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Historic Introduction

A. Einstein invents special relativity according to which signals cannot move at super-
luminal speed. This is in conflict with Newtonian gravity which predicts an action-at-
a-distance. Einstein immediately sees the need for a new theory of gravity which is in
agreement with the basic ideas of relativity. Formulating this new theory, which is then
called general relativity, takes hin 10 years.

A. Einstein formulates the equivalence principle (“a gravitational field is equivalent to an
acceleration”, “a homogeneous gravitational field is transformed away in a freely falling
elevator”) which will then become a cornerstone of general relativity.

H. Minkowski introduces a four-dimensional formulation of special relativity, combining
three-dimensional space and one-dimensional time into the four-dimensional “spacetime
continuum” or “spacetime” for short.

A. Einstein presents the final formulation of general relativity with the gravitational
field equation (“Einstein’s field equation”). By solving this equation approximately he
can explain the anomalous perihelion precession of Mercury (43 arcseconds per century,
known since U. LeVerrier, 1855) and he predicts a deflection of light by the Sun (1.7
arcseconds for a light ray grazing the surface of the Sun).

K. Schwarzschild finds the spherically symmetric static solution of Einstein’s field equa-
tion in vacuum (“Schwarzschild solution”) which has a coordinate singularity at the
“Schwarzschild radius” rg = 2Gm/c* (G = gravitational constant, ¢ =vacuum speed
of light, m =mass of the spherically symmetric body). The same solution is found a few
weeks later independently by J. Droste.

A. Einstein predicts the existence of gravitational waves, based on the linearised field
equation.

A. Eddington verifies Einstein’s prediction of light deflection by the Sun during a Solar
eclipse.

A. Friedmann finds expanding cosmological models as solutions to Einstein’s field equation
with appropriate matter models (“Friedmann solutions”).

G. Lemaitre advocates the idea that the universe began with a cosmological singularity
(ironically called “big bang” by Fred Hoyle in the 1960s) and is expanding since.

E. Hubble finds a linear relation between the redshift and the distance of galaxies (usually
interpreted as a Doppler effect and, thereupon, as evidence for the expansion of the
universe). The same relation was found already two years earlier by Lemaitre. It is
properly called the Lemaitre-Hubble law.

F. Zwicky postulates the existence of “dark matter” in order to explain the stability of
galaxy clusters.

F. Zwicky starts a longtime search for multiple images of galaxies produced by the grav-
itational field of intervening masses (“gravitational lens effect”).
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R. Oppenheimer and H. Snyder calculate the gravitational collapse of a spherically sym-
metric ball of dust.

W. Rindler introduces the notions of “event horizons” and “particle horizons” for cosmo-
logical models.

D. Finkelstein, M. Kruskal, G. Szekeres and C. Frgnsdal explain that the singularity in
the Schwarzschild solution at » = rg is an event horizon; if a spherically symmetric body
has collapsed to a radius smaller than rg, no signal can escape from the region r < rg
to the region r > rg. In the mid-1960s the name “black hole” is introduced for such an
object; the name probably originated from John Wheeler or people around him.

R. Pound and G. Rebka measure the gravitational redshift in a building of 22.5 m height;
the prediction from general relativity is verified to within 10 %.

R. Kerr finds a solution to Einstein’s vacuum field equation that describes a rotating
black hole (“Kerr solution”).

J. Weber starts a longtime search for gravitational waves with “resonant bar detectors”,
also known as “Weber cylinders”.

E. Gertsenshtein and V. Pustovoit suggest to use interferometers for the detection of
gravitational waves. This is the idea on which the LIGO (and Virgo and GEOG600 ... )
detectors are based.

A. Penzias and R. Wilson accidentally discover the cosmic background radiation which is
viewed as a strong support for the big-bang hypothesis (Nobel prize 1978).

— 1970 R. Penrose and S. Hawking prove several “singularity theorems”, thereby demon-
strating that, under fairly general assumptions, solutions to Einstein’s field equations must
have “singularities”. (Nobel prize for Penrose in 2020.)

S. Hawking predicts that black holes can evaporate by emitting (“Hawking”) radiation;
this is relevant only for very small black holes because for bigger black holes the time scale
is enormously big. Hawking radiation has not yet been observed, but it was claimed that
it was seen in analogue experiments (i.e. experiments which are described by equations
which are analogous to the equations of black-hole physics).

R. Hulse and J. Taylor observe an energy loss of the binary pulsar PSR 1913416 which
they interpret as an indirect evidence for the existence of gravitational waves (Nobel prize
1993).

D. Walsh, R. Carlswell and R. Weyman interpret the double quasar QQ 09574561 as
two images of one and the same quasar, produced by the gravitational lens effect of an
intervening galaxy.

—now The centre of our Galaxy is observed with infrared telescopes. This provides clear
evidence, from the motion of stars in this region, that there is a supermassive black hole
of about 4 Million Solar masses at the centre of our Galaxy. (Nobel prize for A. Ghez
and Reinhard Genzel 2020).
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Observations using Supernovae of Type la provide evidence for an accelerated expansion
of our universe; this can be explained, on the basis of general relativity, if one assumes that
there is not only (clumpy) “dark matter” but also (homogenoeus) “dark energy” (Nobel
prize for S. Perlmutter, A. Riess and B. Schmidt 2011).

First science runs of interferometric gravitational wave detectors LIGO (USA) and GEO600
(Germany).

First direct detection of gravitational waves by the LIGO detectors, most probably pro-
duced by a merger of two black holes that produced a single black hole of more than 60
Solar masses. Durung this merger process, which took less than a second, 3 Solar masses
were emitted in the form of gravitational waves. This would be by far the most powerful
event (power = energy/time) ever seen in the Universe (Nobel prize for R. Weiss, K.
Thorne and B. Barish 2017).

The Event Horizon Telescope Collaboration releases pictures from the centre of the galaxy
MS8T7. These pictures are believed to show the socalled “shadow” of a supermassive black
hole of about 6 billion Solar masses situated there.

important open problems:

e explanation of dark matter and dark energy (dark energy could be explained just
as the effect of a “cosmological constant”, see later in this course, but dark matter
is a completely open problem);

e understanding of the singularities predicted by the theory;

e unification of general relativity and quantum theory (“quantum gravity”).



2 Special relativity

2.1 Special relativistic spacetime

The set of all events, characterised by three space coordinates and a time coordinate, is called
spacetime (or, more fully, the spacetime continuum).

The spacetime of special relativity is determined by two postulates.

(P1) Special relativity principle:
There are coordinate systems, called inertial systems, in which all force-free bodies are in
uniform rectilinear motion. All inertial systems have equal rights.

(P2) Principle of the constancy of the speed of light:
The vacuum speed of light has the same value ¢ in all inertial systems (independent of
the velocity of the source).

Postulate (P1) is valid also in Newtonian mechanics: It is true that Newton postulated an
absolute space, but all the laws he then estalished showed that this absolute space would be
indistinguishable from any other systems that are in uniform rectangular motion with respect
to absolute space. Therefore, also in Newtonian mechanics we have a family of inertial systems
which have equal rights.

For postulate (P2), in hindsight the best motivation is the Michelson-Morley experiment: Before
1905 people had thought that light is a wave phenomenon that needs a medium for propagating.
This medium was called the “ether”.

Then the problem arose to de-
termine the motion of the Earth ul‘ﬁirror
with respect to the ether. Al-
bert Michelson tried to detect this
motion with the interferometric

device named after him, first by Incoming _
experiments in Berlin and Pots- ’gﬁi?,ﬂ #:E Mirror
eam?’ | |

dam, then with great effort to- Splitter | |
gether with Edward Morley in "
Cleveland in 1888: If the interfer- g‘;?g‘?‘rflenoe
ometer is being rotated, the inter- J

ference pattern does not change,
no relative motion of the Earth
relative to the ether is observed;

Figure 1: Michelson interferometer

On the basis of Einstein’s special relativity the answer is clear: There simply is no ether, i.e.,
no distinguished reference frame for the propagation of light.

Virtually any text-book on relativity gives the Michelson-Morley experiment as the main mo-
tivation for postulate (P2) . Historically however, it should be noted that Einstein came to
postulate (P2) by carefully investigating the invariance properties of Maxwell’s equations. The
Michelson-Morley experiment played no important role for him; later, he couldn’t even remem-
ber if he knew about this experiment when he esablished special relativity.



It should also be mentioned that by now there are even more direct experimental verifications
of the constancy of the speed of light: In the 1960s the Swiss physicist T. Alvager performed
experiments where a decaying particle produced gamma quanta (light particles). Whatever the
velocity of the particle was before deacying, the emitted gamma quanta always moved at the
speed of light ¢ with respect to the laboratory.

So we now accept the two postulates of special relativity. We denote the coordinates in an
inertial system by 2° = ct, 2! =z, 22 = y, 23 = 2. Note that we user upper indices for the
coordinates. This is for being in agreement with the general rules of index positions that will
be introduced later.

Every object that may be approximated as being pointlike has a “worldline”, i.e., it is charac-
terised by a curve in spacetime that tells where the object is at any time. For a force-free body
this is a straight line.

worldline P

Figure 2: Worldline P of a force-free body

As VA2 (Ar2)? + (AzP)? 1\/<Ax)2+ <%>2+ <Az>2 _

tana = % = A AV At At

(%
Cc

v and, thus, the angle a depends on the chosen inertial system.
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X
> spatial trajectory
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worldline L

X
> spatial trajectory
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Figure 4: Worldline £ of a light signal

As As v
For light: tana = — = — = — =1 a = 45°
& Az® At ¢ ’
In this case, the angle « is independent of the chosen inertial system.
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All light signals that pass through an event A form the light cone of A:

20

-

xr
Figure 5: Light cone of the event A
In any inertial system, the light cone of A is given by the equation:
(513'0 _ aO)Z — (l‘l _ al)Q + (:L‘2 _ a2)2 + (:CS _ a3)2 (1)

where (a°,a',a? a?®) are the coordinates of A. The light cone of A naturally divides into a

future half-cone (a® < 2°) and a past half-cone (a® > 2°).

If X is an event with coordinates (z°, 2!, 2% %), and X # A, we say:

timelike <0
X lies  lightlike p with respect to A <= —(2°—a®)*+(2'—a')?+ (22 —a?)*+(2*—a®)* { =0
spacelike > 0

In the first case X is in the interior of the light cone of A, in the second case it is on the boundary,
and in the third case it is in the exterior. Note that the property of being timelike, lightlike
or spacelike characterises events with respect to another event. Equivalently, it characterises
vectors that connect two events.

In special relativity, simultaneity is defined with the radar method, also known as FEinstein’s
synchronisation procedure, cf. Worksheet 1, Poblem 4. The following diagrams demonstrate
that simultaneity is relative.



2 = const.

\
B A\

AzO light signals

Figure 6: In the inertial system X, the event A is simultaneous with the event B

70 = const.

A

light signals

jow

Figure 7: In the inertial system ¥, the event A is simultaneous with the event B
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In Newtonian physics simultaneity is absolute and the light cones depend on the inertial system:;
in special relativity it is vice versa.

The relativity of simultaneity is the reason why superluminal signals are not allowed. More
precisely, we will demonstrate now that the existence of superluminal signals is not compatible
with causality (“the cause always precedes the effect”).

Consider the following situation.

pS!

L1

simultaneous for P

Lo

simultaneous for P

Figure 8: P sends superluminal signal £; into his future; P sends superluminal
signal £, into his future; both signals combined result in a signal from P into
his past

The existence of such signals would lead to paradoxa. E.g., with the help of the signals £, and
Lo, it would be possible for P to kill his parents before his own birth.

In order to reconcile special relativity with causality, superluminal signals must be prohibited.
A speed that is not associated with a signal, however, could be bigger than the vacuum speed of
light. E.g., the bright spot produced by a laser beam can move over a screen with superluminal
speed.

In 2011 it was announced that in the OPERA experiment at CERN neutrinos had been observed
that moved at superluminal speed. If true, this would have been a serious problem for special
(and general) relativity. However, it turned out to be a measuring mistake.

We have already said what it means that an event lies timelike, lightlike or spacelike with
respect to another event. Using this terminology, we can summarise our discussion of causality
in the following way. An event X can be connected with an event A by a signal if and only if X
lies timelike or lightlike with respect to A. For any fixed A, the set of all such events X divides
into two connected components which are called the (absolute) future and the (absolute) past
of A, respectively.

10



2.2 Index notation

From now on, greek indices, p, v, o ..., take values 0,1,2,3. E.g., the coordinates (z°, 2!, 22, 23)
of an event in an inertial system will be denoted z*.
Latin indices, i,j,k ..., take values 1,2,3. E.g., the spatial coordinates (x!, 22, 2*®) of an event
in an inertial system will be denoted .
We define the Minkowski metric
-1 if p=v=>0
Ny = 1 it pu=v=1,23 (2)
0 if WF# v
which can be written in matrix form as
-1 0 0 0
. 0 100
(T],uu> - dlag(—l,l,l,l) - 0 01 0 <3>
0 0 01

(Calling 7, “the Minkowski metric” is a common abuse of notation. More pecisely, one should
call 7, “the components of the Minkowski metric in an arbitrary inertial system”.)

With the help of the Minkowski metric, the equation of the light cone,

0= —(Ax")? + (Azx')? + (Ax?)? + (A2®)?, (4)

can be rewritten as

From now on we adopt Einstein’s summation convention:

If a greek index, u, v, 0,..., appears twice in an expression, once as a subscript and once as a
superscript, then it is to be summed over from 0 to 3. The same rule is valid for latin indices,
1,7, k,..., but in this case the sum is only from 1 to 3.

Note that different authors use different conventions. Some of them replace our 7, with —n,,,,
some of them use the index 4 instead of 0 for the time coordinate, some of them use latin
instead of greek indices and vice versa. In some older books the imaginary unit is included into
the time coordinate, 2° = ict wih i> = —1, which allows to use the Kronecker delta instead of
the Minkowski metric. This is no longer used as it causes confusion.

With Einstein’s summation convention the light cone equation (5) becomes 0 = 1, Azt Ax”
and the definition of timelike, lightlike and spacelike vectors reads

timelike <0
Az is ¢ lightlike = nuwAztAz" (=0 .
spacelike >0

11



Later we will also use the matrix (n*”), which is defined as the inverse matrix of (7,,), i.e.,

e = 0, (6)
where §# is the Kronecker delta. Clearly, written as a matrix (n**) looks the same as (7,,). We
will use 7, for lowering indices and n*” for raising indices, e.g.

vy = Nt wh = nw, . (7)

2.3 Lorentz transformations

We define Lorentz transformations in the following way.

Definition: A Lorentz transformation is a linear transformation, z# = L*,x", that leaves the
Minkowski metric invariant, 7,, L*,L", = 1,5 .

It is easy to demonstrate that a Lorentz transformation maps an inertial system to an inertial
system: What one has to prove is that a Lorentz transformation maps straight lines onto straight
lines (this is necessary because of Postulate (P1)) and that it leaves the light cones invariant
(this is necessary because of Postulate (P2)). The first property is obvious because Lorentz
transformations are linear. The second follows from the fact that a Lorentz transformation
satisfies Azt = L*,Ax” and thus 7, AT*AT = 1,0 AxPAz?).

As a consequence, Postulate (P1) requires the laws of nature to be invariant under Lorentz
transformations.

Lorentz transformations are not the only transformations that map inertial systems to inertial
systems:

e Poincaré transformations (also known as inhomogeneous Lorentz transformations) con-
tain an additional shift of the origin, 2# = L*,x"¥ + a*. Then, again, straight lines are
mapped onto straight lines and, as coordinate differences are unaffected by a*, we have
also in this case 71, AT*AT" = n,,AxPAz°.

o Weyl transformations contain an additional multiplicative constant factor which can be
interpreted as a change of (length and time) units, # = e* L*, 2 + a*. Also in this case
straight lines are mapped onto straight lines and, as 7, AZ*AZ” = e**n,, Az’ Az°, light
cones are left invariant.

One can usually restrict to the case that the units and the coordinate origin are kept fixed. Then
the set of all transformations that map inertial systems to inertial systems consists precisely of
the Lorentz transformations. (As an aside, we mention that transformations that leave the light
cones invariant, but not necessarily the straight lines, are known as conformal transformations.
They play an important role in high-energy physics.)

We consider now two special types of Lorentz transformations.

12



e Spatial rotations about the x'-Achse:

0 0

0 0
cosp singp
—sinp cosp

8 8 &
=

w N

|
oo o
oo~ o

=N

parametrised by the angle . These are
indeed Lorentz transformation, as the fol-
lowing calculation demonstrates. o \

N LV LY gxP 2 = n, 2" z"
— _(i,O)2 + (531)2 + (5;2>2 + (j?’)Z

= — (2" + (2H)* + (cosg0x2+singoa:3)2

+ ( —singpx2+cosgpx3)2

= (@024 ()2 ()P (2%)? = o2 . Figure 9: Spatial rotation

Analogous calculations hold for rotations about the x2- or the z3-axis.

e Boosts in z!-direction:

0
1

coshn —sinhn
| —sinhn  coshn
2 0 0
3 0 0

T

=N

K &

O~ O O
_ o O O
8 8 8 8

parametrised by the socalled rapidity n. The I
angle o in Fig. 10 is related to n via tana =
tanhn .

The following calculation shows that these o \
are, indeed, Lorentz transformation:

N LV , LY g2 = 1,2 %"
— _(:Z,O)2 + (i’l)2 + (572)2 + (f3)2

= — (coshnmo — sinhnxl)2

n ( _ sinh 7 a® —|—cosh77x1)2 + @2+ (x3)2 Figure 10: Lorentz boost

= — (:EO)2+(561)2+($2)2+($3)2 — ﬁpaxpl'a-
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With tanhn = 2, which implies coshn = ——— and sinhn = —— E, we get
c c

v v
20 — ot t— S
#° = coshna’ — sinhna! = ——E— | t = ¢
v2 v2
T2 T2
v
— -z + 2!
~1 : 0 1 c ~ r — vt
= —sinhnpz” + coshnar’ = —————, T =
v2 v2
T2 T2

The limit ¢ — oo yields the Galileo transformation: ¢ =¢ and ¥ =z — vt.

Analogous equations hold for boosts in 2% or z3-direction. — It is not difficult to verify
that two successive boosts in different directions result in a Lorentz transformation that

involves a spatial rotation; this is known as a Thomas rotation.

With the exception of discrete transformations (such as a reversal of a time or space axis),
all Lorentz transformations can be written as combinations of spatial rotations and boosts.
As there are three independent spatial rotations and three independent boosts, the Lorentz
group (i.e., the set of all Lorentz transformations) is 6-dimensional. The Poincaré group is
10-dimensional, the Weyl group is 11-dimensional, and the conformal group is 15-dimensional.

The transformation formulas of coordinate differences under a boost,

v
At — — Ax
- 2 ~_A33—"UAt
At = —1 — AT = — 7
2 2

immediately yield the familiar formulas for time dilation and length contraction.

e Time dilation: A a0 =ct / 70 =cf

In >, two events
A and B occur at
the same point with
time difference At.

What is their ~time s L
difference At in X7 -7 =1z
As Az =0, we have cAt
c AT
AE = i . A x]_ =z
_ Z_j -

Figure 11: Time dilation
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e Length contraction:

A rod is at rest in
>, where it has length
Ax. To determine
its length AZ in X,
we have to consider
events A and B that

occur at the ends
of the ro~d simultane-
ously in 2.

As At = 0, we have

c At

At = %Am and hence
c

AT = Ax _

Figure 12: Length contraction

2.4 Kinematics and dynamics of particles

We require that a particle moves at
subluminal speed, so its worldline z* (1)
must have a timelike tangent,

dx*(7) dx¥(T)

0.
dr dr <

(11)

Nuv

Note that a reparametrisation of the
worldline has no influence on the mo-
tion. The parameter 7 can be inter-
preted as the reading of a clock.

We choose the parameter such that

dzt(T) dz¥ (1) 5

dr dr -

N (12)
Then we find in the momentary rest
system, A

dz"

= O’

dr (70)
that along the worldline the parameters
t and 7 must be related in the following
way.

(13)

—————

15

Figure 13: Worldline of a particle



0
dz° dz”° T

—(70)
2 dr
— 2 ﬂ(r) -
a ¢ dr 0 cAr
dt
Eh’) =1,

i.e., for sufficiently short time inter-
vals the elapsed proper time A7 co-
incides with the elapsed coordinate
time At in the rest system arbitrar-
ily well. This special parameter 7 is

called the proper time of the particle, *
and a clock that shows proper time is /
called a standard clock. To date, all .
experiments are in agreement with r
the hypothesis that atomic clocks
are standard clocks. Figure 14: Proper time
Along the worldline z#(7) of a particle, we define the four-velocity
dx*(T)
" = 14
ut(r) = — (14)
and the four-acceleration
dut(T) d?ut (1)
H = = ) 15
?(r) dr dr? (15)
We compare the four-velocity with the ordinary (three-)velocity
, dxt dx* dr - dt
U T drar - U (16)

where ¢ is the time coordinate in the chosen inertial system. The factor d7/dt can be calculated
from the equation that defines proper time,

v 0 1 2 3
As 20 = ct, this gives
_2 = (%)2 ( Pt (0 4 ()2 4 (v3)2). (18)

With v* = (v')? 4+ (v¥)? + (v*)?, we find the desired relation between proper time and
coordinate time,
dt 1

dT - 02 ) (19)

16



As a consequence, the four-velocity can be written in matrix notation as

1
v

= ] (20)
3

v

It is important to keep in mind that the spatial components of the four-velocity do not coincide

with the ordinary (three-)velocity, u’ # v*, unless in an inertial system where the particle is at
rest.

ut(72)

at(12)

ut(11)

/ at (Tl)

Figure 15: Four-velocity and four-acceleration of a particle

By differentiating the equation 7, u* (1) u” (1) = — ¢ we find
du” (1)
2 77#!/ u“ <T> dT =0
and hence
N w(1)a” (1) = 0, (21)

i.e., a*(7) and u*(7) are “perpendicular with respect to the Minkowski metric”. Geometrically
this means that a*(7) lies in a (three-dimensional) hyperplane that makes the same angle with
the light cone as the vector u*(7), cf. Worksheet 2.
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In the momentary rest system we have u’(75) = 0 and thus —u%(79)a’(m) = 0. Clearly, as the
four-velocity satisfies the equation 7, u*u” = —c?, we must have u’(7p) # 0. This implies that
in the momentary rest system a’(7) = 0, i.e., in this inertial system a*(7y) has only spatial
components. This implies, in particular, that a*(7p) is a spacelike vector,

N a*(79) a”(19) > 0, (22)

if it is non-zero. The equation a* = 0 holds along the whole worldline if and only if u* =
constant. This is the case if and only if the worldline is a straight line.

Three special cases are of particular interest.
e Uniform motion in a straight line: In this case we have a* = 0 along the whole worldline.
e Uniform motion in a circle: This case is treated in Problem 4 of Worksheet 2.

e Motion with constant acceleration in a straight line: We will now treat this case in detail,
because it will be of great relevance later in connection with the equivalence principle.
We assume that the motion is along the z!-axis, so that we can write the worldline as

x?ET; Ct((T))
@O =170 =10 |- (23)
0 0
hence
cdt(r)/dr
(u'(7)) = dx(TO)/ 1 (24)
0
cd?t(r)/dr?
((r)) = | DT (25)
0

The functions ¢(7) and z(7) have to satisfy two conditions,

(Cl) = =nuu(r)u(r) = = (%)2 + (dxd—(:))Q,

d*(r)\* = (d? ?
(C2)  a® = nua(r)a’ (1) = = dt(r) + d’a(r) with a constant a.
dr? dr?

The first condition is just the definition of proper time, the second expresses the assump-
tion that the acceleration is constant.
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Condition (C1) is automatically satisfied by the ansatz

1 dz(r)
dr

dt(T)
dr

= sinh(f(7)) , = cosh(f(7)) . (26)

ol

Condition (C2) requires that, in addition,

2 2

% = = (simn(s(m) f’(r))2 + (cosh(£(1) /(7)) = J(7). (27)

C

Integration yields
aTt
fr) = =2+ f(0). (28)

The + sign can be absorbed into the definition of a, i.e., we choose a positive or negative,
depending on whether the acceleration is in the positive or negative x-direction. The
integration constant f(0) can be made to zero by choosing the zero on the dial of the
standard clock appropriately. So we may assume that

) = =5 (29)
c
The equations
dt(7) dx(7) (2T
o = cosh(?) ; i CSlnh(?) (30)
yield
c . .,aT c? ar
t(r) = asmh(T) + to, x(r) = ECOSh(T) + o, (31)
hence 4
— (t(r) - t0)2 + (z(r) — w0)2 = % : (32)

This is the equation of a hyperbola that asymptotically approaches a light cone for 7 —
+ 00, see Fig. 16. The bigger a2, the closer the hyperbola is to this light cone.

Observers moving on these hyperbolic worldlines, i.e., observers with constant accelera-
tion, are known as Rindler observers. For these observers, there is an event horizon, see
Problem 2 (b) of Worksheet 1. As we have already mentioned and as we will discuss in
detail below, the Rindler observers are of great importance for a thorough understanding
of the equivalence principle. They have also been extensively used for a discussion of
quantum-field theoretical aspects of special relativity. To mention just one example, it
was shown by W. Unruh that these observers see a quantum-field theoretical vacuum that
is significantly different from the vacuum as seen by observers in an inertial frame; the
important notion of Unruh temperature originates from this observation.
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Figure 16: Worldline of an observer with constant acceleration

To each massive particle, we assign a (rest) mass m > 0. This is a scalar quantity that charac-
terises the particle independently of the choice of an inertial system. A measuring prescription
for the mass can be given in terms of collision experiments, see Worksheet 3.

We define the four-momentum as
pH(r) = mu"(r). (33)

From the definition of proper time we find the following normalisation condition for the four-
momentum:

N P (7) (7)) = P ' (T) (1) = —m* (34)

1.e.
- (") + PP = —m*c (35)

and hence, for future-oriented momentum four-vectors,

P = VmE T (30)
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The three spatial components of the four-momentum can be expressed in terms of the three-
velocity v* as

muvt(r , v(T)?
p'(1) = mu'(r) = (7) = mv'(7) (1 + ( ; + > (37)
v(T)? 2c
1——
c
and its temporal component reads
mec
P(r) = mud(r) = _(39) p
v(7)
1— 2
v(r)?
- 1 . )
mc( + 9 2 +
1 2 m 2 pH(7)
_E< mc,  + EU(T) —1—)
rest energy N——
non—rel. kin. energy
This motivates calling ¢ p® the (relativis- ()
tic) energy,
mc?
B(r) = cp'(r) = :
1 _ U(T) IEQ
2
= mc* + rel. kin. energy . (39)
The rest energy mc? can be converted z!

into other forms of energy, e.g. into heat.
This is what happens in nuclear reactors

and in atomic (fission) bombs. Figure 17: Four-momentum p* of a particle

The derivative of the four-momentum with respect to proper time gives the four-force

Pr(r) = S (40)

This equation is the relativistic analogue of Newton’s Second Law. If F'* is known, it gives us
a second-order differential equation for the worldline; the solution is unique up to the choice of
initial conditions z*(7y) and u* (7). Examples will be treated later.

Some older books use a “velocity-dependent mass” m(v) = m/y/1 —0v%/c?. We will never
do this. For us, “mass” always means “rest mass”. Note, however, that the rest mass need
not be constant along the worldline, i.e., that it may be a function of proper time 7. This

happens, e.g., for a rocket that loses mass by way of exhausting gas. In this case the equation
Fr(r) = dp*(r)/dr is still valid, with p*(7) = m(7)u(T).
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2.5 Classical photons

In special relativity, we want to define a classical photon as the limiting case of a force-free
particle when the (constant) speed goes to ¢. Such a particle may be used for modelling the
free propagation of light. (“Free” means that the light is not influenced by a medium and
not reflected at obstacles etc.) We deliberately speak of a “classical” photon to emphasise the
obvious fact that this notion is not to be confused with the notion of a photon in the sense of
quantum field theory.

We first observe that proper time, and hence the notion of a four-velocity, cannot be defined
for a classical photon, because the equation

dt 1

ar ~ [ 2
==
implies that dr/dt goes to zero if v goes to ¢. (For this reason, it is occasionally said that
“proper time stands still for light”.)

However, because of the equations o
X
; muv'
p = 3
v
11—
c
and e
0 _ p
p - v ) p
1=
c

a classical photon can have a fi-
nite four-momentum provided we
assign to it the mass m = 0.

For this reason, we define a classi- x2
cal photon as a particle with con-
stant lightlike four-momentum p#,

0 == nyypupy -
xl
="+ )+ ) + ()
and mass m = 0. Figure 18: Four-momentum p* of a photon

As a consequence, the energy of a classical photon can be written in terms of its three-
momentum as

E=cp’ = /P + P+ 07 = el (1)

To illustrate the notion of a classical photon with a calculation, we will now derive the formulas
for Doppler effect and aberration.
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To that end, we consider an
observer with constant four-
velocity u*, and we decompose x ut
the four-momentum p* of a A
photon into components paral-
lel and orthogonal to u*,

p" = au” — Bnt 42 [T
with

nuuuuulj = _CQ ) (43) nt

Nuwut'n” =0, (44)
Nuntn” =1. (45)

We choose the coefficients «
and [ positive. Because of the
minus sign this means that the
unit vector n* indicates the di- x
rection from which the photon

comes.

Figure 19: Decomposition of the four-momentum of a photon

In order to determine the coef- into spatial and temporal parts
ficients v and 3, we calcalute

0 = nup'p’ = o? N’ — 2o Bnuutn’ + 52 Nunt'n’ = —a? + B2
— . = =

As « and 3 are positive, we find § = ac and hence

p" = a(u —cn'). (46)

The meaning of o becomes clear if we consider the rest system of the chosen observer,
0

@y ={o]. =|"%] (47)

Then we find p° = ac. As p° is related to the energy E via p® = E/c, this implies « = E/c?,
hence

pt = g(u“ —cnt). (48)

For deriving the Doppler and aberration formulas, we write our decomposition with respect to
two different observers:

ph = (u“_cn“) :—(ﬂu—cﬁu). (49)
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In the rest system of the untwiddled observer, we have

c 0 c
0 1 ~ 1 1
W)y =1, )= 22 . (@) = - 22 7 (50)
0 n3 1- 2 v3
one. Hence

with v denoting the three-velocity of the twiddled observer in the rest system of the untwiddled

NuvD ha” =

n~v
2 ( N Ut

— ¢ nunta” ) = E(?7 utu” — cn ﬁ“ﬂ”)
nz 2 nz g )
N—_—— N—— C \‘7 \_2,0_/
=-c2/\/1- =7 /y/1-2% =-c =
which gives us the Doppler formula
U
E 1+
7=

(51)

According to special relativity, there is not only a longitudinal but also a transverse Doppler
effect, i.e., F and FE are different even if ' is perpendicular to v

Longitudinal Doppler effekt (77 || 0")

2
e ixteo(%)
v2 c c?
-3

E
Transverse Doppler effekt (7 L 0") : 5

For deriving the aberration formula, we write the Doppler formula twice, once in the form just

derived and then for the case that the two observers are interchanged. As in the latter case the
replacements £ — FE, E— E, v+— — ¢ und 7 — n have to be made, we find

) i n-v
E 1+ . E 1 - -
- = und = =
FE U2 E U2
1— 2 1— =
Multiplying these two equations with each other results in

Cc

<1+ﬁ-77><1_ﬁ-17)
1 = ¢

. (52)



To get the standard formulas, we denote the angle Wlth respect to the direction of relative
motion by 6 and 8 respectively, 7 -7 = vcosf und n-7 = vcos.

This results in
2

v
1 — —
1— Yeosh = —02,
¢ 1+ —cos€
1
02
v . A-= A - Y cosh
_Z 0 — c c
cos T
¢ 1+ —cosf
c
v

v <E + cosQ)

¢ <1 + Ecos&) 7
c
from which we read the aberration formula
~ cosf + o
cost) = ——C . (53)
1 + —cosf
c

With sinf = v/1 — cos20 this can be equivalently rewritten as

V2 sin 6

sinf = /1 — — . (54)
c? (1 + gcos&)
&

Another equivalent form of the aberration formula follows if we use the trigonometric identity

0 ind
fan o = 7 (55)
2 1+cosf
Then the aberration formula becomes
0 c— v 0
tan - = tan - .
an o ppr (56)

The latter formula was found by Roger Penrose in the 1950s. It is less well known than the
versions mentioned earlier. (It is rarely given in text-books. A noticeable exception is the book
by W. Rindler: Relativity, Oxford UP (2001).) Penrose’s formula is particularly instructive,
see Fig. 20. As tan is a positive and monotonically increasing function on the interval [0, 7 /2],
it tells us immediately the following: The faster the twiddled observer moves with respect to
the untwiddled one, the more his celestial sphere is contracted in the forward direction and
expanded in the backward direction. As a consequence, a rocket acts like a magnifying glass for
an observer who looks out of the back window, and like a demagnifying glass for an observer
who looks out of the front window. Of course, the effect is noticeable only if the speed is close
to the speed of light.
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sphere of radius 1/2

~ 1 -

Figure 20: Hlustration of Penrose’s aberration formula

Aberration causes an apparent motion of stars on the sky: When the Earth goes around the
Sun in one year, the stars move along an ellipse which becomes a circle for a star at the pole of
the ecliptic. The correct explanation for this phenomenon was given in 1727 by James Bradley.
Of course, Bradley didn’t know anything about relativity. His explanation was based on a
non-relativistic consideration of aberration which differs from the exact formula by omitting
all terms of quadratic and higher order in v/c. The aberration of star light demonstrates in
the most direct way the finiteness of the speed of light and the fact that Earth is moving with
respect to the distant stars.

For an instructive visualisation of aberration see Norbert Dragon’s “Relativistic flight through
Stonehenge” at https://www.itp.uni-hannover.de/435.html.
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2.6 Continuum mechanics

The motion of a material continuum
(“fluid”) is described by a four-velocity
field 0

UP (2%, 2t 2% 2%) = UP(2). (57)
We require the fluid to move at sublumi- UP(x)
nal speed, 1,,U°(x)U%(z) < 0, so we can
normalise the four-velocity according to
N UP(2)U (z) = —*. (58)
The integral curves of U*(x) are called the 2
flow lines of the fluid. An observer whose
worldline is a flow line is called a comoving >
observer.

In any inertial system, we have

(U*(2)) = !
c
1 Vi(z) Figure 21: Four-velocity field U?(x) of a fluid
| . (99)
L vee | Vi)
< \Vi(@)

If we denote by u? the four-velocity of the observers who are at rest in the chosen inertial
system, i.e.,

@) =10 (60)
0

we have

o e —— 61
" = = (61)
_ Yer
Vi(x) is the usual (three-)velocity field of the fluid in the chosen inertial system. For any one
event x, we can find an inertial system such that V*(xz) = 0. This is called the rest system for
the fluid at z.

We now want to introduce the energy density £(z) of the fluid:

energy  restenergy + kinetic energy + interaction energy

e(x) =

As neither the energy nor the volume is a Lorentz invariant, we expect that ¢(x) depends on
the chosen inertial system. How does e(x) depend on u*?

(62)

volume volume

27



First we consider the simplest case, namely
the case where there is no interaction energy.
In this case we speak of an “incoherent fluid” x
or a “dust”. Then the energy, recall (39),
contained in a small volume around x is

m c?

E =

= —mn,Ul(x)u”, (63)

where m is the mass. Because of length con-
traction, the volume measured in the inertial

system is
Vix)? —
Vol = 1 — (02) Vol - :Ul
—c*Vol
= C—OOA : (64)
neaU™ (x)u Figure 22: Transformation of the volume
where Volj is the volume in the rest system element
of the fluid, see Fig. 22.
This gives the following expression for the energy density:
() E m c?
() = — = 5
Vol ol (1 — Y22
_ MUl (@) U (z)u* - p(z) o, 2
= Vol ¢ = Uy (2)Ux(x)u’u (65)
where m
= — 66
He) = T (66)

is the mass density in the rest system. So we see that ¢(x) is a quadratic form in the dimen-
sionless variable u*/c,

() = T(@) 22 (67)
where
Toae) = () U(x) U () (68)

is the energy-momentum tensor field of the dust. For the time being, the T, can be thought
of as a 4 x 4-matrix. In a terminology to be made precise later, they form a second rank tensor
field.
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We observe the following.
o T,,(x) is symmetric, T,,(z) = Tps () .

o S7(z) = —T7P(z)u, defines the energy current four-vector field of the fluid with respect

to u”. This can be seen by decomposing it into temporal and spatial components:
3

S¥z) = =T%(z)u, = —p(z) U (2)UP(z)u, = % is the energy density times c;
— Y&

2

% V'(x) is the spatial energy cur-

c2

Si(@) = ~T"(@)u, = —p(z) U'(2)U"(@)u, =

rent.

This is quite analogous to the electric current density J? we know from electrodynamics
(see next section), just with the charge replaced by the energy.

e For a closed system (i.e., no external forces acting on the fluid), energy conservation should
hold, i.e., S? should satisfy a continuity equation analogous to the charge conservation
law 0,J°(z) = 0,

0 = 0,8(x) = 0,(T" (2)u,) = u, 9,177 (x) . (69)
This holds in all inertial systems (i.e., for all u, with u,u’ = —c?) if and only if
0,17 (z) = 0. (70)

The last equation is the energy conservation law the energy-momentum tensor field of a
closed system has to satisfy. - If the system is not closed, 9,777 (x) gives the force density
acting on the system.

The special form of the energy-momentum tensor field derived above holds for a dust only.
More complicated matter models yield more complicated energy-momentum tensors. As a
model more general than a dust, one can consider a perfect fluid whose energy-momentum
tensor is of the following form:

To(a) = (o) + P2V 0,0 (2) + pla) e @

In addition to the mass density p(z), a perfect fluid is characterised by a pressure, p(x).

An energy-momentum tensor can be assigned not only to fluids but to any kind of field. E.g.,
there is an energy-momentum tensor for the electromagnetic field (see next section), for the
Dirac field, for the Klein-Gordon field, etc. As the defining property of the energy-momentum
tensor we view the fact that -
uf u
e(@) = Toolz) — — (72)

gives the energy density measured at x by an observer with four-velocity u”. As a possi-
ble antisymmetric part of 7,,(z) gives no contribution to the right-hand side, we require
Tpo(z) = T,p(x). A “physically reasonable” energy-momentum tensor should satisfy the fol-
lowing conditions in addition.
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o T,p(x)ufu’ > 0 for all timelike u”, i.e., the energy density must not be negative (“weak
energy condition”),

o SP(x) = =T’ (z)u, is non-spacelike for all timelike u”, i.e. the energy current must not
be superluminal (“dominant energy condition”).

More systematically, the energy-momentum tensor of a field can be derived from the Lagrange
formalism (if the field theory under consideration admits a Lagrangian formulation). We will
not pursue this approach here, but we mention that then the energy-momentum tensor may
have an antisymmetric part, T),, # T,,. This is true, e.g., for spin fluids.

2.7 Electrodynamics
Maxwell’s equations, if written in traditional three-vector notation, read

(MI) : V-B=0, VxE+9B=0, (73)

(MII) : V-D=p, VxH-9D=1J. (74)

Following Gustav Mie and Arnold Sommerfeld, we call (E, B) the field strengths and (D, H) the
excitations. (Unfortunately, it is still not uncommon to call H the “magnetic field strength”.
This is confusing because E and B produce the Lorentz force onto a charged particle, not E and
H .) To give a determined system, Maxwell’s equations must be supplemented with constitutive
relations that relate (E, B) to (D, H). The constitutive relations characterise the medium. In
vacuum they read

5 = 805, g = ,uoﬁ (75)

with constants of Nature ¢y and po that satisty the Mazwell relation

Veopo = 1/c. (76)

We will now recall the well-known fact that, even in the case without sources (p = 0 and J= 0)
and in vacuum (5 — ¢oFE and B = poH ), Maxwell’s equations are not invariant under Galilean
transformations. The most instructive way of demonstrating this fact is by deriving the wave
equations for E and B. From the “bac-cab-rule” for the V operator we find

Vx(VXE)=V(V-E)—AE =  —Vx(9B)=¢V(V-D)—AE (77
and thus

. L0014
OE :=AE - S#E=0 with c= (80)
C

NITER
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Analogously, one shows that OB = 0. This demonstrates that, in the coordinate system in
which Maxwell’s equations hold, there are wave-like solutions for E and B that propagate in
all spatial directions with speed c. If we now apply a Galilean transformation (e.g. in the
x-direction, i.e., t =t, % =z + vt, § = y, Z = z) to such a solution, it is obvious that the wave
in the new coordinate system travels with different speeds in different directions, so it cannot
be a solution of the wave equation in the new coordinates. But then, as the wave equation was
derived from Maxwell’s equations, it cannot be a solution of Maxwell’s equations. This line of
reasoning demonstrates the following: If one assumes that, according to pre-relativistic physics,
inertial systems are related by a Galilean transformation, then the source-free vacuum Maxwell
equations can hold only in one distinguished inertial system; this was called the “Ether system”.
As the Earth rotates around the Sun, one would expect a motion of the Earth relative to the
Ether. However, all attempts of detecting this relative motion, most notably the Michelson-
Morley experiment, showed no result.

We will now demonstrate that Maxwell’s (vacuum) equations without any modifications (i.e.,
without any “relativistic corrections”) are invariant under Lorentz transformations. According
to special relativity they hold, indeed, in any inertial system. The Ether system could not be
detected for the simple reason that it does not exist.

For a relativistic (4-dimensional) description of the electromagnetic field strengths we combine
the three components of the vector field E = (E*, E2, E3) and the three components of the
vector field B = (B, B2, B3) into a 4 x 4 matrix (or, using a language that will be made precise
later, into a “second rank tensor”):

0 —F'/Je —E%/c —E3/c

E'fe 0 -B*  B?

[

(F )_ E2/C B3 0 —Bl (81)
E?/c —-B* B! 0

An analogous construction is made with the three components of the vector field D = (D', D? D3)
and the three components of the vector field H = (H', H? H?):

0 —ecD' —eD? —¢D3

Y cD! 0 —-H?® H?
(GM ) = cD? H3 0 —H! (82)
cD* —-H?* H! 0
Note the antisymmetry of F*” and G*,
Fr = — Fi | G" = —-G"". (83)

The charge density p and the current density J= (J1, J%, J3) are being merged into a column
vector with four components:
cp
Jl
(J “) — |2l (84)
J3
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Recall our rule that greek indices will be raised and lowered with the help of the Minkowski

metric, e.g.
F,LLp = F“Vnyp - _Fyu,r]yp - _Fp“,
Foo = F¥n0pve = =" Nyplve = —Fop -

In matrix form, we have e.g.

0 E'Ye E?/c E3/c
o | B 0 BB
| -Ee B* 0 -B
“E%/e B2 B' 0

This allows to rewrite Maxwell’s equations in the following compact form:

(MI):  0,F,g+ 0y Fyy+ 0,F,, =0,

(MII) : 9,GH = Jr
Proof:
(MI) : 81F23 + (92F31 + 83F12 =0 < —8131 — 8282 — (9333 =0
1. . E _E
80F12+81F20+82F01 =0 < —Ec“)tB —8174‘82? =0
1., B E?
80F23+62F30+83F02 =0 < —ZatB —827+837 =0
1 E! E3
80F31+83F10+81F03=O < —Zf)tB2—837+81? =0
(MII) 81G10 + 82G20 + 83G30 = JO A ¢61D1 + ¢82D2 + ¢63D3 = ¢p
1
(906101 + 62G21 + 83G31 = Jl < — 2 8,5(¢D1) + 82H3 — 83H2 = Jl
1
DG”+0G? + 0,67 =2 = - y 0i(¢D*) + OsH' — 0, H® = .J°
1
DG + 0,G" + 0,G* = J? — ~7 0,(¢D?) + 0, H? — 0,H = J?
Remarks:

(85)
(86)

(87)

(88)

(89)

(i) F* and G* have to be related by constitutive relations that specify the medium. For

vacuum, which is the simplest medium, the constitutive relations read
1

G = —
Ho
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where 119 = permeability of the vacuum, ¢, = permittivity of the vacuum, pgey = ¢ 2.

Decomposing into 0z-components and into ¢j-components reproduces, indeed, the tradi-
tional form of the vacuum constitutive relations,

D=¢E, H=-—8. (91)
Ho
(ii) From (MII) we find the law of charge conservation:

0,J" = 0,0,G" = 9,0, G", = —-0,0G" = —-0,0,G" = —0,J", (92)

N ~

=0,0, =-cvr

hence

0,J" =0. (93)

This is the continuity equation in index notation. The traditional form is recovered by
writing spatial and temporal parts separately,

) 1 - -

(iii) (MI) can be written more concisely with the help of the socalled epsilon symbol e**?
which is defined by the following two properties: (E1) ¢**? is totally antisymmmetric;
(E2) €23 = 1. This is equivalent to saying that e***? equals 1 if (uvpo) is an even
permutation of (0123), it equals -1 if (uvpo) is an odd permutation of (0123), and it
equals 0 if two indices are equal. With the help of the epsilon symbol, (MI) reads

P70, F,, =0 . (95)
We will now demonstrate that Maxwell’s equations are, indeed, invariant under Lorentz trans-
formations

= LM, a" Nup L'V L s = Nyo . (96)

We first calculate with the help of the chain rule

0, = =0 O G, (o7)
If we denote the inverse matrix by L1, i.e.
Lh (LYY =6 = (LY, L7y, (98)
this results in .
0, = (L71)"5 0, (99)
We require the transformation behaviour
v — L', LV FP G — L, LY .G Jh = ,Je, (100)

from which we can calculate the transformation behaviour of F,,,

F;w = nuTnuaFTJ = nuTnuaLTpLU/\Fp)\ |L'uaLy,Ba
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LMoL’ s = nagnanF™ = Fag | (L7)"(L7)),

Fry = (LY (L) Fag . (101)

By an analogous calculation one finds the transformation behaviour for the mixed components,
P = (LY LYF.P . (102)

As a rule, upper indices transform with L*, and lower indices transform with (L_l)ag. It is
now easy to verify the invariance of Maxwell’s equations:

(MI): Assume that 0 = 0,F,, + 0,F,, + 0,F),, holds. By multiplying this equation with
(L) (1) 5(L71)" we find:
0= BBy, + DpFon + 8. Fry
(MII): Assume that J¥ = d,G?” holds. By multiplying this equation with L*, we find
Jr = L',0,G" = LM,0,G™ 6 = L“,,@UG'””(LA)UTLTP = 0,G™ .

Note that we have only used that (Lpu) is invertible, but not that it preserves the Minkowski
metric. Hence, the Maxwell equations (MI) and (MII) are even invariant under arbitrary linear
transformations, not just under Lorentz transformations, when written in terms of F),, (lower
indices) and G* (upper indices).

We now consider the vacuum constitutive law. If we write this, again, in terms of F),, (lower
indices) and G* (upper indices), we see that we need the Minkowski metric,

Fop = 110 G* 0ypup Mo - (103)

To demonstrate that this equation is invariant under Lorentz transformations, we assume that
it holds in the untwiddled coordinates and find

Fro= (L) (L) Fpe = (L7177 (L71) % 110 G* 1 s -
Now we use that (L*,) is a Lorentz transformation,
Mup = NapL®WLP Mo = L7 L
which results in
Frw = 11002 62 G* 1ap ia L0 L7y = 110 G* e s L L7 = 110 G Ty 1y -

This demonstrates that Maxwell’s equations in vacuum are invariant under Lorentz transforma-
tions (but not under arbitrary linear coordinate transformations). As any two inertial systems
are related by a Lorentz transformation (once we have fixed the origin and the units), according
to special relativity Maxwell’s vacuum equations hold in any inertial system if they hold in one
inertial system. There is no distinguished “Ether system”.
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We will now calculate the tranformation behaviour of E and B for a boost

coshn —sinhn 0 0
—sinh cosh 0 0 v
(L*,) = 0 g 0 g Lol tanhn = - (104)
0 0 0 1

To that end we write the equation F* = L#,LY;F*° in matrix form:

0 —FE'c —Ef/c —E:S/c

E'fe 0 -B* B> |
B2le B o B |~
Ble B B 0
coshn —sinhn 0 0 0 —E'Yc —FE?/c —E3/c coshn —sinhn 0 0
—sinhny  coshnp 0 0 E'/c 0 -B3 B? —sinhn coshn 0 0]
0 0 1 0 E?/c B3 0 -B! 0 0 1 0
0 0 0 1 E3/c —DB? B! 0 0 0 0 1
E! E! E? E3
) sinhn — —coshn — - ——
coshn —sinhnp 0 0 c & c c
B! : B! 3 2
—sinhn  coshn 0 0 COShU7 _SmhnT -B B
E? E? -
0 0 1.0 coshn — —sinhn B> —sinhn— +coshn B3> 0 —B!
c c
0 0 0 1 e e
coshn — +sinhn B> —sinhn — —coshn B*> B! 0
c c

E! E? E3
— —coshn — +sinhn B®> —coshn — — sinhn B?
c c c
E! E? E3
— 0 sinhn — — coshn B®>  sinhn — + coshn B2
c c c
E? E?
coshn — —sinhn B> —sinhn — + coshn B3 0 -B!
c c
E3 E3
coshn — +sinhnB? —sinhn — — coshn B2 B! 0
c c

As the rapidity 7 is related to the relative speed v via tanhn = v/c, hence
1 v

—_— sinhn = ———,
V1-% cy\/1-%

we find the following transformation rules for E and B:

coshn = (105)

35




E' = E*, B' = B', (106)

U o3 2
_ EQ_ B3 _ —F +B
E? = —” B? = 02— (107)
- -4
2 3
_ ES BZ _ ——E +B
B rvo - g . (108)
1 -2 -
2 2

Note that electric and magnetic components are mixed; what is an electrostatlc field in the

untwiddled inertial system (é = O) is an electromagnetic field with E # 0 and B # 0 in the
twiddled inertial system.

It is not difficult to verify that under an arbitrary Lorentz transformation the two scalar quan-
tities
IL = F,F" and I, =¢e""F,F,. (109)

remain unchanged. Here e#*°7 denotes the totally antisymmetric epsilon symbol, see p.33. If
expressed in terms of E' and B, these two scalar invariants read

=12
v i j L 5|2
Iy = Fu F*" = 2Fy,F” + FjF7* =2 (— ’CJ + | B ) : (110)
4 — —
Iy = €7 FFy = AFgFyy + 4 FooFsy + 4 FogFio = ——E-B. (111)
C

Plane harmonic waves have [; = 1= I, =0,1ie., E and B are perpendicular and the magnitude of
E equals the magnitude of cB in any mertlal system.

The energy-momentum tensor of an electromagnetic field in vacuum reads

1 1 .
TPJ <F F anaFaBF ﬁ) : (112)
Ho

and will be discussed in Worksheet 4.

Maxwell’s equations determine the dynamics of the electromagnetic field. This must be supple-
mented with the Lorentz force equation which determines the dynamics of a charged particle
in an electromagnetic field. We want to write the Lorentz force as a four-force using the index
notation of special relativity.

Recall eq. (40): The four-force that acts on a particle with constant (rest) mass m is given as

dut d?xt
mut) = m T =M (113)

dpt d
FH = — = —
dr dr (

If F'* is known, this equation together with initial conditions determines the worldline x#(7) .
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We postulate that, for a particle with electric charge ¢ in an electromagnetic field F*, the
four-force is given by
F* = gn,u’F" . (114)

This expression is known as the relativistic Lorentz force.

To motivate this postulate, we observe that F* satisfies the following two properties.

(T1) F* transfoms according to F* = L* F7 under a Lorentz transformation.
Proof: F* = qn,,u"F7" = q771,0.L"au“L"BL“VFﬁ“Y = qnaﬁL%FﬂV = LF F7.

(T2) For v = 0 one recovers the non-relativistic Lorentz force.
Proof: If v = 0, we have F® = gnou’F" = 0 and F' = gnou'F* = q(—1)c(—E'/c) =
gFE® which is the familiar non-relativistic Lorentz force on a charge ¢ with v = 0.

These two properties fix the relativistic Lorentz force uniquely.

The 0-component of the relativistic Lorentz force reads

F0:q5ijuiFjO:q5ij——:—.—. (115)

It gives the power (work per time) exerted by the electromagnetic field onto the particle,

dp° 1 dE i E dE o
Fozﬁ __avz - — =gqU-F. (116)

dr /1_Z_§dc ¢ 1_12_5 dt

Note that the magnetic field B is doing no work.

The i - components of the relativistic Lorentz force equation read

El ZB3 332
Flzq(—u0F01+u2F21+u3F31)=q< ¢ v v )’

=+
-5 £ J1i-% Ji-s
vt B3 v3 B!

¢ R
,/1—3—27_\/1—2—2+\/1—g—§>’

Fzzq(—uOF02+u1F12+u3F32):q(

F* = q(— " F% + o' Y% 4 2 F%) :q<

E3
_f B
J1—z f \/1—§ \/1—§—§

They give the equation of motion of the particle,

IS

B 27 . . A7
F:md—::ﬁ(EqLﬁxB) where 17:d—atj. (117)

After expressing 7 - derivatives in terms of ¢ - derivatives, one finds
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m d 1 dxr q - =
— — )= ———(F +7UX B) . 118
2 dt( 1 w2 dt ) = ( + v ( )
-l G -z
For v < ¢ we may write, as a valid approximation,
1 102
=
Then we recover the non-relativistic Lorentz force equation
d?>z q [ = -
€2 _9(EF+ vx B) . 120
dt? m < T (120)

3 Heuristic approach to general relativity

Soon after Einstein had established special relativity in 1905, he started thinking about how
to include gravity. The obvious idea would be to modify Newtonian gravity in such a way
that it becomes Lorentz invariant. However, all such attempts failed. After a struggle of 10
years, Finstein found the solution to this problem: One has to modify the underlying spacetime
theory, i.e., one has to replace special relativity by general relativity. In this section we sketch
the heuristic ideas that were essential for this insight. We begin with a discussion of why
Newtonian gravity does not fit into special relativity.

Newtonian gravity is based on two equations, i.e., the field equation

Ap =47Gp, (121)

(¢ =gravitational potential, 4 =mass density, A = 9/9(z")? + 9/0(x?)* + 0/9(2*)? and
G = Newton’s gravitational constant) and the equation of motion

d*7
(Z(t) = trajectory of a particle, V = (8/0z',0/0x* 0/92*), m = inertial mass, mg = gravitational
mass).

Experiment shows that the quotient of inertial and gravitational mass is a constant of Nature,
i.e., that we can choose the units such that m = mg. In Newtonian gravity the equality of
inertial and gravitational mass seems to be a coincidence; the theory would work equally well
if it were not true.

Clearly, neither (121) nor (122) is Lorentz invariant. This is an immediate consequence of the
fact that the operators A and V involve only spatial derivatives. So, in contrast to Maxwell’s
electrodynamics, Newtonian gravity does not fit into special relativity. This is also quite clear
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from the fact that (121) implies an action-at-a-distance: Joggling a mass here would change the
gravitational field there without any delay, in contrast to the requirement from special relativity
that superluminal signals should not be possible.

To remedy this, one could try to modify Newtonian gravity in such a way that it becomes
Lorentz invariant. A fairly obvious suggestion is

O =47Gu, (123)
d?>x° ov
g2 = —msnT 0, (124)
where [0 = A — ¢ 20? is the wave operator. These equations are, indeed, Lorentz invariant

provided that ¢ and p are Lorentz invariant,
&(ioajﬁlwfjaiﬁ) = ¢($Oax17$27$3) ’ ﬁ(~07i17i27j§3) = M($0,$1,$2,$3> : (125)

If one interprets p as the mass density (mass divided by volume) in the chosen inertial system,
this is of course not a reasonable assumption, because the volume undergoes length contraction.
This could be remedied by the assumption that p always denotes the mass density in the rest
system. However, a problem remains with (124). Its 0-component

d?z°
m
dr?

d 1
.00 _ L
= —n"mgdyp = m e (—02 ) mg Cﬁtgb (126)

is in utter contradiction with experiments: For a time-independent gravitational field the right-
hand side equals zero, so the equation would require v to be constant. This is of course
nonsensical as planets and comets clearly move with nonconstant v in the Solar system. A
possible modification of (124) would be

d?x°

dr?

(127)

- 1dx"dx”>a¢.

— oV

- s (77 2 dr dr
The Lorentz invariant gravity theory based on (123) and (127) is known as Nordstrém’s first
theory. It was considered for a while but finally turned out to be in contradiction with exper-
iments. As the gravitational field is described by a scalar quantity, ¢, such theories are called
“Lorentz invariant scalar theories of gravity”. Other variants of such theories were suggested,
e.g., by Einstein, Mie and Nordstrém. All of them either have conceptual problems or are in
contradiction with experiments.

As a possible remedy, theories were tried were the gravitational field is described by a more
complicated mathematical object than a scalar. Actually, this seems quite natural: From
special relativity we know that mass is but one form of energy and that it can be converted
into other forms of energy. So it seems natural to assume that any sort of energy can be
the source of a gravitational field. As we know from Section 2.6 that the energy density ¢ is
a quadratic form in the four-velocity of the observer, ¢’c = T,,u”u’, this would mean that
we have the energy-momentum tensor 7),, on the right-hand side of the field equation. But
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then the gravitational field should also be described by a “quantity with two indices”, i.e.,
by a second-rank tensor field. Such “Lorentz invariant tensor theories of gravity” have been
suggested by Einstein and others, but again they have either conceptual problems or are in
contradiction with experiments.

Einstein tried to work out a relativistic theory of gravity from 1905 until 1915. During this
ten-year-long struggle he became more and more convinced that gravity cannot be Lorentz
invariant; instead of looking for a new gravity theory on spacetime as one knows it from special
relativity, one has to change the theory of spacetime itself. Of course, then one needs new
guiding principles of how to find such a new theory of spacetime. Einstein was led by three
such principles which he called equivalence principle, general relativity principle and Mach’s
principle. We will now discuss the equivalence principle in detail as it is of crucial relevance
for general relativity. It will lead us to the conclusion that special relativity is valid only as a
good approximation in “sufficiently small” spacetime regions, i.e., that it has to be replaced by
a new spacetime theory. The quest for a Lorentz invariant theory of gravity will be given up.

The equivalence principle starts out from the idea that the equality of inertial mass and gravi-
tational mass is not just a coincidence but rather a fundamental law of nature:

Weak equivalence principle (first version): “inertial mass = gravitational mass”.
This can be rephrased in the following way:

Weak equivalence principle (second version): “The trajectory of a freely falling
particle is uniquely determined by its initial position and its initial velocity”.

In this version, the weak equivalence principle is also known as the “universality of free fall”
(UFF).
Another equivalent formulation is the following.

Weak equivalence principle (third version): “In a box that is freely falling in a

homogeneous gravitational field all free-fall experiments are undistinguishable from
free-fall experiments in a box that is at rest with respect to an inertial system.”

T

Figure 23: Freely falling box in a Figure 24: Box at rest with re-
homogeneous gravitational field spect to an inertial system

In other words, as long as only freely falling objects are observed, an experimentalist cannot
distinguish if he is in rectilinear uniform motion, far away from all gravitating masses, in a
spaceship or in a freely falling elevator in a homogeneous gravitational field.
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Finally, the following reformulation is of interest.

Weak equivalence principle (fourth version): “In a box that is standing in a ho-
mogeneous gravitational field all free-fall experiments are undistinguishable from
free-fall experiments in a box that is uniformly accelerated with respect to an iner-
tial system.”

o

Figure 25: Box at rest in a homoge- Figure 26: Box uniformly accelerated
neous gravitational field with respect to an inertial system

This means that, as far as free-fall experiments are concerned, a homogeneous gravitational field
in a box can be mimicked by “pulling the box with constant acceleration through the universe”,
far away from all gravitating masses. The acceleration must be of the same magnitude as the
(constant) gravitational acceleration and directed in the opposite sense.

For the last two versions of the equivalence principle it is essential that the gravitational field
can be viewed as homogeneous. The gravitational field around a celestial body, like the Earth
or the Sun, is of course not homogeneous. However, we may apply this principle, e.g., to the
gravitational field of the Earth if we choose the box sufficiently small; then the gravitational
field inside the box can be viewed, to within a good approximation, as homogeneous. This is the
situation shown in the diagrams. Note that the gravitational field of the Earth varies vertically;
therefore, not only the spatial dimension of the freely falling box but also the duration of the
experiment must be sufficiently small.

The equality of inertial and gravitational mass is experimentally well established. It was found
by Galileo Galilei who allegedly performed free-fall experiments on the Leaning Tower of Pisa,
and then re-established with higher accuracy, e.g., by Issac Newton and Friedrich Bessel. More
precise measurements were made later:

o Eotvos, relative accuracy 1077 (1889) ,
e Eot-Wash, relative accuracy 10713 (2001) .

A satellite experiment aiming at a relative accuracy of 1071 was launched in April 2016. It
is a project under French leadership, with participation from ZARM, Bremen, called MICRO-
SCOPE (MICRO-Satellite a trainée Compensée pour I’Observation du Principe d’Equivalence).
The satellite was decommissioned in October 2018. A first evaluation demonstrated that the
weak equivalence principle was verified to within an accuracy of almost 107, Further evalua-
tions of the data taken may even improve this a bit. A NASA project called STEP (Satellite
Test of the Equivalence Principle), aiming at a relative accuracy of 107!8, was developed since
the 1970s but has been cancelled, for the foreseeable future, because of funding cuts.
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Because of Eotvos’s measurements, the universality of free fall was fairly well established ex-
perimentally at the time of Einstein. However, people did not think that it would go beyond
free-fall experiments. So one thought that, with the help of other experiments (from optics,
electrodynamics, thermodynamics, etc.) the two situations could be distinguished. In contrast
to this, Einstein formulated in 1907 the “strong equivalence principle” which he later called the
“happiest thought of my life”.

Strong equivalence principle (first version): “In a box that is freely falling in a homo-
geneous gravitational field all experiments are undistinguishable from experiments
in a box that is at rest with respect to an inertial system.”

s

Figure 27: Freely falling box in a Figure 28: Box at rest with respect
homogeneous gravitational field to an inertial system

This means that, in view of any experiment one could think of, a homogeneous gravitational
field can be transformed away by going into a freely falling reference system. — If we consider
the fourth version of the weak equivalence principle, the corresponding strong version reads as
follows.

Strong equivalence principle (second version): “In a box that is standing in a homo-
geneous gravitational field all experiments are undistinguishable from experiments
in a box that is uniformly accelerated with respect to an inertial system.”

T

S

Figure 29: Box at rest in a homo- Figure 30: Box uniformly accelerated
geneous gravitational field with respect to an inertial system
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This is the most fruitful version of the strong equivalence principle. It says that, with respect
to all experiments, a homogeneous gravitational field can be mimicked by an acceleration.

In a later modification of the strong equivalence principle (historically incorrectly called “Ein-
stein’s equivalence principle”) one restricted to non-gravitational experiments (i.e., one excluded
experiments where the gravitational attraction of two bodies inside the box played a role), and
one divided the principle into universality of free fall, local position invariance and local Lorentz
inwvariance. We wil not discuss this modification here .

The second version of the strong equivalence principle allows to calculate all effects in a homo-
geneous gravitational field, on the basis of special relativity. One just has to transform from
an inertial system to a uniformly accelerated system.

We will now illustrate this method by applying it to the motion of a classical photon. This will
allow us to derive formulas for (i) the light deflection and (ii) the redshift in a homogeneous
gravitational field.

To that end we have to consider an inertial system and then to introduce observers that move,
relative to this inertial system, with constant acceleration a (a? = n,,a"a”). We have already
calculated the four-velocity of these Rindler observers, see (24) and (30),

aT
ccosh —>
c

(u(r)) = (d:p;(—7')> _ csinh(%) ‘ (128)

0

0
We have chosen the z!'-direction as the direction of relative motion, i.e., the gravitational field
that is to be mimicked points into the negative x!-direction.

If we integrate the expression for da#/dr over T with initial conditions

0
(a(0)) = ); : (129)
Z

we get the worldlines of the accelerated observers, labeled by their spatial coordinates (X, Y, Z)
in the inertial system at ¢ = 0,

cT . aT
()
62 aT C2
@) = [ eon(T) e x -0 (130
Y
A

(X,Y, Z) can be viewed as Cartesian coordinates of the points in the accelerated system.
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Figure 31: Worldlines of Rindler observers

We consider a classical photon moving, without loss of generality, in the z'-z2-plane,

s
s cosV
(:cg(s)) ~ | ssinw (131)

0

We have chosen the parameter s such that it coincides with the z°-coordinate. (Recall that
there is no proper time for photons!) The trajectory of the photon in the accelerated system,
i.e. X,Y and Z as functions of s, is found by equating z#(7) with x(s),

& . rar
S = ESIHh(?>, (].32)
? ar c?
9= Ceosh(L) 4+ x - & 1
S Cos aCOS(c>+ = (133)
(134)

ssind =Y, 0=12,

and then eliminating 7,

2 2
Y = ssind Z =0.

2
X:C—<1— 1+%>+SCOSQ9,
a c
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Figure 32: Worldline of a light ray

(i) We first calculate the light deflection, restricting to the case ¥ = 7/2:

2 2.2
x=S(1-\1+25), v=s zZ=0. (135)
a C

This is the equation of a hyperbola, see Fig. 33,

(x -5y -y2=2 (136)

a a?
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In Fig. 33 we have chosen the X-axis vertical, to have the gravitational field to be mim-
icked pointing downward.

If a®?Y? < ¢* the hyperbola can be approximated by a parabola,

C2

X:—<1— 1+
a

a’Y? ) c? (1 1 a2Y2> _ aY? (137)

ct a 2ct 2¢2

If we want to mimic the gravitational field inside a (sufficiently small) laboratory on
Earth, we have to choose

a =g =98m/s. (138)

Then the path of the photon deviates on a distance of |Y| = 10m from a straight line by
only

gY?
2c?

This is not more than about three times the diameter of a proton.

|X| ~ ~ 5x 107" m. (139)

X

Figure 33: Trajectory of a light ray in an accelerated box
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(ii) We calculate the redshift for ¥ = 0:

2 2 2

s:c—sinh<£), s:c—cosh<a—T>+X—c—, 0=Y, 0=727. (140)
a c a c a

The four-momentum of the photon is of the form

1
1
W) =k, (141)
0
with a factor k£ that is to be determined later.
Recall that the four-velocity of the accelerated observers is
ccosh(a—T)
c
dz*(T) csinh<£>
(w(n) = (=7) = c) |- (142)
0
0

This implies

#r)p = ek (—cosh(T) + sn(7)) = _;z aX ;z
Ny W (T) p ck( COSh( . + sinh . ck Z + 2 1+ %)
(143)
On the other hand, p* can be decomposed into a part parallel to u*(7) and a part

perpendicular to u*(7), recall (48),

E(r)

c2

g

(wm - ch(T)) . (144)

Here E(7) is the energy of the photon with respect to an observer with four-velocity
u*(7). This yields

14 E T 14 14
N W (1) p” = % (Z]Wu“(T)u (7’2 — czym,u“(T)n (7’)) = —FE(7). (145)
:rc2 ;r()
Equating the two expressions for 7, u*(7)p” results in
aX
E(7) :ck<1—?>. (146)

As the accelerated observer with X = 0 meets the photon at 7 = 0, we must have
E(0) = ck and hence

aX
2’

E(r) = E(0) — E(0) (147)
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This gives us the desired redshift formula

AE  E(r)—E(0)  aX
E —  EQ0 & (148)

For the gravitational field of the Earth (a = g = 9.81m/s”) we find that a photon that
travels upwards over a distance of |X| = 22.5m undergoes a redshift of

AE
’7‘ ~ 2x 1071, (149)

This gravitational redshift was measured by Pound and Rebka in a building of 22.5 m
height in the year 1959 with  particles.

We have thus calculated two important effects — the light deflection and the redshift — in a
homogeneous gravitational field, just with the help of the strong equivalence principle. We will
discuss a third effect in the 5th Worksheet: We will find that an observer who compares two
standard clocks, one directly next to him and another one at a lower position in a homogeneous
gravitational field, will see the clock at the lower position go slower. This effect can be viewed
as equivalent to the gravitational redshift, taking into account that frequency (~ energy) and
time are just inverse to each other. Therefore, it should not come as a surprise that the factor
by which the two standard clocks differ is just the inverse of the redshift factor E(7)/E(0) =
1 —a X/c? calculated above.

For inhomogeneous gravitational fields, the strong equivalence principle alone does not allow
us to calculate effects like the light deflection or the redshift; this will require the full apparatus
of general relativity. However, the strong equivalence principle can serve as a guideline to the
correct mathematical formalism of general relativity. The strong equivalence principle can be
rephrased in the following way.

In a sufficiently small region of spacetime, the gravitational field can be approxi-
mated by a homogeneous gravitational field. It can then be “transformed away” by
passing to a “freely falling elevator”. This means that, in a sufficiently small region
of spacetime, special relativity holds with arbitrarily good accuracy.

This leads us to the following geometric idealisation, based on (the four-dimensional analogue
of) the idea that a sufficiently small portion of a curved surface can be approximated arbitrarily
well by its tangent plane.

A spacetime with a gravitational field is to be described by a curved “manifold”.
At each event, the tangent space to this manifold looks like the spacetime of special
relativity.

“The gravitational field” is the map that assigns to each point in spacetime the Minkowski
metric on the tangent space attached to this point; in particular, this map determines the
orientation of the light cone in each tangent space.

In order to translate this idea into precise mathematics, we need the definition of a “pseudo-
Riemannian manifold”. The corresponding mathematical notions will be introduced in the next
section.

48



spacetime of special relativity

N

spacetime with gravitational field

Figure 34: The spacetime of general relativity may be approximated by the space-
time of special relativity in sufficiently small spacetime regions

We have already mentioned that, in addition to the equivalence principle, Einstein was led by
two other “principles”.

Principle of general relativity (Allgemeines Relativitatsprinzip): “All laws of Nature
preserve their form under arbitrary coordinate changes.”

Mach’s principle: “The inertia of a body is determined by its relation to all other
masses in the universe..”

We will discuss later to what extent these principles are actually realised in general relativity.

4 Basic concepts of differential geometry

4.1 Manifolds

Our first goal is to give a precise definition of a “manifold”, which will need a bit of preparation.
Roughly speaking, a manifold is something on which the notion of differentiability is defined.
Differentiability is introduced in terms of coordinate systems (“charts”). We begin with some
preliminaries.
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Definition: A topological space is a set M with a collection T of subsets of M, such that the
following holds.

(a) €T and M €T.
(b) If U, € T for all @ € I, then |JU, € T . Here I denotes an arbitrary index set.

ael

(c) fU, €T and Uy € T, then Uy NU, €T .
The elements of 7 are called “open sets”.
R™, with the open sets defined as usual, is a topological space.
Definition: Let M be a topological space. An n-dimensional local chart for M is a map
p:U— O (150)
pr—o(p) = (@' (p),- - 2" (p))
with the following properties.
(a) U is an open subset of M.
(b) O is an open subset of R™.

(c) ¢ maps every open subset of U bijectively onto an open subset of O.

U M
Py
A
®

Figure 35: Definition of a local chart
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We may visualise a local chart as a grid of coordinates that covers the set U. The grid is made
up of the coordinate lines, i.e., of those lines that are mapped by ¢ onto the natural coordinate
lines in R™.

Every map in an atlas or in a guide-book is a local chart for the surface of the Earth.

Definition: Two n-dimensional charts ¢; : Uy — O and ¢ : Uy — Q4 for a topological
space M are C*-compatible, if the map

le o ¢2_1 . ¢2(U1 N UQ) — ¢1(U1 N Ug) , (151)

which is bijective by assumption, is a C*-map (i.e., k times continuously differentiable)
in either direction. This condition is considered as being satisfied if U; N Uy = @.

®1 X

0, R Oy

»1 (U1 N Us) $2(Ur N Us)

Figure 36: Compatibility of two charts

Definition: An n-dimensional C* atlas for a topological space M is a set of n-dimensional
local charts {¢a U, — O, ‘ ael } that are pairwise C*-compatible and satisfy the
condition |JU, = M.

ael

Definition: An n-dimensional C* manifold is a topological space M with a maximal n-
dimensional C* atlas.

If one has an n-dimensional C* atlas for M, this defines a unique manifold structure for M;
the maximal atlas is found by adding all n-dimensional charts that are C*-compatible with the
ones in the given atlas. (Strictly speaking, a proof that any atlas is a subset of a maximal atlas
requires Zorn’s lemma and, thus, the axiom of choice.)

ol
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Examples:
e For M = R" the identity map
id: R" — R" (152)
(2. .. 2" — (2. 2"

defines an n-dimensional C*° atlas consisting of only one (global) chart. Adding all local
C® charts that are C*°-compatible with id makes R™ into an n-dimensional C*° manifold.

e For the 2-sphere 5% = { (2!, 2% %) € R?| (2!)? + (2?)* + (23)® = 1} there is no global

chart. We can construct two local charts with the help of stereographic projection,
PN

o1 S*\ {pn} — R?

Figure 37: Stereographic projection from the north pole

b2 : 5%\ {ps} — R?

bs

Figure 38: Stereographic projection from the south pole

which together are a C™ atlas for S?. By adding all other C*°-compatible 2-dimensional
local charts one makes S? into a 2-dimensional C* manifold

Similarly, the n-sphere 5" = { (z!,...,2""") e R™!| ()2 + ... + (z"")?> = 1} can
be made into an n-dimensional C* manifold.
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Examples for manifolds in physics:

e The spacetime of general relativity is a 4-dimensional manifold, with coordinates
(20, 2t 22, 23).
e The phase space of classical mechanics is a 2k-dimensional manifold, with coordinates

(q17"'7qk7p17"'7pk)-

e The state space of phenomenological equilibrium thermodynamics is a manifold, with
coordinates (S,V, M, ...) = (entropy, volume, magnetisation, . .. ).

It is usual to include two additional requirements into the definition of a manifold:

(A1) Hausdorff’s axiom: For any two points p; and ps in M with p; # py there are open sets
U, and U, such that p; €e Uy, ppo e Uy and Uy NU; = @ .

(A2) Second countability axiom: There are countably many open sets { Ua ! aeN } such that

any open set U can be written as U = |J U, with I CN.
acl

(A1) and (A2) together imply paracompactness and, thus, the existence of a partition of unity,
which is important, e.g., for doing integration theory on a manifold.

For M = R™ (with the standard topology) (A1) is obviously true. (A2) is less obvious, but it
is true as well: For the sets U, one may choose all open balls with rational radii and rational
centre coordinates.

We agree on the following conventions.

e From now on, the term “n-dimensional manifold” is understood as meaning “n-dimensional

C> manifold that satisfies (A1) and (A2)”.

e In Section 4, where we deal with manifolds of unspecified dimension, we adopt the sum-
mation convention for greek indices running from 1 to dim(M).

We now define differentiability for maps from one manifold to another.

Definition: Let M be an n-dimensional manifold and let M be an f-dimensional manifold.
A map ¢y : M — M is called a C*™ map if the following holds: For every p € M there
exist charts

~

¢p:UCM—OCR" und ¢:UCM—OCR" (153)
with p € U and 9(p) € U such that
pohod O — O (154)
is a C'™ map (i.e., arbitrarily often differentiable) at the point p, see Fig. 39.

The set of all C* maps from M to M is denoted C*°(M, M).
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O R™ A

Figure 39: Differentiability of a map from M to M

Definition: ¢ : M — M is called a diffeomorphism if 1) is bijective and if both 1 and ¢!
are C'°° maps.

If there exists a diffeomorphism from M to M , then the two manifolds M and M are considered
as equivalent. Such an equivalence class is called a differentiable structure. The question of how
many non-equivalent differentiable structures exist on a given topological space is highly non-
trivial. It is known since several decades that on R™ with n # 4 there is only one differentiable
structure. The case n = 4 was solved only in the 1990s. It was found that there are more than
countably many different differentiable structures on R*. In physics we only use the standard
differentiable structure which is generated by the identity map. If the other ones, the socalled
exotic differentiable structures on R*, are of any relevance for physics, e.g. as spacetime models,
is not clear until now. Another surprising example is the 7-dimensional sphere, S”, which admits
precisely 15 different differentiable structures.

If we think of a surface, i.e. of a 2-dimensional manifold, we usually assume that it can be
embedded into R?, and we visualise it in this way. Also for n > 2 it is often possible to embed
an n-dimensional manifold into R"*! and several manifolds are even defined in this way, e.g.
the n-dimensional sphere S™. This raises the question of whether or not any n-dimensional
manifold can be embedded into R, For a thorough discussion of this question we have to
define the notion of an “embedding” precisely.

Definition: An embedding of a manifold M into a manifold Mis a map ¢ € C* (M M ) such
that (a) v is injective, and (b) ¢=! : ¢(M) — M is continuous.
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The following theorem was proven in the 1930s by H. Whitney. It demonstrates that an n-
dimensional manifold can always be embedded into some higher-dimensional R™, though not,
in general, into R"*!. The topological axioms (A1) and (A2) are essential for this theorem.

Whitney’s embedding theorem: Any n-dimensional manifold M can be embedded into
R2". Any two embeddings of M into R?*"*! are isotopic, , i.e., they can be continuously
deformed into each other.

Although embeddings into some R™ exist for any manifold, they are not usually considered in
physics. The reason is that the embedding space has no physical meaning. If M is a spacetime,
measurements can be made only within M, but not in some embedding space that exists only as
a mathematical construction. Properties of M are called extrinsic if they refer to an embedding
space, and they are called intrinsic if they refer only to M itself. For M being a spacetime,
only intrinsic properties of M have a physical meaning.

Note, however, that there are some (speculative) theories according to which the universe has
more than 4 spacetime dimensions. E.g., in the socalled braneworld theory our 4-dimensional
visible spacetime is a boundary (“(mem)brane”) in a higher-dimensional (“bulk”)manifold.

Now we define the tangent space to a manifold. We want to do this on the basis of intrinsic
concepts only. Therefore, we cannot define tangent vectors as “arrows that point into an
embedding space”. We define tangent vectors as “derivations”.

Definition: Let M be an n-dimensional manifold and p € M. A derivation at the point p is a
map X, : C°(M,R) — R, such that for all fi, fo € C>°(M,R") the following properties
hold.

(a) Locality: If f; and f5 coincide on an open neighbourhood of p, then X, f1 = X, fs.
(b) Linearity: X,(c1f1 + cafa) = a1 X, f1 + 2 X, fo for all ¢p,co € R.
(c) Leibniz rule: X,(fif2) = fi(p)Xpfo + fo(p) Xy f1 -

The set of all derivations at the point p is called the tangent space at p. It is denoted
T,M.

Obviously, T, M is a vector space. It is less obvious that the dimension of the vector space T, M
equals the dimension, n, of the underlying manifold. We will give a basis for this vector space
later.

The definition of 7, M in terms of derivations becomes a bit more intuitive by the following
consideration. Given a curve vy € C*(R, M), one can assign at each point v(s) a tangent vector
Y(s) € TysyM to this curve, by the following prescription:

A(s) : C*(M,R) — R

f e 35T = T(3(s)) =l (155)
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Here d/ds denotes the ordinary deriva-
tive of the function foy: R — R,
5> f(fy(s)) . It is easy to show that,
indeed, 4(s) satisfies the defining prop-
erties (a), (b) and (c) of a derivation.
Also, one can show that any derivation
can be written as a tangent vector to a
curve. For this reason, one can define a
tangent vector as an equivalence class of
curves. This definition, which is mathe-
matically equivalent to the one in terms
of derivatives, could be considered as
geometrically more intuitive. For cal-
culations, however, this alternative def-
inition is rather awkward. Therefore,
we will always view a tangent vector as
a derivation.

Figure 40: Tangent vector of a curve

Definition: The set TM := |J T,M is called the tangent bundle of M.

peEM

M

T,M

T,M

Figure 41: Tangent bundle

Definition: A vector field on M is a map X : M — T'M that assigns to each p € M a vector

X, € T,M.

Figure 42: A vector field X
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A vector field X : p— X, is called a C* vector field if for any f € C*°(M,R) the function X f
is, again, in C*°(M,R). Here X f denotes the function that takes the value X, f at p € M.

A local chart
p . UCM — OCR"

p — ¢p) = (¢'(p), ..., 2" (p)) (156)
defines, at each point p € U, the so-called “Gaussian basis”
0 0
—_ ..., — 157
{ oxlly’ "0z p } (157)

of the vector space T, M; this basis is constructed by taking, at p, the tangent vector to each
coordinate curve

0 d _ n
g d = H (oo @) e ) s ) )| (158)
M
Figure 43: The Gaussian basis vector fields
As a short-hand, we often write 0, instead of 0/0z* .
As the 0/ 8x“} p form a basis for T),M, every vector field X on U can be written as
0

X = Xt— 159
axu Y ( )

with coefficients X* : U — R. The X* are called the components of X in the chosen chart.
X is a O vector field if and only if its components are C*° functions, in any chart.
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We want to determine the transformation behaviour of the components of a vector field under

a change of coordinates, i.e., under a change from one chart ¢ = (x',...,2™) to another chart
o= (il, e ,JZ‘”). On the overlap of the two charts, we can define the Jacobi matrix
ozt
Jr, = 160
O (160)
and its inverse 9"
ay O
By the chain rule, the basis vector fields transform according to
0 e O
o = U ) g (162)
As a consequence, we find
0 ~ 0 ~ vy 0
X =X =Xt — =X*(J Y, — 163
ox? o+ ( ) " Oxv (163)
= X' = (JH,X", Xr=Jgr XY, (164)

This transformation behaviour is called contravariant. In particular in the older literature, it
is quite common to define vector fields by this property: A vector field is determined by a
quantity with an upper index, X*#, with a contravariant transformation behaviour.

Vector fields are special cases of tensor fields. We will now define tensor fields of arbitrary
rank. To that end we first have to introduce the cotangent space T;M and then, by repeated
application of tensor products, tensor spaces of arbitrary rank.

Given an n-dimensional vector space V', one defines the dual vector space V* as the set of all
linear maps V' — R. The dual space V* is a vector space of the same dimension as V. The
dual space of the tangent space T, M is denoted Ty M; it is called the cotangent space of M at
the point p. Any element o, € Ty M is a linear map

oy T,M — R

X, — (X)) - (165)

Note that the bidual space of a vector space can be identified with the vector space itself,
(TyM)* = T,M, by identifying X, € T,M with

X,:T;M — R
a, — op(Xp) - (166)

Definition: The set T*M := |J T,y M is called the cotangent bundle of M. A covector field is
peEM
amap o: M — T*M that assigns to each p € M an a), € T M.
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To any function f € C*°(M,R) one can assign a covector field df by the prescription

(df), : T,M — R
X, — (df)p(Xp) =X, f . (167)
df is called the differential of f.

A local chart
p:UCM-—0OCR"

p— ¢(p) = («'(p),-...2"(p)) (168)
defines at each point p € U a basis
{dazl|p,..., da:"|p} (169)
of the vector space T M. Here dx" denotes the differential of the function z* : U — R.
As the dz* form a basis, any covector field o on U can be written as
a = a,dx (170)
with coefficients «, : U — R. The «, are called the components of o in the chosen chart.

Under a change of coordinates, the basis covector fields dz* transform according to the chain
rule,

ozt

G

denotes the Jacobi matrix, as before. This allows us to calculate the transformation behaviour
of the components «, of a covector field,

dz* = J*,dx" , where JV,

a = a,dr’ = &,di" = &, J", dz” — a, = a,J",, a,=a (J . (171)

This transformation behaviour is called covariant. In comparison with the contravariant trans-
formation behaviour, the Jacobi matrix, .J, has been replaced by its inverse, J~1. In analogy to
vector fields, covector fields can be defined by the transformation behaviour of their components
which is common in particular in the older literature.

We are now ready to define tensor fields of arbitrary rank. To that end we need the definition
of the tensor product: For any two finite-dimensional vector spaces V and W one defines the
tensor product V@ W as the set of all bilinear maps V* x W* — R. Forv € V and w € W
one defines v ® w € V ® W by the prescription

v@w: VX W —R
(, B) — (v @ w)(a, B) = a(v)p(w) . (172)
V ® W is a vector space with the dimension dim(V @ W) = dim(V)dim(W). If {a,|p =
1,...,dim(V)} is a basis in V, and s {b;|i = 1,...,dim(W)} is a basis in W, then {a, ®
bilp=1,...,dim(V),i=1,...,dim(WW) } is a basisin V@ W .
Using this notation, we can now define for any manifold M the tensor space of rank (r,s) at

p € M as
()M =T M@ - @LMOTyM®- - ®T;M. (173)

S
J/

v "~
7 times s times
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(As the tensor product is associative, repeated tensor products may be written without brack-
ets.) Note that (T(?)pM ~ R, (Tol)pM ~ T,M und (Tlo)pM ~ TxM.

Definition: The set T/ M = |J (TS’")pM is called the tensor bundle of rank (r,s) of M. A
pEM

tensor field of rank (r,s) on M is a map A : M — TIM that assigns to each point
p € M atensor A, € (I7) M

p .

A tensor field of rank (r, s) is also called an “r times contravariant and s times covariant tensor

field”.

In a local chart, a tensor field of rank (7, s) is represented in the form

0
e g O g

A = AM b

®Kde" @ - @dx” . (174)

Under a change of coordinates, the components transform according to

AProer = AR

v I o I (TN (Y (175)

vy -

which can be verified easily, using the above-mentioned transformation behaviour of the basis
vector fields 0/0z* and of the basis covector fields dz”.

With this coordinate representation, the tensor bundle 77 M becomes an (n—l—nr*‘*)— dimensional
manifold. (Here n coordinates determine the point p € M and the remaining n"** coordinates
determine the tensor in (T; )pM .) Hence, it is well-defined what we mean by a C* tensor field.
The following definition is equivalent: A tensor field is a C* tensor field if its components
Apvebr o, are C° functions, in any chart.

In the following we denote by 7 M the set of all C'™ tensor fields of rank (r,s). Note that
TeM  ~ C*(M,R) = C* functions,
T M ~ C vector fields, (176)
TPM =~ C> covector fields .

Every A € 7 M is to be viewed as map

A:TM x - X TPM x T¢M x -+ x T¢qM — TPM

rt;rrnes Sti\;les
(Oél,... Oér,Xl,...,XS) — A(O{l,...,OéT,Xl,...,XS) s (177)

that is linear in each slot. Here linearity is meant not only with respect to coefficients € R but
even for coefficients f1, fo € C*°(M,R), e.g.

A(O{l, e ,Oér,Xl, .. .Xs,17f1Y1 —+ fg}/g) =
= fid(o,...,00, X1, ... Xo 1, V1) + foA(an, ... 0, X1, ... X1, Y2). (178)

So if one wants to check if a map of the form (177) actually is a tensor field, one has to check
this linearity property with respect to coefficients in C*°(M,R)

60



As an alternative, one may identify a tensor field A € 7. M with the map
ATIM x - X TEM X TEM x - X TgM — TX M

vV vV
7 times § times

(Ozl,...,Ozf,Xl,...,Xg) — A(Oél,...,()é»,ﬁ, .. ,',Xl,...,Xg, .. ,') (179)

which is defined by leaving open the remaining r — 7 4+ s — § slots of A. When using local
coordinates and index calculus, this map A is indeed represented by exactly the same array of
components as the original map A.

For tensor fields, the following algebraic operations can be defined.

(a) Two tensor fields of the same rank can be added together: For A, B € T M we define
C = A+ B € T M pointwise in the natural way; i.e., in local coordinates C*1 ~"#r, .., =
Am "'Mrm N B ~~-,u7-l/1 eV

(b) Two tensor fields of arbitrary, in general different, rank can be multiplied together in the
sense of the tensor product: For A € T'M and B € T M this defines D = A® B €

T+ M: in local coordinates DH1 ™ Hrts, pgps = ARLTH, L Bl ek

s+38§ 1° s+1 " Vs43:®

(¢) From a tensor field A € T/ M with r > 1 and s > 1 one can construct a new tensor
field E of rank (r — 1,s — 1) by contraction; in coordinates, contraction means equating
an upper and a lower index, e.g. EFHHr=t, L, = AR e e In general, the
result depends of course on which index pair the contraction is done.

4.2 Covariant derivatives and curvature

We will now discuss how to differentiate a tensor field. The simplest method is to apply, in any
chart, the operator 0, to the components of a tensor field. However, this notion of differentiation
has the unwanted property that the result is not a tensor field. This will be demonstrated in
Worksheet 6, by way of example, where we show that 0,A4,dz” ® dx* # Guflp dz? @ dz#
for a covector field A, dz? = flp dz”. We need an additional mathematical structure on M to
differentiate tensor fields in such a way that the result is again a tensor field. Such an additional
structure can be defined in the following way.

Definition: A covariant derivative or a linear connection on a manifold M is a map
V:TdM x T¢M — T M

(X,)Y) — VyY (180)
with the following properties.

(a) VXH—XZY = ley + VXQY, Vny = fVxY,
(0) V(i +Y2) = ViVi + VaYa,  Vx(fY) = fVRY + (Xf)Y,

for all XY, Xy, X5, Y, Y, € T'M and f € TPM .

Remarks: e Because of (b) V is not a tensor field.
e Covariant derivatives exist on any manifold. (The topological requirements
(A1) and (A2) are essential for the existence proof.)
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By definition, the operator Vx acts on vector fields
Vx : To M — T M . (181)
We extend it to an operator acting on tensor fields of arbitrary rank,

Vx:T/M — T/M, (182)
by the following rules.

(i) For feT’M itisVxf =X7f.
(ii) For o € TPM itis (Vxa)(Y) = X(a(Y)) —a(VxY).
(lll) For Al,AQ c 7;TM it is VX(Al + AQ) = VXAl + VXAQ .
For A€ T/M and B€ T/ M itis Vx(A® B) = A® (VxB) + (VxA) ® B.

In a chart, a covariant derivative is characterised by its connection coefficients or Christoffel
symbols, defined by

Vo,0, = I'",5 0, . (183)
The Christoffel symbols satisfy the following two equations.
Y da:p(VaV&,) )
Proof: d:vp(Vau&,) = dxp(f‘“w 8u) =T*H,, da:p(ﬁu) = T, 507

P = TP, .
o Vyda® = —17,,dz" .
Proof: (Vaudx")(af) =0, (da:"(&)) —dz° (Vauﬁf) = 0,(07)—dx” (F“,,TGH) =0-T",.07 =
= T, = —I9,,00 = —T7,,dz"(3,) .

With the help of these rules we can now differentiate, with respect to a covariant derivative,
tensor fields of any rank. For writing this out in local coordinates, we begin with vector fields.

For X € T¢ M we find

Va#X = Vap (X”al,) = (Va“XV) 0, + va(apa,, =
= (0,X")0, + X'I7,,0, = (0,X7 + 17, X")0, = V,X70, .
From this expression we read that, in local coordinates, the covariant derivative of X € T;' M
is given by

VX =0,X°+17,X". (184)
Some authors write
0, X% = X7, and V. X7 =X, (185)
or
0X7 = X%, and VX7 = X%, . (186)

In particular the comma-semicolon notation is used in many text-books on General Relativity,
but we will not use it here.
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In analogy to the covariant derivative of a vector field, we find the coordinate representation of
the covariant derivative of a covector field o € TP M :

Vo, a = Vy, (agd:v”) = (Vau&g) dz? + a, Vg, dz’ =

= (8#040) dz’ — a,I7,,dz" = (8u04p — F"M)aa)dxp =: V,a,dz’ . (187)

So, in local coordinates, the covariant derivative of o € T°M is given by

V.o, = 0ua, =T 0, . (188)
Again, some authors write
o, = a, and Vo, = o,y (189)
or
Ou0y, = Qp|p and Voo, = ap)u- (190)

Analogously one can calculate the coordinate expressions for the covariant derivatives of higher-
rank tensor fields. For A € 7] M one finds

VAPt = g A

s

LT APHR e TR AR e

£

— P, AR iy — o = PP AR (191)

s

So, as a general rule, we get a term with a Christoffel symbol with a positive sign for any upper
index and with a negative sign for any lower index. This formula is the most relevant one for
practical calculations of covariant derivatives in local coordinates.

In contrast to the partial derivatives 0, A" “#r, .., , the covariant derivatives transform ten-
sorially, i.e., like the components of a tensor field. This is clear from the way we introduced
covariant derivatives. As a check, one could verify it by direct computation. For that, one
needs the transformation behaviour of the Christoffel symbols under a change of coordinates.
In Worksheet 6 we will see that this transformation behaviour is given by

o _ Ozt dx¥ 9P Pa” 0"
™ T 9% 97 9z M 95707 O0x°

(192)

The second-derivative term in (192) makes sure that under a change of the coordinate system
in (191) the non-tensorial terms cancel out.
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From (191) we see that, on the domain of a local chart, a covariant derivative is uniquely
characterised by the Christoffel symbols. So we can define a covariant derivative, on the
domain of a local chart, by prescribing any functions I'*,, of the coordinates. In particular,
we can define a covariant derivative on R", considering the latter as a manifold given by the
identity map as a global chart, by prescribing I'*#,, = 0. The resulting covariant derivative
is known as the canonical covariant derivative on R™. Note that in curvilinear coordinates
the canonical covariant derivative is characterised by non-zero Christoffel symbols. E.g., if one
uses polar coordinates on R? one gets non-zero Christoffel symbols for the canonical covariant
derivative, see Worksheet 6. It is important to keep in mind that the Christoffel symbols
transform non-tensorially, because of the second term on the right-hand side of (192): If the
Christoffel symbols are zero in one chart, they are, in general, non-zero in another chart.

With the help of a
covariant derivative V
one can define paral-
lel transport of vectors
(and tensors) along
curves. Given a vec-
tor field X, we call a
curve v : R — M
an integral curve of X
if it satisfies the condi-
tion §(s) = Xy for
all s € R. Then Y
is called parallel (with
respect to V) along ~y
if

(VXY)W(S) =0
for all s € R. For this
property to hold only

the restriction of Y to
v matters.

For expressing the
condition for par-

allel  transport in
local coordinates we Figure 44: Parallel transport of vector fields

calculate

VxY = Vixug)(Y"0,) = XV, (Y"0,)
= X*(Vy,Y")0, + X'Y"Vy,0, = X*(0,Y")0y + X"Y"I7,,0,
= X*"(9,Y7 + Y'I",,)0, = X'V,Y?0,.
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This demonstrates that Y is parallel along an integral curve of X if and only if the equation

XH8,Y7 + Y'T7,,) = 0 (193)

holds along this curve. This has the following important consequence: If the Christoffel symbols
are zero on the whole domain U of a chart, then a vector field Y70, is parallel along a curve
if and only if the coefficients Y7 are constant along this curve. Hence, a vector field Y with
constant coefficients Y7 is parallel along any curve. In this case we have an absolute parallelism
(or teleparallelism), while in general parallel-transport from one point to another depends on
the path. We may thus say: The existence of a chart in which the Christoffel symbols are equal
to zero is a criterion for the path-independence of parallel-transport.

Recall that we have defined the canonical covariant derivative on R™ by the property that, in
the chart given by the identity map on R", the Christoffel symbols vanish. The above argument
demonstrates that the canonical covariant derivative on R™ defines a parallel transport that is
path-independent, i.e., that it defines a teleparallelism.

With the help of parallel-transport, we can define curves which are “as straight as possible”,
in the sense that the tangent vector field is parallel along the curve:

Definition: A curve v is called a geodesic or an autoparallel (with respect to V) if 4 is parallel
along v (with respect to V), i.e., if there exists a vector field X such that §(s) = X,
and (VXX) )= 0 for all s.

(s

We will discuss this notion in more detail in the following subsection, when we have introduced
a metric on M. Geodesics will play a crucial role in general relativity.

For every covariant derivative V we define
e the torsion T(X,Y)=VxY - VyX — [X,Y],
e the curvature R(X,Y,Z) =VxVyZ —VyVxY —Vxy|Z,

where X,Y € 7'M, and [X,Y] is the commutator (or the Lie bracket) of the derivations X
and Y, defined by [X,Y]f = X(Yf) —Y(Xf), see Worksheet 6.

Claim: T and R are tensor fields, T € T,)M and R € T;' M .

Proof: We have to show that 7" and R are linear in each slot, where linear combinations with
coefficients in C*°(M, R) are to be considered. As additivity, T(X1+Xs,Y) = T(X1,Y)+
T(X,,Y) etc., is obvious, we only have to show that T(fX,Y) = fT(X,Y) etc. holds.
To that end we first calculate

SXYh = fX(YRh) =Y (fXh) = fX(Yh) = (V)(Xh) = fY(Xh) =
= fX,YTh = (YH)(Xh) = (fIX, Y] = (Y))X)h,
hence [fX,Y] = f[X,Y] — (Y f)X . This results in
T(fXaY):VfXY_VY(fX)_[fX7Y]:
= [VxY = (YAX = fVy X = fIX Y]+ (XHX = fT(X)Y) .

For the other four slots of 7" and R the calculation is quite analogous.
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In local coordinates the torsion tensor field is represented as
T(0y,0y) = Vo,0, — V5,0, — [0y, 0,]

= 19,0, — 7,0, — 0

= (T —T70,)05 = T7 1,0, .
The components of the torsion tensor field are, thus,
T, =T, —T%,,. (194)

This implies that the torsion vanishes if and only if the Christoffel symbols are symmetric,
I'°,, =1Y,,, in any chart. For this reason, one says that a covariant derivative is symmetric
if it has vanishing torsion.

For the curvature tensor field one finds, analogously,

R(04,00,05) = V5,V0,00 — Vo,V 5,05 — Vig, 0,100
= Vo, (".60,) — Vo, (I*s0,) — 0
= (0.1"00) 0y + T°,V 5,0, — (0,1%10)0p — ¥,V 5,0,
= (0.1700)0r + TPl 107 — (0,17 4o ) 0 — 74170,

= (0NFTW — 0,17 e + 17,17, — FPWFTW)(’L =: Ro" 0r .
So the components of the curvature tensor field are
Rue =00 =017 1o + 17110 = 17,17 16 . (195)

Now we consider the special case that there is a chart such that the Christoffel symbols vanish
on the entire domain U of the chart, I'’,, = 0. We know already that this characterises the
situation that parallel transport in U is path-independent, i.e. that we have a teleparallelism.
Our last calculation demonstrates that then R,,,” = 0 in the chosen chart. However, as R is a
tensor field, this means that R,,,” = 0 in any chart. We have thus shown that the condition
of vanishing curvature, R = 0, is necessary for the parallel transport to be path-independent.
One can show that, on a simply connected domain U, it is also sufficient; for a proof see, e.g.,
N. Straumann [General Relativity and Relativistic Astrophysics, Springer (1984)], p.69. So,
on a simply connected domain, the curvature tensor field vanishes if and only if the parallel
transport is path-independent. Roughly speaking, the curvature tensor of a connection V is a
measure for the path-dependence of the parallel-transport defined by V.
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One says that a covariant derivative V is flat if the curvature tensor of V vanishes. Obviously,
a covariant derivative is flat on the domain of a local chart if the Christoffel symbols vanish
in this local chart. This demonstrates that, in particular, the canonical covariant derivative
on R” is a flat connection. It is often said, more concisely, that “R™ is flat”. If one uses this
terminology, one should be aware of the fact that it tacitly refers to the canonical covariant
derivative on R". Of course, there are many (non-canonical) covariant derivatives on R" with
non-vanishing curvature.

Torsion and curvature satisfy the following identities.
e I'(X,Y) = —T(Y,X) or, in local coordinates, T",, = —T",,,.
e R(X,Y,Z) = —R(Y, X, Z) or, in local coordinates, R,,,,” = — Ryu." -

e [f the torsion vanishes, T' = 0, the curvature tensor field satisfies, in addition, the socalled
Bianchi identities:

(Bl) RIX,)Y,Z2)+R(Y,Z,X)+ R(Z,X,Y)=0
or, in local coordinates, " + Ryo)” + Bop™ =0,

(B2) (VxR)(Y,Z,U)+ (VyR)(Z,X,U)+ (VzR)(X,Y,U) =0
or in local coordinates: V,R,,,” + V,Ry.," + VoR,,," = 0.

The first two identities are obvious. The Bianchi identities are less obvious, but the proof is
straight-forward, just by writing out the expressions on the left-hand sides. Therefore, we will
not work out the details here.

There are also versions of the Bianchi identities for covariant derivatives with non-vanishing
torsion. We will not give them here because we will not need them in the following: In general
relativity one works with a torsion-free (symmetric) covariant derivative, see below.

By contraction we get from the curvature tensor field R € T;' M the Ricci tensor field Ric =
R, dx" @ dx” € 7;0M, defined by

Ry = Ropw” . (196)

Contraction over another index can be expressed by the Ricci tensor (and the torsion): From
R,s" = — Ry,," we find

R, = =R, . (197)
For a torsion-free connection, we find from the first Bianchi identity
R/u/TT = Ruu - RMV . (198)

Note that some authors use other conventions for the order of indices on R,,,” and for the
sign of R, . This is a major source for sign mistakes: When taking formulas which involve the
curvature tensor or its contractions from text-books or articles, one has to be very careful to
check the conventions used.
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The following argument gives a geometric interpretation to Lie bracket, torsion and curvature.

e [f two vector fields X and
Y can be represented in
a chart as X = 0; and
Y = 0,, they must satisfy
[X,Y] = 0 (because par-
tial derivatives commute).
If [X,Y] # 0, such a rep-
resentation is impossible.
Hence, [X,Y] =0 is a con-
dition that guarantees that
the integral curves of X
and Y form a closed two-
dimensional grid, like the
2!~ and z%lines in a coor-
dinate system. If [X,Y] is
a linear combination of X
and Y, the integral curves
of X and Y form two-
dimensional surfaces, but
the integral curves do not
necessarily close.

Figure 45: Two vector fields with vanishing Lie bracket

e Obviously, the conditions VxY = 0 and Vy X = 0 are compatible with [X,Y] = 0 if and
only if the torsion vanishes. This has the following consequence.

If Y is parallel

in the direction parallel
of X and X
is parallel in
the direction
of Y, then the
integral curves
of X and Y can
form a closed
grid if and only
if T'=0. Hence,
the torsion mea-
sures the failure
of closure for
integral  curves
that result from
parallel  trans-
port of their
tangent  vector Figure 46: Two parallel-transported vector fields with vanishing
fields. Lie bracket in the case of vanishing torsion

parallel
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e We have already mentioned that the curvature is a measure for the path-dependence
of parallel-transport. Another geometric interpretation can be given to curvature if the
torsion vanishes, 7" = 0. In this case the curvature determines the relative motion of
neighbouring geodesics: Consider two vector fields X and Y such that (i) VxX = 0
(i.e., the integral curves of X are geodesics), (ii) VxY = 0 (i.e., Y is parallel along each
integral curve of X), and (iii) [X,Y] = 0 (i.e., the integral curves of X and Y form a
closed grid). Then we have

R(X,Y,X) = VxVyX — VyVxX — Vixy X . (199)
0
= =0

AsT(X,Y) =0 and [X,Y] =0, we must have Vy X = VY, hence
ViVxY — R(X,Y,X) = 0. (200)

This equation is known as the equation of geodesic deviation or Jacobi equation. Along
each integral curve s — 7(s) of X we can interpret “the tip of the arrow Y,(,)” as an “in-
finitesimally close neighbouring geodesic”. The Jacobi equation is a differential equation
of second order that tells how this neighbouring geodesic moves relative to ~.

geodesics

Figure 47: Relative motion of neighbouring geodesics
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4.3 Pseudo-Riemannian metrics
We now introduce a notion that will play the central role in general relativity.

Definition: A pseudo-Riemannian metric on a manifold M is a tensor field g € T,’M with
the following properties:

(a) g is symmetric, i.e., for all p € M and X,,,Y, € T,M we have
9p(Xp, Yp) = 9p(Yp, Xp) ;

(b) ¢ is non-degenerate, i.e. for all p € M and X, € T,M the following implication is
true:
Gp(Xp, ) =0 = X,=0.

Then (M, g) is called a pseudo-Riemannian manifold.
Some authors say “semi-Riemannian” instead of “pseudo-Riemannian”.
The following observations follow from the definition.

e If we represent a pseudo-Riemannian metric in a coordinate system, g = g, dz" ® dz",
we have ¢, = ¢,, (because of (a)) and det(g,,) # 0 (because of (b)). This guarantees
that the inverse matrix (¢g”7) exists,

QWQW = 5; = nggp/u (201)
and that it is again symmetric, ¢*” = ¢ . This defines an inverse metric which will be
denoted ¢! = ¢"70, ® 0, € T¢M .

® g, and g”7 can be used for lowering and raising indices, e.g.
9guwX"=X,, X'=9¢"X;, (202)
GuwRorp” = Rorpp s Borp” = 9" Rorp - (203)

In this way we can identify, with the help of a pseudo-Riemannian metric, any tensor field
in 77 M with a tensor field in 77 M, whenever (r + s) = (7 + §).

e The orthocomplement of X, € T,M (with respect to g),
X, ={Y,eT,M|g,(X,.Y,) =0}, (204)
is for X, # 0 an (n — 1)-dimensional subspace of T,M (because of (b)).

e Any symmetric matrix can be diagonalised. Hence, we can choose the coordinates such
that at any one point p € M the matrix (g, ) is diagonal (because of (a)). As det(g,,) # 0
(because of (b)), all diagonal elements must be different from zero; we can then make
them equal to 1 by stretching or compressing the coordinate axes. As a consequence,
a pseudo-Riemannian metric can be put into the form (g,,) = diag(—1,...,—1,1,...,1)
at any one point. The sequence (—1,...,—1,1,...1) (or the number of plus signs minus
the number of minus signs) is called the signature of the metric. As we require g to be
continuous (by our assumption that g € T, M), the signature cannot change from point
to point, so any pseudo-Riemannian metric has a unique signature.
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Two types of signature are particularly important:

— A pseudo-Riemannian metric of signature (1,...,1) is called a Riemannian metric.
In this case, ¢,(X,,X,) > 0 for all X, # 0 and /g,(X,, X,) can be interpreted as
the length of the vector X, (as measured with the metric g).

For any X, # 0

it follows that X, ¢ M Xp

XPL, so a vector to- T

gether with its ortho-

complement spans the ‘

whole tangent space. XL

A Riemannian mani-
fold is a manifold with

a Riemannian metric, Figure 48: Orthocomplement of a non-lightlike
(M, g). vector
— A pseudo-Riemannian metric with signature (—1,1,...,1) is called a Lorentzian

metric (or a pseudo-Riemannian metric with Lorentzian signature). Also in this
case, one often calls g,(X,, X,) the “length squared”; however, this is an abuse of
terminology, because g,(X,, X,) can be negative. A vector X, # 0 is called

spacelike <= g¢,(X,,X,) >0,

lightlike <= g,(X,, X,) =0, M

timelike <= g¢,(X,, X,) <0.

Instead of “lightlike” many au-
thors say “null”. To avoid con- X;‘
fusion of a null vector (in this
sense) with the zero vector, we
will always say “lightlike” and not
“null”. The zero vector is usually
considered as being spacelike; this
is convenient because then it is
true that a vector must be space-
like if it is orthogonal to a timelike
one. — A curve v : R — M is
called spacelike, lightlike or time-
like if its tangent vector 4(s) has
this property for all s € R.

Figure 49: Orthocomplement of a lightlike vec-
tor

A lightlike vector is contained in its own orthocomplemen, X, € XpL, so a lightlike
vector and its orthocomplement do not span the whole tangent space.

A Lorentzian manifold is a manifold with a Lorentzian metric, (M,g). For a 4-
dimensional Lorentzian manifold, the tangent space (7,M, g,) has the same mathe-
matical structure as the spacetime of special relativity.
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We had seen that on a manifold we need an additional structure, i.e. a covariant derivative V,
if we want to differentiate tensor fields in such a way that the result is again a tensor field. The
following theorem demonstrates that on a pseudo-Riemannian manifold (M, g) of any signature
there is a distinguished covariant derivative.

Theorem: On a pseudo-Riemannian manifold (M, g) there is precisely one covariant derivative
V with the following properties:

(a) V is torsion-free, T'=0,
(b) V is metric, i.e. Vxg=0forall X € T} M .

This covariant derivative V is called the Levi-Civita derivative (or Levi-Civita connection)
of g.

Proof: If V has the properties (a) and (b), we have for all X,Y,Z € T;'M :

X9<Y7Z) = g(vXY7Z)+g(Y7VXY> :g(vXKZ)—i_g(KvZX)—i_g(Y? [X?Z})v
Yg(Z7X) = :g(vYZaX>+g(Z7VXY)+g(Z’ [Y7X]>7
Zg(va) = :g(vZX7Y)+g(XavYZ)+g(X7 [Z7Y])

Subtracting the last equation from the other two results in

29(VxY, Z) +9(Ya [X7 Z]) —|—g(Z, [Ya X]) - 9(X> [Z7 Y])

and hence
9(VxY,Z) = (205)
1
As g is non-degenerate, this equation determines Vx Y, i.e., it uniquely defines an operator
Vi TEM X T¢M — TP M. Tt is easy to verify that the operator V which is defined by
(205) satisfies all the defining properties of a covariant derivative and that it necessarily
satisfies (a) and (b). This proves the unique existence of a V with the desired properties.

The metricity condition Vxg = 0 means that the V-parallel transport along an integral curve
of X preserves the “length squared” ¢(Y,Y):

VxY =0 — XgY,Y)=(V Y'Y VxY.Y Y VxY)=0. 206
X g( ) ) ( XQ)( ’ )+g( XO ) )+g( ) XO ) ( )
=0 = =

If we consider the case Y = X, this observation implies the following important result: If a
V-geodesic is timelike, lightlike or spacelike at one point, then it has this property at every
point.
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The proof of the theorem provides us with an explicit representation of the Levi-Civita deriva-
tive; in particular, (205) gives us an explicit representation of the Christoffel symbols of the
Levi-Civita derivative: For X = 0,, Y = 0, und Z = 0, equation (205) takes the following
form:

1
g(Vaﬁy ) 80) - 5 (c‘)ug(&,, ao) + aug(am @u) - 60(8/m 81/) + O) )
——
:FP,“,B,,
1
Fp,uygpcr - 5 <a,ugua + augo,u - 809#1/) ) |gTU
T 1 TO
D = 597 (Oow + 0uon = Og) - (207)

This formula allows to calculate the Christoffel symbols of the Levi-Civita derivative from the
metric components g,,,. As a a consistency check, one may verify that the covariant derivative
defined by these Christoffel symbols is, indeed, torsion-free,

I, =T7,, (208)
and metric,
Vog/u/ = 809;”/ - FTo,ugTV - FTan,uT =0. (209)

The metricity property V,g,, = 0 has the following important consequence: Together with the
equation V,g” = 0 (which follows immediately from differentiating the identity ¢*”g,, = 1)
it guarantees that indices can be raised and lowered with the metric even if they are under a
covariant derivative, e.g.

VX, =8, < V,X"=857. (210)
Note that indices must not be raised or lowered under a partial derivative.

We will now investigate if it is possible that the g, are constant on the whole domain U of a
chart. From (207) we read that then we have I'*,, = 0 on U. We know already from Section 4.2
that a chart with this property exists only if the curvature tensor R vanishes on U. This demon-
strates that, unless in the flat case, it is impossible to have (g,,) = diag(—1,...,—-1,1,...,1)
on an open neighbourhood.

In Section 4.2 we have introduced geodesics as the autoparallels of a covariant derivative V,
i.e., we have said that a curve z(s) is a geodesic if its tangent field X satisfies the condition
VxX = 0. In local coordinates, the latter condition reads

0= X'V, X" = X'9,X" +T7,,X"X"

where X# = z#. Here the overdot means differentiation with respect to the curve parameter s.
By the chain rule, the last equation can be rewritten as

d
— X" 4+ 17, X'XY =0,
ds T

hence
a4+ It =0 (211)
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which is the general form of the geodesic equation in local coordinates. For an arbitrary
covariant derivative, it is not possible to characterise the geodesics by a variational principle.
For the geodesics of the Levi-Civita connection, however, this can be done, as the following
theorem demonstrates.

Theorem: Let g be a pseudo-Riemannian metric of arbitrary signature. The geodesics of the
Levi-Civita derivative are the solutions to the Fuler-Lagrange equations

d 0L oL
— = _ 2= = 212
ds Oz OxH (212)
with the Lagrange function
1
L(x,%) = 5g,w(yc)i’%”. (213)

Proof: With the Lagrangian from (213), the Euler-Lagrange equations (212) read

d . 1 e
E(gwx") ~ 3 (Opgu)itd” = 0 —

1
gg‘qu.H -+ (0,,ggu)x'”i:” — 5 (QTQW)x'“x"’ =0 <

y 1 " 1 "
Goul! + 5 (Oubor + Ovgop) " — 5 (Opgu )it = 0.

By multiplication with ¢ and comparison with (207) we see that the last equation is
indeed equivalent to the geodesic equation (211).

This theorem demonstrates that a curve with coordinate representation z#(s) is a geodesic (i.e.,
an autoparallel) of the Levi-Civita connection of ¢ if and only if it is a stationary point of the
action functional

W:/ L(z(s), i(s))ds (214)

with respect to variations that keep the endpoints fixed, W = 0.

As the curvature tensor of the Levi-Civita connection is constructed from a metric tensor, it
satisfies some special properties, in addition to the properties shared by all curvature tensors.

e With the help of the metricity condition V. g = 0 one can show that the identity

9(U,R(X,Y,Z)) = —g(Z R(X,Y,U)) (215)
holds, which can be written in local coordinates as g, Rop = — goplu-’, ie.,
RT/U/O' = - Ro-;un- . (216)
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e Using this additional curvature identity and the first Bianchi identy, as it holds for the
curvature tensor of any torsion-free covariant derivative, we find that the Ricci tensor is
symmetric,

Ric(X,Y) = Ric(Y, X) , (217)

or, in local coordinates,

R,; = R, (218)

where R, = R,06".
e With the help of the metric we can contract the Ricci tensor. The resulting scalar field
R=¢"R,, =R, =R" (219)
is called the scalar curvature or the Ricci scalar.

The curvature tensor R of the Levi-Civita connection of a metric g is often called the Rieman-
nian curvature tensor or the Riemann tensor of g.

At the end of this section we collect the most important formulas of pseudo-Riemannian ge-
ometry in local coordinates. If the metric g = g, (v)dz" ® dz" is given, all relevant geometric
quantities can be calculated from the g, .

Inverse metric:
gw/gua == 5g = gaTgTu . (220)

Christoffel symbols of the Levi-Civita connection:

U = 5.0 (Buton + Ot — Do) (221)
Curvature tensor:
R =010 =017 1o + 17,170 =171 15 . (222)
Ricci tensor:
R,; = Rs" (223)

Scalar curvature (= Ricci scalar):
R=R,,g" (224)

Geodesic equation:
a4+ It = 0. (225)

Lagrangian for the geodesic equation:
1

L(z, &) = §gu,,(9c):t“:t” : (226)
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5 Foundations of general relativity

5.1 General-relativistic spacetimes

Motivated by the equivalence principle we postulate:

A general-relativistic spacetime is a 4-dimensional Lorentzian manifold (M, g),
i.e., a 4-dimensional manifold M with a pseudo-Riemannian metric g of signa-
ture (—1,+1,4+1,+1).

According to this postulate, the tangent space T, M to a general-relativistic spacetime looks like
the spacetime of special relativity. We may thus say that, on a sufficiently small neighbourhood
of any point p € M, a general-relativistic spacetime differs arbitrarily little from the spacetime
of special relativity.

T,M

N

Figure 50: A general-relativistic spacetime

As suggested by the name, special relativity is indeed a special case of general relativity. The
spacetime of special relativity is a special case of a general-relativistic spacetime, namely a
Lorentzian manifold that admits a global chart

M — R*
pr— (2°(p), ="' (p), 2%(p), 2’ (p))

such that g,, = 7,, everywhere, (7,,) = diag(—1,1,1,1). This requires the curvature tensor
of the Levi-Civita connection to be zero. The spacetime of special relativity is known as
Minkowski spacetime. The coordinate systems in which g, = 7, are the inertial systems; they
are interrelated by Lorentz transformations.
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In the following by a “spacetime” we always mean a general-relativistic spacetime. If a space-
time is assumed given, V always denotes the Levi-Civita connection, and I'*,, always denotes
the Christoffel symbols of the Levi-Civita connection.

Coordinates on a spacetime will be denoted (2°, 2!, 2% 23). From now on we will use the
summation convention, again, for greek indices u,v,o,... = 0,1,2,3 and for latin indices
ik =123

In many cases, but not always, one uses local coordinates on a spacetime such that the 2°-lines
are timelike, gog = ¢(0p, 0y) < 0, as it is shown in Figure 51.

Figure 51: A coordinate system with 9y timelike

We cannot make the g, equal to 7, everywhere, unless the spacetime is flat, but we can always
do this at any one point. At the same time, it is possible to make the Christoffel symbols equal
to zero at this chosen point, i.e., the following theorem holds.

Theorem: Let (M, g) be a spacetime and p € M. Then there is a coordinate system, defined
on a neighbourhood of p, such that

G|, =M und  TH,| =0. (227)
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Proof: As the Levi-Civita connection is torsion-free, we can find a coordinate system such that
r*,, b= 0, see Worksheet 7. By another coordinate transformation z* — TV = A*, x°

with a constant matrix A”, we can then make EW‘ = Nw; as the Christoffel symbols
p

transform homogeneously under such a linear transformation, we have F“W‘p =0.

If we want to connect our mathematical spacetime model of a Lorentzian manifold (M, g) with
experiments or observations, we have to know which physical interpretation can be given to
geometric objects in (M, g). This is done in the following list which is motivated throughout
by the equivalence principle.

e Points in M are events.

e Timelike curves are worldlines of massive particles or, more generally, of objects that

move at subluminal speed. In local coordinates, any such worldline can be written as
x(7) = (l‘O(T),Il(T),Iz(T),IS(T)), with

gu,,(x(r))x'“(T)gb”(T) <0. (228)

The parameter 7 is to be interpreted as the reading of a clock. In the following we choose
the parametrisation such that

g#,,(x(T))x'“(T)x'”(T) = — 2. (229)

If the orientation (“from the past to the future”) has been fixed, the parameter 7 is then
determined uniquely up to a transformation 7 — 7 + 79, i.e., up to “choosing the zero
on the dial”. This parameter is called proper time, and a clock that shows proper time is
called a standard clock. These notions are straight-forward generalisations from special
relativity.

e Timelike geodesics are worldlines of freely falling massive particles, i.e., of massive par-
ticles that are influenced only by gravity. For such worldlines we have, in coordinate
language,

g (2(7))i"(T)2" (1) = = and (1) + Ty (2(r))d"(r)i"(r) = 0. (230)

As the geodesic equation describes the motion of a particle under the influence of gravity
alone, it can be viewed as the general-relativistic analogue of the Newtonian equation of
motion for a particle in a gravitational potential, i(t) = —9;¢(x(t)) .

e Lightlike geodesics are worldlines of classical photons. In coordinate language, they satisfy
G (2(8))#(s)2" (s) = 0 and i'(s) + T (z(s))d"(s)i7(s) = 0. (231)

In this case the parametrisation cannot be fixed by a normalisation of the tangent vec-
tor. (We know already from special relativity that there is no proper time for classical
photons.) The parameter s is determined uniquely up to affine transformations,

s—>§=ks+ s (232)

with a non-zero constant k and an arbitrary constant s, see Worksheet 7. Any such
parametrisation of a lightlike geodesics is called an affine parametrisation.
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e In a coordinate system with gu,,|p = N and F"W’p = 0 any geodesic is a straight line
up to second order, i.e., if the geodesic passes at the parameter value 7 = 0 through the

point p, then )

(1) = 2"(0) + (0)7 + #(0)F + O(r*) =

z*(0) + #*(0)T — F“W|p:t;”(0)5ca(0)7— + O(7%) = 2#(0) + #*(0)7 + O(7%). (233)

——
=0

Such a coordinate system differs from an inertial system as little as possible. We may
think of such a coordinate system as being attached to Einstein’s freely falling elevator;
the elevator must be so small that, inside the elevator box, terms of third and higher
order can be neglected.

geodesics

Figure 52: A coordinate system attached to Einstein’s elevator

The geodesic equation is of particular physical relevance. It tells us how a spacetime can be
probed with the help of freely falling massive particles and photons.
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5.2 The rule of minimal coupling

In addition to the motion of massive particles and classical photons we also need to know how
to describe fields on a general-relativistic spacetime. This includes

e the electromagnetic field,

e fields from continuum mechanics, e.g. the four-velocity, the energy density and the pres-
sure of perfect fluids

e the Dirac field,
e the Klein-Gordon field,

and others. We emphasise that the gravitational field is not to be treated as a field on a general-
relativistic spacetime; the gravitational field is coded into the geometry of the spacetime itself.

If one knows for a particular field the special-relativistic equations, then the equivalence princi-
ple severely restricts the possible generalisations to general relativity. However, the equivalence
principle does not determine the general-relativistic equations uniquely. This is true because
there are many different equations, formulated on an unspecified general-relativistic space-
time, that all take the same form if we specialise to the spacetime of special relativity, i.e.,
to Minkowski spacetime. The simplest method to transfer a special-relativistic equation into
general relativity is the following.

Rule of minimal coupling: Write the special-relativistic version of a field equation
in an inertial system. Then replace 7,, with g, and replace all partial derivatives
0, with covariant derivatives V. This gives the general-relativistic form of the field
equation in arbitrary coordinates.

The rule of minimal coupling is also known as the “comma-goes-to-semicolon rule”, refering to
the alternative notation of using a comma for partial derivatives and a semicolon for covariant
derivatives, 0,(-) = ()., V> Vu(:)=().4-

The rule of minimal coupling can be understood as a rule of how to couple a certain field to
gravity in the simplest possible way. (The passage from special relativity to general relativity
can be viewed as “switching on gravity”.)

The rule of minimal coupling is but a rule of thumb; in some cases it does not give the correct
physical law. T'wo observations are important.

e In some cases the rule is ambiguous, as 9,0, = 0,0, but V,V, # V,V,. If the
special-relativistic version of a field equation involves second partial derivatives in a non-
symmetrised form, the rule of minimal coupling gives different general-relativistic laws,
depending on the order in which the partial derivatives are written.

e [t is always possible to add curvature terms to a general-relativistic equation without
violating the equivalence principle. This is true because curvature terms vanish when
passing from general to special relativity. The question of whether or not the correct ver-
sion of a general-relativistic field equation involves curvature terms has to be investigated
by comparison with experiments.
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To illustrate the rule of minimal coupling with two examples, we consider the electromagnetic
field and a perfect fluid.

e In special relativity, Maxwell’s equations in inertial coordinates read
(MI) 0,F,6 + 0, F5 + 0pF, =0,
(MII) 0,G* = J* .
The law of charge conservation, d,J” = 0, is a consequence of (MII).

The energy-momentum tensor of the electromagnetic field in vacuum is

1 (0] 1 Q
Tpe = — <FpaFo — an(,FaﬁF 5) , (234)
Ho

recall Problem 2 of Worksheet 4. If the system is closed, the conservation law 9,777 = 0
holds. Here indices are lowered and raised with 7, and n”?, respectively.

We now translate these equations into general relativity with the rule of minimal coupling,
i.e., we replace everywhere 7, with g,, and 9, with V,; correspondingly, indices are now
lowered and raised with g, and g7, respectively.

(MIL)V,F,e +V,F, +V,F, =0,
(MII) V,GH* = Jr .
The law of charge conservation becomes V,J? =0 .

The energy-momentum tensor of the electromagnetic field in vacuum reads

1 [e% 1 [e%
Tpa = (FpocFa - ngaFaﬁF ﬁ) : (235)
Ho

If the system is closed, it satisfies V, 777 = 0. Here, in general relativity, the system is
“closed” if the electromagnetic field interacts only with the gravitational field (which is
coded into the geometry of spacetime), and not with any other fields such as charges,
currents, material media etc.

In this case the rule of minimal coupling yields the correct general-relativistic equations,
as verified by all experiments to date. In Worksheet 8 we will show that

— the first Maxwell equation V,F,,+V ,F,,+V,F,, = 0is equivalent to the equation
oFve +0,F,, + 0,F,, =0 in any coordinate system;

— the law of charge conservation V,J? = 0 follows from the second Maxwell equation

V,.G' = JP.
e In special relativity in inertial coordinates, a perfect fluid has the energy-momentum
tensor p
Tpa = <,u + g)UpUO' + PTpo ; (236)

for a closed system, 0,777 = 0, the relativistic Euler equation
p ag TO 1 T ag
(u+—2>U”8pU —i—@Tp(n + U ) — 0 (237)
c
holds, recall Problem 3 from Worksheet 3.
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According to the rule of minimal coupling, in general relativity the energy-momentum
tensor of a perfect fluid reads

b
Tpa = (,U/ + C_2>UpUa + P Gpo (238)

in any coordinate system. If the system is closed, the equation V,7%% = 0 holds and the
fluid satisfies the Euler equation

1
wt+ LNuev, U7 + Vop (g + SUTTUT) = 0. (239)
c? c?

(For the scalar function p we have of course V,.p = 0,p.) Also in this case, the rule of
minimal coupling gives the correct general-relativistic equations.

If in special relativity the energy-momentum tensor of a certain field satisfies in inertial coor-
dinates the continuity equation 9, 7" = 0, and if the rule of minimal coupling is applied, the
resulting general-relativistic energy-momentum tensor satisfies in any coordinates the equation
V., I* = 0. The latter equation is not a continuity equation: It does not imply that the tem-
poral change of the energy content of a spatial volume equals the energy flux over its boundary.
Energy conservation in this sense holds only in “infinitesimally small spacetime regions”, i.e.,
in regions that are so small that, in an appropriately chosen chart, the Christoffel symbols are
negligibly small so that the covariant derivative may be replaced by a partial derivative. To
put this another way, in general relativity energy conservation holds only in regions that are
so small that, according to the equivalence principle, the gravitational field can be transformed
away. In larger regions energy of the matter fields may be converted into gravitational waves.
Therefore, an energy conservation law cannot hold for the matter fields in the presence of a
gravitational field, i.e., on a curved spacetime. Note that it is impossible to ascribe an energy-
momentum tensor to the gravitational field: the latter is coded into the spacetime geometry in
a way that it can be transformed away at any one point (i.e., approximately on any sufficiently
small neighbourhood); if a tensor at some point is zero in one coordinate system, then it is zero
in any coordinate system.

5.3 Einstein’s field equation

In Section 5.1 we have established the geometric framework of general relativity (Lorentzian
manifolds) and the equations of motion for freely falling particles and for classical photons. In
Section 5.2 we have discussed how to describe fields on a general-relativistic spacetime. What is
still missing is the field equation for the gravitational field, i.e., the general-relativistic analogue
of the Poisson equation.

Newtonian theory of gravity: Einstein’s theory of gravity:

2

T+ Vo =0 F TR = 0
L oao o
G o0 T 777

82



Comparison of the Newtonian equation of motion for a particle in a gravitational field with
the geodesic equation shows that the Christoffel symbols are analogous to the gradient of the
Newtonian potential ¢. As the Christoffel symbols are built from first-order derivatives of the
metric, this suggests that the metric is analogous to ¢. This is of course in perfect agreement
with the fundamental idea of general relativity that the gravitational field is coded into the
geometry, i.e., that all the information about the gravitational field is given by the metric tensor
field g € TXM.

We have already discussed in Chapter 3 that the mass density p has to be replaced by the
energy-momentum tensor 7' € T'M. We are thus led to the conclusion that, when passing
from Newtonian to Einsteinian gravity, the following replacements should be made.

¢ +— g€ T M (thespacetime metric) (240)
p — T €T,M (the energy-momentum tensor field) (241)
L A+ D (adifferential operator) (242)

e a differential operator

Hence, the desired field equation should be of the form
Dg=T. (243)
We require that the operator D should satisfy the following two conditions.

(L1) Dg contains derivatives of g up to second order;

(L2) Dy is a tensor field of rank (0,2), Dg = (Dg),,dz" @ dz¥ € T M, that satisfies

VH(Dg) =0 . (244)

The first condition is motivated by comparison with the Newtonian theory; the second condition
comes from the observation that, by the rule of minimal coupling, the energy-momentum tensor
of a closed system satisfies the condition V#T),, = 0; if we accept the idea that all fields on the
spacetime act as the source of gravity, the energy-momentum tensor on the right-hand side of
the field equation should certainly refer to a closed system.

It is a remarkable mathematical result that the two properties (L1) and (L2) fix the differential
operator D uniquely:

Theorem (Lovelock, 1971): (L1) and (L2) are satisfied if and only if Dg has the following
form:

1 R
(Dg),ul/ = E <R,ul/ - 59#1/ + Ag,uy> . (245)

Here R, is the Ricci tensor field, R is the Ricci scalar, and x and A are constants.
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Proof: The “if” part is easy to verify: (L1) is obvious and (L2) follows from the contracted
second Bianch identity, as will be proven in Worksheet 8. The “only if” part is highly non-
trivial. The proof, which is rather long, was given by David Lovelock in two papers [J. Math.
Phys. 12, 498 (1971), J. Math. Phys. 13, 874 (1972)]. In the first paper Lovelock assumed
that the operator D satisfies, in addition to (L2), the symmetry property (Dg),, = (Dg),,; in
the second paper he showed that this symmetry property can be dropped because it follows
automatically. The Lovelock theorem is true only in four dimensions.

Hence the gravitational field equation (“Einstein’s field equation”) takes the following form:

R
R, — Eg,w + Agw = kT . (246)
The curvature quantity
R
G/J,I/ = Ruu - Eg,ul/ (247)

is called the Einstein tensor field, A is called the cosmological constant, and k is called Finstein’s
gravitational constant. The relation between x and the Newtonian gravitational constant G will
be derived in Section 5.4 below when we discuss the Newtonian limit of general relativity.

When Einstein established his field equation in 1915, after a long struggle with various problems,
the Lovelock theorem was of course not yet known. Einstein arrived at this equation on the
basis of rather strong additional assumptions that were heuristically motivated. In the first
version of his field equation there was no cosmological constant; he introduced it later “by
hand” when he saw that without this term he could not get static cosmological solutions. After
evidence for a cosmic expansion (i.e., the Lemaitre-Hubble law) had come about in the late
1920s, Einstein according to George Gamow called the introduction of the cosmological constant
his “biggest blunder”. Actually, on the basis of the Lovelock theorem, there is no reason why
the cosmological constant should be equal to zero.

Note that A~'/2 has the dimension of a length. In the next section we will see that this length
must be large in comparison to dimensions for which the Newtonian limit has been verified, i.e.,
that A plays a role only at a cosmological scale. According to the present concordance model
of cosmology, known as the A Cold Dark Matter (ACDM) model, we believe that we live in a
universe with a (small but non-zero) positive cosmological constant.

By transvecting Einstein’s field equation with ¢** we find

R
R — 54 -+ A = HT#yguy,

R =4AN — kT,¢" . (248)
This demonstrates that the field equation can be equivalently rewritten as

1
Ry = Agu + (TW 4 ETpngagm,> . (249)

According to Einstein’s field equation the distribution of energy and momentum on the space-
time manifold (i.e. 7, ) gives us a second-order non-linear partial differential equation for the
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metric tensor field and, thus, for the gravitational field. The solution is uniquely determined
only after boundary conditions or initial conditions have been fixed. Note that it is meaningless
to say that a certain metric “satisfies Einstein’s field equation” unless the energy-momentum
tensor has been specified.

The most important cases are:

e Vacuum: 7, = 0.

In this case, Einstein’s field equation (249) reads
R, = ANgu . (250)

A pseudo-Riemannian manifold whose Ricci tensor is of this form is called an Einstein
manifold. For local considerations, e.g. for determining the gravitational field near an iso-
lated celestial body, we may consider Einstein’s vacuum equation without a cosmological
constant

Ry, =0. (251)

The Minkowski metric g, = 7, i.e., the spacetime metric of special relativity, is
a (trivial) solution of (251). The most famous non-trivial solution of this equation is
the Schwarzschild solution which will be discussed in the next chapter. It describes
the vacuum spacetime around a spherically symmetric matter distribution and also the
spacetime of a spherically symmetric (i.e., non-rotating) black hole. Other important
solutions to the vacuum field equation without a cosmological constant are the Kerr
solution (spacetime of a rotating black hole), the Neugebauer-Meinel disc (spacetime
around a rigidly rotating disc of dust) and spacetimes describing gravitational waves.
Vacuum solutions with a cosmological constant are, e.g., the Kottler solution (which
generalises the Schwarzschild solution by allowing for a non-zero A), the deSitter solution
(A > 0) and the anti-deSitter solution (A < 0); the latter two play a role in cosmology.

e Perfect fluid:

With the energy-momentum tensor field of a perfect fluid on the right-hand side, Einstein’s
field equation (246) reads

R P
Rpa' - Egpa +Agpa = ﬁ((ﬂ"" C_2>UpUa+pgpcr> . (252)
By (248), the Ricci scalar can be replaced by R = 4A — /f(?)p — ucQ) and written on
the right-hand side to get the field equation in the form of (249). For p = 0 we have the
more special case of a dust.

Perfect fluid solutions without a cosmological constant are of interest as models for the
interior of stars. The interior Schwarzschild solution, which will be discussed below, is
an example; it describes a spherically symmetric static star with constant energy density
e = pc?. The Friedmann-Lemaitre solutions, which are the simplest cosmological models
of our universe, are perfect fluid solutions with a cosmological constant. The rather
pathological Goedel universe (Kurt Goedel’s birthday present to Einstein on occasion of
his 70th birthday in 1949) is a dust solution with a non-vanishing cosmological constant.
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e Electrovacuum:

With the energy-momentum tensor of a vacuum electromagnetic field (no charges, no
medium) on the right-hand side, Einstein’s field equation (246) reads

R K o 1 N
Ruy - Egm, + Ag/“, = 'u—o (Fuan/ — Zgw,FagF ﬁ) . (253)

As the energy-monetum tensor is trace-free, T, ¢"* = 0, by (248) the Ricci scalar must be
a constant, R = 4 A, just as in vacuum. The best-known electrovacuum solutions without
a cosmological constant are the Reissner-Nordstrom solution (field outside of a charged
spherically symmetric static object) and the Kerr-Newman solution (field of a charged
and rotating black hole). There are also solutions describing coupled electromagnetic and
gravitational waves.

We conclude this section with three remarks.

e Einstein’s field equation can be derived from a variational principle. This variational
formulation of the field equation was found, independently of Einstein, by David Hilbert
in 1915. The variational principle can be writtten in the following way.

R
0=0W = 5/9 <§ — K Lmat ) \/|det(g,)| da’dz da?dax® . (254)

W is called the Finstein-Hilbert action. Here the symbols have the following meaning.

R=R,g",
r = Finstein’s gravitational constant,

9 I(\/|det(guw )| Lomat)

|det (g )| g

Lot = matter Lagrangian, T, =

)

0OC M,

0 = variation keeping the metric on 0f) fixed.

e Einstein’s field equation has the same form, given by (246), in any coordinate system.
In contrast to special relativity, there are no distinguished coordinate systems in general
relativity. This can be interpreted as saying that the “principle of general relativity” is
satisfied, recall p. 49.

e If the distribution of matter (i.e., the energy-momentum tensor) is known, the metric and
hence the geodesics are not yet determined uniquely by the field equation; in addition,
boundary conditions — or initial conditions — are needed. It is thus true that the distribu-
tion of matter does not determine the motion of freely falling particles uniquely. In this
sense, “Mach’s principle” is not satisfied in general relativity, recall. p.49.
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5.4 The Newtonian limit

Now we want to show that Einstein’s gravitational theory reproduces Newton’s gravitational
theory in a certain limit, i.e., if certain approximative assumptions are satisfied. As Newton’s
gravitational theory works well (in its domain of validity), this is crucial for the acceptance of
Einstein’s gravitational theory.

Newton’s theory relies on two equations (recall Chapter 3 and Section 5.3), i.e., the equation
of motion for a particle in a gravitational potential and the field equation for the gravitational
potential. In a certain limit, the first equation must follow from the geodesic equation and the
second equation must follow from Einstein’s field equation. In other words, it is our goal to
demonstrate that

d?a* dz’ dx° approximation A"

K - =
arz Pl g g =0 T

+ 079;0 = 0, (255)

approximation
—

R — Eg;w + Mg = KT Ap =ArGp. (256)

2
Now we list the approximative assumptions that are necessary for the Newtonian limit.

(N1) The gravitational field is weak in the sense that the metric differs but little from the
metric of special relativity,
Juv = N + h,uu . (257)

Here it is assumed that h,,, is so small that only terms of first oder in A, and 0,h,, have
to be taken into account. The inverse metric is then of the form

g =n"" =" hey . (258)

(PIOOf: gm/gl’p = (nuy + hp,v) (7]’/’0 - 771”77’"\]17,\) = TIWUV'” + h;wnyp - TINVUVTU’)’\hTA =
on + B — W , where we have dropped all terms of higher than first order.)

(N2) The gravitational field varies so slowly that it can be approximated as being time-

independent, i.e.
Oohyw = 0. (259)

(N3) The particle velocity is small in comparison to the speed of light, i.e., its proper time 7
differs but little from coordinate time t,

dz°

dr

cdt N da’

dz?
— | &~ ~
dr ’ dr

“dt

<ec. (260)

(N4) Matter moves so slowly that it can be approximated as being in rest and only the mass
density p acts as the source of gravity,

Too = p, Ty=0, Typ=0. (261)
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To calculate the Newtonian limit we begin with the spatial components (u = ¢) of the geodesic
equation for a freely falling particle with proper time 7,

2 0 v o
A0 A (262)

dr? YCdr dr

The sums over v and o are split into temporal and spatial parts,

Azt - dax® d2” - dxd da® - dxd dzF
ygy— ——+2I"¢g— —+0I"p — — = 0. 2
dr? O dr dr + N ar dr L dr dr 0 (263)

Owing to (N3) the third and the fourth term can be neglected in comparison to the second
term,

d*z ; da® da®
= T (264)

This can be rewritten, again because of (N3), to within a good approximation as

R

o —Tlc?. (265)

Iy can be calculated with the help of (N1) and (N2):

Moo = 5 9" (9090 + 9090 — uoo)

1. 1 ...
= 5 nZ“(Z aohuo — 8Mh00) = — 5 5U8jh00 . (266)

=0

This puts the equation of motion (265) into the following form.

A 1 ..
di2 = 5 (5”(9jh00 C2 . (267)
With the identification
2 2
hooz—c—f, 900:—<1+C—§5>7 (268)

this is indeed the equation of motion of Newtonian theory.

Note that ¢ is defined only up to an additive constant. Here we have fixed this constant in
such a way that ggg takes the same value as in special relativity if ¢ = 0.
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Now we consider Einstein’s field equation in the form of (249). With (N4), the 00-component
of this equation can be written as

1 1
RQO = Ag()o + K (T()Q — iToggoogoo) = Ago() + I{CQ,LL <1 — §goog00> . (269)

Because of (N1) we have

goo = Moo + hoo = —1 + hgo (270)
and
9" g900 = (1™ — 0" n™ ) (noo + hoo) = (= 1 = hoo) (= 1+ hoo) = 1. (271)

Inserting this result into (269) shows that

1
ROQZA(—1+h00)+§/€02M. (272)

On the other hand, Ry can be calculated with the help of (N1) and (N2):
ROO - Ruoo‘u - 8#1““00 - c%F“uo + ... (273)

Here the ellipses stand for terms that can be neglected because of (N1). From (N2) we get
OoI' 5o = 0, hence

Rop = 800 = 9" - (274)
Together with (266) this yields
Ry = — % §90;0;hog = — % Ahg (275)
By comparison of (272) and (275),
Ahgy = 2A(—1—|—h00) — k. (276)

As we know already that hgy has to be identified with —2¢/c?, recall (268), our last result
implies that

A¢:—A(02+2¢)+%/@c4u. (277)

This is indeed the Poisson equation of Newton’s gravitational theory if

A=0 (278)

and

ko= . (279)
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We have thus proven that, if these two equations are true, in all cases where the approximative
assumptions (N1) to (N4) are justified, Einstein’s gravitational theory reproduces Newton’s
gravitational theory. This makes sure that Newton’s theory can still be viewed as a viable
physical theory within a large domain of validity.

It is important to realise that Einstein’s theory admits the correct Newtonian limit only if the
cosmological constant is set equal to zero, A = 0. With a non-zero cosmological constant, the
approximative assumptions (N1) to (N4) do not lead to the Poisson equation but rather to a
modified Newtonian field equation of gravity (277).

Note that in the case A # 0 the Minkowski metric is no longer a solution to the vacuum field
equation. The maximally symmetric solution of the field equation R,, = Ag,, is called the
deSitter metric for A > 0 and the anti-deSitter metric for A < 0. Therefore, when dealing with
A # 0, it would be more natural to replace in the ansatz g,,, = 1., + h,, the Minkowski metric
with the (anti-)deSitter metric.

To date there is no experimental evidence that the standard Newtonian gravitational theory
has to be modified, within its domain of validity. This indicates that the cosmological constant
must be so small that it can be neglected for all experiments where the Newtonian theory gives
a good approximation. This includes all experiments in the Solar system. At a cosmological
scale, however, the situation is different. Observations indicate an accelerated expansion of
the universe, as was demonstrated with the help of Type Ia Supernovae. (This earned Saul
Perlmutter, Brian Schmidt and Adam Riess the Physics Nobel Prize in 2011.) A positive
cosmological constant is needed to explain this accelerated expansion. A acts like a “medium”,
called “dark energy”, that fills the universe homogeneously and drives the galaxies apart. To fit
the observations, one has to assume that A=%/2 ~ 10%®m (which corresponds to A ~ 10722 in
Planck units). A can be safely ignored in regions that are small in comparison to A~'/2. Note
that the diameter of our Galaxy is about 10?°m, i.e., the cosmological constant plays a role
only at length scales that are several orders of magnitude bigger than the size of our Galaxy.

6 Schwarzschild solution

One of the most important solutions to Einstein’s vacuum field equation was found by Karl
Schwarzschild in 1916 (and independently by Johann Droste, a PhD student of Hendrik An-
toon Lorentz, a few months later). It describes the gravitational field outside of a spherically
symmetric body, e.g. the gravitational field of the Sun.

The analogous problem in Newtonian theory has the solution ¢(r) = —GM /r, which can be
derived in a few minutes by solving the equation A¢ = 0 under the assumption that ¢ depends
on r only. This leads to ¢(r) = A/r + B, and the Gauss theorem yields A = —GM where
M is the mass of the central body. (B can be set equal to zero without loss of generality.)
In general relativity, the analogous problem is much more complicated and requires a fairly
long calculation. As in Newtonian theory, it turns out that the solution is necessarily time-
independent, i.e. that, as long as spherical symmetry is preserved, a pulsating star has the

90



same gravitational field in the exterior region as a static star with the same mass. In other
words, spherically symmetric gravitational waves do not exist. Schwarzschild did not know this;
he assumed that the field is time-independent from the beginning. It was shown by George
Birkhoft in 1923 that a spherically symmetric solution to the vacuum field equation R,, = 0
is necessarily time-independent. Actually, the same result had been found in a little known
paper by the Norwegian author Jorg Jebsen already two years earlier. In the following we will
derive the Schwarzschild solution from the assumption of spherical symmetry, without assum-
ing time-independence from the outset. We will prove the Jebsen-Birkhoff theorem during the
derivation.

6.1 Derivation of the Schwarzschild solution

We want to solve the vacuum field equation without a cosmological constant, 12, = 0, in the
exterior region of a spherically symmetric star of radius r,(¢) and mass M. We first have to
determine the general form of a metric that is spherically symmetric.

To that end we begin by writing the Minkowski metric, i.e. the spacetime metric of special
relativity, in its standard form using inertial coordinates,

g =nudt'@ds’ = —dt@dt + dr®@dr + dy®@dy + dz®@dz . (280)
We agree to write from now on
aﬁ:%(&®5+ﬁ®a) (281)
for the symmetrised tensor product of any two covector fields « and 5. Then (280) becomes
g = —cdt* + da* + dy® + d2*. (282)
Switching to spherical polar coordinates,
x = rcospsing, y = rsinpsing, 2z = rcos?, (283)

results in
g = —cdt* + dr* + r* (sinzﬁ dp* + d192) . (284)

This metric is obviously spherically symmetric, in the sense that any rotation of the coordinate
system leaves the metric invariant. We want to determine the most general deformation of this
metric such that spherical symmetry is preserved. We can certainly multiply each term with
a function that depends on ¢ and r only. We choose the signs such that the ¢-lines remain
timelike and the r-, 1- and ¢-lines remain spacelike. The only possible mixed term that does
not violate spherical symmetry is an rt-term. The general spherically symmetric metric is thus
of the form

g = =/ a? + A art + 20(t,r)drdt + r? et (sin’d dp® + dv?) (285)

where dr dt denotes the symmetrised tensor product according to (281). We can simplify this
expression by introducing a new radius coordinate

7= rettn/2, (286)
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Then the differential of 7 is given by

= Lu(tr)/2 f aﬂ(tﬂ’) f 8M(t>r)
dr = e (2—8t dt+(1+2 o )dr | . (287)

Here we assume that the map (¢, r,9,¢) — (¢,7,9, ) is an allowed coordinate transformation,
i.e., that it is bijective and in both directions (infinitely often) continuously differentiable. (Here
is a sublety which is glossed over in several text-books: There are certainly examples where the
transformation is not bijective, e.g. if e#") = =2 which gives a constant 7. For the derivation
of the Schwarzschild solution, however, this sublety is of no relevance because it can be shown
that the vacuum field equation R,, = 0 does not admit spherically symmetric solutions (285)
where p cannot be transformed to zero.) If we replace r and dr in (285) accordingly, we get an
expression of the form

g = — 20N a2 4+ A G2 4 25(¢, ) di dt + 72 (sin219 dp* + d192> : (288)

Here we assume that the factors in front of dt? and di? have the desired signs such that they
can be written as exponentials. By completing the square we can rewrite the metric as

g = (0P ar - O:T) -t1r2 df>2
c
5(+. 7 2 o .
+( OET) oster) 4 e )it + 72 (sint0dg® + dv? ). (289)
C
We introduce a new time coordinate ¢ by
SER/2 gy 5(75;7:) D)2 g HED2 gf (290)
C

where ¢”(7)/2 is an integrating factor. By writing

- ) X
GA(ti) — O-(t,;") e—ﬁ(t,f) _|_ e)\(tf) (291)
c
and then dropping the tildas, the metric reads

g = gudr"ds” = — e’ dt? + A qr? 4 g2 <sin219 dp? + d192> : (292)

We have shown that any spherically symmetric metric can be put into this form, provided that
the transformation from r to 7 is possible and the factors have the correct signs such that they
can be written as exponentials. In a more systematic manner, this result could be derived from
the assumption that the spacetime admits an algebra of Killing vector fields that is isometric
to the Lie algebra of the rotation group SO(3) and that the orbits spanned by these Killing
vector fields are spacelike 2-spheres. For the notion of Killing vector fields see Problem 4 of
Worksheet 7.

Eq. (292) is the form of the metric that will be assumed as the starting point for deriving the
Schwarzschild metric. The range of the coordinates is, as in Newtonian theory,

—o<t<oo, rnt)<r<oo, 0<d<m, 0<¢<27 (293)

92



where 7,(t) is the physical radius of the spherically symmetric body considered. In most cases
it will be a constant, but in principle it may depend on time.

We now want to determine the functions v and A such that Einstein’s vacuum field equation
R, = 0 is satisfied. Before we can calculate the components of the Ricci tensor we have to
determine the Christoffel symbols. From the metric coefficients g,,, which can be read from
(292) we could calculate the Christoffel symbols with the help of the formula (207). A more
convenient way is to write the geodesic equation in the form of the Euler-Lagrange equations
(212) and to get the Christoffel symbols as the coefficients of the ##3" terms. For the spherically
symmetric metric (292), the Lagrangian (213) reads

1 . .
L(w @) = 5 ( — /0N 4 AN 42 (sin®Y g + 192)> : (294)

Here the overdot means derivative with respect to the curve parameter s which should not be
confused with the coordinate time t.

We now write the t-, r-, ¥- and @-components of the Euler-Lagrange equation (212).

d oLy oL d SR R A B W
O_ds<at'> 8t_ds< e”>+26 gt Tyt
o 1o, 1 . O\
”(*arr+2at ) 5 o (295)

0= i<6—L> — 8_L = i(e’\f“> + EGV@CQt? — 1e)‘a—)\?'“Q — r(sin219<,b2 + 192)

ds \ Or or ds 2 Or 2 Or
10X\ oM\ . 1 ov .. .
— A 222 YA L OV 90 .24 52 2 9
€<r+287'r+(9ttr>+26 87"Ct r(sin*d ¢* + 7)), (296)
_d (0L oL  d (. 5 . 9
0= E(({)—ﬁ) ~ 5y = E(T 19) r°sinv cos ¥ ¢
= 729 4+ 2170 — r?sind cost) @, (297)
_d (0L oL d (5 . 5.,
0= ds<a<p> T dT<T s W)
= r2sin®0 ¢ + 2r%sindcos I I o + 2rsin’di . (298)

Solving for the second derivatives and equating with the corresponding component of the
geodesic equation (225) yields:

ov .. 10v. 1 _, O\, ey
or 2 Ot T N (299)



10A , Ox,. 1, 0v,

=g it = = e Eci2+r6_’\(sin219gb2+192) = —I",@"3%", (300)
5 2. . : .9 9 g
v = —;m‘} + sind cost) p* = — IV, a"2", (301)
. e . 2. o g
90:—200’51919@—;“0:—1“ B (302)

From these equations we read that the Christoffel symbols are:

I, = % g—;\ , Iy =T"4 = %g—?, "= %Qe”)‘ %, I oy = —re sin?d, TTgy = —re
., =TI, = %, Fﬂw = —sinvcosv,
Yy, = I%p9 = cotd, TI%., =T1%, = % (303)

All the other Christoffel symbols are zero.

With the Christoffel symbols known, we can now calculate the components of the Ricci tensor

(223). We find

th - Rtr - aprptr - atrppr + Fppcrrgtr - Fptcrrgpr - %+ arrrtr - at ttr + Frrr + Fﬁﬁr + I“p(pr)

F (% + )T+ (T + Do 4+ TV, + T2, )T, — Dl — T I, — Db — Dl

(1@ 2)18_A_ém‘v1 = L oA
r/)2 Ot ¢ 7‘2026 ot r ot

o (5o 2) s (B —

Ry = Ry = 0,19 — Oy + 17 )19 — TP4, 17 p9 = 0
R@t - thp - (‘3pr“0 - @tf”’p@ + Fppalww - prl"’p(p - O ;

cot v cotﬁ_
r ro

0,

Ry, = Ryy = aprprﬁ_8rrpp19+rpparar19_Fprara,m? = Fcpcpﬂrﬂrﬂ_rcpcprrsogoﬁ =
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R, =Ry, = 0,17, — 0,17 + T )17, = 17,,17,, = 0,

Ry = Ry, = 0,19, — 09I p + 17 )19 — TP 17 o = 0

Ry = 0,17y — 07 pp + 17 )17 — P4, 17 )y = Qm"i‘ O Iy — at@%"‘ Prrt)

F (P T )+ (D 4+ Ty + TV, 4+ 19, )T — DlgPl — Dl — 17, 17

2 2
e C oy o 1O TOAL Oy 10N 2N\, 0v
F“F”_&(f ar) at(2 t)+28t2(‘9t+<28r+r>2 or
9 2 2 2 2
() S P O (2PN O
4\ 0t 2 or 2 Or 2 or? or or/ 2 or
SR NS X N Y N YL
2 0t2? 4 Ot Ot or r or/ 4 or 4 N Ot
_(1@+1(@)2_1@@ 1@>2M L&A LOA Gy 1 0%y
202 1\ Aoror Troar)C°© 202 " 40t ot  4\or)

Rrr = aprprr — (97-Fppr + Fppo’ FGTT -
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The vacuum field equation R,, = 0 gives us a system of four independent partial differential
equations for the functions v(t,r) and A(t,7):

O\

Fr=0 = = =0, (305)
S LR to Ak SUC
Ryg=0 — 1—6’\—26’\<%—g—i>20. (308)

Here we omitted all terms in (306) and (307) that contained time derivatives of A, because such
terms vanish by (305).
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To solve this system of coupled differential equations we subtract (307) from (306):

ov o\ B

o T =0 (309)

Differentiating with respect to ¢ gives, with the help of (305),

5?152(; = — (;91;); = = v(t,r) = o(r) + f(t). (310)

Upon inserting into (309) we find
d%(ﬁ(r) +A(r)> =0 = 5(r) + Alr) = k = const. (311)
= v(t,r) = =) + k + f(t). (312)

The tt-component of the metric is thus of the form
e?Et? = M) ek o) gy (313)
By a transformation of the time coordinate,
t = ek/Q/ef(t)/th, dt = "2 O2 gt | (314)
we put this expression into the following form:

"t 2 = e g% (315)

After renaming ¢ into t we have now reached a form where the metric coefficients G are
time-independent,

g=—e 2 + A dr? 4 2 dQ? . (316)

This demonstrates that 0; is a Killing vector field, see Problem 4 of Worksheet 7. As the
mixed metric components g,; vanish, the timelike Killing vector field d, is orthogonal to the
hypersurfaces ¢ = constant. A spacetime is called static if it admits a timelike Killing vector
field that is orthogonal to hypersurfaces. We have thus proven the Jebsen-Birkhoff theorem:

Theorem (J. Jebsen, 1921, G. D. Birkhoff, 1923): A spherically symmetric solution to
the vacuum field equation R, = 0 is static.

Schwarzschild did not know this. He assumed that the metric coefficients (i.e. v and A in
our notation) were independent of t. We have proven, following Jebsen and Birkhoff, that in
an appropriately chosen coordinate system they have to be independent of ¢, if the metric is
spherically symmetric and satisfies the vacuum field equation R,, = 0. The Jebsen-Birkhoff
theorem implies that a spherically symmetric pulsating star does not emit gravitational waves.
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With A(t,7) = A(r) and v(t,r) = —A(r), our system of differential equations (305) — (308) has
been reduced to the following form.

e (305) is identically satisfied.

e (306) requires that

d’\ dAy2 2 d\

—WJF(%) - =0 (317)

e (307) reduces to the same equation (317).
e (308) requires that

L dA

1 —e? —
e + re o

=0. (318)

We solve (318) and demonstrate that then (317) is automatically satisfied.
(318) is an ordinary differential equation of first order. With the substitution

du d\
— —A _ = — —A —
u=et, — et (319)

it can be integrated in an elementary fashion:

du du
1 —u— 2 = g p
U= 0 = r u (320)
dr
= /1 = —In(l —u) = In(r) — In(rg) (321)
—u

where rg is an integration constant that has the same dimension as the radius coordinate, i.e.
the dimension of a length. Upon exponentiating, the solution reads

1 r rs
= — = = =1-—. 322
1—u rg “ r (322)

The only thing that remains to be shown is that this A also satisfies (317). With

rs dA s rs X rs(2r —rg)
In{1—--—=), — =— = - = 323
n( T ) Lodr (1 _Ts ) r2 r2—rgr’  dr? (r2 —rgr)? (323)

r

A= —

the left-hand side of (317) can be rewritten as

_dQ_)\ (@) 2d\  rs(2r —rs) N r% N 2rg B
dr? dr rdr (r2 —mrgr)? (r2 —rgr)? r(r?2 —rgr) N

_ —rrg(2r —rg) +rrE + (r* —rgr)2rg 0 (324)

r(r2 —rgr)?
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Inserting the A from (322) into the metric (316) gives the general solution to Einstein’s vac-
uum field equation R,, = 0 under the assumption of spherical symmetry. It is known as the
Schwarzschild solution,

dr?
r
(1-7)

We recall that the range of the radius coordinate is r.(f) < r < oo. The geometric meaning
of the r-coordinate becomes clear if we consider a circle in the equatorial plane,

g = — <1 - T—S)c2dt2+ + r? (dV® + sin*¥dy?) . (325)

r

C: t = constant, r = constant, J =7/2, 0 < ¢ < 27 . (326)

The circumference of this circle, as measured with the metric, is

B dat dz” dpy? L (doN? 2 -
U—/C I I3 ds ds—/c 9o (%) ds-/c\lr <E> ds-/o rde=2mr. (327)

Hence, the length of a rope laid out along this circle is given by the formula for the circumference
of a circle that is familiar from Euclidean geometry. By the same token, the area of the sphere
r = constant, t = constant equals 47r?. For this reason, r is sometimes called the area
coordinate.

By contrast, for a radial line segment

S : t = constant, r; < r < ry, ¥ = constant, ¢ = constant , (328)
the length
dx” dx” dr\ 2 T2 T2 dr
Y — ds= [ 14/ rr(—)d:/ VG d :/ —_— 329
I s "ds *° /S I\ ds ° - Irr €1 - LT (329)
\/ ,

is different from ro — ;. This demonstrates that r cannot be interpreted as a distance from a
centre.

We now have to discuss the physical meaning of the integration constant rg. To that end we
use the comparison with the Newtonian theory. We recall that the Newtonian limit is a valid
appproximation if the four conditions (N1) — (N4) are satisfied, see p. 87. For the Schwarzschild
metric (325) condition (N1) is satisfied for r sufficiently large, (N2) and (N4) are everywhere
satisfied and (N3) gives no restriction on the metric. The equation

900——(1+20—f>, (330)

which holds in the Newtonian limit, is thus valid for the Schwarzschild metric if  is sufficiently
large. With the spherically symmetric Newtonian field

GM
P(r) = S (331)
find
we _(1_r_5>__(1_2GM> . _ 2GM (332)
r/) c2r s = 2



This demonstrates that the integration constant rg is determined by the mass M of the central
body. M can be measured on the basis of the Newtonian theory at a sufficiently large distance
from the centre. rg is called the Schwarzschild radius or the gravitational radius of the central
body.

For positive M, the Schwarzschild radius rg is positive. If the radius of the central body
is smaller than the Schwarzschild radius, r, < rg, a zero occurs in the denominator of the
Schwarzschild metric (325). For normal celestial bodies we have r, > rg; so the Schwarzschild
metric is regular in its entire domain of validity. For the Sun, rg &~ 3km, and for the Earth,
rs &~ lecm. However, one may think of a hypothetical celestial body that is compressed beyond
its Schwarzschild radius. Then the “singularity” at r = rg becomes relevant. Its physical
meaning remained mysterious until the late 1950s. We will discuss below that a body that has
collapsed beyond its Schwarzschild radius forms a black hole, with the horizon at r = rg.

At the end of this section we summarise three important properties of the Schwarzschild metric.

e The Schwarzschild metric is asymptotically flat: For large values of r it approaches the
Minkowski metric, i.e. the metric of special relativity.

e The Schwarzschild metric is static: 0; is a timelike Killing vector field that is orthogonal
to hypersurfaces.

e The Schwarzschild metric is spherically symmetric: Every vector field that generates a
rotation about a spatial axis is a Killing vector field. For a rotation about the z axis,
this is the vector field 0,. The orbit of any point under the action of the rotations is a
two-dimensional spacelike sphere, namely the sphere (¢ = const.,r = const.).

In the next two sections we will discuss by what observable features one can test if the
Schwarzschild metric is a viable model for the spacetime around the Sun (or some other spher-
ically symmetric celestial body). The most important tool is the geodesic equation. The
lightlike geodesics are the worldlines of classical photons, i.e., they tell how light propagates
in the spacetime. The timelike geodesics are the worldlines of freely falling massive particles;
e.g., we may think of planets moving in the gravitational field of the Sun. We will investigate
lightlike and timelike geodesics in the Schwarzschild spacetime in the following two sections.

6.2 Lightlike geodesics in the Schwarzschild solution

We use the Lagrange formulation for the geodesic equation. Because of spherical symmetry, any
geodesic in the Schwarzschild solution is restricted to a plane through the coordinate centre.
(The initial position and the initial velocity of the geodesic determine this plane that is unique,
unless the geodesic is radial; because of the symmetry, the geodesic cannot move out of this
plane to either side.) Hence, it is no restriction of generality if we restrict to geodesics in the
equatorial plane ¥ = 7/2. Then the Lagrange function reads

22

/”‘

+ 2 @2) . (333)
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The overdot means derivative with respect to the curve parameter s.

We write the t- and ¢-components of the Euler-Lagrange equations:

0= ()~ = eale D) 9
= ()~ = w(9): o

This gives us two constants of motion,

<1 - T—S>Li = F = constant , (336)
r
r*¢ = L. = constant . (337)

These constants of motion exist for timelike, lightlike and spacelike geodesics. For timelike
geodesics (i.e., worldlines of freely falling particles), multiplication with the particle mass of £
gives the energy and of L, gives the z-component of the angular momentum of the particle.
As the motion is in the x — y—plane, the other two components of the angular momentum are
zero. Here we are interested in lightlike geodesics for which £ and L, can also be interpreted,
respectively, as measures for energy and angular momentum up to dimensional factors. Recall
from Lagrangian mechanics that a constant of motion associated with a time symmetry or
with a rotational symmetry is always interpreted, respectively, as an energy or as an angular
momentum.

For lightlike geodesics we have in addition to (336) and (337)
7;2
(-7

r
The three equations (336), (337) and (338) determine the lightlike geodesics. (The r-component
of the Euler-Lagrange equations gives no additional information, as can be verified.)

T .
Qi = — (1 — —S>c2t2 +

+r7¢* =0. (338)
T

We first consider radial lightlike geodesics, i.e., geodesics with ¢ = 0 which are equivalently
characterised by L, = 0. Then (338) requires

r . r
—(1—75)02152%—@20,
%:ic(l—%‘g). (339)

This equation determines the radial lightlike geodesics parametrised by the time coordinate t,
with the plus sign for outgoing and the minus sign for ingoing geodesics. We will come back to
this equation later.

For non-radial geodesics (¢ # 0 and L, # 0) we may use ¢ as the curve parameter. To derive
an expression for dr/de and thereby for the shape of the orbit, we divide (338) by ¢?,
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2 72 .2
rs\ ¢t 1 T 9
-(1-7) <p2+<1_"’_s><p2+r:0’ 0
r

and replace f and ¢ in the first term with the help of (336) and (337):

T A E?rt 1 dr\ 2 )
_(1—7)(1_7;5)/%2 +(1_T_S)(%> L= =
r r

dr\ 2 2R?
(é) —CL2 rt—r? g, (341)

Note that the constants of motion enter in this equation only in form of the quantity

L.

-
ck

(342)
which, for geodesics that come in from infinity, is known as the impact parameter. When we
introduce an effective potential

1({r 5
Vb(r):—§ T +rgr |, (343)

(341) takes the form of a one-dimensional energy-conservation law,

(3

) Vi) =0, (344)

and taking the derivative with respect to ¢ gives an equation that looks like a one-dimensional

Newtonian equation of motion, ,
YL Vi) gz (345)
p dp? ©
Although we divided by dr/dy, by continuity the last equation is valid also at points where
dr/de = 0. In Worksheet 9 we will use (344) and (345) for demonstrating that at r = 3rg/2 in
the Schwarzschild spacetime there is photon sphere, i.e., that any lightlike geodesic that starts
tangential to this sphere will stay on this sphere. This means that a tunnel built around a great
circle on this sphere will appear perfectly straight to an observer who looks into this tunnel and
that at the end of the tunnel the observer will see the back of his or her own head. Of course,

this photon sphere is present only if the central body has a radius smaller than 3rg/2.

Here we will now derive the famous formula for the bending of light in the Schwarschild space-
time. We first take the square-root of (341) where we have to be careful about the fact that
dr /dp may be positive or negative,

(346)




For a photon that comes in from infinity, goes through a minimum radius value at » = r,, and
then escapes to infinity, the integral can be decomposed into two symmetric parts. The total
interval swept out by the (-coordinate is then

4 2 4 2
T T4+ rgr T e+ TrsT
L? L?
z z

Ay — _/ dr +/ dr
o0 \/C2E2 rm \/02E2

> d
- / L (347)
T C2E2
\/Lg rd — 12 4+ rgr
Here 7, is related to the impact parameter L,/(cE) by the condition
dr\2 2E?
0 = (é) = CLg rt 2 4 g, (348)
hence 2 2 .
C Ts
RN )
Ay is related to the deflection angle § by
d+m=Ap, (350)

as can be read from Fig. 53.

Figure 53: Deflection angle ¢ of a light ray

If (347) is inserted into (349) we get
dr

5+7T:/dg0:2/ 1 . (351)
(G -
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The expression on the right-hand side is an elliptic integral, which can be numerically calculated
for each rg and for each r,, with arbitrary accuracy. We have thus found an exact formula for
the deflection angle of light in the Schwarzschild spacetime.

For ordinary celestial bodies, such as stars or planets, the Schwarzschild radius rg is very small
in comparison to the physical radius r,. As r,, cannot be smaller than r,, this means that for
light deflection by stars or planets rg/r,, is very small. We may thus linearise with respect to
this quantity. This results in Einstein’s deflection formula

rs 4G M
5—2o7S _ 352
T Ary (352)
see Worksheet 9.
For a light ray that grazes the surface of the Sun (r,, ~ 7 x 10°km, rg ~ 3km ), we find
§ = 175", (353)

This was verified (to within good, though not overwhelming, accuracy) during a Solar eclipse
in the year 1919 by an expedition organised by the Royal Astronomical Society and headed by
Sir Arthur Eddington. They took photographs of the sky near the Sun during the Solar eclipse,
and compared them with photographs of the same area that were taken at a time when the Sun
was on the opposite side of the sky. According to the deflection formula, the star positions were
displaced radially away from the centre. The result of the Eddington expedition was the most
important confirmation of general relativity and made Einstein famous to the general public.
Today Einstein’s deflection formula has been verified to within a relative accuracy of 0.02 % .
Nowadays such observations are made with radio telescopes because then it is not necessary
to wait for a Solar eclipse (and because the resolution of radio telescopes, in combination with
interferometric methods, is much better than that of optical telescopes).

Such observations are made, in our days, not so much as a test of general relativity but rather
in order to get information about the Solar corona; one assumes that Einstein’s theory is right,
and that any deviation from Einstein’s deflection formula is due to a direct influence of the
electron density in the Solar corona. (If we deal with the lightlike geodesic equation, we assume
of course that light is not influenced by a medium.)

As a historic aside, we mention that light deflection can also be calculated on the basis of the
Newtonian theory. One has to assume that light consists of particles that are accelerated by a
(Newtonian) gravitational field in exactly the same way as any other particles. If one linearises
the Newtonian deflection angle with respect to 2GM/(c*r,,), one gets just one half of Einstein’s
value, see Worksheet 9, i.e., for a light ray grazing the surface of the Sun,

5 = 0.87". (354)

This Newtonian light deflection was calculated by the Bavarian astronomer Johann von Soldner
already in 1801. Even earlier, in 1784, Henry Cavendish had made a sketchy calculation of the
Newtonian light deflection on a scrap of paper that was found after his death. At an early
stage of his work, Einstein made a calculation of light bending that led to the same formula as
Soldner’s. (Einstein did not know about Soldner at this time.) In 1915 Einstein calculated the
correct value of light deflection on the basis of his linearised field equation.

104



For deflecting masses that are farther away from us than the Sun (and/or more compact), the
relativistic light deflection can lead to multiple images, to strong deformation effects (“Einstein
rings”) and to other important observable features. These are summarised under the term
“gravitational lensing”. Gravitational lensing is one of the most important tools of astrophysics
to get information about “dark” objects,. i.e., about objects that do not emit enough light to
be directly observable and can, thus, be detected only by their light bending effects. The
theoretical basis for the theory of gravitational lensing is the theory of lightlike geodesics.

6.3 Timelike geodesics in the Schwarzschild solution

Also for timelike geodesics we can restrict to the equatorial plane. The equations (334) and
(335) hold for this case as well, so we have again the two constants of motion

(1 — T—S)i = E = constant, (355)
T
r?¢ = L, = constant . (356)

Instead of (338) we have now, for timelike geodesics,

-2
G’ = —(1—T—S>02i2+ L

252 — _ 2 7
. >—|—rg0 c (357)

T
(-2

r
Now the overdot means derivative with respect to proper time 7.

As in the lightlike case, we begin with radial geodesics for which ¢ = 0 and L, = 0. Then,
from (357),

-2
_<1—T_S>02t'2+—r = -7,

D
#= (=) (- p)ene) )

72 = c2E? — 02<1 — T—S>

r

dr rg
S oge 2142
o c + . (359)

Upon integration, this equation gives us r as a function of proper time 7. The + sign distin-
guishes outgoing from ingoing radial timelike geodesics. FE is determined by the initial velocity.

With (355):
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If we want to have the radial geodesics parametrised by coordinate time, rather than by proper
time 7, we divide (358) by ¢? and use (355):

== 50-2))

dr C Ts Ts

= (1-B) -1+ 360
dt E r + r (360)
Having the radial geodesics out of the way, we now consider non-radial timelike geodesics which
are characterised by L, # 0 and ¢ # 0, i.e., we may use ¢ for the curve parameter. To that

end we divide (357) by ¢?,

TS\ o 12 1 72 , cC
EEEAR o AR 6]
T

With the help of (355) and (356), the last equation can be rewritten as:

/<1//T—Sj/c2 E2 T4 1
r

dr\?2 2rt
_ + (_> —|-r2:— , 362
(-5 () W
r z r
dr\2 A(E? - 1)t 2rgpd
(%> - < 12 ) + Lé; — st = =2V (r). (363)

So similarly as in the lightlike case the orbit equation takes the form of an “energy conservation

7

law”,
1 (dr
2 \dyp
but this time with an effective potential Vg 1_(r) that depends on the two constants of motion
E and L. and not only on a particular combination of them.

)2 + Vi (r) = 0, (364)

Differentiation of (364) with respect to ¢ yields

dr d?r , dr
If dr/dep # 0, this implies that
d?r ,
% = —Vg(r). (366)

By continuity the Newton-type equation of motion (366) is valid also if dr/dy = 0.

By (364), an orbit with constants of motion E and L, must be confined to the region where
Vi.r.(r) < 0; the boundary points, where Vg 1 () = 0, are turning points of the orbit where
dr/de = 0. So, for each pair of values (£, L,), the shape of the potential Vg . tells us where
orbits can exist. There are bound orbits, where the r coordinate oscillates periodically between a
minimal value r; and a maximal value 7y, see Fig. 54 and escape orbits where the r coordinates
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decreases from infinity to a minimal value r,, and then increases again to infinity, see Fig. 55.
The same shape of the potential, as shown in Fig. 55, gives also rise to a plunge orbit, in
the left-hand part of the diagram, where the r coordinate increases to a maximum and then
decreases again.

W Ver.(r) A Ver.(r)

Y
\

&1 9 r 'm r

Figure 54: Bound orbit Figure 55: Escape orbit

It is our first goal to investigate for which values of the radius coordinate r circular orbits
are possible, and for which values of r these circular orbits are stable. For a circular orbit
the equations dr/dy = 0 and d*r/dp? = 0 have to hold. By (364) and (366), this requires
Ver.(r) =0and Vg, (r) = 0. Such an orbit is stable if Vi ; (1) > 0 because then by a small
perturbation of E and L, we get a bound orbit that oscillates about the circular orbit. By
contrast, it is unstable if Vi ; (r) < 0 because then a small perturbation gives an escape or a
plunge orbit.

b Ver.(r) A Ver.(r)

Figure 56: Stable circular orbit Figure 57: Unstable circular orbit
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We calculate the derivatives of our potential Vg 1, :

c2(E2—1)47’3 Arg3r?
L? + L?

—2V,§,Lz(r) = —2r +rg, (367)

A(E*—1)12r%  Prg6r
12 T

2V, (r) = — 2. (368)

The conditions for a circular orbit, Vg 1. (r) = 0 and Vg ; (1) = 0, take the following form:

2 E2 -1 4 2 3
al - )" S = e = 0, (369)
2 E2 —1)4 3 2 3 2
al L2>T+”ZQT — 2 g = 0. (370)
We multiply (369) with 4/r and subtract (370):
2, .2
< 2327“ —2r +3rs = 0. (371)

As the first term cannot be negative, circular orbits exist only for those r-values that satisfy
the inequality
3
r>grs. (372)
We have already mentioned that at the limiting radius r = 3r;/2 there is a circular lightlike
geodesic; this will be proven in Problem 3 of Worksheet 9. For r < 3rg/2 the circular orbital

velocity is bigger than the velocity of light which means that a circular orbit cannot be realised
at such a radius, neither by a freely falling massive particle nor by a photon.

We now insert (371) into (369):

2(E2 — 1) 4
il 73 )r + (2r = 3rg)r —r* +rgr = 0, (373)
02(E2—1)r2 rg
73 =-l+2-=. (374)

With (371) and (374) equation (368) gives us the following expression for Vi ; (r):

2V =12(—1+28) 41218 -2 = 67 — 2, (375)

The stability condition Vi ; (1) > 01is, thus, satisfied for r > 3rg. In the radius interval 3rg/2 <
r < 3rg circular orbits do exist; however, they are unstable which means that practically they
cannot be realised, as any small deviation from the initial condition would lead to an escape
orbit. The limiting case r = 3rg is known as the Innermost Stable Circular Orbit (ISCO).

108



We summarise our results on circular orbits of freely falling massive particles in the following
table.

r < 3rg/2 circular orbits do not exist

3rs/2 < r < 3rg | circular orbits do exist, but they are unstable

3rg <r circular orbits do exist and are stable

Note that here the word “orbit” refers to a timelike geodesic, i.e., to the worldline of a particle
in free fall. With the help of a propulsion it is very well possible for an observer to move on a
circular path with r < 3rg/2.

We will now calculate the perihelion precession of (non-circular) bound orbits. To that end,
we have to consider solutions of (363) where the r-coordinate oscillates between a minimum
value r; (perihelion) and a maximum value 7 (aphelion). The extremal values r; and ry are
characterised by the property that there the equation dr/dy = 0 has to hold, i.e., Vg 1 (r1) =0
and Vg 1. (re) = 0. These two equations,

02 E2 -1 ,’,.4 027, 7,,3

( - )i STk rsn = 0 (376)
C2 E2 -1 ,r.4 C2,r, r3

( I L T s ks =0, (377)

allow to express E and L, in terms of 71 and ry. To work this out, we multiply (376) with r3/r
and (377) with r?/ry; then we subtract the second equation from the first:

A(E*—1)
12

z

(rirs —r3rf) — vy + e +rs(ry — i) =0, (378)

A(E?*-1)

S R e + (5 T) = s (T (1) = 0, (379)

02(E2—1) TS(T1+7“2)—7’17’2

L2 - r?r? ’ (380)
This result inserted into (349) yields
(7"5(?"1—1—7“2) —r1r2) A Argri 5
i3 nE T Tnrnn =0 (381)
2 r2ry 4+ 112 — re (12 + rort + 12
“;S = 1727 T17e 52(21 2 ) . (382)
Lz T2
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This allows us to express F and L, in (363) in terms of r; and ry:

<ﬁ)2 ors(m ) - o

2.2
de riTs

rir +7’7’2—r T2—|—7‘7‘ —l—rQ
L2 L2 32(21 21 ) =t rgr = —2Ve(r). (383)

TiTa

This expression can be rewritten in a more convenient way. We observe that Vg (r) is a

fourth-order polynomial with respect to the variable r and that it has a zero at r = 0 (which
is obvious) and two more zeros at r = r; and r = 7y (by construction). Hence Vg 1 (r) must
be of the form

—2Veo.(r) =r(ro—7r)(r —m)(Ar + B). (384)

If we multiply the right-hand side out and compare with the coefficients in (383) we can deter-
mine A and B:

r1Ty — Ts(Tl + 7’2)

s

A = B = — : 385
7”% 7’% ’ T1 T2 ( )

We have, thus, shown that Vg 1(r) can be written in the following form:

7”2 s 172
— 2V (r) = " (ra —7)(r —mr) (1 — R(ﬁ +ry + 7)> (386)
From (383) we get the equation
+d
dp = ! (387)
-2 VE,LZ (T)

which can be integrated over the orbit from one perihelion to the next perihelion. If the result
of this integration is equal to 27, the orbit
is closed. The deviation from 27 gives the
perihelion precession per revolution. We
denote it by A, hence

21 4+ A

/ / _2VEL e 6

The signs must be chosen such that ¢ is
increasing on both legs of the orbit (from
perihelion to aphelion and from aphelion
to perihelion). In Fig. 58 four subsequent

perihelion passages are indicated by blue
dots. Figure 58: Perihelion precession A
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With (386) we get the following ezact formula for the perihelion precession per revolution in
terms of an elliptic integral:

o

27r+A:2/ Vi dr . (3%9)

rire

o
o T[Ty =TT — 1 \/1——5 (r1+r2+—r >

rirs

For applications in the Solar system we get a valid approximation if we linearise this expression
with respect to rg/r :

T2

\/ d
27T+A:2/ 1+ i (T1+T2+w> il =
2 r T\ Te — T T — 11

T1

rg dr
:2<1—|— re+r )w/rr/ +
2r17) (r+m2) o V=2 () — iy
T1
-1
T2
TN / dr (390)
rs\/T1T :
VIR e V=124 (r o) — rire
T1
—Ty
The integrals can be looked up in a table:
I ! D=2 L (i aresin1) = — (391)
= arcsin = arcsin arcsinl) = :
! /T172 r(ry — 1) " J/T17 /17
Viiis h
I — —r2+ (r1 + 12)r — 1179 r;—i—rQ I -0+ (gl—i-rg);r‘ (392)
NEh rr /
172 " 172 r1T2

This gives us the following approximative formula for the perihelion precession per revolution:

r
A:2<1+ 5 (Tl—f-Tg))\/TlT‘QIl—f—TS\/TlT’QIQ—Q?T:

27“17"2

TS(T1+T2)7T—27TZ 3mrs(ry+19) (393)

27”1T2 27“17“2

rs
rira

:2(1+2 (r1+7‘2)>7r+
It is common to introduce the following notation, which makes sense for any bound orbit (not
just for ellipses):

T+ T rog —T1

a = = semi-major axis , € = = eccentricity . 394
2 ] To + 11 Y ( )
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Solving these two equations for r; and ry yields r; = a(1 — ) and 5 = a(1 + €) which gives

_ 3nrg. 2a _ 6mGM ‘ (395)
2a*(1—¢2)  c2a(l—e?)

This formula is correct only up to first order in rg/a. Note, however, that no approximative

assumptions about the eccentricity have been made, i.e., the formula does not require the orbit

to be close to a circle. Moreover, note that the perihelion precession does not go to zero in the

circular limit € — 0.

A

The perihelion precession is a
cumulative effect, meaning that
it grows monotonically in the
course of time. It is usual to
give the quotient A/T', where T
denotes the (coordinate) time of
one revolution. If we insert for
M the Solar mass, and for a,
and T the values of the inner
planets, we find the numerical
values given in the table. For
the outer planets the perihelion
precession is negligibly small.

Mercury | A/T = 43.0 arcseconds per century

Venus | A/T = 8.6 arcseconds per century

Earth | A/T = 3.8 arcseconds per century

Mars A/T = 1.4 arcseconds per century

Already in the 19th century it was known that Mercury shows an anomalous perihelion pre-
cession, i.e., a perihelion precession that cannot be explained in terms of Newtonian gravity.
In 1859 U. Le Verrier found for this anomalous perihelion precession a value of 38 arcseconds
per century. Here one has to take into account that the perturbations by the other planets
result in a perihelion precession of Mercury that amounts to approximately 530 arcseconds per
century. The anomalous perihelion precession is, thus, only a relatively small contribution to
the total perihelion precession. As an explanation for the anomalous perihelion precession of
Mercury, Le Verrier and others suggested the existence of a hypothetical planet (“Vulcan”)
that was supposed to orbit closer to the Sun than Mercury, but it was never found. Einstein
gave the correct explanation of the anomalous perihelion precession in 1915, on the basis of his
linearised field equation.

6.4 Schwarzschild black holes

We will now discuss what happens to a star whose radius is smaller than rg. Then the metric
in the exterior has a “singularity” at r = rg. The correct interpretation of this singularity was
an unsolved problem until the late 1950s.

At r = rg the metric coefficient g,. = g(9,,0,) diverges to infinity. This does not necessarily
indicate a pathology of the metric; it could very well be that the metric is perfectly regular at
r = rg, and that it is the coordinate basis vector field J, that causes the divergence. Then we
would only have a “coordinate singularity” at » = rg that could be removed by a coordinate
transformation.
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In this context it is helpful to calculate curvature invariants (i.e., scalars that are formed out
of the curvature tensor). If a curvature invariant becomes infinite, this indicates a “true” sin-
gularity, a socalled “curvature singularity”, that cannot be removed by any coordinate trans-
formation. If, however, all curvature invariants remain finite at a point where some metric
coefficients diverge, then it might be just a coordinate singularity. As the Ricci tensor is zero,
for the Schwarzschild metric the simplest scalar invariant is the socalled Kretschmann scalar
which is the contraction of the curvature tensor with itself. One finds that

472
vpo S
Ryypo R'PT =

g (396)

This demonstrates that there is a curvature singularity at » = 0 (if we extend the vacuum

Schwarzschild solution that far), but it gives us some hope that at r = rg we might have only
a coordinate singularity.

We will now show that this is, indeed, true. To that end we consider ingoing and outgoing
radial lightlike geodesics in the Schwarzschild metric. It is our plan to transform to a new
coordinate system in which the ingoing (or outgoing, resp.) radial geodesics are mapped onto
straight lines. We will see that in these new coordinates the metric coefficients are regular in
the whole domain 0 < r < oco.

A radial lightlike curve has to satisfy the equations
dz* dz” dy  dp
I s ds ds  ds
If we insert the g,, of the Schwarzschild metric, we get

01_02(1_7“;)(%)%@(%)3 (308)

r

dr ds\ 2 9 rg\ 2 dr rg
ardsy® _ 1__>, —:i(l——>. 399
<d5 dt) ¢ ( r dt ¢ r (399)
In (339) we have shown that this is the equation that holds for radial lightlike geodesics, i.e.,

for classical photons in radial motion. So we see that a radial lightlike curve is automatically
a radial lightlike geodesic. This is, of course, a consequence of the symmetry.

0. (397)

In (399) the upper sign holds for outgoing photons and the lower sign holds for ingoing photons.
Integration yields

- d
ic/dt:/#:/(r r5+rs)r:/dr+rs/ dr C a00)
(1__5> r—rg r—rg
T

tct= r+r51n}r—7“5| + C. (401)

It is convenient to write the integration constant in the form C' = rgln(rg) + cty. Then the
equations for radial lightlike geodesics reads

T 1] 4 ety (402)
rs

+ct=r+ rgln
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This expression is valid in the ex- J
terior region r¢ < r < oo and
also in the interior region 0 < r <
rs. Fig. 59 shows ingoing and
outgoing radial lightlike geodesics
in both regions. In either region
the Schwarzschild metric is regular.
However, the two regions are sepa-
rated by the surface r = rg which
shows a singular behaviour in the
Schwarzschild coordinates. None of
our lightlike geodesics reaches this
surface at a finite coordinate time.

As the angular coordinates are not
shown, any point in this diagram
represents a sphere.

In the interior region r and ¢ have interchanged their
causal character: r is a time coordinate, g,. < 0,
and ¢ is a space coordinate, g; > 0. While in the
exterior region ¢ cannot stand still along an observer’s
worldline, in the interior region r cannot stand still
along an observer’s worldline. As the Killing vector
field 0 is not timelike in the interior, in this region O,

the Schwarzschild metric is not static.

We now transform from Schwarzschild co-
ordinates (t,r,9,¢) to ingoing Eddington-
Finkelstein coordinates (t', 7,9, ),

ct' = ct + rgln‘ Lo, (403)
rs
, rgdr
cdt = cdt + ——— (404)
r—Tg

This transformation maps ingoing radial
lightlike geodesics onto straight lines,

—ct' =r+cty. (405)
By contrast, the outgoing radial lightlike
geodesics are now given by the equation

ct' =r + 2r51n‘ SN cty . (406)
rs

We will demonstrate now that in the coor-

dinates (¢, 7,9, ¢) the metric coefficients are

regular for all values 0 < r < oco.

Figure 59:
Schwarzschild coordinates

-

Radial lightlike geodesics in

O<r<rg|rs<r<oo

0, timelike spacelike

spacelike timelike

r

Figure 60: Radial lightlike geodesics in ingo-
ing Eddington-Finkelstein coordinates
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d2
g —r2<d192+sin219dg02> = —(1 — 7n—S>c2dt2 + ;7’
r 1 - 5
r
r—r5< , rgdr )2 dr?
— at — _a
r ¢ r—1rg + s

<1+T—S> Ry

2ers r . (407)

= —02(1 — T—S>dt'2 + —Z2dtdr +
r r r

We have no longer a factor of 1 — rg/r in the denominator, so in the new coordinates the
Schwarzschild metric is, indeed, regular on the whole domain 0 < r < rg. Also the inverse
metric exists on this whole domain, as

crs "
=5 (1 + —S> 0 0

det(g,w) = det r r
0 0 r? 0
0 0 0 r2sin®y

2,2
= <—c2<1 - 7A—S) (1 + T—S> _C ZS> risin®y = —c?rtsin®y (408)
r r r

is non-zero for all » > 0, apart from the familiar coordinate singularity on the axis, where
sind = 0.

We have thus found an analytical extension of the Schwarzschild spacetime, which was originally
given on the domain rg < r < 00, to the domain 0 < r < co. Fig. 60 shows the radial lightlike
geodesics in this extended spacetime.

Eddington-Finkelstein coordinates were introduced by Arthur Eddington already in 1924. How-
ever, he did not use them for investigating the behaviour of the Schwarzschild metric at r = rg
but rather for comparing Einstein’s general relativity to an alternative gravity theory of White-
head. The same coordinates were independently rediscovered by David Finkelstein in 1958 who
clarified, with their help, the nature of the surface r = rg.

We discuss now the properties of the extended Schwarzschild spacetime that is covered by the
ingoing Eddington-Finkelstein coordinates.
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(a)

The metric is regular on the whole domain 0 < r < oco. It is clear that the spacetime
cannot be extended into the domain of negative r-values, as r = 0 is a curvature singu-
larity. We have already noticed that the curvature invariant R,,,,R'" goes to infinity
for » — 0. As the curvature tensor determines the relative acceleration of neighbouring
geodesics (recall the geodesic deviation equation), this means that near r = 0 any mate-
rial body will be torn apart by infinitely strong tidal forces. It is widely believed that a
true understanding of what is going on near r = 0 requires a (not yet existing) quantum
theory of gravity.

At r = rg the spacetime is perfectly regular. The tidal forces are finite there. By local
experiments near r = rg, an observer would not notice anything unusual. However,
the hypersurface r = rg plays a particular role in view of the global structure of the
spacetime: From the r — ct’—diagram one can read that it is an event horizon for all
observers in the domain r > rg, i.e., that no signal from the domain r < rg can reach
an observer at r > rg. In particular, photons cannot travel from the domain r < rg to
the domain r > rg. For this reason, the spacetime covered by the ingoing Eddington-
Finkelstein coordinates is called a Schwarzschild black hole. 1t is usually said that the
name “black hole” was introduced by John Wheeler in 1967, although there was some
debate recently that actually this name might have been used already a bit earlier. In the
Russian literature, it was common for a while to use a term that literally translates as
“frozen star”. David Finkelstein called the hypersurface » = rg a “one-way membrane”.
The term “event horizon” goes back to Wolfgang Rindler who had introduced it, in the
context of cosmology, already in 1955.

As the angular coordinates ¥ and ¢ are suppressed, each point in our spacetime diagram
represents a sphere. Correspondingly, in the diagram each light signal represents an
ingoing or outgoing spherical wave front. In the domain r > rg the radius coordinate
is increasing for outgoing spheres and decreasing for ingoing spheres, as it should be
in accordance with our geometric intuition. In the domain 0 < r < rg, however, we
read from the diagram that r is decreasing for ingoing and for outgoing spheres. As
47rr? gives the area of a sphere, as measured with the metric, this means that both the
ingoing and the outgoing spherical wave fronts have decreasing area. In a terminology
introduced by Roger Penrose, they are called closed trapped surfaces. The existence of
closed trapped surfaces is an important indicator for a black hole and plays a major role
in the Hawking-Penrose singularity theorems. Penrose called the boundary of the region
filled with closed trapped surfaces the apparent horizon. For the Schwarzschild spacetime,
in the representation used here, the apparent horizon coincides with the event horizon.
This is not true for other black-hole spacetimes.

Along any future-oriented timelike curve in the domain r < rg, the r-coordinate decreases
monotonically, as can be read from the r — c¢t’—diagram. If an observer was foolhardy
enough to enter into the region 0 < r < rg, he will end up in the singularity at r = 0.
In Worksheet 11 we will prove that this happens in a finite proper time interval: For the
lifetime A7 (measured in terms of proper time) that an observer can have in the domain
0 <r <rg, we will find the bound ¢ AT < 7rg/2. We will also prove that the maximal
value of A7 is reached by a freely falling observer; any attempt to escape from the black
hole by accelerating away from the singularity, e.g. with a rocket engine, actually shortens
one’s lifetime.
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(e) We have emphasised several times that the
Schwarzschild metric applies only to the exterior
region of a spherically symmetric celestial body,
r > r.(t), because only there is the vacuum field
equation satisfied. We consider now a star whose
radius 7,(t) is bigger than rg at the beginning and
then shrinks beyond 7g. As soon as the radius is
smaller than rg, the star is doomed. It will col-
lapse to a point in a finite time. This follows from
the fact that every volume element of the star, in
particular every volume element near the surface,
moves on a timelike curve. So the argument of
item (d) above implies that the radius of the star
shrinks to zero in a finite time. This phenomenon,
which is known as gravitational collapse, is shown

in Fig. 61. The dashed line indicates the surface
of the star. The horizon forms at the moment when the radius of the star becomes

smaller than its Schwarzschild radius. This moment is unobservable for an observer in
the domain r > rg. For such an observer, the surface of the star approaches the value
r = rg asymptotically, as can be read from the diagram. During this process, the photons
from the surface of the star to the observer will be more and more redshifted: We will
prove in Worksheet 10 that the redshift goes to infinity if the light source comes closer
and closer to r = rg. As every measuring device is sensitive only to a finite frequency
range, this means that the star will practically become invisible at a finite time.

-
r

Figure 61: Gravitational collapse

For the existence of black holes there is good observational evidence by now. We believe that
there are two types of black holes:

o Stellar black holes of 1 to 100 Solar masses, which can be observed by way of X rays
emitted from matter that is strongly accelerated when falling towards the black hole.
The best known example is the X ray source Cyg X1. Until recently, it was thought that
stellar black holes could have masses of up to 20 Solar masses. In September 2015, a
gravitational-wave signal was received by the LIGO detectors (see next Section) whose
analysis indicated that it came from the merger of two stellar black holes of about 30
Solar masses each, so that the resulting black hole had a mass of about 60 Solar masses.
This is why we now believe that the masses of stellar black holes may range up to about
100 Solar masses.

o Supermassive black holes of 10° to 10'° Solar masses, which are situated at the centres of
galaxies. The best known example is the supermassive black hole at the centre of our own
galaxy which is associated with the radio source Sgr A*. Evidence for a black hole comes
from infrared observations of stars that orbit the centre of our galaxy. (With optical
telescopes, the central region of our galaxy cannot be observed because of too much dust;
in the infrared regime, the dust is largely transparent.) From such observations one can
estimate the mass of the central object and the volume to which this mass is confined. The
results strongly hint to a black hole. Supermassive black holes are believed to sit at the
centres of most, if not all, galaxies. A picture of the socalled shadow of the supermassive
black hole at the centre of the galaxy M87 was released to the public by the Event Horizon
Telescope Collaboration in April 2019, see next Subsection.
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The existence of black holes whose mass is smaller (mini black holes) or in between (intermediary
black holes) is controversial. Also, it is not clear by now if all existing black holes have formed
by way of gravitational collapse and subsequent merger, or if some of them came into existence
already with the big bang (premordial black holes).

Keep in mind that Schwarzschild black holes are spherically symmetric and thus non-rotating.
Rotating black holes are described by another solution to Einstein’s vacuum field equation
that was found by Roy Kerr in 1963. For the stellar and supermassive black holes in Nature,
the rotation is probably non-negligible. So one would have to use the Kerr metric, and not
the Schwarzschild metric, as a viable mathematical model for them. In comparison to the
Schwarzschild metric, the Kerr metric features two interesting new properties. (i) There is a
region outside the horizon, known as the ergoregion which can be used for extracting energy
from the black hole by the socalled Penrose process: If a particle enters into the ergoregion
and breaks into two particles such that one fragment falls into the black hole and the other
fragment escapes to infinity, the energy of the escaping particle may be bigger than the energy
of the composed particle in the beginning. (ii) The true singularity at the centre is no longer a
point but rather a ring. If the mass and the spin of the black hole are big enough, an observer
may pass through this ring unharmed.

In addition to a mass M and spin J, one may also give an electric charge @) to a black hole. Most
astrophysicists believe that this is not very relevant because celestial bodies usually have a very
small net charge. The solution to Einstein’s electrovacuum solution with M and @) different
from zero but J = 0 is known as the Reissner-Nordstrom solution; with all three parameters
different from zero it is called the Kerr-Newman solution. The Kerr-Newman solution, which
contains the Schwarzschild, the Reissner-Nordstrom and the Kerr solutions as special cases, is
the most general solution to Einstein’s field equation with the energy-momentum tensor of an
electromagnetic field that describes a time-independent black hole and is asymptotically flat.
In other words, such an object is uniquely characterized by the three parameters M, J and ().
This result is known as the no hair theorem. If one allows for other energy-momentum tensors,
one may construct “hairy” black holes. E.g., one could consider the energy-momentum tensor
of a scalar field, i.e., one could give a “scalar charge” to a black hole. Black holes with “scalar
hair” are not uniquely characterized by finitely many parameters. In this course we will not
discuss any black holes other than the Schwarzschild black holes.

We have constructed Schwarzschild black holes with the help of ingoing Eddington-Finkelstein
coordinates whose main property is that they map ingoing radial light rays onto straight lines.
We will now briefly discuss what happens if we do the analogous construction with outgo-
ing radial light rays. To that end, we introduce outgoing Eddington-Finkelstein coordinates
(t", 7,9, @), where

r rgdr
— — 1], cdt’ = cdt — —27
rs r—rTrs

(409)

ct" =ct —rgln

In these coordinates the outgoing radial lightlike geodesics are mapped onto straight lines. In
complete analogy to the ingoing Eddington-Finkelstein coordinates, also in these coordinates
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the metric becomes regular on the whole e

domain 0 < r < oo. In this way .

we get another analytic extension of the

Schwarzschild metric from the domain / 7
rg < r < oo to the domain 0 < r < fep
00. By construction, it is obvious that - -
it is just the image under time-reflection
of the extension we got from the ingoing
Eddington-Finkelstein coordinates. Now
the hypersurface r = rg is an event hori- 5
zon for observers in the region 0 < r <
rg: Signals can cross this hypersurface
only from the inside to the outside, but
not from the outside to the inside. For
this reason, one speaks of a Schwarzschild
white hole. Up to now, there is no indi-
cation for the existence of white holes in
Nature.

.................. Ll >

Figure 62: Radial lightlike geodesics in outgoing
Eddington-Finkelstein coordinates

The mazimal analytic extension of the Schwarzschild metric was found independently by Mar-
tin Kruskal and by Gyorgy Szekeres in the late 1950s (and also, with different mathematical
techniques, by Christian Frgnsdal). This maximal analytic extension, which is probably only
of mathematical interest, can be found if one transforms on the domain rg < r < oo from
Schwarzschild coordinates (¢, 7,1, ¢) to Kruskal(-Szekeres) coordinates (u, v, 9, ¢) via

t t
= L1 1 /) cogh-S , v= ] & 1) ginh-S" (410)
rs QTS rs QTS

On the domain rg < r < 00, —o0 < t < oo, the map (¢,r) — (u,v) is a diffeomorphism, i.e., an
allowed coordinate transformation, although the inverse map cannot be written down in terms
of elementary functions. In a u — v—diagram, the lines ¢t = ¢y are represented as straight lines,

Cto
—t h(—) , 411
v = tan o u (411)

while the lines r = r(y are represented as hyperbolas,

u+tv= (E - 1) erolrs (412)
s u—v
In Kruskal(-Szekeres) coordinates the Schwarzschild metric reads
4 3
g= 2T gmr/rs (du® — dv*) 4 r?dQ?, (413)
r

where 7 is to be viewed as a function of u and v. The metric is regular on the domain v*—u? < 1.
As shown in Fig. 63, this maximal domain covers two copies I und I’ of the exterior region
rg < r < oo, a black hole interior region II and a white hole interior region II’. The boundary
of the Kruskal-Szekeres extension is given by the equation v? — u? = 1 which corresponds to
r = 0. In the lettering of the diagram it is m = GM/c?, hence rg = 2m .
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Figure 63: Maximal analytical extension of the Schwarzschild spacetime in Kruskal coordinates

In the u — v—diagram (Kruskal-Szekeres diagram) light signals go under 45 degrees, du = +dv.
Light signals enter into the black-hole interior region by crossing one of the horizons, then they
end up in the singularity at » = 0. In the white-hole interior region all light signals start at the
singularity. They leave the interior white hole region I’ over one of the horizons.

The ingoing Eddington-Finkelstein coordinates cover the regions I and II of the Kruskal-Szekeres
diagram. Only this part of the diagram is of relevance for the spacetime outside a collapsing
star. Correspondingly, the outgoing Eddington-Finkelstein coordinates cover the regions I and
IT’ of the Kruskal-Szekeres diagram.

Note that each point in this diagram represents a sphere, as the coordinates ¥ and ¢ are
not shown. Each straight line ¢ = constant through the regions I and I' represents a spatial
3-dimensional submanifold of the maximally extended Schwarzschild spacetime all of which
together describe the history of a 3-dimensional space that is known as the Einstein-Rosen
bridge. If we follow a line ¢ = constant from one end to the other, we pass through a sequence
of spheres whose radius decreases from infinity to rg and then increases again to infinity. This
is what one calls a wormhole with a throat of radius rg. However, as signals cannot connect
a point in the region I with a point in the region I’, this wormhole is not traversable. The
Einstein-Rosen bridge was discussed in a paper by Einstein and Rosen in the 1930s, at a time
when the maximal extension of the Schwarzschild metric was not yet known and the character
of r = rg as a horizon was not yet understood.

We repeat that the maximal extension of the Schwarzschild spacetime is more of mathematical
than of physical interest. For a thorough understanding of Schwarzschild black holes the ingoing
Eddington-Finkelstein coordinates are quite sufficient.
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6.5 Shadow of a Schwarzschild black hole

We fix an observer at radius rp and consider all light rays that go from the position of this
observer into the past. (To put this another way, we consider all light rays that arrive at the
position of the observer.) They fall into two categories: Category I consists of light rays that go
out to infinity, category II consists of light rays that go to the horizon at » = rg. The borderline
case that separates the two categories is given by light rays that asymptotically spiral towards
the light sphere at r = 3rg/2.

Now assume that there are light sources distributed everywhere in the spacetime but not be-
tween the observer and the black hole. Then the initial directions of light rays of category I
correspond to points at the observer’s sky that are bright, and the initial directions of light rays
of category II correspond to points at the observer’s sky that are dark, known as the shadow
of the black hole. The boundary of the shadow corresponds to light rays that spiral towards
r = 3rg/2. It is our goal to calculate the angular radius 6y of the shadow, in dependence of rg
and ro.

Figure 64: Angular radius fg, of the shadow

For any light ray, the ini-
tial direction makes an
angle 6 with respect to
the axis that is given, ac-
cording to Fig. 65, by
Ay Ay / 0

tanf = lim —= .
Az—0Ax ® Ax

To

From the Schwarzschild

metric in the equatorial Figure 65: Initial direction of light rays

plane,
o s\ 2 ;.2 dr? 27 2
g——(1—7)cdt+1_r_s+rdg0, (414)
r
we can read the length Az and Ay in the desired limit,
d
tanf = i - (415)
s\~ /2
< 1—— > dr
r T=T0
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dr/dp can be expressed with the help of the orbit equation (341), hence

2 s
tan’f = I "o =3 ©_ '8 (416)
b—g—r%—f—rgro b_g_TO+TS
where, as before,
L,
b= CE . (417)

By elementary trigonometry,

sin?0  cos?# e

sin?0  sin%0 b2 (7‘0 — 7“5) ’

bz (7“0 — 7”5)

sin’f = 3
r
15)

(418)
The angular radius 6y, of the shadow is given by the angle 6 for a light ray that spirals towards
r = 3rg/2. This light ray must have the same constants of motion E and L, as a circular light

ray at 7 = 3rg/2 (because the tangent vectors of these two light rays come arbitrarily close to
each other),

272
, C°L% 27
as we have calculated in Problem 3 of Worksheet 9.
This gives us g, in dependence of rg = 2GM/c* and 7o,
27 12 —
sin%0y, = 2 "s(ro = Ts) (420)

3
4rg

This formula was found by J. Synge [Mon. Not. Roy. Astron. Soc. 131, 463 (1966)]. He did
not use the word “shadow”, however, because he considered the time-reversed situation and
calculated what he called the “escape cones” of light. If the observer is far away from the black
hole, ro — rg & rp, Synge’s formula can be approximated by
tanfy, ~ sinfy, ~ V3 X Sﬂ .

27 O
Up to a factor of v/3 , 6, is then the angular radius under which a sphere of radius 3rg /2 is
seen from a distance ro according to Euclidean geometry. This means that a naive Euclidean
estimate correctly gives the order of magnitude of the diameter of the shadow if the observer
is far away.
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Note that
ro —00: Oy, — 0 (i.e., the shadow vanishes).
ro =3rg/2: 04 =m/2 (i.e., the shadow covers half of the sky).
ro—rs: BOg — m (i.e., the shadow covers the whole sky).

The following picture shows, for various observer positions, in red the part of the sky that is
bright. Note that our calculation applies to a static observer at the corresponding position.
For a moving observer the aberration formula has to be applied. As the aberration formula
maps circles onto circles, the shadow of a Schwarzschild black hole is always seen circular,
independent of the state of motion of the observer. For an observer moving towards the black
hole the shadow is smaller than for a static observer, for an obsever moving away from the
black hole it is bigger.

7’021.057’5 7"021.37“5 7’0237’5/2 7"022.5TS 7’0267“5
Figure 66: Escape cones of light

We have good evidence that there is a supermassive black hole at the centre of our galaxy,
associated with the radio source Sgr A*. For the shadow of this black hole (M ~ 4 x 10% M,
ro ~ 8.5kpc) Synge’s formula gives an angular diameter of 20, ~ 54 pas. This corresponds
to the angle under which a grapefruit on the Moon is seen from Earth. Another promising
candidate is the black hole at the centre of the galaxy MS87 in the constellation Virgo. In this
case (M =~ 6 x 10° M, ro =~ 16 Mpc) one finds 26y ~ 40 pas. For all other known black-hole
candidates the predicted angular diameter of the shadow is considerably smaller. A picture of
the shadow of the object at the centre of M&87 was actually made public on 10 April 2019, see
below.

Note that the shadow would exist not only for a black hole, but in exactly the same way also
for an ultracompact star (rg < r. < 3rg/2), provided the star is dark. It is the light sphere at
r = 3rg/2 and not the horizon at r = rg that is relevant for the formation of the shadow. The
existence of ultracompact stars is highly speculative. Also, a wormhole would cast a shadow if
there is no light coming out of its mouth. However, again, the existence of wormholes is highly
speculative.

Our calculation was based on the Schwarzschild metric, so it does not apply to a rotating black
hole. The latter is to be described by the Kerr metric; then the shadow is not circular but
flattened on one side which, however, is not noticeable if we observe from the top or from the
bottom. In any case, our calculation with the Schwarzschild metric gives the correct order of
magnitude for the size of the shadow.

For observing the shadow we need light sources which provide a bright backdrop against which
the shadow can be seen. We need to know how many images each light source produces. To
that end we fix a static observer at radius rp and a static light source at radius r;,. We exclude
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the case that observer and light source are exactly aligned (i.e., that they are on a straight line
through the origin of the coordinate system) which would give rise to Einstein rings instead of
point images. If one thinks of each lightlike geodesic as being surrounded by a thin bundle that
is focussed onto the observer’s retina (or onto a photographic plate) with a lens, every lightlike
geodesic from the light source to the observer gives rise to an image.

rL

ro

Figure 67: Positively oriented light rays Figure 68: Negatively oriented light rays

The qualitative imaging features follow from the fact that the bending angle grows monotoni-
cally to infinity for light rays that approach the photon sphere at r = 3rg/2. As a consequence,
for any integer n = 0,1,2,3,... there is a light ray from the light source to the observer that
makes n full turns in the clockwise sense, and another light ray from the light source to the
observer that makes n full turns in the counter-clockwise sense. Hence, there are two infinite
sequences of light rays from the light source to the observer, one in the clockwise sense (left
picture) and one in the counter-clockwise sense (right picture). Either sequence has as its limit
curve a light ray that spirals asymptotically towards r = 3rg/2. The pictures are not just
qualitatively correct; they show numerically integrated lightlike geodesics in the Schwarzschild
spacetime. One sees that for each sequence the light rays with n = 1,2, 3, ... lie practically on
top of each other. Correspondingly, the observer sees infinitely many images on either side of
the centre. Each sequence rapidly approaches the boundary of the shadow.

In the picture on the right, which is again the
result of a calculation, the shadow is shown as
a black disc. On either side only the outermost
image (n = 0) can be isolated, all the other
ones clump together and they are very close to
the boundary of the shadow. If there are many
light sources, their higher-order images form a Fi . R .

: ) igure 69: Multiple imaging
bright ring around the shadow.
It can be shown that the outermost images are brighter than all the other ones combined. Of
the two outermost images, the brighter one is called the primary image and the other one is
called the secondary image. All the remaining ones, which correspond to light rays that make
at least one full turn around the centre, are known as higher-order images.

The first computer simulation of the visual appearance of a Schwarzschild black hole was
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produced by J.-P. Luminet in 1979. Here it is assumed that the light comes from a rotating
accretion disc. Part of the disc is in front of the black hole, so it covers part of the shadow.
The rear part of the disc appears bent upwards because of the light bending. One side of the
disc is approaching the observer; because of aberration it appears brighter than the receding
side. This is sometimes called Doppler beaming. The higher-order images form a thin bright
ring around the shadow.

Figure 70: From J.-P. Luminet, Astron. Astrophys. 75, 228 (1979)

A similar simulation was shown in the movie “Interstellar”. Here the viewing angle is smaller,
i.e., the accretion disc is seen almost exactly edge-on. For this reason one sees both the upper
side and the lower side of the rear part of the disc.

Figure 71: From the movie “Interstellar”

Finally, on 10 April 2019 the first “real picture” of a black hole was presented to the public.
The data were taken in April 2017, so the evaluation took two years. The picture was produced
by a collaboration of approximately 350 scientists with the so-called Fvent Horizon Telescope.
In contrast to what the name suggests, this is not one telescope but it consists of many (radio)
telescopes distributed over one hemisphere of the Earth. Each of these telescopes measures
the intensity and the phase of the incoming radiation. From these data the Fourier transform
of the image can be calculated, from which then a real image is produced. This method is
known as aperture synthesis. It was invented in the 1950s by Martin Ryle which earned him
the physics Nobel Prize in 1974. When used with telescopes on different continents one speaks
of Very Long Baseline Interferometry (VLBI).
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Figure 73: EHT

In 2017, when the successful observations took place, the Event Horizon Telescope included the
Atacama Large Millimeter Array (ALMA) and the ALMA Pathfinder Experiment (APEX) in
Chile, the South Pole Telescope (SPT), the Large Millimeter Telescope (LMT) in Mexico, the
James Clerk Mazwell Telescope (JCMT) and the Submillimeter Array (SMA) on Hawaii, the
Submillimeter Telescope Observatory (SMT) in Arizona, USA, and the Pico Veleta Telescope
(PV) in Spain. As scattering would wash out the image at larger wave lengths, the observations
were made at a wave length of 1.3 mm which corresponds to a frequency of 230 GHz. At such a
small wave length, VLBI is possible only since a few years. As radiation at 1.3 mm is partially
blocked by the water vapour in our atmosphere, only telescopes at a high altitude can be used.
Although our Sun is not very bright at 1.3 mm, the observations were done during the night
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time because then the atmosphere is more stable. At four nights in April 2017, the weather
conditions were excellent so that observations were possible at all stations. Both Sgr A* and
M87 were observed. However, the environment of Sgr A* turned out to change so rapidly that
no clear and stable picture could be produced. In the case of M87 the central black hole is a
thousand times heavier, so the orbital periods of particles revolving around the black hole are
of the order of days, rather than minutes as for Sgr A*. This is the reason why a surprisingly
good picture of this object could be produced.

MS87*  April 11, 2017

50 pas
April 6 April 10
@) @) O
0 1 2 3 4 5 6

Brightness Temperature (10° K)

Figure 74: From The Event Horizon Tele-
scope Collaboration, Astrophys. J. Lett.
875, L1 (2019)

One clearly sees a black disc in the centre and a bright ring around it. The bright ring is
interpreted as radiation coming from an accretion disc. The fact that one side of the ring is
considerably brighter than the other indicates that this side is moving towards us. Comparison
with simulations indicate that the spin vector of the accretion disc points into the page and a
bit to the left. (In the pictures North is up and West is right.) All observations are in agreement
with the assumption that the spin of the black hole is aligned with the spin of the accretion
disc. The fact that the shadow is practically circular does not mean that the black hole is
non-rotating: As we look onto the system almost from the bottom, even for a fast rotating
black hole the shadow would be seen as almost circular. The thin ring of higher-order images
around the shadow is not visible; this is in agreement with simulations which show that it is
too faint. The interpretation of the bright ring as an accretion disc is still under debate. It is
also possible that we are looking into the (hollow) jet of M87, or that both an accretion disc
and the jet contribute to the ring.
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6.6 The interior Schwarzschild solution

The Schwarzschild metric describes the vacuum region outside of a spherically symmetric star
(or a black hole). We will now derive a metric that describes the interior region of a spherically
symmetric and static star. We use the simplest matter model for the star, i.e. an incompressible
perfect fluid. This interior metric was found by K. Schwarzschild in 1916. It is known as the
interior Schwarzschild solution.

The metric should be spherically symmetric and static,
g = —e"OEdt? + Aar? 4 2 (sin®9dy® + dv?), (421)
and it should satisfy Einstein’s field equation (without a cosmological constant)

R _ 8nG

R,, — 5 Ipo = 7Tpg (422)
with a perfect fluid source,
T = (u+%>UpUa+pgpa. (423)
As the star is static, the four-velocity must be of the form U? = udf. The factor u follows
from the normalisation condition g,,U°U? = —c?,
Ur = e "% . (424)

We assume that the star has a constant density,
i = constant . (425)

As the star is static and spherically symmetric, the pressure p can depend on r only. The
function p(r) is to be determined.

Einstein’s field equation gives us a system of ordinary differential equations for the three un-
known functions v(r), A(r) and p(r). Before writing out this system of differential equations, we
consider the equation V?T,, = 0 which is a consequence of the field equation (recall Problem
3 of Worksheet 8). We know that, for a perfect fluid, this results in the Euler equation (239)

(u + %)UPVPU" + V.p (g”’ + C%UTU“) ~ 0. (426)

We will now demonstrate that this equation, which holds necessarily for a solution of the
field equation, determines the pressure p(r). (Actually it is always a good idea, when solving
Einstein’s field equation in matter, to begin with the equation V*T,, = 0.)

If we express covariant derivatives in terms of partial derivatives, the Euler equation reads
1
(u + %)Uﬂ (8,U7 + T7,,U") + d.p (g“’ + EUTU") — 0. (427)

For x7 = t,4, v, this equation is trivially satisfied. The fourth component, % = r, however,
results in

(” + %)wt)%rtt +pg" =0.
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With I'"y; from (303) we find

2
(N+§)M%WV'+I?’;%=0, e’/

/
e“/Q%(ucg+p) + &2y =0,

<e”/2 (pc®+ p))l =0,

e’? (puc+ p) = B,

p(r) = Be "M% _ ;2.

(428)
So the remaining problem is to determine v(r) and A(r) from the field equation

The components of the Ricci tensor for a spherically symmetric and static metric are known
see (304):

v
s
S

+

Ry = e’ ( v + ) — ald Z)
r )

(429)

The off-diagonal components of the Ricci tensor are zero. — We now calculate the Ricci scalar

R Rrr R
R = R,,¢" = Rug" + R g™ + Rysg”’ + R 977 = L N Rl
git Grr [
ﬂ %7)\ I/” (1/)2 )\/l/, V/ . V” (V/)Z /\/V/ )\/
_7£Ze (?Jr 1 _4+7>+e <_? 4+4+7)

2 A Tox(, / A " (V,)2 NV Q(A/_V/) 2 2
+7’2<1_€ -3¢ (V—A))-e (—I/— 5 + 5 + " ——)—1——.

This gives us the following non-zero components of the Einstein tensor, i.e., of the left-hand
side of the field equation:

e

+c_26u{e—x< V)’ —/) 2
2
=c2ev{~<%’—$>+i},

r2
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R 2 7\2 1,0 2N — o/ 9 2
Rﬁﬁ—§g§§:1—6_)\—£€_>\(V/—)\/)—%{6_)\(—V”—(V) —|—)\V+ (>‘ V)_ﬁ)—i__

1"

B B _ B Z 7,,_)\/ Z ,,,.2(1//)2 B ,,,.2)\/1// B ;o B
—/Y%+e<2+2+2+4 . T()\V)—f-/l/)/l/

/ / /! N2 /.,/
o (V=N (V)_A_V)
- e <2r Tt Ty 1)

R ) R
Ry, — 5 Jov = sin?d (Rw — 591919> ) (430)

The off-diagonal components of the Einstein tensor are all zero. — We now turn to the right-hand
side of the field equation.

2
T = (0+ 5) 00+ pge = (1+ 5) () + o

_ <H+%>C462V6_V_p626u:/J/C46V,

I = <M+ %)UrUﬁpgm = pet,

p
Tyy = (M—f' g)UﬂUﬁ + pges = pr*,

Tpp = (H + %) U,Up + DGy = prisin®y = Tyysin . (431)

Again, all off-diagonal components are zero. So the field equation gives us three independent
equations, i.e., the tt-, rr- and ¥9J-component:

e (e (U - ) o L) = S e

2 22 M
v 1 e G
137) R P
(F2) r +7"2 r ct pes

v =N v V')? N/ G
(Fg)}/Z’eﬂ< 2r +E+(4> 4 )Z ct pr.

130



We begin with (F1):

87
e MNr —e M+ 1 — 7T2 ur* =0,
c
StG 3/
DY
_ _ ) =0
< e c2'u3) ’
SrG  1r?
.Y
— — — =C. 432
e’r+r CQM?) ( )

The metric should be regular everywhere inside the star, in particular at » = 0. As this requires
e~*0 to be finite, evaluating (432) at r = 0 gives C = 0, hence

G
S (433)

So the remaining task is to determine v(r). We turn to (F2):

e M) = 1

_a (1/ n 1 ) 1 8rG
P _ _

r 72 r2 A

We insert our earlier results for p(r) and e ™) i.e., eqs. (428) and (433):

(1 B SWCC:/M"Q)(Z N i) 1 87T4G(Bey/2 B M02> — 0,

3 r 72 72 c
8rG o\ V 1 8rG 1 8rG 8rG
- z - — LT pev2 4 ST
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L 87G L\ Y 287G BTG, 0 rev/?
32 r 3 2 V ct o 3
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24/1 = 22 wr
e’/? 87 G pure’/? B 8tGBr _ 0
8rG G ¢
2\/1— 32;““2 302\/ _ ?12 (12 204\/ _ ?12 W
!

e/? 3B _ 0
8 817G -

\/ — —;2 w2 2uc2\/1 — —;2 2

e/? 3B _ D
87G 871G ’
\/ — ;2 wr? 2/1,62\/1 — ;2 wr?
3B &G

V)2 _ _ ] _ )
c 2412 \/ 32 1"



We have thus determined the unknown metric functions

3B 8tG 8rG
(/2 = —~ D\/ 1 — 2 D =1~ 2 434
and the pressure u(r
p p(r> _ B@_V(T)m Mc2 _ B — ILLC26 (r)/2
eu(r)/Q

81G
(—B +2D,ucz\/1— ?12 /M’2>
(3B—2D,u02\/1— 8;0?/17"2)

It can be checked that (F3) gives no further information. The general solution involves three
constants p, B and D which remain undetermined by the field equation.

(435)

To have a viable star model, our interior Schwarzschild solution should be matched, at the
surface of the star r = r,, to an (exterior, vacuum) Schwarzschild metric with mass M,
2GM

e’ = A = 1 ot re <1 <00 .
cr

We will now show that this allows to express the three constants p, B and D in terms of r, and
M. The matching conditions (or junction conditions) can be derived from the field equation,
in a similar fashion as the junction conditions for electromagnetic fields can be derived from
Maxwell’s equations. We will not derive the general junction conditions here. For the case at
hand, they can be motivated directly: An obvious condition is that the metric coefficients must
be continuous at r = r,, because otherwise the Christoffel symbols would have Dirac-delta-like
singularities which would result in a jump of the geodesics (freely falling particles and light
rays) when they pass through the surface of the star. A second condition is that the pressure
must go to zero if r = r, is approached from the inside, because otherwise the star would
expand and could not be static. So we have the following junction conditions:

3B 8rG 2GM

(J1) €*/? continuous at r = r,: o D\/l — E;TCQ pr? = /1 — el

81G 2GM
(J2) e continuous at r =r,: 1 — ;TCQ pr? =1 — o

&G
(J3)p:0at'r:7’*: B:2DMC2\/1— ;2 Iu,r,z
c

Condition (J2) immediately allows us to express p in terms of M and r,:

4 3

ST = M. (436)

3

At first sight, this equation seems to be obvious: The total mass of the star is its (constant)
mass density multiplied with its volume. Actually, this result is far from obvious: M was
defined asymptotically, by comparison with the Newtonian theory, not as an integral over the
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mass density. Moreover, we are in a curved geometry, so there is no reason why the Fuclidean
formula for the volume of a sphere should hold. In fact, it is kind of mystery that this simple
formula for p is true.

Inserting this result into (J1) and (J3) gives:

2(D+1 2GM
B:u/wz 1 — G ’
3 2,
2GM
B =2Duc*y/1 — Cj ,
c2ry

hence

1 3M 3 2GM
D == B = 1 — . 437
2" 43\ c2r, (437)

We have thus determined the three constants p, D and B in terms of r, and M. Finally, we
insert these values into the expressions for v(r), A(r) and get the interior Schwarzschild solution
in comprehensive form:

1 T ror? ror?
v(r)/2 _ — 1 2% _ [1 .58 “A(r) 1 _ ST
e = 3 <3 1 - 1 3 ) , e =1 el (438)

where 75 = 2GM/c? is the Schwarzschild radius. The pressure is

2
Y P R PR
) 3ctrg T r
p(r) = :
8w Gr? 2
<3‘/1—r—5—,/1—7“5§ )
T 73

Clearly, we must have r, > rg because otherwise the pressure is not real. This should not come
as a surprise: We know already that a star with r, < rg cannot be static but collapses in a
finite proper time interval into a singularity.

(439)

However, for a physically reasonable solution, we should also require that the pressure is finite
and non-negative everywhere inside the star. From

rs
Y R R
3047“3( . )
o) = 440
pO) = o == (440)
Tx

3 1—T—S>1.
\/ Tx

After squaring both sides, this condition can be rewritten as

9
Ty > g?"s . (441)

we read that this requires
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So the radius of the star cannot be arbitrarily close to the Schwarzschild radius, it is bounded
away by a factor of 9/8. This is known as the Buchdahl limit. We will discuss the r dependence
of the pressure inside the star and the Buchdahl limit in Worksheet 12.

We have derived the Buchdahl limit here for an incompressible perfect fluid model only, yu =
constant. Actually, Hans Buchdahl has shown in 1959 that this limit holds for all perfect fluid
models provided that the mass density is monotonically non-increasing from the centre to the
surface, dyu/dr < 0.

A star with a radius that lies between the Schwarzschild radius and the radius of the photon
sphere, 2m < 7, < 3m in units of m = GM/c?, is called ultracompact. If ultracompact stars
may exist in Nature is a matter of debate.

7 Gravitational waves

In 1916 Einstein predicted the existence of gravitational waves, based on his linearised vacuum
field equation. In 1918 he derived his famous quadrupole formula which relates emitted gravi-
tational waves to the quadrupole moment of the source. Since the 1920s, a number of wave-like
exact solutions to the (full non-linear) vacuum Einstein equation were found.

In this chapter we will derive the most important properties of gravitational waves on the basis
of the linearised Einstein theory. As a consequence, the results are true only for gravitational
waves whose amplitudes are small. We will see that, to within this approximation, the theory of
gravitational waves is very similar to the theory of electromagnetic waves. On the basis of this
simplified theory we will understand how gravitational wave detectors work, in particular the
interferometric detectors that have actually successfully detected the first gravitational wave
signal in September 2015, and many more since then.

7.1 The linearisation of Einstein’s field equation

We consider a metric that takes, in an appropriate coordinate system, the form

Guv = Nuv + h;w . (442)

In the following we will linearise Einstein’s field equation with respect to the h,, and their
derivatives. This gives a valid approximation of Einstein’s theory of gravity if the h,, and their
derivatives are small, i.e., if the spacetime is very close to the spacetime of special relativity. We
say that a quantity is small of first order if quadratic and higher-order terms in this quantity
and its derivatives can be neglected.

Our assumptions fix the coordinate system up to transformations of the form
at = Tt =a" + A + fH(x) (443)
where (A*,) is a Lorentz transformation, A*,A?;7,, = 1,,, and the f* are small of first order.
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We agree that, in this chapter, greek indices are lowered and raised with 7,, and n*”, respec-
tively. As an abbreviation, we write

o= b0 = ht =", . (444)

Then the inverse metric is of the form

g’r =" — hr. (445)
Proof: (n,w + hw) (n”p — h”P) = Nun? + hpn”® — nuh + ... = 5Z + h — ht =
of , where the ellipses stand for a quadratic term that is to be neglected, according to our
assumptions. O

We will now derive the linearised field equation. As a first step, we have to calculate the

Christoffel symbols. We find

1 1
v, = §gpa (0,9or + 0vGop — 0o ) = 5?7"" (Opuhoy + Ovhop — Ophyw ) + ... (446)

Thereupon, we can calculate the components of the Ricci tensor:.

Ry = 0,1%,, — 0,T%, + ... =

0 (Dyhes + Ouhoy — Ooh) — 517 0, (b + Do — Do) =

(0,0,h — 0,0°hy, — 0°0yhg, + Ohy, ) (447)

N —

Here, O denotes the wave operator (d’Alembert operator) that is formed with the Minkowski
metric,

y 1
0 = 99,0, = 8V0, = —02 + 69,0, = — = P+ A. (448)
c
From (447) we can calculate the scalar curvature:

1
R = ¢"Ru = 0" Ru + ... = 50" (0,0,h — 8,0°hy, — 870,hg, + Ohy,)

(Oh — 80hy, — 80y, + Oh) = Oh — 87 hy,. (449)

N —

Hence, the linearised version of Einstein’s field equation (without a cosmological constant)

87G
2R, — Rguw = 26T, , K= :4 (450)
reads
0u0sh — 0,0°hy,, — 070,hoy + Ohpy — 1 (Oh — 0°07hyr ) = 28T, . (451)
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This is a system of linear partial differential equations of second order for the h,,. It can be
rewritten in a more convenient form after substituting for h,, the quantity
h

Y = h,uu - 577;w . (452)

As the relation between h,, and 7,, is linear, the h,, are small of first order if and only if the
Yuw are small of first order. In order to express the hy,, in terms of the v,,, we calculate the
trace,

1
V=0 = h—54h = —h, (453)

g
hll/V —= ’yuu — 5”/‘” . (454)

Upon inserting this expression into the linearised field equation (451), we find

1 1
— 0:077 — 0,0V + W — 070, Yop + W"’
1 1
+ O —Wﬂ— N (— B — 070774, +M) = 2kT,, , (455)

OV — 040V — 000" Yop + N 0°0" Yor = 2KT, . (456)

This equation can be simplified further by a coordinate transformation (443) with a* = 0 and
AMV = 557
=t + fH(x) (457)

where the f* are small of first order. For such a coordinate transformation, we have obviously

dz" — da" + 0,f"dz” (458)
and thus

Oy > Oy — Opf70: . (459)
Proof: (dz* + 9,f"da?) (0, — 0,f70;) = dat(9y) + 0,f"dxP(0,) — OpfTdat(0;) + ... =
0+ Oy — Do o

With the help of these equations, we can now calculate how the g, the h,,, and the v,, behave
under such a coordinate transformation:

I = g(@u, d,) — g(&u —0uf70;,0, — &,f"ag) = 9w —O0uf 97 — 00’ Guo , (460)
h/u/ = guu - 77/“/ = gw/ - aungTV - au.fggua - 77;11/ = hf,uu - 8ufT777V - ayfanua + ... ) (461)

1 1
YV = hw—inﬂyh = hy—0,f,—0, fﬂ—inw(h—mT ) =Y —=0ufo =00 futmum0- [T . (462)
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For the divergence of v, which occurs three times in (456), this gives the following transfor-
mation behaviour:

Yy = My — 010, 1, —%—l—W: 0y, —0f, . (463)
This shows that, if it is possible to choose the f, such that
Dfu = 8”7}11/ ) (464>

then 0"y, is transformed to zero. Such a choice is, indeed, possible as the wave equation on

Minkowski spacetime,
af, =&, , (465)

has solutions for any (sufficiently regular) function ®,: If ®, is compactly supported or falls
off sufficiently fast, a solution is provided by the retarded potentials, see below. In any case, a
solution can be found by prescribing e.g. initial values f, = 0 and Jyf, = 0 on a hypersurface
2% = constant and then solving the Cauchy problem for the inhomogeneous wave equation
(465); the fact that such a solution exists (and is even unique) is a conseuqnce of the socalled

Duhamel Principle.

We have thus shown that, by an appropriate coordinate transformation, we can put the lin-
earised field equation (456) into the following form:

Oy = 26T, . (466)
Now the 7, have to satisfy the additional condition
0"V = 0 (467)

which is known as the Hilbert gauge. The transformation of 7,, under a change of coordinates
is analogous to a gauge transformation of the four-potential A, in electrodynamics. Even after
imposing the Hilbert gauge condition, there is still the freedom to make coordinate transforma-
tions (443) with Of#* = 0. In particular, the theory is invariant under Lorentz transformations.

The linearised Einstein theory is a
Lorentz invariant theory of the grav-

itational field on Minkowski space- lin. Einstein theory electrodynamics
time. It is very similar to Maxwell’s
vacuum electrodynamics, which is a A

Yuv "

(linear) Lorentz invariant theory of
electromagnetic fields on Minkowski
spacetime.  The table illustrates T, Ju
the analogy. Here “electrodynam-
ics” stands for “electrodynamics on
Minkowski spacetime in vacuum,
G = uglFW”. Roughly speaking,
the main dlﬁerence is in the fact that O, = 26T, OA, = e J,
the gravitational equations have one
index more.

Hilbert gauge 0*v,, = 0 | Lorenz gauge 0*A, =0
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Of course, one has to keep in mind that the linearised Einstein theory is only an approximation;
an exact Lorentz invariant theory of gravity on Minkowski spacetime cannot be formulated, as
we have discussed in Chapter 3.

The linearised Einstein theory has been used as the starting point for developing a quantum
theory of gravitation, in analogy to quantum electrodynamics which is the fairly well understood
quantised version of Maxwell’s electrodynamics on Minkowski spacetime. While the quanta
associated with the field A, are called photons, the quanta associated with the field v, (or
h,) are called gravitons. The fact that A, is a tensor field of rank one while v, is a tensor
field of rank two has the consequence that photons have spin one while gravitons have spin
two. Apart from the fact that it is far from clear if quantising the linearised theory is a
reasonable way of quantising gravity, one encounters technical problems related to the fact that
the coupling constant of gravity has a dimension (whereas in the electromagnetic case we have
the dimensionless fine structure constant).

Here we are interested only in the classical aspects of the linearised Einstein theory. In the
next section we discuss wavelike solutions to the source-free linearised field equation.

7.2 Plane-harmonic-wave solutions to the linearised field equation
without sources

In this section we consider the linearised field equation without sources (i.e., in regions where
T,, = 0) in the Hilbert gauge,

Oy =0, My = 0. (468)
In analogy to the electrodynamical theory, we can write the general solution as a superposition
of plane harmonic waves. In our case, any such plane harmonic wave is of the form

Y (z) = Re{A,,e*""} (469)

with a real wave covector k, and a complex amplitude A,, = A,,.

Such a plane harmonic wave satisfies the linearised vacuum field equation if and only if

0 = 07 0,0; Y (x) = Re{n’" A ikyik ™"} . (470)
This holds for all z, with (A4,,) # (0), if and only if
N Tkoky = 0. (471)

In other words, (ko, k1, ko, k3) has to be a lightlike covector with respect to the Minkowski
metric. This result can be interpreted as saying that, to within the linearised Einstein theory,
gravitational waves propagate on Minkowski spacetime at the speed ¢, just as electromagnetic
waves in vacuum.

Our plane harmonic wave satisfies the Hilbert gauge condition if and only if
0 = 770 (z) = Re{nT A ik} (472)

0

which is true, for all x = (20, 2!, 2%, 23), if and only if

KA, = 0. (473)
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For a given k,, the Hilbert gauge condition restricts the possible values of the amplitude A,,,
i.e., it restricts the possible polarisation states of the gravitational wave. For electromagnetic
waves, it is well known that there are two polarisation states (“left-handed and right-handed”,
or “linear in z-direction and linear in y-direction”) from which all possible polarisation states
can be formed by way of superposition. We will see that also for gravitational waves there are
two independent polarisation states; however, they are of a different geometric nature which
has its origin in the fact that v,, has two indices while the electromagnetic four-potential A,
has only one.

In order to find all possible polarisation states of a gravitational wave, we begin by counting the
independent components of the amplitude: The A, form a (4 x 4)-matrix which has 16 entries.
As A,, = A,,, only 10 of them are independent; the Hilbert gauge condition (467) consists of
4 scalar equations, so one might think that there are 6 independent components and thus six
independent polarisation states. This, however, is wrong. The reason is that we can impose
additional conditions onto the amplitudes, even after the Hilbert gauge has been chosen: The
Hilbert gauge condition is preserved if we make a coordinate transformation of the form

ot = 2t + fH(x) with OfF =0. (474)

We can use this freedom to impose additional conditions onto the amplitudes A, .

Claim: Assume we have a plane-harmonic-wave solution
Y () = Re{AuyeikPxp}

of the linearised vacuum field equation in the Hilbert gauge. Let (u*) be a constant four-velocity

vector, n,,ufu’ = —c*. Then we can make a coordinate transformation such that the Hilbert
gauge condition is preserved and such that
uA,, =0, (475)
U“VAW = 07 (476)

in the new coordinates (TT gauge, transverse-traceless gauge).
Proof: We perform a coordinate transformation

ot = 2t + fH(x) fH(z) = Re{iC*e™*"}

with the wave covector (k,) from our plane harmonic wave solution and with some complex
coefficients C'*. Then we have LJf* = 0, i.e., the Hilbert gauge condition is satisfied in the new
coordinates as well. We want to choose the C* such that in the new coordinates (475) and
(476) hold true. As a first step, we calculate how the amplitudes A,, transform. We start out
from the transformation behaviour of the v,, which was calculated above,

'Y,uz/ = /Y;uz - 8ufu - al/fu + nul/gpfp ’
hence

Re{Am/eikp:cp} — Re{(AMV — Z'Z']{:HOV —_ Z'Z']{?VC“ + Uuuiik?p C«p) eikpzﬂ} ’

Ap = Ay + k,C, + E,C, — 0wk, CP .
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We want to choose the C), such that the equations (475) and (476) hold,

0 =u (AW + kuCy + kCu — N Ky Cp) ; (T1)
0=n"(Aw + k.C, + k,Cy — 0 k,C?) = " A, — 2k,C7 . (T2)

To demonstrate that such a choice is possible, we choose the coordinates such that

This can be done by a Lorentz transformation which, as a linear coordinate transformation,
preserves all the relevant properties of the coordinate system. Then the spatial part of the
desired condition (T1) reads:

(Tl) for v :] : 0= AOj + k’oOj + k’jCO < Cj = — k’o_l(AQj + k’jCO) .

These equations show that the C; are determined by Cj. We have thus to show that Cj can be
determined such that the temporal part of (T1) and condition (T2) hold:

(Tl) forv=0: 0= AOO -+ 2]{3000 + ’I]pal'{?pCU = AOO —FZ/{?()C() —kﬁr€6+ nlfk:ZC’]
= A(_)(] -+ ko Co — 77ij kz k’o_l (A()j +k’]CO) = Aoo + kfo C(] — 7”]ij kl ]{0_1 AO]’ -+ 7700 ko%yo_l/CQ

<~ 0= _kOAOO + T]ij kiAOj = T]‘MVkMAOV.

The last expression vanishes, because of the Hilbert gauge condition (473) that is satisfied by
assumption, so the v = 0 component of (475) is identically satisfied if the CV are chosen as
required by the v = j components of (475). This leaves Cy arbitrary. We now turn to the
second desired condition (476).

(TQ) 0= UMVA/W + 21{3000 — 27]”/@0] = Auu + 2]6000 + 27]”[@]{361 (A0j+]€j00>

= A'up' + 2]{3000 + 277ijk3i]€(]_1140j - 27700]{?0%%00 = AMN + 4]{3000 + 27]ij]€ik()_1A0j

— At ko — 20" k; Ay,
4K '

— () =

If we choose Cj according to this equation, and then the C; as required above, (475) and (476)
are indeed satisfied in the new coordinates. 0J
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In the TT gauge we have v = 0 and thus h,, = 7,. As a consequence, the metric is of the
form

g,l“/ = T]l“/ + 7#1/7 ’y,u,l/ - Re{Aul/eikpxp} (477)

and the amplitudes are restricted by the conditions

kuAlW = 07 U’“A/Jl/ = 07 nij,Lw =0. (478)
If we choose the coordinates such that
c w/e
0 0
@ =50, @)= (a79)
0 w/e

which can be reached by a Lorentz transformation, equations (473), (475) and (476) read,
respectively,

0= k" Ay = = (Ag + As) | (480)
c
0=u'A, =cAy, (481)
0 =n"An = —Ap + Ain + Axp + Ass (482)

in the TT gauge. The first two conditions together imply that Ay, = 0 and Az, = 0 vor
all v. The last condition then requires Ay = —A;; and the symmetry of the metric requires

Ajp = Ag;. So in this representation there are only two non-zero (compex!) components of
A

g

Ay = — Ay =t AL = |A+}€wa App = Ay =1 Ay = |A><‘€w- (483)

The fact that only the 1- and the 2-components are non-zero demonstrates that gravitational
waves are transverse. There are only two independent polarisation states, the plus mode (+)
and the cross mode (x).

For the physical interpretation of these two modes we need the following result.

Claim: The z°-lines, i.e. the worldlines z*(7) with 2#(7) = u”, are geodesics.
Proof: From i#(7) = u* we find &#(7) = 0. The Christoffel symbols read

1 1
Fﬂz/a = 59#7— (aygTa + acrgﬂ/ - aTgucr) = 577#“’ (az/’)/’ra + aa”YTl/ - aT’YI/O’) =

= %nmRe{ (ik,,AW + ik, A, — Z'kTAVU)eik:pxp}.

This implies that

P4 T G =

= O + lnNTRe{ (Z.kVATgUJUV + ikaAﬂ/uVuJ - 7;]{:‘I"AVO"LLUUV)eikpacp} - O ’
2 —— — T

O
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In other words, the 2°-lines are the worldlines A 2°
of freely falling particles. For any such particle
the (2!, 2%, 23)-coordinates remain constant. This
does, of course, not mean that the gravitational
wave has no effect on freely falling particles. The
distance, as it is measured with the metric, be-
tween neighbouring z°-lines is not at all constant.
We calculate the square of the distance between
an x°-line at the spatial origin (0,0,0) and at spa-
tial (x!, 22, 23) for the case that the z* are so small
that the metric can be viewed as constant between
(2°,0,0,0) and (2%, 2!, 2% 23): -

gij (.770, 0, O, O) Ii xj z*
= (6 + 7ij(2",0,0,0) ) 2’ 27, (484)

Figure 75: Particles with constant z*

If we introduce new spatial coordinates
) . 1 .
Y=+ §'ylk(x0, 0,0,0)z", (485)
we see that 6;;5'y7 = (6;;+7;;(2,0,0,0))z'2?. Comparison with (484) shows that for a particle
at constant ¢’ the distance from the origin remains constant.

We calculate

6ijyiyj — (Sijximj + Re{A+((x1)2 B ($2)2)€—iwt} + Re{Q A, 2! :L,Qe—iwt} _

= dya'e) + |A+‘ ((z')* = (2*)?) cos(p — wt) + 2 ‘AX ‘ z' 2® cos (¢ — wt) . (486)

This equation tells how for freely falling particles with constant z¢ the distance from the origin
changes in dependence of the time t. We demonstrate this in a y'-y2-diagram, see Fig. 76. The
picture illustrates the origin of the names “plus mode” and “cross mode”: In the first case the
principal axes form a plus sign, in the second case they form a cross.

For an animation of the effect of the plus mode and the cross mode on freely falling particles
see

https://en.wikipedia.org/wiki/Gravitational wave

Of course, what is called the plus mode and what is called the cross mode depends on the chosen
coordinates. If the coordinate system is rotated by 45°, the two modes interchange. This is
in analogy to electromagnetic waves, where there are waves linearly polarised in z direction
and waves linearly polarised in y direction; if we rotate the coordinate system by 90°, they
interchange their role.

We have thus found, as our main result, that a gravitational wave produces a change of the
distances between freely falling particles in the plane perpendicular to the propagation direction.
This is what gravitational wave detectors measure, see Section 7.5 below.
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Plus mode (A, #0, A, =0):

7
/
/
'
i
T T
\ ! 1
\ / y
\ /
\ /
N

wt =

Cross mode (A, =0, A, #0):

wt =Y

wt =+

wt =Y +7

wt =19 + 27

Figure 76: The pictures illustrate what happens to particles that are arranged on a small circle
in the plane perpendicular to the propagation direction of the wave and then released to free
fall: Both the plus mode and the cross mode produce a time-periodic elliptic deformation. For
the plus mode, the main axes of the ellipse coincide with the coordinate axes, for the cross
mode they are rotated by 45 degrees. This explains the names “plus mode” and “cross mode”.

7.3 Relating gravitational waves to the source

We will now discuss what sort of sources would produce a gravitational wave. We will see that,
in the far-field approximation, the gravitational wave field is determined by the second time-
derivative of the quadrupole moment of the source. In other words, gravitational radiation
predominantly is quadrupole radiation. By contrast, it is well known that electromagnetic
radiation predominantly is dipole radiation.
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We now have to consider the linearised field equation with a non-vanishing source term, 7},, # 0.
Again, we choose the Hilbert gauge, so we have to solve the equations

Oy = 2rTH o =0. (487)

Clearly, these two equations require the energy-momentum tensor to satisfy the condition
8T‘“’:i8 Dv’”:ilﬂ@v’wzﬂ (488)
a 2Kk 2k "

Recall that in the full non-linear theory of general relativity it is the covariant divergence
of the energy-momentum tensor that vanishes. In the linearised version it is the ordinary
divergence, formed with the partial derivatives in the chosen coordinates, that vanishes, as in
special relativity in inertial coordinates for a closed system. Keep in mind that the coordinates
are restricted by the assumptions that in these coordinates the difference g,,, — 7, is small of
first order and that the Hilbert gauge condition holds. In contrast to the covariant divergence
condition, the one with the partial derivative can be integrated over so that the usual “pill-box
argument” gives an integrated conservation law: The temporal change of the energy within a
3-dimensional volume is given by the flow of the energy over the boundary. The conservation
law (488) is crucial for the linearised theory of gravitational waves.

For given T}, the general solution to the inhomogeneous wave equation LIy*” = 2k T* is the
general solution to the homogeneous wave equation (superposition of plane harmonic waves)
plus a particular solution to the inhomogeneous equation. Such a particular solution can be
written down immediately by analogy with the retarded potentials from electrodynamics:

™

! /zm(t_ T ) ave
C

(L, T) = ypu T (489)
RS
Here and in the following we write
° = ct, (zh, 2% 2%) = 7, r = |7| (490)
and dV”’ is the volume element with respect to the primed coordinates, dV’ = da'* da’® dx'3 .

As in electrodynamics one shows by differentiating twice that the v** from (489) satisfy, indeed,
the equation [Iv* = 2k TH* and that the Hilbert gauge condition holds true provided that
the energy-momentum tensor satisfies the conservation law (488).

The general solution to the inhomogeneous wave equation is given by adding an arbitrary
superposition of plane-harmonic waves that satisfy the homogeneous equation, see Section 7.2.
If there are no waves coming in from infinity, (489) alone gives the physically correct solution.

We will now discuss this solution far away from the sources. To that end, we assume that T
is different from zero only in a compact region of space. We can then surround this region by
a sphere Kp of radius R around the origin, such that

T (t,7) =0 ifr >R, (491)

see Figure 77. We are interested in the field v** at a point ¥ with » > R. This is what one
calls the far-field approximation.
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Figure 77: Energy-momentum tensor confined to a sphere Kg

Then

2

:\/r’2+r2—27”TC0S19 :r\/l—ZT—COSﬁ—i-% ZT(1+O(T//7’))- (492)
T r

Inserting the result into (489) yields

. T“"(t - 2(1—1—0(7”/7”)) , F) v’
) T on 7“(1—}—0(7"’/7"))

Kpg

v (¢ T (493)

In the far-field approximation one assumes that > R; then the O(r’/r)-terms can be neglected,
as ' < R on the whole domain of integration, hence

K r
Ry = T“”<t— —,F’)dV’. 494
Y ( ) 2mwr c (494)
Kpg
In this approximation, the v depend on 7 only in terms of its modulus r = |r], i.e., the

wave fronts are spheres, » = constant. As the radii of these spheres are large, they can be
approximated as planes on a sufficiently small neighbourhood of any point 7. This means
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that, on any such neighborhood, our gravitational wave resembles a plane wave. If the time-
dependence of the source is harmonic, it resembles a plane harmonic wave of the type we have
studied in Sec. 7.2.

We will now investigate which properties of the source determine the spatial components ~%
in the far-field approximation. To that end we introduce the multipole moments of the source.
They are defined in analogy to electrodynamics, with the charge density replaced by the energy
density TOU = —TOO = TOO.

M(t) = / T(t,7) dV (monopole moment) , (495)
Kgr
Dk (t) = / TO(t,7) 2" dv (dipole moment) , (496)
Kgr
Q (1) = / TO(t,7) 2* 2 dV (quadrupole moment) , (497)
Kgr

Instead of Q*’ one often uses the trace-free part

Qkﬁ — Qk@ o %Qiiéké (498)

which is known as the reduced quadrupole moment.

We calculate the first and second time derivative of the quadrupole moments. To that end, use
the conservation law (488). We find

%le(i) - /CﬁoToo(taF) ¥ 2tdV = —¢ /&'Tio(t,??) 2k atdvV =

Kgr Kgr

= —¢ / <8Z~(Ti0(t,r7) ab ) — TO,7) 6F 2t — TP, 7) 2" 55) dv . (499)
Kpg

The first integral can be rewritten, with the Gauss theorem, as a surface integral over the
boundary 0Ky of Kg,

/ O;(T™(t,7) 2" 2")adV = / TO(t, 7) 2* 2°dS; (500)
KR BKR

where d.S; is the surface element on 0K . As the sphere K surrounds all sources, T is equal
to zero on 0K, so the last integral vanishes. Hence

%Q“(t) = / (TH(t,7) 2" + T, 7) 2" ) dV . (501)
Kpg

Analogously we calculate the second derivative.
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d? . R
@le(t) = / <(90Tk0(t,r)xé + (90Téo(t,r)xk) dV =
Kgr
= & / (- o™yt - o7t 7) 2t ) av =
Kpg

= 2 / ( — 0i(TH(t,7) ") + TH(t,7) 6 — O;(T"(t, %) a") + T(t,7) 55) v =
Kr
=0+¢ /T“(t,F) dV — 0 + ¢ /T‘fk(t,f) AV = 2¢ /T’f’f(t,ﬂ)dv’. (502)
Kgr Kr Kr
Upon inserting this result into (494) we find that, in the far-field approximation
1 d2 ke
L) = ka(t - f,f’)dv’ S ¢ (t . f) . (503)

27y c 2mr 2c¢2  dt? c
R3

If Einstein’s gravitational constant is expressed with the help of Newton’s gravitational con-
stant, k = 87G/c?, the result reads

2G d*Q r
A A r
7T = cSr o di? (t c>'

In Worksheet 13 we will show that in the far zone 4°(¢,7) = 0 and v°(¢,7) = A/r with a
constant A, so these components give no contribution to the emitted wave.

(504)

Recall from Sec. 7.2 that, far away from the sources, a gravitational wave detector responds
to the temporal change of the spatial components v*¢ transverse to the propagation direction
of the wave. We have just calculated that these are given by the second time derivative of the
quadrupole moment at a retarded time. In this sense, gravitational radiation is quadrupole
radiation. By contrast, electromagnetic radiation is dipole radiation: A calculation analogous
to the above relates the electromagnetic four-potential to the first time derivative of the dipole
moment of the charge distribution at a retarded time. The difference has, of course, its origin
in the fact that v* and T" have two indices, while the analogous quantities A* and J* in
electrodynamics have only one index.

A long and very involved calculation, first carried through by Einstein in 1918, shows that
the power radiated away by a source in the form of gravitational waves is given by the third
derivative of the reduced quadrupole moment,

G d3an dBan r
P(t.r) = 5c9< ats dt? ><t_ E)‘ (505)

Here the pointed brackets denote a time average over a sufficiently short time interval; e.g., for
a binary system one would average over one revolution, so that the long-term time-dependence
of the power because of the energy loss of the system is still captured. Eq. (505) is known
as Finstein’s quadrupole formula. We cannot derive it here because the derivation is very long
and also conceptually difficult. However, we have completely derived eq. (504) which already
clearly indicates that gravitational radiation is predominantly quadrupole radiation.
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A time-dependent monopole moment (e.g. a pulsating spherically symmetric star) does not
produce gravitational radiation. We knew this already from the Jebsen-Birkhoff theorem of
Chapter 6. We have now seen that, moreover, a time-dependent dipole moment does not
produce any gravitational radiation in the far-field approximation. We need a time-dependent
quadrupole moment. We will now calculate two examples.

Example 1: Rotating cylindrical rod

We consider a homogeneous cylinder of constant mass

M
density p = 3 where /¢ is the length and a is the
el

radius of the circular cross-section of the cylinder. We
assume that the cylinder rotates with constant angu-
lar velocity € about an axis that goes perpendicu-
larly through the midpoint of its axis of symmetry,
see Fig. 78. For calculating the far field and the radi-
ated power we need the energy quadrupole moment.
As the energy stored in such a cylinder is vastly dom-
inated by its rest energy, we can replace the energy
quadrupole moment by the mass quadrupole moment
multiplied by ¢2. For a rigid body the mass quadupole
moment is the same as the inertia tensor. We first
calculate the quadrupole moment, @, in the rest
system of the cylinder,

Qi = 02/ o x; T dxy dvg das (506)
v

where V is the volume occupied by the cylinder. The integration yields

Figure 78: Rotating cylinder

v (0 0
Q%) = CQE 0 3a> 0 |. (507)
0 0 3a?

Then we transform the quadrupole tensor to the lab frame which is rotated with respect to the
rest frame by an angle (2t about the 3-axis, hence

A [cos(Qt) —sin(Qt) 0 Z 0 0 cos(Qt) sin(Q) 0
(Qjx) = ¢ 2 sin(Qt)  cos(2) 0 0 3a®> 0 —sin(Qt) cos(Qt) 0
0 0 1 0 0 3a® 0 0 1
Y cos(t) —sin(2t) 0 (Peos(Qt)  (Psin(Q) 0
=c 13 sin(Qt)  cos(2t) 0 —3a%sin(Qt) 3a’cos(Qt) 0
0 0 1 0 0 3a?
v (Pcos? () + 3a?sin®(Q)  (£* — 3a?) sin(Qt) cos(Qt) 0
= B (62 — 3a?) sin(Qt) cos(Q)  sin®(Qt) + 3a’cos*(Qt) 0 | . (508)

0 0 3a?
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We differentiate this expression with respect to t:

— (% — 3a?) 2sin(Qt) cos(Qt) (€2 — 3a?) (cos?(Qt) — sin*(Qt)) 0
(02 — 3a?) (cos?(Qt) — sin®(Qt)) (¢* — 3a?)2sin(Qt) cos(Qt) 0

<ink> _ 2 MQ

dt 12 0 0 0
MQ —sin(2Qt) cos(22t) 0
=c? (0?2 —=3a®) | cos(20t) sin(2Q) 0 |, (509)
12 0 0 0

— 2Q) —sin(2Qt) 0
20, MO? cos(
( d??k> = ¢ 5 (* = 3a%) | —sin(20t) cos(20) 0 | , (510)
0 0 0
in(2Q2) —cos(2Qt) 0
B0, MO3 sin(
< d%k) = ¢ - (€2 — 3@2) —cos(2Qt) —sin(2Q2t) 0 | - (511)

0 0 0

Inserting (510) into (503) gives us v in the far-field approximation. As (d?Q;/dt?) is traceless,
i1 coincides with the strain h;:

) —cos(2Qt) —sin(2Q2t) 0
((hin(t, 7)) = (ya(t,7)) = GSZS (0? = 3a®) | —sin(2) cos(2) 0 | .  (512)
0 0 0

Recall that 700( = hoo) is time-independent and 701‘( = hOi) is zero in the far-field approxima-
tion.

We read from (512) that the frequency of the gravitational wave is

w=2Q (513)

which comes from the symmetry of the cylinder: If it has performed half a cycle we are in the
same situation as in the beginning. Moreover, we read from (512) that the amplitude of the
strain is

G M Q?
3ctr
Note that A = 0 if /> = 3a®. In this case the cylinder is a spherical top, i.e., all its principal
moments of inertia coincide. Then the quadrupole tensor in the lab frame is constant, i.e., no
gravitational waves are emitted.

A:

(¢* = 3a%). (514)

By inserting (511) into Einstein’s quadrupole formula (505) we get the radiated power that
passes through a sphere of radius r. As the trace of (d*Qy/dt®) vanishes, we have d3Q;,/dt? =
d3Qy1./dt3, so by multiplying the matrix in (511) with itself and taking the trace we find that
d3 ik d3 ; M2 C4 QG 9
d% d%’“ =2——(*-3d°)". (515)
We have assumed throughout our derivation that €2 and, of course, M are constant, so no time-
averaging of (515) is necessary. (Because of the energy loss through gravitational radiation,
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) would actually decrease if the cylinder would be left alone, i.e., our assumption of {2 being
constant can be satisfied only if there is an external force by which the cylinder is driven.) For
the radiated power we find

26 M2QF

P=""r (P~ 3a%)°. (516)

We now insert numerical values to indicate how incredibly small the power of all gravitational
waves is that could be produced in the lab: We choose a = 1m, £ = 20m, M = 5 x 10°kg and
2 = 30Hz. Even with these (quite unrealistic) values we find that the amplitude of the strain
(514) gives
5x 10734
A2 1 (517)
r

which means that, if we are 25m away from the cylinder, the distance between two freely falling
test masses which are 1m apart changes by only 2 x 1073*m. Likewise, the radiated power (516)
gives P ~ 4 x 1072 Watts which is unmeasurable for generations to come. And note that this
is the power radiated into all of space; only a small fraction will actually hit a detector.

So we have to give up the idea of producing gravitational waves in the lab and then measuring
them directly. We need astronomical sources for observing gravitational waves.

Example 2: Binary system in circular orbit

We consider a binary system consisting of two masses M; = My = 1.4 M, = 1.4x 1.99 x 103 kg
in a circular orbit about their common barycentre. We choose the 1 — zo—plane as the orbital
plane; the distance of the two stars should be a = 10°km. (These numbers are similar, as
far as the order of magnitude is concerned, to the Hulse-Taylor pulsar and its companion, see
next section.) For calculating the quadrupole moment we use again the approximation that the
energy density is the mass density multiplied by ¢ and we treat the two stars as Newtonian
point masses. Then we have in the rest system of the two masses

Q. = 02/ p(zy, o, ) ; 1) dry dvo dg (518)
R3
with the mass density
(1, xa, x5) = M (0(z1 — a/2) + 6(z1 + a/2)) 0(z2) 6(x3) . (519)
This gives
1 00
M 2
(@) ==~ [0 1 0]. (520)
0 01

In the “lab frame” (i.e., in an inertial system where our galaxy is approximately at rest) the
stars orbit about their common barycentre with an angular frequency €2 that is given by Kepler’s
third law,

2GM

a3

02 =

. (521)
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So in this system the quadrupole tensor reads

cos(t) —sin(2t) 0 cos(Qt)  sin(Qt)

, M a? ' 1 00 : 0
(Qjx) = ¢ 5 sin(Qt)  cos( Qt 0 000 —sin(2t) cos(Qt) O
0 1 0 00 0 0 1
M a2 cos(Qt) —sin(Q2t) 0 cos(Qt) sin(Qt) 0
=c? sin(Qt)  cos( Qt 0 0 0
0 1 0 0
9 cos? sin(2t) cos(Qt) 0
a
= sin(Qt) cos(Qt) sin? () 0] - (522)
2 0 0 0

We differentiate this expression with respect to t:

— 2sin(Qt) cos(t)  cos?(Qt) —sin?(Qt) 0
cos?() —sin?(Q)  2sin(Qt) cos(Qt) 0
0

(%) :CzMaQQ

dt 2 0 0
9 —sin(2Q) cos(2Qt) 0
2 Ma .
=c 5 cos(2Qt)  sin(2Qt) 0 |, (523)
0 0 0
20, —cos(2Q2) —sin(2Qt) 0
( dt;’“) = A Ma*Q® | —sin(2Qt)  cos(20t) 0 | , (524)
0 0 0
BQ, sin(2Qt)  —cos(2Qt) 0
( dt_32k> =2 Ma*Q® | —cos(20t) —sin(2Qt) 0 | - (525)

0 0 0

Inserting (524) into (503) gives us 7y in the far-field approximation. Again, as (d*Q;/dt?) is
traceless, v, coincides with the strain h;:

coMa? [ cos(2Qt) —sin(2Qt) 0
(hix(t,7)) = (v*(6,7)) = = | —sin(2Q0)  cos(22t) 0 (526)
0 0 0
So the frequency of the gravitational wave is
AGM
w=20Q 3 (527)
and the amplitude of the strain is
2G M a?Q? 4G? M?
A= T . (528)

cAr Ara
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Inserting (525) into Einstein’s quadrupole formula yields

8GM?a* QS 64G* MP

P = = 529
5¢d 5¢dad (529)

With the numbers given above we find
w~09x10°Hz, A~11x10"%, P~17x10®W. (530)

The power is huge, but note that this is what is emitted into all of space; only a very small
portion will hit a detector on Earth. The strain is so tiny that at first sight it seems out of the
question that such a signal could ever be detected on Earth. However, with the LIGO detectors
it was actually possible to measure a strain that was not very much bigger, as we will discuss
below.

During the calculation we have assumed that a and, thus, 2 are constants. This would be true
only if there were a driving force that keeps the motion of the two stars going on uniformly.
Of course, in reality there is no such driving force. Actually, the binary system will lose energy
by way of gravitational radiation, so a would decrease in time. We can calculate this change in
the adiabatic approximation, i.e., by using the formulas which have been derived for constant
a and assuming that they will be approximately valid also for slowly varying a. So we assume
now that a and, thus, (2 are functions of time.

The energy of our binary system is the sum of kinetic and potential energy,

M ra 2 GM? GM* GM —G M?
E=22 (— 92) - - . — . |
2 \2 a 2a a 2a (531)
Differentiating with respect to ¢ must give the power that is radiated away,
dE
— =-P 532
dt Y ( )
hence
GM? da  64G*M°
202 dt  5cad
1 da* 5 da —128 G3 M3
—_ g = —
4 dt dt 5P ’
£ \1/4
a(t) = a0<1 - t—) (533)

Sp

where qq is the distance of the stars at time ¢ = 0 (for which we insert the above-given value of
10 km) and
_ 5cag
RS TYeITE
is the time when, in our simple model, the stars merge. With the numbers from above, %, is
approximately 3.7 x 10'%s. For the sake of comparison we mention that, in the concordance

model of cosmology (“Lambda-Cold-Dark-Matter”), the age of our universe is about 10'7s. So
we would have to wait for a very long time until the two stars merge.

(534)
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From (533) we find the temporal change of the frequency of the gravitational wave

o(t) = 20t /2GM /2GM ~3/8 (535)

and of the amplitude of the strain

a0 = 2
B 4G2 M2 _i —1/4
~ dhrag ( tsp> - ﬂnnnwnnnnnnnnnnnmAMMMMmMMMAMﬂMMMMMMﬂMMMMMMMM >
oo the ey eyt VA

tude go to oo for t — tg,, see Fig.
79. This is what one calls a “chirp
signal”. The name refers to the case
of a sound wave where such a signal
becomes louder and higher pitched in
the course of time.

Figure 79: Chirp signal

From the frequency Q(t) we get the period 7'(t) = 27 /Q(t) of the motion and its time derivative

dT(t) ag d t\3/8 3w ay t\—5/8
_9 “(1-2)"=- (1--) " 537
at T V2GMat\ 1, ity V2G M\ 4, (537)

We see that dT'(t)/dt goes to —oo for t — tg,, see Fig. 80. It is this functional behaviour that
could be compared with observations from the Hulse-Taylor pulsar, see the next section.

A dT(t)/dt

Figure 80: Time derivative of the period in a binary system

Our very simple model of two Newtonian mass points that spiral towards their common barycen-
tre is surprisingly good as long as the two stars are not too close together. In the final stage of
the merger this model becomes, of course, unrealistic. E.g., tidal deformations of the stars will
play an essential role. It is very difficult to realistically calculate the gravitational wave signal
emitted during the merger phase and during the subsequent “ring down”. A combination of
analytical approximation methods and of numerical simulations is used for doing this. In these
final stages there are significant differences between the merger of two neutron stars, a neutron
star and a black hole, and two black holes.
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7.4 The Hulse-Taylor pulsar

In 1974, Russell Hulse, then a
PhD student of Joe Taylor’s,
studied a number of pulsars
with the Arecibo Telescope.
The latter is a radio tele-
scope, embedded in a volcano
crater in Puerto Rico with a
diameter of 300 m, see Fig-
ure 81. A pulsar is an ob-
ject that emits radio pulses
with a very regular frequency.
In 1974 it was already known
that pulsars are rotating neu-
tron stars which emit a beam
of radio rays in a direction
not aligned with the rotation
axis; the pulses are observed
whenever the beam sweeps Figure 81: Arecibo radio telescope
over the Earth.

Hulse’s task was to measure the
frequencies of several pulsars with
high accuracy. Omne pulsar was
very peculiar. Its discovery earned
Hulse and Taylor the Nobel Prize
in 1993, see Figure 82. This pul-
sar, with the catalogue name PSR
B1913+16, did not have a constant
pulse frequency: The frequency
was periodically increasing, then
decreasing, then increasing again
and so on, see Figure 83. This was
interpreted by Hulse and Talor as
a Doppler effect. The conclusion
was that the pulsar had a compan-
ion (which is dark and silent) such
that the pulsar and the companion
orbit their common barycentre. In

the course of this motion the pul-
Figure 82 R Hulse (1950 - ) and J TaleI' (1941 - ) sar is periodicauy moving towards

celebrating their Nobel Prize in 1993 us, then away from us, then again

towards us and so on.
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Figure 83: Doppler shift of PSR B1913+16

From the measurement of the Doppler shift one can calculate all the orbital elements of the
binary system. (If the calculation is done within the Newtonian theory, there are actually
some degeneracies; if, however, post-Newtonian — i.e., relativistic — corrections are taken into
account, these degeneracies are completely removed.) With the orbital elements known one
could calculate the energy loss as predicted by Einstein’s quadrupole formula. According to
this formula the orbital period of the binary system should decrease, see Figure 80 for the simple
model of a binary system of two Newtonian point masses. This decay of the orbital period was
calculated, at the post-Newtonian level, on the basis of the observed orbital elements. Note that
there is no fitting parameter left; the resulting curve is absolutely fixed by the orbital elements
and the quadrupole formula. Figure 84 shows the theoretical prediction and the observed values

of the decay of the orbital period. The agreement is so convincing that it was generally accepted
that this observation is to be considered as an indirect detection of gravitational waves. Note
that in Figure 84 it is not directly the decay of the period, d7'/dt, that is plotted on the vertical

axis, but rather the shift of the periastron time, i.e, of the time when the two stars are closest
to each other.
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Figure 84: Decay of the orbital period of the Hulse-Taylor pulsar and its companion as
calculated on the basis of Einstein’s quadrupole formula (solid curve) and as observed
(dots)

We know by now that not only the Hulse-Taylor pulsar but also its companion is a neutron
star. The mass of the pulsar is 1.441 M. The mass of the companion is similar, ~ 1.4 M, but
not known with very high accuracy. The pulsar rotates with a period of 59 milliseconds about
its axis. The semi-major axis of the orbit is 1.9 x 10%km, i.e., the entire system is only a bit
too large for fitting inside the Sun. The orbital period T' = 27 /€2 is 7.7 h, i.e., the system emits
gravitational waves of a frequency w = 2(2 of much less than 1 Hz. As earthbound gravitational
wave detectors cannot operate at frequencies below 1 Hz (see next section), there is no chance
to observe these gravitational waves directly as long as we have no spaceborn detector.

After the discovery of the Hulse-Taylor pulsar several more binary pulsars (i.e., pulsars in a
binary system) were found. In 2003 the first double pulsar (i.e., a binary system where both
companions are pulsars) was detected. These systems are the best test-beds of general relativity
we have at the moment. Note that the semi-major axis of such systems (typically some 10°
km) is still large in comparison to the Schwarzschild radius of the neutron stars (typically 4 or
5 km). In this sense, what is tested with binary pulsars is not really “strong gravity”.
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7.5 Gravitational wave detectors

Gravitational waves produce an oscillatory motion of free particles in the plane orthogonal to
their propagation direction, recall Figure 76. In a solid body, e.g. a piece of metal, the atoms
are not free but rather bound by interatomic forces; a gravitational wave has to compete with
these forces. Therefore, if a piece of metal is hit by a gravitational wave, this will cause forced
oscillations of the atoms whose amplitude could be comparatively large if the gravitational wave
comes in with the resonance frequency of the metal.

Based on this idea, Joe Weber began in the late
1950s to experiment with resonant bar detectors,
see Figure 85. These detectors, also known as
Weber cylinders, are aluminium cylinders with
a typical weight of 1.5 tons, approximately 150
centimeters long and 60 centimeters in diameter.
With the help of piezo crystals glued onto the sur-
face, which are clearly seen in the picture, Weber
tried to detect tiny deformations of the cylinder
when a gravitational wave hit it. The weakest
point of this class of gravitational wave detectors
is in the fact that they are sensitive only in a very
narrow frequency band around the fundamental
resonance frequency which is, for a typical Weber
cylinder, at =~ 1660 Hertz. So with these detectors
gravitational waves could be detected only from
extremely fast rotating systems or from burst
sources (asymmetrical stellar explosions) which
contain in their Fourier spectrum high frequen-
cies with sufficiently high amplitudes.

Figure 85: Joe Weber with a res-
onant bar detector

Weber was searching for gravitational waves until his death in 2000. He even claimed that he
had detected gravitational waves with his resonant bar detectors, but this was not generally
accepted. He also sent a seismometer with the Apollo 17 mission to the moon, but the in-
strument malfunctioned. The idea was to use the body of the moon as a “resonance detector”
of gravitational waves. In this way it would have been possible to detect gravitational waves
of much lower frequencies as with the aluminium cylinders. (Several other seismometers have
been placed on the surface of the moon but their purpose was to measure seismic activity on
the moon, not gravitational waves.)

Some resonant bar detectors are in operation until the present time. The most sophisticated of
them, known as Auriga, is an ultracryogenic detector, i.e., it is being operated at extremely low
temperatures to minimise thermal noise, see Figure 86. There are also attempts with spherical
detectors, e.g. MiniGRAIL, see Figure 87, which have the advantage of being sensitive for
gravitational waves from all spatial directions. However, it seems fair to say that in particular
in view of the LIGO success the resonant bar detectors have been sidelined by the interferometric
detectors.
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Figure 86: Auriga Figure 87: MiniGRAIL

Interferometric gravitational wave detectors are just Michelson interferometers, see Figure 88.
The paper plane is to be interpreted as horizontal. The mirrors M; and M, are suspended on
files, so that they can move freely in the horizontal direction. Assume that in the beginning
the beam reflected at M; and the beam reflected at M, give a destructive interference (i.e.,
darkness) at the detector. If a gravitational wave comes in (ideally travelling perpendicularly
to the paper plane), it will periodically change the distances d; and ds, see Figure 76; as
a consequence, we have a signal, periodically changing from darkness to brightness, at the
detector.

Mo
|

laser beam dq

detector

Figure 88: Interferometric gravitational wave detector
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The idea of using Michelson interferometers as gravitational wave detectors is almost as old
as the idea of using resonant cylinders: It was brought forward by the Soviet physicists M.
Gertsenshtein and V. Pustovoit in 1962. However, it took several decades until it was possible
to build gravitational wave detectors of this type at a size that had a chance to actually detect
gravitational waves. Here is a list of these interferometric gravitational wave detectors.

e TAMAS300: This was a Japanese project. The interferometer had an armlength of 300 m.
It was operational from 1999 to 2004.

e GEOG600: This is a detector in Germany, near Hannover, with a (geometric) armlength of
600 m. It is operational since 2001. Although too small for actually detecting gravitational
waves, it was very important for the development of interferometric gravitational wave
detectors. Most of the LASER technology and several other parts that went into the
LIGO detectors were developed and tested with GEOG600.

T T T

Figure 89: GEO600

e LIGO: These are the two biggest interferometric gravitational wave detectors that exist to
date. They are in the USA, one in Hanford (Washington State) and the other in Livingston
(Louisiana). Both have a (geometric) armlength of 4 km. They are operational, with
interruptions, since 2002. The interruptions are used for updating the systems. The
LIGO detectors were successful in directly detecting a gravitational wave signal for the
first time in September 2015, see next section. Rainer Weiss, Kip Thorne and Barry
Barish were awarded the Nobel Prize in Physics 2017 “for decisive contributions to the
LIGO detector(s) and the observation of gravitational waves”. During the last Science
Run, which started in April 2019 and had to be terminated prematurely in March 2020
because of the CoViD-19 pandemic, on average one gravitational wave signal was observed
per week.
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Livingston Hanford

Figure 90: LIGO

e Virgo: This is an Italian detector which is a little bit smaller than the LIGO instruments,
with an armlength of 3 km. It is operational since 2007. When the first gravitational
wave signals were detected by the LIGO instruments, Virgo was not online. However,
many of the more recent signals were also seen by the Virgo detector.

Figure 91: Virgo

e KAGRA: This is a Japanese instrument, situated in a subterranean cave. The armlength
is 3 km. The instrument is cryogenic, i.e., it is operated at a very low temperature to
reduce thermal noise. KAGRA was completed in 2019 and the instrument joined the
LIGO-Virgo network in January 2020, just a few weeks before it had to be shut down
because of the CoViD-19 pandemic in March 2020.

In addition, there are plans for several earthbound future interferometric gravitational wave
detectors. Here are two of them.

e LIGO India: This is a third detector of the LIGO type, to be built in India. It it is still
in the planning stage. The predicted date of commission was 2024, but this will probably
be delayed because of the pandemic and other reasons.

160



e Einstein Telescope: This is a very ambitious European project. It is not clear yet were
it will be built (if ever). It is supposed to be a subterranean cryogenic instrument with
three arms of 10 km length in a triangular shape. A testing facility is planned to be built
in Maastricht in the Netherlands.

Figure 92: Einstein Telescope

In addition to building new earthound gravitational wave detectors, there are also plans for
constructing a spaceborn interferometric gravitational wave detector. For understanding the
motivation we have to look at the socalled strain sensitivity, \/Sk(w), of gravitational wave
detectors. The latter is defined in the following way.

For measuring a signal it must be strong enough to come out of the noise. The noise, understood
as a non-systematic, random underground of perturbations, is characterised in the following
way. Take a sample of pairs of measurements of the strain at times ¢; and ts, all with the same
time difference 7 = |t — t1], and average them out. The result is a function of 7 which we call
Ry

(h(t)h(t2)) = k(T), T=|ta —1t1]. (538)

Now perform a one-sided Fourier analysis (“one-sided” means that only positive frequencies are
taken into account),
1 [~ .
= / R(T)e“Tdr ifw >0
0

2

Sn(w) = (539)

0 ifw<0.

Sp(w) is called the strain sensitivity. It characterises the noise level as a function of the
frequency. As the strain (change of distance divided by distance) is dimensionless, the strain
sensitivity has the dimension Hz /2.

Figure 93 shows the strain sensitivity as a function of the frequency w. A signal can be detected
if its strain has an amplitude bigger than the strain sensitivity. We see that all earthbound
detectors are limited to signals above 1 Hz. The reason is seismic noise which at frequencies
of less than 1 Hz just drowns all signals. For gravitational waves produced by binary systems
this means that they must have a period of less than a second for being detectable which will
be true only for the very last moments before the merger. For this reason one wants to build
gravitational wave detectors in space.
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Figure 93: Strain sensitivity of gravitational wave detectors

There are plans for a spaceborn gravitational wave detector since many years. The most
promising project is called LISA. Tt is an ESA project with (on again, off again) participation
of NASA. It was several times downscaled, renamed NGO or eLISA, then partly upscaled and
renamed LISA again. It consists of three satellites, with LASER beams sent between them. The
entire constellation is “rolling” on the orbit of the Earth, trailing the latter by 20°, see Figure
94. Note that this figure is not to scale: The size of the LISA arms is very much exaggerated
in comparison to the radii of the orbits of the planets.

relative orbit
® of spacecraft

:20., \.\
™  60°

Mercury

Figure 94: LISA

The armlength is very long (5 Million kilometers according to the original plan). This together
with the absence of seismic noise allows the detection of gravitational waves of much lower
frequencies than with any earthbound detector, see Figure 95. A test mission, called LISA
pathfinder, was very successful. At present there are some hopes that LISA may be launched
in the early 2030s. It is expected that LISA will see so many gravitational wave signals that a
main problem will be to disentangle them.
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Figure 95: Strain sensitivity of LISA and eLISA

7.6 The LIGO observations

In this section we briefly discuss some of the gravitational wave signals that were detected by
the LIGO detectors and partly also by Virgo. They are numbered in the form GWyymmdd. .
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Figure 96: The LIGO detectors

The first event was GW150914, i.e., it was observed on 14 September 2015. At this time Virgo
was offline, so the signal was seen only by the two LIGO detectors. The LIGO team announced
the observation only in February 2016 because they wanted to be absolutely sure that the signal
was real. The results were published in a paper with more than 1000 authors, see B. Abbott
et al., Phys. Rev. Lett. 116, 061102 (2016). Figures 96, 97 and 98 are taken from this paper.
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As shown in Figure 96, the distance between the two LIGO detectors equals ¢ x 10 ms. Depend-

ing on where the gravitational wave comes from, the time at which the signal is detected at one

detector should be between 0 and 10 ms after it is detected by the other. Only signals that are

registered by both LIGO detectors within 10 ms are considered. In the case of GW150914 the

time delay was 6.9 ms. The signal was observed over approximately 0.2 s, see Figure 97.
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Figure 97: GW150914b

In the first row of this figure, the signals are shown as they were received at Hanford (red) and
Livingston (blue). The only manipulation is that frequencies outside of the sensitivity window
of the LIGO detectors were filtered away. On the right the Hanford signal is shifted, to account
for the time delay, and inverted, because one detector is rotated with respect to the other by 90°.
The observed signals were then compared to theoretically calculated wave-forms. Theorists have
provided a collection of such wave-forms, for merging black holes and merging neutron stars
with a large variety of parameters. The second row of Figure 97 shows the template that fits
the observations best. It is a merger of two black holes with masses parameters given in Figure
98. Three phases are to be distinguished: The inspiral (which is periodic with an increasing
amplitude), the merger (where the amplitude reaches its maximum) and the ringdown (where
the amplitude strongly drops and the system becomes stationary again). The third row of
Figure 97 shows the difference between the first and the second row which is to be interpreted
as noise. Note that the ringdown is essentially drowned in the noise. As the difference between
a merger of black holes (two horizons) and a merger of neutron stars (two surfaces) is significant
only in the ringdown phase, one cannot really conclude from the observed wave-form that it
is a black-hole merger. The assuredness that this event was indeed a black-hole merger comes
mainly from the masses involved which are much too high for neutron stars. The last row in
Figure 97 shows the increase in frequency from about 50 Hz to about 250 Hz, i.e., the “chirp”.
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From Figure 97 we read that the amplitude of the strain was not more than 1072!. As the
armlength of the LIGO detectors is 4 km, this means that the distance between the beam
splitter and one of the mirrors changed by approximately 4 x 10~*¥ m which corresponds to a
few thousandths of a proton diameter. Of course, it is totally impossible to measure a distance
with such an accuracy. However, as demonstrated by the LIGO detectors, it is possible to
measure changes of a distance with such an accuracy.

Primary black hole mass 3673M
Secondary black hole mass 29TIM
Final black hole mass 621IM
Final black hole spin 0.671 05
Luminosity distance 410118 Mpc
Source redshift z 0.0975:93

Figure 98: GW150914

The location of the source in the sky is largely unknown: With only two detectors one can locate
the source only to within an area that is as big as the constellation Orion. The location is in
the Southern sky, i.e., the signal travelled through the body of the Earth, practically without
being affected. The more gravitational wave detectors come online, the better the position of
a source can be determined by way of triangulation. From Figure 98 we read that the merger
took place far outside of our Galaxy, about 1.2 x 10° years ago. The equivalent of 3 Solar masses
was converted into gravitational wave energy within less than a second. This corresponds to
a radiated power that is more than the power radiated as electromagnetic waves by all visible
sources in the Universe.
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Figure 99: GW151226
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Another gravitational wave event was observed on 26 December (Boxing Day) 2015, see B.
Abbott et al., Phys. Rev. Lett. 116, 241103 (2016). The inspiral took longer than for the first
event which indicates that the masses involved were smaller. The signal-to-noise ratio (SNR)
was smaller than in the first event, because the event was farther away. Apart from these
differences, the Boxing Day Event GW151226 was similar to GW150914, see Figures 99 and
100.

Primary black hole mass 142830
Secondary black hole mass 7.533Mg

Chirp mass 8.9103 M

Total black hole mass 21.879M

Final black hole mass 20.8"0IM
Radiated gravitational-wave energy 1 .01’8_’21 Mg c?

Peak luminosity 3.3708 % 10° erg/s
Final black hole spin 0.7410 08
Luminosity distance 4401139 Mpc
Source redshift z 0.097 053

Figure 100: GW151226

The first Science Run, O1, of the LIGO detectors terminated in January 2016. A third event,
that had been observed in October 2015, was very close to the noise level so the LIGO team
hesitated for a while to give it a GW number, but finally it was included in the list. So O1 ended
with three gravitational wave observations. All three of them were interpreted as black-hole
mergers. The masses involved, in particular in the first event, were surprisingly high. Before
the LIGO observations most people had believed that stellar black holes could not be heavier
than 25 or at most 30 Solar masses.

The second Science Run, O2, made 8 detections between 30 November 2016 and 25 August
2017. During part of this time also Virgo was online which allowed a better localisation of the
sources in the sky. Whereas 7 of the events were black-hole mergers, similar to the ones already
known, the 8th one, GW170817, was very different and of particular interest, see B. Abbott et
al., Phys. Rev. Lett. 119, 161101 (2017). Firstly, it lasted much longer than the preceding
events, indicating that the masses involved were smaller. Secondly, and even more importantly,
for the first time electromagnetic counter-parts were observed.

At the time when the signal came in not only the two LIGO detectors but also Virgo was online.
However, the signal was so weak that Virgo hardly saw it, see Figure 101. Therefore, the Virgo
observations were not used for the determination of the wave-form. However, although very
weak the Virgo observation could be used for locating the source in the sky, see the dark green
banana in Figure 102.

About 2 s after the merger, a weak gamma-ray burst was detected, see Figure 103. This
observation was made with the satellites Fermi and INTEGRAL which allow a very precise
localisation in time but only a rather rough localisation on the sky. In any case, with the
Gamma-ray Burst Monitor (GBM) on board the Fermi satellite the location could be limited
to a certain region (blue disc in Figure 102) which overlaps with the region from where the
gravitational-wave signal came (dark green banana in Figure 102).
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What is more, a socalled kilonova was
observed, first in the optical, in a picture
taken 10.9 hours after the gravitational-
wave event, then also in the infrared, in
the X-ray and in the radio. It faded
away after a few weeks. A kilonova is
a “new star”, i.e., a star that was not
seen before, with an absolute luminos-
ity higher than an ordinary nova but not
so high as a supernova. The position
of this kilonova could of course be de-
termined with high precision, see again
Figure 102; the observations are com-
patible with the assumption that both
the gravitational-wave signal and the
gamma-ray burst came from the same
spot in the sky where the kilonova was
seen. Also, the distance of the host
galaxy of the kilonova is in agreement
with the distance of the gravitational-
wave source (about 40 Mpc). Of course,
this is no proof that they are all related
to the same physical event, but it is a
strong suggestion. The idea is that this
event was a merger of two neutron stars,
one with a mass between 1.36 and 2.26

My, the other one with a mass between
0.86 and 1.36 M.
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Figure 101: GW170817

In contrast to two black holes, where the two horizons merge rather softly, the merger of two
neutron stars with surfaces is believed to be a much more violent process, accompanied by the
emission of hard electromagnetic radiation in the form of a gamma-ray burst.
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Figure 102: GW170817
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As the product of the merger
a heavy neutron star is formed
which very soon becomes un-
stable and collapses to a black
hole, blowing off a shell of
matter in what was seen as
the kilonova. It is believed
that during this process about
16,000 times the mass of the
Earth in heavy elements has
been formed, including ap-
proximately ten Earth masses
just of the two elements gold
and platinum.
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Figure 103: GW170817

The paper on these multi-messenger observations, B. Abbott et al., Astrophys. J. 848, L12
(2017), has almost 4000 authors (roughly one third of the astrophysics community) from more
than 900 institutions.

Between April 2019 and March 2020, the third Science Run, O3, brought about 33 events
that were interpreted as binary black-hole mergers, 5 events that were interpreted as binary
neutron-star mergers, and 5 events that were interpreted as mergers of a neutron star with
a black hole, together with a few more events were the interpretation is still under debate.
One of the black-hole mergers is of particular interest because the resulting black hole had a
mass of more than 140 Solar masses, which raises the question of whether this is already an
intermediary black hole, rather than a stellar black hole. In one of the binary neutron-star
mergers the model parameters suggested that an object with 3.4 Solar masses was formed. As
there was no electromagnetic counter-part, i.e., no gamma-ray burst and no kilonova, and as
neutrons stars of 3.4 Solar masses are not believed to exist, this might suggest that the two
neutron stars directly formed a black hole (or that one of the progenitors was actually not a
neutron star but a black hole). This observation is still under investigation.

The next Science Run, with both LIGO detectors, Virgo and KAGRA online, will certainly
bring many more interesting observations and new insight into the physics of black holes and
neutron stars. It is believed that soon the observation of multi-messenger events will become
routine, opening a new era of astronomy.
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