quasi-
normal modes exist only with strictly negative imaginary part of the frequency, so they
decay exponentially in time. There is a discrete set of complex frequencies for such quasi-
normal modes which can be determined numerically or with analytical approximation
methods. The following table shows the complex frequencies for the first four quasi-normal
modes for ` = 2, 3, 4, taken from a paper by E. Leaver [“An analytic representation for
the quasi-normal modes of Kerr black holes”, Proc. R. Soc. London, Ser. A, 402, 285298,
(1985)].

More precisely, quasi-normal modes are defined as solutions Zℓm(r∗) to the time-independent
Regge-Wheeler equation with a complex ω that satisfy the boundary conditions

∣∣Zℓm(r∗) − B e−iωr∗/c
∣∣ → 0 for r∗ → −∞

∣∣Zℓm(r∗) − C eiωr∗/c
∣∣ → 0 for r∗ → ∞

where B and C are any constants. These conditions mean that the function Qℓm(t, r∗) =
Zℓm(r∗)e

−iωt satisfies

∣∣Qℓm(t, r∗) − B e−iω(t+r∗/c))
∣∣ → 0 for r∗ → −∞

∣∣Qℓm(t, r∗) − C e−iω(t−r∗/c))
∣∣ → 0 for r∗ → ∞ ,

i.e., that the solutions are purely ingoing (towards the horizon) for r near rS and purely
outgoing (towards infinity) for big r. (In Worksheet 10 we discuss a bit the behaviour of
the general solution to the Regge-Wheeler equation near the horizon and near infinity.)

Quasi-normal modes cannot be determined analytically. However, they have been exten-
sively studied numerically and with the help of analytical approximation methods. The
following table shows the complex frequencies for the first four quasi-normal modes for
ℓ = 2, 3, 4, taken from a paper by E. Leaver [“An analytic representation for the quasi-
normal modes of Kerr black holes”, Proc. R. Soc. London, Ser. A, 402, 285298, (1985)].

Natural units are chosen; for conversion into Hz one has to multiply with 2π × 5142 Hz ×
M⊙/M . We see that for fixed ℓ the real part of the frequency is maximal for the fun-
damental mode (n = 0). This is in contrast to normal modes where the frequency of
the fundamental mode is minimal. For all quasi-normal modes, the imaginary part of the
frequency is strictly negative. This demonstrates that every perturbation dies down in the
cause of time, at least in the linear theory, i.e. that a Schwarzschild black hole is stable
against linear perturbations. The damping time (i.e., the inverse of the imaginary part of
ω) is surprisingly small: From the table we read that, for a black hole with a few solar
masses, the frequency is in the order of Kilohertz and the damping time is in the order of
Milliseconds!
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Natural units are chosen; for conversion into Hz one has to multiply with 2π× 5142 Hz×
M�/M . We see that for fixed ` the real part of the frequency is maximal for the funda-
mental mode (n = 0). This is in contrast to normal modes where the frequency of the
fundamental mode is minimal. The fact that all quasinormal modes have frequencies with
a strictly negative imaginary part implies that a Schwarzschild black hole is stable against
this type of linear perturbations. (There are various ways of how to define stability. The
notion considered here is known as modal stability.) The damping time (i.e., the inverse
of the imaginary part of ω) is surprisingly small: From the table we read that, for a black
hole with a few solar masses, the frequency is in the order of kilohertz and the damping
time is in the order of milliseconds! For a supermassive black hole with some million Solar
masses the damping time is in the order of hours.
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The picture below shows the frequencies of the quasinormal modes of a Schwarzschild
black hole in the complex plane.The picture below shows the frequencies of the quasinormal modes of a Schwarzschild black

hole in the complex plane.

This diagram, taken from N. Andersson and S. Linnaeus [“Quasinormal modes of a Schwarz-
schild black hole: Improved phase-integral treatment”, Phys. Rev. D 46, 4179, (1992)],
displays the values for the quasi-normal modes with ℓ = 2 as diamonds and with ℓ = 3
as crosses. A similar diagram can also be produced with the even (Zerilli) quasi-normal
modes. One finds that they lie along the same curves but at different values.

Quasi-normal modes have also been calculated for charged black holes (i.e., for the Reissner-
Nordstöm metric), and, with much greater difficulty, for rotating black holes (i.e., for the
Kerr metric). The differences could be used, in principle, for distinguishing different types
of black holes by the gravitational radiation they emit when they are perturbed.

90

This diagram, taken from N. Andersson and S. Linnaeus [“Quasinormal modes of a
Schwarzschild black hole: Improved phase-integral treatment”, Phys. Rev. D 46, 4179,
(1992)], displays the values for the quasi-normal modes with ` = 2 as diamonds and
with ` = 3 as crosses. A similar diagram can also be produced with the even (Zerilli)
quasi-normal modes. One finds that they lie along the same curves but at different values.

Quasi-normal modes have also been calculated for charged black holes (i.e., for the
Reissner-Nordstöm metric), and, with much greater difficulty, for rotating black holes
(i.e., for the Kerr metric). The differences could be used, in principle, for distinguish-
ing different types of black holes by the gravitational radiation they emit when they are
perturbed.

We now turn to the scattering problem. To that end we consider solutions Z`(r∗) to
the time-independent Regge-Wheeler equation with real frequency ω 6= 0, i.e., such that
Q`(t, r∗) = Z`(r∗)e−iωt is neither decaying nor increasing but oscillatory in time, and we
assume that nothing comes out of the horizon. The latter assumption means that we
consider a solution that is a pure IN mode; as the DOWN mode and the UP mode are
linearly independent for every ω 6= 0, such a solution must be a linear combination of the
DOWN mode and the UP mode.

The picture on the next page illustrates this situation: The DOWN mode describes what
we send in; part of it is reflected by the potential barrier as an UP mode, and part of it
goes to the horizon as an IN mode. From elementary physical intuition one would take it
for granted that what is reflected is always less than what is sent in. We will demonstrate
that this is, indeed, true for scattering by a Schwarzschild black hole. However, at the
end of this section we will comment on other situations (i.e., other types of black holes)
where this is not true; one then speaks of superradiance.
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r∗

Vℓ(r∗)

IN

DOWN

UP

As a preparation, we first observe that the IN mode must be a linear combination of the
UP mode and the DOWN mode because the latter are linearly independent,

ZI
` (r∗) = A`Z

D
` (r∗) +B`Z

U
` (r∗)

with complex coefficients A` and B`. As for real ω the UP mode is the complex conjugate
of the DOWN mode, this may be rewritten as

ZI
` (r∗) = A`Z

D
` (r∗) +B`Z

D
` (r∗)

where overlining means complex conjugation. Moreover, for real ω the OUT mode is the
complex conjugate of the IN mode, hence

ZO
` (r∗) = A`Z

D
` (r∗) +B`Z

D
` (r∗) .

There is no simple way of calculating the coefficients A` and B` (which, of course, also
depend on ω). However, it is easy to derive a relation that their absolute squares has to
satisfy:

Claim:
∣∣A`
∣∣2 −

∣∣B`

∣∣2 = 1.

Proof: ZI
` and ZO

` are solutions of the same second-order linear differential equation.
This implies that their Wronskian

W (ZI
` , Z

O
` ) = det



ZI
` ZO

`

dZI
`

dr∗

dZO
`

dr∗




is constant. This is a standard result from the theory of linear differential equations
which, in the case at hand, is demonstrated by the following elementary calculation.

d

dr∗
W (ZI

` , Z
O
` )(r∗) =

d

dr∗

(
ZI
` (r∗)

dZO
` (r∗)

dr∗
− ZO

` (r∗)
dZI

` (r∗)

dr∗

)

= ZI
` (r∗)

d2ZO
` (r∗)

dr2
∗
− ZO

` (r∗)
d2ZI

` (r∗)

dr2
∗

= ZI
` (r∗)

(
V`(r∗)Z

O
` (r∗) +

ω2

c2
ZO
` (r∗)

)
− ZO

` (r∗)
(
V`(r∗)Z

I
` (r∗) +

ω2

c2
ZI
` (r∗)

)
= 0 .
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As a consequence,

0 = lim
r∗→−∞

(
ZI
` (r∗)

dZO
` (r∗)

dr∗
− ZO

` (r∗)
dZI

` (r∗)

dr∗

)

− lim
r∗→∞

(
ZI
` (r∗)

dZO
` (r∗)

dr∗
−ZO

` (r∗)
dZI

` (r∗)

dr∗

)
= lim

r∗→−∞

(
ZI
` (r∗)

dZI
`(r∗)

dr∗
−ZI

`(r∗)
dZI

` (r∗)

dr∗

)

− lim
r∗→∞

([
A`Z

D
` (r∗) +B`Z

D
` (r∗)

] d
dr∗

[
A`Z

D
` (r∗) +B`Z

D
` (r∗)

])

+ lim
r∗→∞

([
A`Z

D
` (r∗) +B`Z

D
` (r∗)

] d
dr∗

[
A`Z

D
` (r∗) +B`Z

D
` (r∗)

])

= lim
r∗→−∞

(
e−iωr∗/c

deiωr∗/c

dr∗
− eiωr∗/cde

−iωr∗/c

dr∗

)

− lim
r∗→∞

([
A`e

−iωr∗/c +B`e
iωr∗/c

] d
dr∗

[
A`e

iωr∗/c +B`e
−iωr∗/c]

+ lim
r∗→∞

([
A`e

iωr∗/c +B`e
−iωr∗/c] d

dr∗

[
A`e

−iωr∗/c +B`e
iωr∗/c

]

= lim
r∗→−∞

(
e−iωr∗/ceiωr∗/c

iω

c
+ eiωr∗/ce−iωr∗/c

iω

c

)

− lim
r∗→∞

([
A`e

−iωr∗/c +B`e
iωr∗/c

][
A`e

iωr∗/c iω

c
−B`e

−iωr∗/c iω

c

])

+ lim
r∗→∞

([
A`e

iωr∗/c +B`e
−iωr∗/c][− A`e−iωr∗/c

iω

c
+B`e

iωr∗/c iω

c

])

= lim
r∗→−∞

(2iω

c

)
− lim

r∗→∞

(∣∣A`
∣∣2 2iω

c
−
∣∣B`

∣∣2 2iω

c

)
=

2iω

c

(
1−

∣∣A`
∣∣2 +

∣∣B`

∣∣2
)
.

�
After these preparations we are now ready to discuss the scattering problem. We consider
a solution to the Regge-Wheeler equation with real ω 6= 0 that is a pure IN mode and,
thus, a linear combination of an UP and a DOWN mode,

Z`(r∗) = CI
`Z

I
` (r∗) = CD

` Z
D
` (r∗) + CU

` Z
U
` (r∗)

with complex coefficients CI
` , CD

` and CU
` . As

ZI
` (r∗) = A`Z

D
` (r∗) +B`Z

U
` (r∗) ,

comparing coefficients yields

CI
`A` = CD

` , CI
`B` = CU

` .
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One calls

T` =

∣∣CI
`

∣∣2
∣∣CD

`

∣∣2

the transmission coefficient and

R` =

∣∣CU
`

∣∣2
∣∣CD

`

∣∣2

the reflection coefficient. We now find

T` +R` =

∣∣CI
`

∣∣2
∣∣CD

`

∣∣2 +

∣∣CU
`

∣∣2
∣∣CD

`

∣∣2

=
1∣∣A`
∣∣2 +

∣∣B`

∣∣2
∣∣A`
∣∣2 =

1 +
∣∣B`

∣∣2
∣∣A`
∣∣2 =

∣∣A`
∣∣2

∣∣A`
∣∣2 = 1 .

As by definition T` ≥ 0 and R` ≥ 0, this demonstrates that T` ≤ 1 and R` ≤ 1. The
latter inequality proves that there is no superradiance: The reflected intensity cannot be
bigger than the intensity that is sent in. 14
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FIG. 7. Graybody factors as functions of the frequency for
l = 0 (thick solid) up to l = 5 (thin dashed).

fixed mode number l and frequency !. With this proce-
dure we can calculate the phase shifts in a semi-analytical
way for all desired combinations of the parameter. Using
the phase shifts or the reflection and transmission am-
plitudes we can calculate the transmission and reflection
coe�cients

T!l = |T |2!l =

����
1

Ain
!l

����
2

, R!l = |R|2!l =

����
Aout

!l

Ain
!l

����
2

.

They describe the probability of being transmitted
through the potential barrier, i.e., being absorbed by the
black hole and the probability of being reflected back
to spatial infinity. The transmission coe�cients T!l are
usually called graybody factors as well, since they are
important when we derive the deviations from a thermal
spectrum of Hawking radiation. Figure (7) shows the cal-
culated graybody factors as functions of the frequency for
di↵erent wave modes. Using the graybody factors we can,
for example, calculate the total absorption cross section
as a sum over all partial contributions

�abs =
X

�l
abs =

⇡

!2

X
(2l + 1)T!l . (90)

In figure (8) we show the partial absorption cross sections
for di↵erent values of the wave mode starting from l = 0
(on the left) to l = 5. The results are normalized by the
horizon area. The figure shows further the total absorp-
tion cross section as a sum over all partial contributions.
The result is normalized by the geometrical optics value
of the cross section 27⇡M2, which is recovered in the
limit of high frequencies as it should be. For small fre-
quencies !M ! 0 the partial absorption cross section for
the l = s = 0 mode (lowest mode) approaches the horizon
area of the black hole and therefore overcomes the prob-
lem shown in figure (7) in the phase-integral study by
Andersson [26]. For higher frequencies our results match
those given by Andersson and our results in fig. (8) are
in agreement with those shown in fig. (2) and (3) in the
early work by Sanchez [27].
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FIG. 8. Top: partial absorption cross sections normalized
by the horizon area Ah for wave modes starting from l = 0
(left) up to l = 5; Bottom: total absorption cross section as
a sum over all contributions normalized by the geometrical
optics value 27⇡M2.

B. QNM

We can use the radial solutions (81) to obtain the
quasi-normal mode frequencies of a Schwarzschild black
hole for a spin s perturbation. To ensure the proper
QNM boundary conditions we have to choose, according
to the scheme in figure (5), the exponents to be

⌫ = 2i!, µ1 = 0, µ2 = �(s + 1) + 2i!

) RQNM
!sl (r) = e2i!(r�1+log(r))

1X

k=0

⇠k(!, s, l)
(r � 1)k

rk

(91)

and we further demand the solution to converge in the
limit r ! 1. The convergence property is fulfilled if
the series coe�cients ⇠k are minimal solutions of the re-
currence relation (78). This yields immediately the con-
tinued fraction equation that was given by Leaver [10]
and the QNM frequencies !QNM can be calculated as
complex roots of this equation. Hence, we see that the
method of Leaver fits perfectly into our framework of
continued local Frobenius solutions. For details on quasi-
normal mode frequencies the reader is referred to the ex-
cellent articles and reviews in reference [28, 29] and [30]
and the living reviews [31, 32].

While it was rather easy to demonstrate this inequality, calculating the precise dependence
of T` and R` on ω is a difficult task. It can be done only numerically or semi-analytically.
In the diagram, T` is plotted for different values of ` against the frequency ω; the latter
is given in units of c/rS. We see that T` tends to zero for ω → 0 and to 1 for ω → ∞.
However, the T` turn out to be strictly smaller than 1 for all real ω. As an ideal black
body (i.e., a body that totally absorbs all the radiation that is sent in from infinity) would
be characterised by T` = 1, it is also common to call the T` the greybody factors.
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We have discussed the quasi-normal modes and the scattering problem here for perturba-
tions of the gravitational field, i.e., for gravitational waves. Instead of the linearised Ein-
stein field equation, one may also study the Klein-Gordon equation or the Maxwell equa-
tions on the Schwarzschild background. This gives rise to very similar Regge-Wheeler-type
equations and to quasi-normal modes and scattering of scalar waves or electromagnetic
waves. The fact that there is no superradiance is common for all types of waves on the
Schwarzschild background.

By contrast, scattering by a rotating black hole (mathematically modelled by the Kerr
metric) does show superradiance. This gives rise to the black hole bomb: If a Kerr black
hole is enclosed by mirrors, radiation that is sent towards the horizon is back-scattered
with an amplification factor bigger than 1, so after repeated reflection at the mirror the
amplitude of the radiation becomes unboundedly big. The energy needed for this process
is extracted from the black hole by spinning it down.

Superradiance also occurs with charged black holes (mathematically modelled by the
Reissner-Nordström metric). In this case one needs a charged field (e.g. a complex Klein-
Gordon field) and the needed energy is extracted from the black hole by reducing its
charge.

7 Exact wave solutions of Einstein’s field equation

Up to now we have treated gravitational waves as perturbations of a background spacetime
that are so small that all equations can be linearised with respect to them. This is a viable
theory for explaining any observations that are expected for the foreseeable future. Nonetheless
it is helpful, and even necessary for a full understanding, to study gravitational waves at the
level of the full nonlinear Einstein equation. It could well be that some of the observations
made in the linear theory, e.g. about the polarisation states or about the multipole characters
of gravitational waves, are just an artefact of the linearisation. In this chapter we are going to
discuss some classes of exact wave solutions to Einstein’s vacuum equations.

7.1 Brinkmann solutions (pp waves)

We begin with a class of exact plane-wave solutions which is known as the Brinkmann metrics
or as pp waves. For introducing them we first consider Minkowski spacetime in double null
coordinates (x1, x2, u, v), where the u lines are the straight lightlike lines in negative x3 direction
and the v lines are the straight lightlike lines in positive x3 direction. We then modify the
spacetime in such a way that it is no longer flat but that the v lines remain lightlike, geodesic
and orthogonal to planes. The idea is that the v lines can then be interpreted as the “rays” of
a gravitational wave with planar wave surfaces, if the vacuum Einstein equation is satisfied.
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From Minkowski spacetime in standard coordinates, g = (dx1)2 + (dx2)2 + (dx3)2 − (dx0)2 ,
we transform to “double-null coordinates”, (x1, x2, x3, x0) 7→ (x1, x2, u, v), defined by

x0 =
1√
2

(v + u) , x3 =
1√
2

(v − u) .

Then

(dx0)2 − (dx3)2 =
1

2

(
dv + du

)2 − 1

2

(
dv − du

)2
=

=
1

2

(
��du2 + 2 dv du + ��dv2

)
− 1

2

(
��du2 − 2 dv du + ��dv2

)
= 2 dv du ,

hence the Minkowski metric reads

g = (dx1)2 + (dx2)2 − 2 dv du .

We now add a term that makes the spacetime dynamic (time-dependent), but in such a way
that ∂v remains lightlike,

g = (dx1)2 + (dx2)2 − 2 dv du + H(x1, x2, u) du2 (B)

with some function H(x1, x2, u). The dependence of H on u (i.e., on x0−x3) makes the metric
time-dependent. The vector field ∂u is no longer lightlike, but the vector field ∂v still is. We will
show in Worksheet 8 that, in addition, ∂v is absolutely parallel, i.e., covariantly constant in any
direction, hence in particular geodesic. This allows to interpret the v lines as the propagation
direction of a wave that travels at the speed of light. Each x1-x2-surface (i.e., each surface
{u = constant, v = constant}) is a Euclidean plane perpendicular to the propagation direction
of the wave.

Below we will calculate the Christoffel symbols of the metric (B) from which one can easily
determine the Ricci tensor. One finds that the vacuum Einstein equation Rµν = 0 holds if and
only if H satisfies the Laplace equation with respect to the variables x1 and x2.

δAB∂A∂BH = 0 . (T)

Here an in the following, capital indices A,B, . . . takes values 1 and 2. If the condition (T) is
satisfied, the metric (B) can be interpreted as a (pure) gravitational wave. For the case that
(T) is not satisfied, one finds that the energy-momentum tensor has the form of that of an
electromagnetic field; the metric can then be interpreted as a combination of a gravitational
wave and an electromagnetic wave.

Metrics of the form (B) made their first appearence in a purely mathematical paper by H.
Brinkmann [“Einstein spaces which are mapped conformally on each other” Math. Annalen
94, 119 (1925)]. The coordinates (x1, x2, u, v) are known as Brinkmann coordinates. A. Peres
[“Some gravitational waves ” Phys. Rev. Lett. 3, 571 (1959)] rediscovered these metrics with
condition (T) and interpreted them as gravitational waves. The same solutions to Einstein’s
vacuum field equation were studied by J. Ehlers and W. Kundt [“Exact solutions of the gravi-
tational field equations” in L. Witten (ed.) “Gravitation: an introduction to current research”
Wiley, New York (1962) p.49] who called them plane-fronted waves with parallel rays or pp-
waves for short. Obviously, “plane-fronted” refers to the (x1, x2)-surfaces and “parallel rays”
refers to the v-lines.
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We will now write down the geodesic equation for the metric (B) which will give us the Christof-
fel symbols. As usual, the most convenient way is to start from the Lagrangian

L
(
x, ẋ
)

=
1

2
gµν(x)ẋµẋν =

1

2

(
(ẋ1)2 + (ẋ2)2 − 2 u̇ v̇ + H(x1, x2, u) u̇2

)

where an overdot means derivative with respect to an affine parameter s. From this we get the
geodesics as the solutions to the Euler-Lagrange equation

d

ds

(
∂L
(
x, ẋ
)

∂ẋµ

)
− ∂L

(
x, ẋ
)

∂xµ
= 0 .

Doing this for xµ = v, u and xA yields

− ü = 0 , −v̈ +
d
(
H u̇

)

ds
− 1

2
∂uH u̇2 = 0 , ẍA − 1

2
δAB∂BH u̇2 = 0 ,

hence

ü = 0 , v̈ − 1

2
∂uH u̇2 − ∂AH u̇ ẋA = 0 , ẍA − 1

2
δAB∂BH u̇2 = 0 .

From these equations we read that the only non-vanishing Christoffel symbols are

Γvuu = − 1

2
∂uH ΓvuA = − 1

2
∂AH ΓAuu = − δAB ∂BH .

From the Christoffel symbols one can calculate the Ricci tensor

Rµσ = ∂τΓ
τ
µσ − ∂µΓτ τσ + ΓρµσΓτ τρ − ΓρτσΓτ µρ .

One finds that the only non-vanishing component of the Ricci tensor is

Ruu = − 1

2
δAB∂A∂BH

so that indeed the vacuum field equation Rµν = 0 is equivalent to the Laplace equation (T), as
was already anticipated above.

In the following we will consider those pp-waves for which the function H is a quadratic form
in the variables x1 and x2,

H(x1, x2, u) = hAB(u)xAxB

with a symmetric (2× 2) matrix
(
hAB(u)

)
. If the vacuum field equation (T) is satisfied, i.e., if

the matrix
(
hAB(u)

)
is trace-free,

δABhAB(u) = 0 ,

these special pp-waves are called plane gravitational waves ; otherwise they describe a coupled
system of a plane gravitational wave and a plane electromagnetic wave. Both cases were first
studied by O. Baldwin and G. Jeffery [“The relativity theory of plane waves”, Proc. Roy. Soc.
London A 111, 95 (1926)] who did not know about Brinkmann’s earlier work on the larger class
of what we now call pp-waves.

113



The condition of vanishing trace means that for a plane gravitational wave the matrix hAB(u)
can be written as (

hAB(u)
)

=

(
f+(u) f×(u)
f×(u) − f+(u)

)
.

The profile functions f+(u) and f×(u) determine the shape of the gravitational wave. The fact
that (within the class of metrics considered) two scalar functions are necessary to determine the
wave can be interpreted by saying that “a gravitational wave has two polarisation states”. This
is in perfect agreement with what we have found for plane harmonic waves in the linearised
theory about Minkowski spacetime, where we also had two polarisation states, the plus-mode
and the cross-mode).

For a plane gravitational wave the geodesic equation specifies to

ü = 0 ,

v̈ =
1

2

(
f ′+(u)

(
(x1)2 − (x2)2)

)
+ 2 f ′×(u)x1x2

)
u̇2

+
(
f+(u)

(
x1ẋ1 − x2ẋ2

)
+ f×(u)

(
x1ẋ2 + x2ẋ1

))
u̇ ,

(
ẍ1

ẍ2

)
=

1

2

(
f+(u) f×(u)
f×(u) −f+(u)

)(
x1

x2

)
.

We see that there are geodesics that are completely contained in a lightlike hypersurface u =
constant. For them we have u(s) = u0, u̇(s) = 0 and ü(s) = 0, so the u component of the
geodesic equation is satisfied. The other components read

v̈(s) = 0 ,

(
ẍ1(s)
ẍ2(s)

)
=

1

2

(
f+(u0) f×(u0)
f×(u0) −f+(u0)

)(
x1(s)
x2(s)

)
,

which can be integrated easily.

For all the other geodesics we have u̇(s) 6= 0. Then the u component of the geodesic equation,
ü = 0, says that u can be used as the affine parameter. (Recall that the affine parametrisation
along a geodesic is unique only up to a transformation of the form s 7→ as+ b with a non-zero
constant a.) With u(s) = s, the other components of the geodesic equation read

v̈(s) =
1

2

(
f ′+(s)

(
(x1(s))2 − (x2(s))2)

)
+ 2 f ′×(s)x1(s)x2(s)

)

+
(
f+(s)

(
x1(s)ẋ1(s)− x2(s)ẋ2(s)

)
+ f×(s)

(
x1(s)ẋ2(s) + x2(s)ẋ1(s)

)
, ,

(
ẍ1(s)
ẍ2(s)

)
=

1

2

(
f+(s) f×(s)
f×(s) −f+(s)

)(
x1(s)
x2(s)

)
.

We see that the (x1, x2) equation decouples. After having solved this equation, v(s) is deter-
mined by a straight-forward integration. Therefore we concentrate on the matrix differential
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equation for x1 and x2. This equation gives the motion of the geodesics in the (x1, x2) plane, i.e.,
in the plane orthogonal to the propagation direction of the wave. For the plus-mode, f× = 0,
we have (

ẍ1(s)
ẍ2(s)

)
=

f+(s)

2

(
x1(s)
−x2(s)

)
.

At points where f+ is positive, there is focussing in the x1 direction and defocussing in the x2

direction; at points where f+ is negative, it is vice versa.

To discuss the cross mode, we may rotate the coordinates by 45o,
(
y1

y2

)
=

1√
2

(
1 1
−1 1

)(
x1

x2

)
,

(
x1

x2

)
=

1√
2

(
1 −1
1 1

)(
y1

y2

)
.

Then (
ÿ1

ÿ2

)
=

1√
2

(
1 1
−1 1

)(
ẍ1

ẍ2

)
=

1√
2

(
1 1
−1 1

)
f×(s)

2

(
0 1
1 0

)(
x1

x2

)

=
f×(s)

2
√

2

(
1 1
1 −1

)
1√
2

(
1 −1
1 1

)(
y1

y2

)
=
f×(s)

4

(
2 0
0 −2

)(
y1

y2

)
=
f×(s)

2

(
y1

−y2

)
,

so we have the same focussing and defocussing properties as for the plus-mode, just rotated by
45o.

This consideration holds for timelike, lightlike and spacelike geodesics. For timelike geodesics
it gives the motion of freely falling test particles, in analogy to what we have discussed in
the linearised theory. We see that the plus-mode and the cross-mode have the same physical
interpretation for the exact plane gravitational waves, but now x1 and x2 may be arbitrarily
large. To make the analogy with our treatment of the linearised theory perfect, we may Fourier-
expand the matrix-valued function hAB(u) (i.e., the profile functions f+(u) and f×(u)). Then
we get exactly the same expression for each Fourier mode

hAB(u) = Re
{
h0
ABe

−iωu/c}

as we had in the linearised theory.

We now turn to the lightlike geodesics. The picture
on the right shows the past light-cone of an event
R, in a famous hand-drawing by Roger Penrose [“ A
remarkable property of plane waves in general rela-
tivity” Rev. Modern Phys. 37, 215 (1965)]. One
sees that, with the exception of the v-line through R
(which is a straight line), all light rays that are issu-
ing from the event R into the past are refocussed into
another event Q.

Then (
ÿ1

ÿ2

)
=

1√
2

(
1 1

−1 1

)(
ẍ1

ẍ2

)
=

1√
2

(
1 1

−1 1

)
f×(s)

2

(
0 1
1 0

)(
x1

x2

)

=
f×(s)

2
√

2

(
1 1

1 −1

)
1√
2

(
1 −1

1 1

)(
y1

y2

)
=

f×(s)

4

(
2 0

0 −2

)(
y1

y2

)
=

f×(s)

2

(
y1

−y2

)
,

so we have the same focussing and defocussing properties as for the plus-mode,
just rotated by 45o.

This consideration holds for timelike, lightlike and spacelike geodesics. For time-
like geodesics it gives the motion of freely falling test particles, in analogy to what

we have discussed in the linearised theory. We see that the plus-mode and the
cross-mode have the same physical interpretation for the exact plane gravita-
tional waves, but now x1 and x2 may be arbitrarily large. To make the analogy

with our treatment of the linearised theory perfect, we may Fourier-expand the
matrix-valued function hAB(u) (i.e., the profile functions f+(u) and f×(u)). Then

we get exactly the same expression for each Fourier mode

hAB(u) = Re
{
h0

ABe−iωu/c
}

as we had in the linearised theory.

We now turn to the lightlike geodesics. The

picture on the right shows the past light-cone
of an event R, in a famous hand-drawing by

Roger Penrose [“ A remarkable property of
plane waves in general relativity” Rev. Mod-

ern Phys. 37, 215 (1965)]. One sees that,
with the exception of the v-line through R
(which is a straight line), all light rays that

are issuing from the event R into the past are
refocussed into another event Q. Actually,

taking the fourth dimension into account which is missing in the picture, a

pure gravitational wave refocusses light rays into a line (“astigmatic focussing”).
A combined gravitational and electromagnetic wave can refocus light rays into
a point (“anastigmatic focussing”). The picture also indicates that a plane-

wave spacetime cannot admit a Cauchy hypersurfaces, i.e., a hypersurface that
intersects any causal curve exactly once: Such a hypersurface would have to

intersect the v-line through R. But then some of the other past-oriented lightlike
geodesics from R to Q have to be intersected twice.
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a hypersurface that intersects any causal curve exactly once: Such a hypersurface would have
to intersect the v-line through R. But then some of the other past-oriented lightlike geodesics
from R to Q have to be intersected twice.

The following picture of the light cone was produced with Mathematica. The profile functions
were chosen as f×(u) = 0 and f+(u) = k2χ(u), where k is a non-zero constant and χ(u) is the
characteristic function of a finite interval (i.e., the gravitational wave is “sandwiched“ between
two flat spacetime regions, bounded by hypersurfaces u = constant). The x2 dimension is
omitted. The similarity with the Penrose drawing is striking.

The following picture of the light cone was produced with Mathematica. The
profile functions were chosen as f×(u) = 0 and f+(u) = k2χ(u), where k is a non-
zero constant and χ(u) is the characteristic function of a finite interval (i.e., the

gravitational wave is “sandwiched“ between two flat spacetime regions, bounded
by hypersurfaces u = constant). The x2 dimension is omitted. The similarity

with the Penrose drawing is striking.

x1

uu

u

vv

v

++

−

The picture on the right gives a purely

spatial view of the light-cone above. Now
both spatial dimensions x1 and x2 are

shown and the temporal dimension, u+v,
is omitted. One clearly sees the astig-

matic focussing: There is focussing in one
spatial dimension and defocussing in the
other spatial dimension, so that the light-

like geodesics are refocussed in a line.
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profile functions were chosen as f×(u) = 0 and f+(u) = k2χ(u), where k is a non-
zero constant and χ(u) is the characteristic function of a finite interval (i.e., the

gravitational wave is “sandwiched“ between two flat spacetime regions, bounded
by hypersurfaces u = constant). The x2 dimension is omitted. The similarity

with the Penrose drawing is striking.
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The picture on the right gives a purely

spatial view of the light-cone above. Now
both spatial dimensions x1 and x2 are

shown and the temporal dimension, u+v,
is omitted. One clearly sees the astig-

matic focussing: There is focussing in one
spatial dimension and defocussing in the
other spatial dimension, so that the light-

like geodesics are refocussed in a line.
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7.2 Beck-Einstein-Rosen solutions

In this section we want to discuss a class of excact wave-like solutions to Einstein’s vacuum
equation with cylindrical symmetry. These solutions are usually called Einstein-Rosen waves
although they were found by Austrian physicist Guido Beck already 12 years before Einstein
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and Rosen [G. Beck: “Zur Theorie binärer Gravitationsfelder” Zeitschr. f. Physik 33, 713
(1925)].

Beck started out from known results on axisymmetric and static metrics which had been found
by H. Weyl in 1917. A metric is axisymmetric and static if it can be written in cylindrical
polar coordinates (t, ρ, ϕ, z) such that the gµν are independent of t, independent of ϕ, and
invariant under a transformation ϕ 7→ −ϕ. Such metrics describe the gravitational fields of
time-independent non-rotating bodies with axial symmetry. (If the invariance under the trans-
formation ϕ 7→ −ϕ is dropped one speaks of axisymmetric stationary metrics; then rotating
bodies are included.) Beck took the known axisymmetric and static metrics and performed the
formal substitution t 7→ iz, z 7→ it. Then the metric is still axisymmetric but, instead of being
time-independent, it is now invariant under translations in z-direction. In this way one gets
time-dependent metrics (waves) with cylindrical symmetry.

The ansatz for the metric reads

gµνdx
µdxν = e2γ−2ψ

(
dρ2 − c2dt2

)
+ e−2ψW 2dϕ2 + e2ψdz2

where γ, ψ and W are functions of t and ρ. This is precisely the same ansatz, with the
above-mentioned substitution, as it is used for the axisymmetric and static metrics; in the
latter context, one speaks of Weyl canonical coordinates. This is the most general form of
a cylindrically symmetric metric apart from the fact that we have assumed invariance under
ϕ 7→ −ϕ (in analogy to the axisymmetric static case). Note that the ansatz of the metric in
the (t, ρ) plane being proportional to

(
dρ2 − c2dt2

)
is no restriction as every two-dimensional

metric is conformal to the flat metric.

To find vacuum solutions with the prescribed symmetry we have to calculate the Ricci tensor.
As usual, the easiest way to find the Christoffel symbols is by starting from the Lagrangian for
the geodesics,

L(x, ẋ) =
1

2

(
e2γ−2ψ

(
ρ̇2 − c2ṫ2

)
+ e−2ψW 2ϕ̇2 + e2ψż2

)

where the overdot means differentiation with respect to an affine parameter s. The Euler-
Lagrange equations give the four components of the geodesic equation. After some elementary
algebra they take the following form.

z̈ + 2 ∂ρψ ρ̇ ż + 2 ∂tψ ṫ ż = 0 ,

ϕ̈+ 2
(∂ρW
W
− ∂ρψ

)
ρ̇ ϕ̇+ 2

(∂tW
W
− ∂tψ

)
ṫ ϕ̇ = 0 ,

ρ̈+
(
∂ργ − ∂ρψ

)
ρ̇2 − 2

(
∂tγ − ∂tψ

)
ρ̇ ṫ+

(
∂ργ − ∂ρψ

)
c2ṫ2

−e−2γW 2
(∂ρW
W
− ∂ρψ

)
ϕ̇2 − e−2γ+4ψ∂ρψ ż

2 = 0 ,

ẗ+ 2
(
∂ργ − ∂ρψ

)
ρ̇ ṫ+

(
∂tγ − ∂tψ

)
ṫ2 +

(
∂tγ − ∂tψ

) 1

c2
ρ̇2

+e−2γW
2

c2

(∂tW
W
− ∂tψ

)
ϕ̇2 + e−2γ+4ψ∂tψ

1

c2
ż2 = 0 .
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From these equations we can read the Christoffel symbols and, thereupon, calculate the Ricci
tensor. We find

Rzz = e−2γ+4ψ
(
∂2
ρψ −

1

c2
∂2
t ψ +

∂ρW

W
∂ρψ −

∂tW

c2W
∂tψ
)
,

Rϕϕ = W 2e−2γ
(
− ∂2

ρψ +
1

c2
∂2
t ψ +

∂2
ρW

W
− ∂2

tW

c2W
− ∂ρW

W
∂ρψ +

∂tW

c2W
∂tψ
)
,

Rtt = ∂2
t γ − c2∂2

ργ − ∂2
t ψ + c2∂2

ρψ +
∂2
tW

W
− c2∂ρW

W

(
∂ργ − ∂ρψ

)

−∂tW
W

(
∂tγ + ∂tψ

)
+ 2
(
∂tψ
)2
,

Rρρ = ∂2
ργ −

1

c2
∂2
t γ − ∂2

ρψ +
1

c2
∂2
t ψ +

∂2
ρW

W
− ∂ρW

W

(
∂ργ + ∂ρψ

)

−∂tW
c2W

(
∂tγ − ∂tψ

)
+ 2
(
∂ρψ

)2
,

Rρt = Rtρ =
∂ρ∂tW

W
− ∂ρW

W
∂tγ −

∂tW

W
∂ργ + 2∂ρψ ∂tψ ,

The other components of the Ricci tensor are zero. This reduces the vacuum field equation to
five scalar equations. The first two equations, Rzz = 0 and Rϕϕ = 0, are equivalent to the two
equations

∂2
ρW −

1

c2
∂2
tW = 0 , (B1)

∂2
ρψ −

1

c2
∂2
t ψ +

∂ρW

W
∂ρψ −

∂tW

c2W
∂tψ = 0 . (B2)

Similarly, the equations Rρρ = 0 and Rtt = 0 are equivalent to the two equations

∂2
tW

2c2W
+
∂2
ρW

2W
− ∂ρW

W
∂ργ −

∂tW

c2W
∂tγ +

1

c2

(
∂tψ
)2

+
(
∂ρψ

)2
= 0 , (B3)

∂2
ργ −

1

c2
∂2
t γ −

1

c2

(
∂tψ
)2

+
(
∂ρψ

)2
= 0 . (B4)

The last component requires

∂ρ∂tW

W
− ∂ρW

W
∂tγ −

∂tW

W
∂ργ + 2∂ρψ ∂tψ = 0 . (B5)

We will solve these equations for two cases.

Case A :
(
∂ρW

)2 − 1

c2

(
∂tW

)2
> 0

This condition, which says that the gradient of the function W is spacelike, guarantees,
in particular, that this gradient has no zeros. We can, therefore, use

ρ̃ = W (t, ρ)
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as a new coordinate. We use this freedom for performing a coordinate transformation
(t, ρ) 7→

(
t̃, ρ̃
)

such that

dt̃ = ∂ρW dt+
∂tW

c2
dρ , dρ̃ = ∂ρW dρ+ ∂tW dt .

The second equation is just the differential version of the definition of ρ̃. We have to
check if the first equation defines, indeed, a function t̃. The equations

∂tt̃ = ∂ρW , ∂ρt̃ =
∂tW

c2

can be satisfied only if the integrability condition

∂2
ρW =

∂2
tW

c2

is satisfied. This, however, is guaranteed by the field equation, see (B1). Our new
coordinates satisfy

dρ̃2 − c2dt̃2 =
(
∂ρW dρ+ ∂tW dt

)2

− c2
(
∂ρW dt+

∂tW

c2
dρ
)2

=
((
∂ρW

)2 − 1

c2

(
∂tW

)2
)(
dρ2 − c2dt2

)
.

Note that the factor on the right-hand side is positive by assumption. Therefore, we can
replace the function γ by a new function γ̃, defined by

e2γ̃ =
e2γ

(
∂ρW

)2 − 1

c2

(
∂tW

)2
.

Then the metric reads

gµνdx
µdxν = e2γ̃−2ψ

(
dρ̃2 − c2dt̃2

)
+ e−2ψρ̃2dϕ2 + e2ψdz2 .

In the following we drop the tildas. Now we have to evaluate our field equations (B1) to
(B5) with W (t, ρ) = ρ. (B1) is automatically satisfied. (B2) becomes

∂2
ρψ +

1

ρ
∂ρψ −

1

c2
∂2
t ψ = 0 . (B2’)

(B3) and (B5) can be solved for the partial derivatives of γ,

∂ργ = ρ
((
∂ρψ

)2
+

1

c2

(
∂tψ
)2
)
, (B3’)

∂tγ = 2 ρ ∂ρψ ∂tψ . (B5’)

(B4) is then automatically satisfied. Note that (B2’) is a differential equation for ψ alone.
We can solve this equation with a standard separation ansatz. After splitting off the time
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part we are left with the radial part of the Laplace equation in cylindrical coordinates
which is the well-known Bessel equation. Therefore the general solution to (B2’) is

ψ(t, ρ) = AJ0(ωρ) cos(ωt) +B Y0(ωρ) sin(ωt)

where J0 and Y0 are the Bessel functions of first and second kind, respectively. While
J0 is regular everywhere, Y0 goes to −∞ for ρ → 0. If we want to have a solution that
is regular on the axis we have to choose B = 0. Having solved (B2’), we can determine
γ from (B3’) and (B5’). It is obvious that the solution γ is unique up to an additive
constant. Existence of the solution is less trivial. We have to check if the integrability
condition is satisfied:

∂t

{
ρ
((
∂ρψ

)2
+

1

c2

(
∂tψ
)2
)}

?
= ∂ρ

{
2 ρ ∂ρψ ∂tψ

}
,

ρ
(
���

���2∂ρψ ∂t∂ρψ +
2

c2
∂tψ∂

2
t ψ
)

?
= 2 ∂ρψ ∂tψ + 2 ρ ∂2

ρψ ∂tψ +((((
(((2 ρ ∂ρψ ∂ρ∂tψ ,

0
!

= 2 ρ ∂tψ
(1

ρ
∂ρψ + ∂2

ρψ −
1

c2
∂2
t ψ
)
.

We see that the integrability condition of (B3’) and (B5’) is just the equation (B2’).
This guarantees that to every solution of (B2’) we find a corresponding γ such that all
components of the vacuum field equation are satisfied.

This class of solutions describes gravitational waves with cylindrical symmetry. For B = 0
they are well-defined, as source-free vacuum solutions, on all of R4. There is a coordi-
nate singularity on the axis, as always when using cylindrical polar coordinates, but no
curvature singularity. This class of vacuum solutions was (re-)discovered by A. Einstein
and N. Rosen [“On gravitational waves” J. Franklin Inst. 223, 43 (1937)]. In an earlier
version of this paper, Einstein and Rosen had interpreted the coordinate we called ϕ as a
non-periodic, Cartesian-like coordinate and, correspondingly, the waves as planar rather
than as cylindrical. The (coordinate) singularity at ρ = 0 gave them the impression that
this solution is unphysical and they even concluded from this observation that gravita-
tional waves do not exist in the full non-linear theory. Einstein and Rosen submitted
their paper with this (completely false) conclusion to Physical Review. The Editor sent
the article to a referee (which had never been happened to Einstein before) who pointed
out that the conclusion was erroneous and that, actually, the solutions are cylindrical.
Einstein was so angry about the fact that his article had been sent for refereeing that he
withdraw the paper and decided never again to publish in Physical Review. After H. P.
Robertson (who, as we know now, was the referee) explained to him his error, Einstein
wrote a completely new version of the article (N. Rosen had left for Russia by that time)
which was then published in the Journal of the Franklin Institute. The cylindrical solu-
tions presented in this paper are now known as Einstein-Rosen waves although they had
already been found by Beck 12 years earlier.

Case B :
(
∂ρW

)2 − 1

c2

(
∂tW

)2
= 0 , ∂ρW 6= 0

This condition says that the gradient of the function W is lightlike and non-zero. Then
we have

∂ρW = ±1

c
∂tW .
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Here and in the following, either the upper sign or the lower sign holds. The components
(B3) and (B5) of the field equations read

∂2
ρW

W
− ∂ρW

W
∂ργ ∓

∂ρW

cW
∂tγ +

1

c2

(
∂tψ
)2

+
(
∂ρψ

)2
= 0 ,

∂2
ρW

W
∓ ∂ρW

cW
∂tγ −

∂ρW

W
∂ργ ±

2

c
∂ρψ∂tψ = 0 .

Subtracting the second equation from the first yields

∂ρψ = ±1

c
∂tψ ,

i.e.,
ψ(t, ρ) = f(ct± ρ) .

Upon inserting this result into (B4), and using that ∂ρW has no zeros, we find

∂2
ργ −

1

c2
∂2
t γ = 0 ,

i.e.,
γ(t, ρ) = p(ct± ρ) + q(ct∓ ρ) .

With these results our metric takes the form

gµνdx
µdxν = −

(
e2p−2f (cdt± dρ)

)(
e2q(cdt∓ dρ)

)
+ e−2fW 2dϕ2 + e2fdz2 .

We replace t and ρ by new coordinates
(
ũ, ṽ
)

such that

dũ =
1√
2
e2p−2f (cdt± dρ) , dṽ =

1√
2
e2q(cdt∓ dρ) .

This is possible as the integrability conditions are obviously satisfied. Then the metric
reads

gµνdx
µdxν = 2dũdṽ + C11(ũ)dϕ2 + C22(ũ)dz2

where we have used that f and W depend on t± ρ only which, in turn, can be expressed
in terms of ũ alone. Metrics of the form

gµνdx
µdxν = −2dũdṽ + CAB(ũ)dx̃AdX̃B

are known as Rosen waves. They were discussed in a paper by N. Rosen which he wrote
after he had left Princeton for the Soviet Union [N. Rosen: “Plane polarized waves in the
general theory of relativity”. Phys. Z. Soviet Union 12, 366 (1937)]. With our metric
ansatz we have found only those Rosen waves for which the matrix CAB(ũ) is diagonal;
one gets the general class if one drops the assumption of the ϕ lines being orthogonal to
the z lines.

The Rosen waves are actually locally isometric to the plane waves we have studied in the
preceding section in the Brinkmann coordinates. We demonstrate this for the case that
the matrix CAB is diagonal.
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We start out from the metric in Rosen coordinates with

(
CAB

)
=

(
e1(ũ2)2 0

0 e2(ũ2)2

)
.

We express the Rosen coordinates
(
ũ, ṽ, x̃1, x̃2

)
in terms of new coordinates (which will

turn out to be the Brinkmann coordinates) (u, v, x1, x2) by

ũ = u , ṽ = v − 1

2

( ė1(u)

e1(u)
(x1)2 +

ė2(u)

e2(u)
(x2)2

)
,

x̃1 =
x1

e1(u)
, x̃2 =

x2

e2(u)
.

Then
gµνdx

µdxν = −2dũdṽ + e2
1

(
dx̃1
)2

+ e2
2

(
dx̃2
)2

= −2du
{
dv − 1

2

ė1

e1

2x1dx1 − 1

2

ė2

e2

2x2dx2 − 1

2

( ė1

e1

)·
(x1)2du+

1

2

( ė2

e2

)·
(x2)2du

}

+e2
1

(dx1

e1

− ė1

e2
1

x1du
)2

+ e2
2

(dx2

e2

− ė2

e2
2

x2du
)2

= −2dudv + dudx1
{

�
�
��

2
ė1

e1

x1 −
�
�
��

2
ė1

e1

x1
)

+ dudx2
(

�
�
��

2
ė2

e2

x2 −
�
�
��

2
ė2

e2

x1
}

+du2
{( ë1

e1

−
�
�
��ė2
1

e2
1

)
(x1)2 +

( ë1

e2

−
�
�
��ė2
2

e2
2

)
(x2)2 +

�
�
�
�ė2

1

e2
1

(x1)2 +
�
�
�
�ė2

2

e2
2

(x2)2
)

+ (dx1)2 + (dx2)2 .

This is precisely the form of a plane wave in Brinkmann coordinates,

gµνdx
µdxν = −2dudv + hAB(u)xAxBdu2 + (dx1)2 + (dx2)2 ,

with

(
hAB(u)

)
=



ë1(u)

e1

0

0
ë2(u)

e2


 .

The vacuum field equation requires

ë1(u)

e1

+
ë2(u)

e2

= 0 .

The other cases, where the gradient of W is timelike, or where it changes its causal character
from point to point, will not be treated here. The latter case is of relevance for colliding waves.
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7.3 Robinson-Trautman solutions

While plane waves are associated with bounded sources only approximately, at a large distance
from the sources, and cylindrical waves are not associated with bounded sources at all, we
will finally study a class of solutions that do give a valid description of gravitational radiation
from bounded sources. It was constructed by I. Robinson and A. Trautman [“Some spherical
gravitational waves in general relativity” Proc. Roy. Soc. London A 265, 463 (1962)] in analogy
to the Liénard-Wiechert field from electrodynamics. The latter is the electromagnetic field of
an accelerated point charge in Minkowski spacetime. The radiation field propagates along the
lightlike geodesics (i.e., lightlike straight lines) that issue from the worldline of the point charge
into the future. These lightlike geodesics, which generate the future light-cones from the events
of the worldline of the charge, are hypersurface-orthogonal, shear-free and expanding. The
basic idea of Robinson and Trautman was to construct vacuum solutions to Einstein’s field
equation which admit a family of lightlike geodesics with the same properties. One could then
interpret these lightlike geodesics as the rays of gravitational radiation.

We begin by writing down the general form of a spacetime that is foliated into lightlike hyper-
surfaces. These hypersurfaces, which generalise the light-cones in Minkowski spacetime, can be
written as hypersurfaces σ = constant where σ is a scalar function with a lightlike gradient,

gµν∂µσ∂νσ = 0 .

We define a vector field Kµ∂µ by
Kµ = gµν∂νσ .

Clearly, this vector field is lightlike,

gµνK
µKν = gµνg

µρ∂ρσg
νλ∂λσ = gρλ∂ρσ∂λσ = 0 ,

and geodesic,

0 = gµν∂µσ∂νσ =⇒ 0 = ∇λ

(
gµν∂µσ∂νσ

)
= 2gµν∂µ∇λ∂νσ

= 2Kν
(
∂λ∂νσ − Γτ λνσ

)
= 2Kν

(
∂ν∂λσ − Γτ νλσ

)
= 2Kν∇ν∂λσ = 2Kν∇νKλ .

Note that the vector field Kµ∂µ is tangent to the hypersurfaces σ = constant and at the same
time orthogonal to them.

We can choose coordinates x1 = ξ, x2 = η, x3 = ρ and x4 = σ in such a way that

∂

∂ρ
= ∂3 = Kµ∂µ ,

see picture on the next page.

This can be achieved by assigning the value ρ = ρ0 to a hypersurface that is transverse to
the hypersurfaces σ = constant and dragging it along with the flow of Kµ∂µ to get the other
hypersurfaces ρ = constant; the coordinates ξ and η have to be chosen transverse to σ, but
arbitrarily otherwise, on the initial hypersurface ρ = ρ0 and are then again fixed by dragging
them along with the flow of Kµ∂µ.
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Minkowski spacetime, can be written as hypersurfaces σ = constant where σ is
a scalar function with a lightlike gradient,

gµν∂µσ∂νσ = 0 .

We define a vector field Kµ∂µ by

Kµ = gµν∂νσ .

Clearly, this vector field is lightlike,

gµνK
µKν = gµνg

µρ∂ρσgνλ∂λσ = gρλ∂ρσ∂λσ = 0 ,

and geodesic,

0 = gµν∂µσ∂νσ =⇒ 0 = ∇λ

(
gµν∂µσ∂νσ

)
= 2gµν∂µ∇λ∂νσ

= 2Kν
(
∂λ∂νσ − Γτ λνσ

)
= 2Kν

(
∂ν∂λσ − Γτ νλσ

)
= 2Kν∇ν∂λσ = 2Kν∇νKλσ .

Note that the vector field Kµ∂µ is tangent to the hypersurfaces σ = constant
and at the same time orthogonal to them.

∂1, ∂2

∂3

∂4

σ = constant

We can choose coordinates x1 = ξ, x2 = η, x3 = ρ and x4 = σ in such a way
that

∂

∂ρ
= ∂3 = Kµ∂µ .

This can be achieved by assigning the value ρ = ρ0 to a hypersurface that is
transverse to the hypersurfaces σ = constant and dragging it along with the
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By construction,

g14 = g41 = gµνδ4
µδ

1
ν = gµν∂µσ∂νξ = Kν∂νξ =

∂ξ

∂ρ
= 0 ,

g24 = g42 = gµνδ4
µδ

2
ν = gµν∂µσ∂νη = Kν∂νη =

∂η

∂ρ
= 0 ,

g34 = g43 = gµνδ4
µδ

3
ν = gµν∂µσ∂νρ = Kν∂νρ =

∂ρ

∂ρ
= 1 ,

g44 = gµνδ4
µδ

4
ν = gµν∂µσ∂νσ = 0 .

This demonstrates that the contravariant components of the metric can be written as

(
gµν
)

=




P 2γ11 P 2γ12 a 0
P 2γ12 P 2γ22 b 0
a b c 1
0 0 1 0


 with det

(
γ11 γ12

γ12 γ22

)
= 1 .

Here we have used that the two-surfaces parametrised by ξ and η are spacelike, so the deter-
minant of

(
gAB

)
must be positive. (As before, capital indices A,B, . . . take values 1 and 2.)

From the minors of the matrix (gµν) we read that g31 = g32 = g33 = 0, hence

δBA = gAµg
µB = gACg

CB = gACP
2γCB =⇒ (γ−1)AC = P 2gAC .

We will now add the condition that Kµ∂µ should be shear-free and expanding. Twist, expansion
and shear of the lightlike vector field Kµ∂µ are defined as

twist : ΩAB =
1

2

(
∇AKB −∇BKA

)
,

expansion : Θ = ∇AK
A ,

shear : ΣAB =
1

2

(
∇AKB +∇BKA

)
− Θ

2
gAB .
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In the case at hand,

∇µKν = ∇µ∂νσ = ∂µ∂νσ − Γλµν∂λσ = 0− 1

2
gλτ
(
∂µgτν + ∂νgτµ − ∂τgµν

)
δ4
λ

= −1

2
g43

︸︷︷︸
=1

(
∂µ g3ν︸︷︷︸

=0

+ ∂ν g3µ︸︷︷︸
=0

− ∂3gµν
)

=
1

2
∂3gµν .

Hence, the twist vanishes, ΩAB = 0. (Quite generally, the property of being hypersurface-
orthogonal is equivalent to being twist-free.) To calculate the expansion, we observe that the
Jacobi formula

∂3

(
det(γ)

)
= trace

(
γ−1∂3γ

)

applied to the matrix γ = (γAB) results in

0 =
(
γ−1
)
AB
∂3γ

AB ,

hence

Θ = gAB∇AKB =
1

2
gAB∂3gAB = −1

2
gAB∂3g

AB = −1

2
P−2(γ−1)AB∂3(P 2γAB)

= −1

2
P−2(γ−1)ABγ

AB2P∂3P = −2P−1∂3P .

Finally, we find the shear as

ΣAB =
1

2
∂3gAB + P−1∂3PgAB =

1

2
∂3

(
P−2(γ−1)AB

)
+ P−3(γ−1)AB∂3P

=
1

2
P−2∂3

(
(γ−1)AB

)
.

We assume that the shear vanishes, i.e., that ∂3

(
(γ−1)AB

)
= 0. This condition is equivalent

to ∂3γ
AB = 0. If we choose the coordinates ξ and η such that γAB = δAB on the initial

hypersurface ρ = ρ0, this condition will hold everywhere, so the contravariant components of
the metric simplify to

(
gµν
)

=




P 2 0 a 0
0 P 2 b 0
a b c 1
0 0 1 0


 .

This matrix can be easily inverted,

(
gµν
)

=




P−2 0 0 −P−2a
0 P−2 0 −P−2b
0 0 0 1

−P−2a −P−2b 1 −c+ P−2a2 + P−2b2


 ,

so the metric reads

gµνdx
µdxν = P−2

((
dξ − a dσ

)2
+
(
dη − b dσ

)2
)

+ 2 dρ dσ − c dσ2 .
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This is the general form of a metric that admits a hypersurface-orthogonal, shear-free geodesic
lightlike vector field.

Finally, we add the conditions that the expansion is non-zero and that the vacuum field equation
Rµν = 0 holds. We begin with the 33-component of the field equation.

0 = R33 = Rτ
µτνK

µKν = Kµ
(
∇µ∇τK

τ −∇τ∇µK
τ
)

= Kµ∇µ∇τK
τ −∇τ

(
Kµ∇µK

τ

︸ ︷︷ ︸
=0

)
+∇µK

µ∇τK
τ

= ∂3

(
∇AK

A + 0
)

+∇AK
B∇BK

A + 0 = ∂3Θ +
1

4
gBCgAD∂3gAC∂3gBD

= ∂3Θ +
P 4

4
δBCδAD∂3

(
P−2δAC

)
∂3

(
P−2δBD

)

= ∂3Θ +
P 4

4

(
−2P−3∂3P︸ ︷︷ ︸

=P−2Θ

)2
δBAδ

A
B︸ ︷︷ ︸

=2

=
∂Θ

∂ρ
+

Θ2

2
.

Quite generally, evaluating the expression RµνK
µKν results in a differential equation for the

expansion Θ along the integral curves of Kµ∂µ which is known as the Raychudhuri equation.
In the case at hand, assuming R33 = 0, it simply reads

∂Θ

∂ρ
=

Θ2

2
.

Now we use our assumption that Θ 6= 0. Then we can integrate the Raychudhuri equation,

− 2

Θ2

∂Θ

∂ρ
= 1 =⇒ 2

∂Θ−1

∂ρ
= 1 =⇒ 2

Θ
= ρ+ f(ξ, η, σ) .

As ρ was introduced by assigning a value ρ0 to an arbitrary hypersurface transverse to the
lightlike hypersurfaces σ = constant, we are free to make a coordinate transformation ρ 7→
ρ− f(ξ, η, σ). Then we have

ρ =
2

Θ
= −P

(∂P
∂ρ

)−1

=⇒ ∂P

∂ρ
= −P

ρ

=⇒ ∂
(
ρP
)

∂ρ
= P + ρ

∂P

∂ρ
= P − ρ P

ρ
= 0 .

So our assumption that (at least the 33-component of) the vacuum field equation holds and
that Θ 6= 0 has led to the conclusion that

p := ρP satisfies
∂p

∂ρ
= 0 .

So we can write the metric as

gµνdx
µdxν =

ρ2

p2

((
dξ − a dσ

)2
+
(
dη − b dσ

)2
)

+ 2 dρ dσ − c dσ2 with ∂3p = 0 .
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For evaluating the vacuum field equation, we now have to calculate the other components of
the Ricci tensor for this metric. This is straight-forward but rather tedious. Mathematica gives
the following results.

R13 =
∂3(ρ4∂3a)

2p2ρ2
,

R23 =
∂3(ρ4∂3b)

2p2ρ2
,

R11 −R22 =
ρ

2p4

(
ρ2(∂3a)2 − ρ2(∂3b)

2 − 2p2
(
2∂2b+ ρ∂2∂3b− 2∂1a− ρ∂1∂3a

))
,

R2 =
ρ

2p4

(
ρ2∂3a ∂3b+ p2

(
2∂2a+ ρ∂2∂3a+ 2∂1b+ ρ∂1∂3b

))
.

The first two and the last two equations can be combined in complex form, respectively, if we
introduce the complex function z := a+ ib,

R13 + iR23 =
∂3(ρ4∂3z)

2p2ρ2
,

R11 −R22 + 2iR12 =
ρ

2p4

(
ρ2(∂3z)2 + 2p2

(
∂1 + i∂2

)(
2z + ρ∂3z

))
.

The vacuum field equation requires R13 + iR23 = 0, hence

ρ4∂3z = v =⇒ z = u− v

3ρ3
with ∂3u = ∂3v = 0 .

Inserting this result into the equation R11 −R22 + 2iR12 = 0 yields

0 = v2 + 2p2
(
∂1 + i∂2

)(
2uρ6 +

v

3
ρ3
)
.

By comparing equal powers of ρ we find

v = 0 and (∂1 + i∂2)u = 0 ,

i.e., the function z = a+ ib = u is independent of ρ = x3 and analytic in the complex variable
ξ + iη = x1 + ix2,

∂3z = 0 , (∂1 + i∂2)z = 0 .

The second condition means that, if real and imaginary parts are written separately, the Cauchy-
Riemann equations

∂a

∂ξ
=
∂b

∂η
,

∂a

∂η
= −∂b

∂ξ

hold.

On the basis of these observations we will now show that a and b can be transformed to zero.
To that end we perform a coordinate transformation of the form

ξ = α(ξ̃, η̃, σ̃) , η = β(ξ̃, η̃, σ̃) , σ = γ(σ̃) , ρ =
ρ̃

γ′(σ̃)
.
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Here α + iβ is an analytic function of ξ̃ + iη̃, i.e.,

∂α

∂ξ̃
=
∂β

∂η̃
,

∂α

∂η̃
= −∂β

∂ξ̃
.

We choose α and β such that

aγ′(σ̃) =
∂α

∂σ̃
, bγ′(σ̃) =

∂β

∂σ̃
.

Such a choice is possible because a and b are independent of ρ and satisfy the Cauchy-Riemann
equations, which guarantees that the necessary integrability conditions are satisfied,

∂

∂ξ̃
(a γ′(σ̃)) = γ′(σ̃)

(
∂a

∂ξ

∂α

∂ξ̃
+
∂a

∂η

∂β

∂ξ̃

)
= γ′(σ̃)

(
∂b

∂η

∂β

∂η̃
+
∂b

∂ξ

∂α

∂η̃

)
=

∂

∂η̃
(b γ′(σ̃)) ,

∂

∂η̃
(a γ′(σ̃)) = γ′(σ̃)

(
∂a

∂ξ

∂α

∂η̃
+
∂a

∂η

∂β

∂η̃

)
= γ′(σ̃)

(
∂b

∂η

∂β

∂ξ̃
+
∂b

∂ξ

∂α

∂ξ̃

)
=

∂

∂ξ̃
(b γ′(σ̃)) .

Under such a transformation the form of the metric is preserved, with

1

p̃2
=

1

p2

((∂α
∂ξ

)2

+
(∂β
∂ξ

)2
)

=
1

p−2

((∂α
∂η

)2

+
(∂β
∂η

)2
)

ã = 0 , b̃ = 0 , c̃ = cγ′(σ̃)2 .

If we perform such a coordinate transformation, and then drop the tildas, the metric takes the
simple form

gµνdx
µdxν =

ρ2

p2

(
dξ2 + dη2

)
+ 2 dρ dσ − c dσ2 (RT)

with functions p(ξ, η, σ) and c(ξ, η, ρ, σ).

For this metric we now calculate the remaining components of the Ricci tensor. Again with
Mathematica, we find

R11 +R22 =
2

p

(
∂3(ρc)− 4ρ ∂4ln p− ∆̃ln p

)

where we introduced the modified Laplace operator

∆̃ = p2
(
∂2

1 + ∂2
2

)
.

Integration of the equation R11 +R22 = 0 yields

c = 2ρ∂4ln p+ ∆̃ln p− 2m

ρ
with ∂3m = 0 . (∗)

With this input we find that R34 = 0 is satisfied while

R14 =
∂1m

ρ2
, R24 =

∂2m

ρ2
.
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Hence, the equations R14 = 0 and R24 = 0 require m to be a function of σ only. Finally, the
remaining component of the Ricci tensor is

R44 =
1

2ρ2

(
∆̃2 ln p+ 12m∂4ln p− 4

dm

dσ

)
.

The condition R44 = 0 gives a fourth-order differential equation for p which is known as the
Robinson-Trautman equation,

∆̃2ln p+ 12m∂4ln p− 4
dm

dσ
= 0 .

We can now summarise the procedure of how to construct a Robinson-Trautman vacuum so-
lution. We choose a function m(σ). With this function, we have to find a solution p to the
Robinson-Trautman equation. With this p and the chosen m, we define a function c via (∗).
Then the metric (RT) is a solution to Einstein’s vacuum equation with the integral curves of
∂/∂ρ being a twist-free, shear-free, geodesic lightlike congruence with non-zero expansion.

Clearly, the Schwarzschild solution must be included. To verify this, choose for m a positive
constant. Then the Robinson-Trautman equation is solved by

p = 1 +
1

4

(
ξ2 + η2

)
,

because

∂4ln p = 0 , ∆̃ln p = 1 .

In this case the function c reads

c = ∆̃ln p− 2m

ρ
= 1− 2m

ρ
.

We express the coordinates ξ and η in terms of new coordinates ϑ and ϕ via

ξ + iη = 2 tanϑ
2
eiϕ

which is the stereographic projection mapping from a sphere to a plane. Then

dξ2 + dη2 =
4 sin2 ϑ

2
cos2 ϑ

2
dϕ2 + dϑ2

cos4 ϑ
2

=
sin2ϑ dϕ2 + dϑ2

cos4 ϑ
2

,

p = 1 +
1

4

(
ξ2 + η2

)
= 1 + tan2 ϑ

2
=

1

cos2 ϑ
2

,

so the metric reads

gµνdx
µdxν = ρ2

(
sin2ϑ dϕ2 + dϑ2

)
+ 2dρdσ −

(
1− 2m

ρ

)
dσ2 .

If we rename (ρ, σ) 7→ (r,±ct̃) we recognise the Schwarzschild metric in ingoing and outgoing
Eddington-Finkelstein coordinates, respectively.

The Robinson-Trautman class of solutions also contains the socalled C-metric which describes
a uniformly accelerated black hole. It can be viewed as the gravitational analogue of the Born-
Schott electromagnetic field produced by a uniformly accelerated charge. Just as an accelerated
charge produces stationary electromagnetic radiation, the C-metric describes stationary gravi-
tational radiation.
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Other Robinson-Trautman solutions describe non-stationary gravitational radiation produced
by bounded sources. At the level of exact solutions to Einstein’s field equation, the Robinson-
Trautman metrics are the most realistic models of gravitational radiation we have. As they
do not include any (over-idealised) symmetry assumptions, their variety is much richer than
that of the Brinkmann or Beck-Einstein-Rosen solutions. For a detailed discussion of Robinson-
Trautman metrics, including the C-metric, see J. Griffiths and J. Podolský: “Exact Space-Times
in General Relativity” Cambridge University Press, 2009.

There are several generalisations of the Robinson-Trautman solutions. In particular, the condi-
tion of the rays being hypersurface-orthogonal (twist-free) has been dropped. This is important
to include rotating sources. A twisting null congruence can be rather complicated. In Roger
Penrose’s twistor formalism any twistor is associated with a certain twisting, shear-free, geodesic
null congruence, called a “Robinson congruence”, on (complexified, compactified) Minkowski
spacetime. The picture below is a hand-drawing by Roger Penrose. It shows a time-slice of a
Robinson congruence.
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