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1. Introduction

1.1 Historic Notes

1704 I. Newton asks in Query 1 of his book Opticks if “bodies” have an influence on light
particles.

1783 J. Michell speculates in a letter to H. Cavendish if there might exist “dark bodies” that
are so dense that light cannot escape from their surface (see Worksheet 1).

1784 H. Cavendish calculates on a scrap of paper the deflection of light particles by the the
Sun on the basis of Newtonian theory (see Worksheet 1). This calculation is found only
after Cavendish’s death.

1796 P. S. Laplace calculates, independently of J. Michell, under what condition the escape
velocity from the surface of a body is bigger than the velocity of light.

1801 J. v. Soldner gives, independently of H. Cavendish, a detailed calculation of the deflection
of a light particle by the Sun, on the basis of Newtonian theory. For a light ray grazing
the surface of the Sun, he finds a deflection angle of δ ≈ 0.87′′.

δ

Soldner’s long paper is published in Bayrisches Jahrbuch der Astronomie 1804, but it
has apparently no impact on his contemporaries.

1911 A. Einstein calculates the deflection of light by the Sun, on the basis of the equivalence
principle. He finds the same deflection angle as J. v. Soldner (of whom he knows
nothing).

1912 In an entry in his notebook, A. Einstein estimates if light deflection by gravitational
fields could lead to multiple images with a resolvable angular distance. He does not
publish his results, probably because he thought that the effect would be unobservable.
The notebook entry is found only in the 1990s.

1914 Triggered by A. Einstein, E. Freundlich leads an expedition to the Crimean peninsula.
They want to measure the light deflection by the gravitational field of the Sun during
a total Solar eclipse. The expedition team is arrested by Russian troops when World
War I breaks out, so they cannot do any observations. Later they are exchanged against
Russian prisoners of war and arrive safely back to Germany.

1915 A. Einstein calculates the light deflection by the Sun on the basis of his linearised field
equation. He finds twice the Newtonian deflection angle, δ ≈ 1.75′′. Shortly thereafter,
K. Schwarzschild finds the exact spherically symmetric vacuum solution to Einstein’s
field equation. With the help of the Schwarzschild metric, the bending angle can be
calculated precisely in terms of an elliptic integral.
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1919 A. Eddington verifies Einstein’s prediction of light deflection by the Sun during a total
Solar eclipse.

The picture shows a photo-
graphic plate taken by the
Eddington expedition. Star
positions are marked by
horizontal lines. These po-
sitions were compared with
the positions of the same
stars on photographs taken
half a year earlier, when the
Sun was not in the viewing
field.

1919 O. Lodge raises the question of whether a gravitational field influences light similarly to a
lens. He comes to the conclusion that this is not the case, because the gravitational field
does not focus light rays into a focal point, in contrast to a (convex) lens. However, one
can mimick the effect of a spherically symmetric gravitational field onto light, according
to the linearised Einstein theory, with the help of a logarithmically shaped concave lens.
(The foot of a wine glass gives a reasonably good approximation.)
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Deformation of Saturn according to the linearised Einstein theory. As the deflector we
have taken a fictitious Sun whose radius is approximately 0.02 times the true radius of
the Sun, while all other parameters are as in the real Solar system.

1924 O. Chwolson mentions in a short article the possibility that, in the case of axial symme-
try, a gravitational field can produce ring-like images of a light source (nowadays called
Einstein rings).

1936 Triggered by Bohemian engineer R. Mandl, A. Einstein publishes an article in Science
in which he estimates the probability of observing star-star-lensing. He comes to a very
pessimistic conclusion.

1937 Also triggered by R. Mandl, F. Zwicky estimates the probability of observing galaxy-
galaxy-lensing. He comes to an encouraging result and starts searching in the sky for
double galaxies as candidates for gravitational lensing, but without success.

1967 S. Refsdal establishes the quasi-Newtonian approximation formalism for lensing. It is
based on the assumptions that gravitational fields are weak and that bending angles are
small.
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1979 D. Walsh, R.Carlswell and R. Weymann sugggest that the double quasar QSO 0957 +561
is actually only one quasar of whom we see two images produced by gravitational lensing.

Position of the double quasar QSO 0957 +561 in the constellation Ursa Maior.

In an optical telescope, one sees two point images
of 17th magnitude, the angular separation is 6′′.
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The spectra of the two quasar images are almost iden-
tical. This was what Walsh et al. led to the conjec-
ture that they were two images of one and the same
quasar. Small differences in the spectra are easily un-
derstood because the two images correspond to differ-
ent light paths, passing through different interstellar
gas clouds.

The deflecting mass is an intervening galaxy,
seen in this picture as a fuzzy spot. The two
quasar images have a redshift of zquasar = 1.4,
the galaxy has a redshift of zgalaxy = 0.4 and
is thus closer to us.
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Radio images, produced with Very Long Baseline Interferometry,
show substructures of the two quasar images. As they look very
similar, this gives further support to the idea that one sees two
images of one and the same object.

The strongest evidence for the lensing interpretation of QSO 0957 +561 comes
from the light curves: Temporal changes of the intensity in one image (blue
points) are also seen in the other image (red points), but with a time delay
of a bit more than a year. The only reasonable explanation is that the two
images correspond to light paths whose travel times differ by this amount.
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1986 R. Lynds & V. Petrosian and G. Soucail et al. find the first giant luminous arcs.

This giant luminous arc in the galaxy cluster Cl2244-02
was identified as a strongly deformed lensed image of
a background galaxy by Lynds and Petrosian in 1986.
Some of these arcs have an extension of more than 20
arcminutes.

1988 J. Hewitt et al. detect the first Einstein ring with the Very Large Array, a collection of
radio telescopes in the US.

This is the radio source MG1131+0456 found by
Jaqueline Hewitt et al., where a background (ra-
dio) galaxy is distorted into an almost closed ring.
Later Einstein rings were found also in the infrared
and even in the optical spectrum. Typically, the
diameter of these rings is a few arcseconds or less.
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1990 A. Tyson et al. establish the mathematical formalism of weak lensing. By evaluating the
distribution of ellipticities of background galaxies, it allows to calculate the surface mass
density (projected onto the surface perpendicular to the line of sight) in galaxy clusters.

This picture illustrates the basic idea of weak lensing. In the upper panel, it is shown how
background galaxies would be distorted if they were perfectly spherical. From the observed
distribution of elliptical images one could immediately determine the surface mass density.
The situation is more complicated because galaxies have an intrinsic elliptic shape. By
assuming that there is no prefered orientation of the semi-major axes of the background
galaxies, one can determine the surface mass density with the help of statistical methods.
This is illustrated in the lower panel.

1992 The first collaborations for observing microlensing events go into operation (MACHO,
EROS, OGLE, . . . ) Microlensing was pioneered by Bohdan Paczyǹski.

If a star passes behind a dark compact object, the light curve of the star shows a maximum
when it is closest to the line of sight. This is because the dark object deflects the light
towards the observer. More than thousand microlensing events have been observed so
far. In most cases, the lens is a dark object (e. g. a brown dwarf or an exoplanet) in our
galaxy, in the Magellanic Clouds or in the Andromeda Galaxy. The typical time scale of
a microlensing event is from a few days up to several months. Einstein was right when
he concluded that star-star-lensing would not lead to resolvable multi-imaging. However,
he did not think of the effect on the magnitude (brightness).

2000 The first indication for cosmic shear (image deformation on a cosmological scale) is found.
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1.2 Status of observations

(a) Multiple quasars

Light source: quasar

Deflector: galaxy or several galaxies

First observation in 1979

Number of candidates: > 100
For a list of candidates, with detailed information, see the webpage of CASTLeS (CfA
Arizona Space Telescope Lens Survey ): www.cfa.harvard.edu/glensdata

Criteria for multiple imaging (in contrast to binary quasars):

– candidate for deflector observable

– redshifts of quasar images (almost) equal, redshift of deflector smaller

– spectra of quasar images very similar

– light curves of quasar images identical up to time delay

Multiple quasars are observable in the optical and in the radio range.

Typical angular separation of quasar images: a few arcseconds

Typical magnitudes (brightness): 17m or less

Typical time delay: several months

Composite picture of the Einstein Cross Q 2237+030, taken with
the Wide Field and Planetary Camera (WFPC2) on the Hubble
Space Telescope (HST).

.
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HST photograph of the Cloverleaf
H1413+1143, superimposed on
picture of radio emission (green-
ish) from Hydrogen Cyanide gas
in the deflector, as obvserved with
the Very Large Array (VLA).

HST photograph of the six-
fold imaged quasar B 1359+154,
where the deflectors are three
galaxies.

(b) Luminous arcs

Light source: galaxy

Deflector: cluster of galaxies

First observations in 1986

Number of galaxy clusters in which arcs are observed: several dozens

Luminous arcs are observed in the optical range.

Typical extension: up to more than 20 arcseconds.
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HST photography of galaxy
cluster 0024+1654 with sev-
eral distorted images of blue
background galaxies.

HST photography of
galaxy cluster RCS2
032727-132623 with a blue
background galaxy lensed
into a giant luminous arc
and a secondary image.

(c) Einstein rings

Light source: (radio) galaxy or lobe of a galaxy

Deflector: galaxy

First observations in 1988

Number of observed rings: about a dozen

Einstein rings are observed primarily in the radio range, but some of them are also
observable in the infrared or optical range.

Typical diameter: about an arcsecond.
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HST picture of the
Horseshoe Einstein
ring LRG 3-757.

HST picture of the
double Einstein ring
SDSSJ0946+1006, where
two light sources are almost
perfectly aligned with the
deflector, one behind the
other.
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(d) Galactic microlensing

Light source: a star in our galaxy or in a neighbouring galaxy

Deflector: a dark compact object (e.g. a brown dwarf or an exoplanet) in our galaxy or
in a neighbouring galaxy

First observations in 1992 (collablorations MACHO, EROS, OGLE , . . . )

Number of observed events: > 1000

Criteria for distinguishing microlensing events from variable stars:

– achromatic light curve

– shape of the light curve

Light curve of a microlensing event where the deflector is a single compact object.

Light curve of the microlensing
event EROS-BLG-2000-5 where
the deflector is a binary.

14



Light curve of a microlensing
event where the deflector is a star
with a planet of approximately
five Earth masses.

(e) Quasar microlensing

Light source: quasar

Deflectors: single stars in galaxies

First observations in 1989

Number of observed quasars that show microlensing variability: about a dozen

Variatiability, caused by
microlensing, in the four
quasar images of the
Cloverleaf H 1413 + 117.

(f) Weak lensing

Light sources: elliptic galaxies

Deflector: dark matter

The distribution of the ellipticities of distant galaxies is statistically evaluated to get
information on the surface density of intervening (dark) masses.

First observation of weak lensing by matter in galaxy clusters: 1989

First indication for weak lensing by large-scale structure (“cosmic shear”): 2000
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HST picture of the galaxy cluster MS 1054-03 (left) and contour lines of the
surface mass density as calculated from weak lensing observations (right).

HST picture of the
galaxy cluster Abell
1689, superimposed
onto the distribution
of matter (blue) as
calculated from weak
lensing observations.

HST picture of the Bullet

Cluster 1E 0657-56, over-
laid with the distribution of
hot gases (red) as observed
by the X-ray satellite Chan-
dra and with the distribu-
tion of gravitating masses
(blue) as calculated from
weak lensing observations.
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Result of a computer simulation by the CFHT team (Canada France
Hawaii Telescope), based on weak lensing observations, showing the
distribution of large-scale structure.

2. Mathematical Formalism

2.1 Brief review of general relativity

A general-relativistic spacetime is a pair (M, g) where:

M is a four-dimensional manifold; local coordinates will be denoted (x0, x1, x2, x3) and Ein-
stein’s summation convention will be used for greek indices µ, ν, σ, . . . = 0, 1, 2, 3 and for latin
indices i, j, k, . . . = 1, 2, 3.

g is a Lorentzian metric on M , i.e. g is a covariant second-rank tensor field, g = gµνdx
µ ⊗ dxν ,

that is

(a) symmetric, gµν = gνµ, and

(b) non-degenerate with Lorentzian signature, i.e., for any p ∈ M there are coordinates
defined near p such that g|p = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

We can, thus, introduce contravariant metric components by

gµνgνσ = δµ
σ
.
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We use gµν and gστ for raising and lowering indices, e.g.

gρτA
τ = Aρ , Bµνg

ντ = Bµ

τ .

The metric contains all information about the spacetime geometry and thus about the gravi-
tational field. In particular, the metric determines the following.

• The causal structure of spacetime:

A curve s 7→ x(s) =
(

x0(s), x1(s), x2(s), x3(s)
)

is
called

spacelike

lightlike

timelike











⇐⇒ gµν
(

x(s)
)

ẋµ(s)ẋν(s)











> 0

= 0

< 0

Timelike curves describe motion at subluminal
speed and lightlike curves describe motion at the
speed of light. Spacelike curves describe motion at
superluminal speed which is forbidden for signals.

timelike
lightlike

spacelike

The motion of a material continuum, e.g. of a fluid, can be described by a vector field
U = Uµ∂µ with gµνU

µUν < 0. The integral curves of U are to be interpereted as the
worldlines of the fluid elements.

• The geodesics:

By definition, the geodesics are the solutions to the Euler-Lagrange equations

d

ds

∂L(x, ẋ)

∂ẋµ
−

∂L(x, ẋ)

∂xµ
= 0

of the Lagrangian

L
(

x, ẋ
)

=
1

2
gµν(x)ẋ

µẋν .

These Euler-Lagrange equations take the form

ẍµ + Γµ

νσ(x)ẋ
ν ẋσ = 0

where

Γµ

νσ =
1

2
gµτ

(

∂νgτσ + ∂σgτν − ∂τgνσ
)

are the socalled Christoffel symbols.

The Lagrangian L(x, ẋ) is constant along a geodesic (see Worksheet 2), so we can speak
of timelike, lightlike and spacelike geodesics. Timelike geodesics (L < 0) are to be inter-
preted as the worldlines of freely falling particles, and lightlike geodesics (L = 0) are to
be interpreted as light rays.

The Christoffel symbols define a covariant derivative that makes tensor fields into tensor
fields, e.g.

∇νU
µ = ∂νU

µ + Γµ

ντU
τ ,

∇νAµ = ∂νAµ − Γρ

νµAρ .
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• The curvature:

The Riemannian curvature tensor is defined, in coordinate notation, by

Rτ
µνσ = ∂µΓ

τ
νσ − ∂νΓ

τ
µσ + Γρ

νσΓ
τ
µρ − Γρ

µσΓ
τ
νρ .

The curvature tensor determines the relative motion of neighbouring geodesics: If X =
Xµ∂µ is a vector field whose integral curves are geodesics, and if J = Jν∂ν connects
neighbouring integral curves of X (i.e., if the Lie bracket between X and J vanishes),
then the equation of geodesic deviation or Jacobi equation holds:

(
Xµ

∇µ

)(
Xν

∇ν

)
Jσ = Rσ

µνρX
µJνXρ .

If the integral curves of X are timelike, they can
be interpreted as worldlines of freely falling par-
ticles. In this case the curvature term in the Ja-
cobi equation gives the tidal force produced by the
gravitational field.

If the integral curves of X are lightlike, they can
be interpreted as light rays. In this case the cur-
vature term in the Jacobi equation determines the
influence of the gravitational field on the shapes of
light bundles, i.e., image deformation and magni-
fication. We will discuss this later in detail.

X

J

• Einstein’s field equation:

The fundamental equation that relates the spacetime metric (i.e., the gravitational field)
to the distribution of energy is Einstein’s field equation:

Rµν −
R

2
gµν + Λgµν = κTµν

where

– Rµν = Rσ
µσν is the Ricci tensor ;

– R = Rµνg
µν is the Ricci scalar ;

– Tµν is the energy-momentum tensor which gives the energy density TµνU
µUν for any

observer field with 4-velocity Uµ normalised to gµνU
µUν = −c2;

– Λ is the cosmological constant;

– κ is Einstein’s gravitational constant which is related to Newton’s gravitational con-
stant G through κ = 8πG/c4.

Einstein’s field equation can be justified in the following way: One looks for an equation
of the form (Dg)µν = Tµν where D is a differential operator acting on the metric. One
wants to have Dg satisfying the following two properties:

(A) Dg contains partial derivatives of the metric up to second order.

(B) ∇
µ(Dg)µν = 0.
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Condition (A) is motivated by analogy to the Newtonian theory: The Poisson equation
is a second-order differential equation for the Newtonian gravitational potential φ, and
the metric is viewed as the general-relativistic analogue to φ . Condition (B) is motivated
in the following way: For a closed system, in special relativity the energy-momentum
satisfies the conservation law ∂µTµν = 0 in inertial coordinates. By the rule of minimal
coupling, in general relativity the energy-momentum tensor of a closed system should
satisfy ∇µTµν = 0. For consistency, the same property has to hold for the left-hand side
of the desired equation.

D. Lovelock has shown in 1972 that these two conditions (A) and (B) are satisfied if and
only if Dg is of the form

(Dg)µν =
1

κ

(

Rµν −
R

2
gµν + Λgµν

)

with some constants Λ and κ, i.e., if and only if the desired equation has indeed the form
of Einstein’s field equation.

For vacuum (Tµν = 0), Einstein’s field equation reads

Rµν −
R

2
gµν + Λgµν = 0 .

By contraction with gµν this implies R = 4Λ, so the vacuum field equation reduces to

Rµν = Λgµν

For considerations which do not involve cosmological scales, Λ can be set equal to zero.
Then the vacuum field equation takes the very compact form

Rµν = 0

which, however, is a complicated system of ten non-linear second-order partial differential
equations for the ten independent components of the metric.

2.2 Example: Schwarzschild spacetime

The Schwarzschild metric is the unique spherically symmetric solution to Einstein’s vacuum
field equation without a cosmological constant, Rµν = 0. It describes the gravitational field
around a spherically symmetric mass. It was found by K. Schwarzschild in 1916. It is usually
written in the following form (which is due to D. Hilbert):

g = −

(

1−
rS
r

)

c2dt2 +
dr2

1−
rS
r

+ r2
(
dϑ2 + sin2ϑ dϕ2

)
.

Here ϑ and ϕ are standard coordinates on the two-dimensional sphere, r is a radius coordinate
ranging from a constant r∗ to ∞, and t is a time coordinate ranging over all of R. rS is an
integration constant. By comparison with the Newtonian theory one finds that

rS =
2GM

c2

where M is the mass of the central body. rS is called the Schwarzschild radius of a spherically
symmetric body with mass M .
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• If r∗ > rS, the Schwarzschild metric describes the gravitational field around a star of
radius r∗.

• If r∗ = 0, the Schwarzschild metric describes a black hole, with a coordinate singularity at
r = rS and a true singularity at r = 0. The coordinate singularity occurs at the horizon
of the black hole; the metric becomes regular there if one changes, e.g., to Eddington-
Finkelstein coordinates.

A star with 0 < r∗ < rS cannot be stable, i.e., r∗ cannot be time-independent in this case. The
star would collapse in a finite time into a (true) singularity at r = 0.

In the following we discuss in some detail the lensing features of the Schwarzschild metric. To
that end we have to consider the lightlike geodesics. Because of spherical symmetry, it suffices
to consider the equatorial plane ϑ = π/2. The Lagrangian reads

L(x, ẋ) =
1

2
gµν(x)ẋ

µẋν =
1

2

{

−

(

1−
rS
r

)

c2ṫ2 +
ṙ2

1−
rS
r

+ r2ϕ̇2

}

.

Here the overdot means derivative with respect to the curve parameter s. The lightlike geodesics
are determined by the following three equations:

• The t–component of the Euler-Lagrange equations:

0 =
d

ds

(∂L

∂ṫ

)

−
∂L

∂t
= − c2

d

ds

( (
1 −

rS
r

)
ṫ
)

,

(
1 −

rS
r

)
ṫ = E = constant . (G1)

• The ϕ–component of the Euler-Lagrange equations:

0 =
d

ds

(∂L

∂ϕ̇

)

−
∂L

∂ϕ
=

d

ds

(
r2ϕ̇

)
= 0 ,

r2ϕ̇ = L = constant . (G2)

• The condition of being lightlike:
L(x, ẋ) = 0 ,

−

(

1−
rS
r

)

c2ṫ2 +
ṙ2

1−
rS
r

+ r2ϕ̇2 = 0 . (G3)

The r-component of the Euler-Lagrange equations gives no additional information. Dividing
(G1) by (G2) results in

dt

dϕ
=

ṫ

ϕ̇
=

E r2

L
(

1−
rS
r

) . (L1)

Dividing (G3) by ϕ̇2 gives

−

(

1−
rS
r

) c2 ṫ2

ϕ̇2
+

1
(

1−
rS
r

)
ṙ2

ϕ̇2
+ r2 = 0
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and thus, with the help of (L1),

−
������(

1−
rS
r

) c2E2r4

L2

(

1−
rS
r

)�2
+

1
(

1−
rS
r

)

( dr

dϕ

)2

+ r2 = 0 ,

( dr

dϕ

)2

=
c2E2r4

L2
− r2

(

1−
rS
r

)

. (L2)

The two equations (L1) and (L2) contain all the necessary information on the lightlike geodesics:
(L2) gives the shape of the light orbit, (L1) gives the travel time. We will now evaluate these
two equations.

• Circular lightlike geodesics:

We consider the equation (L2)

( dr

dϕ

)2

=
c2E2r4

L2
− r2 + rS r

and the ϕ-derivative of this equation,

2
�
�
�dr

dϕ

d2r

dϕ
=

( 4 c2E2r3

L2
− 2 r + rS

)

�
�
�dr

dϕ
.

For a circular lightlike geodesic we must have
dr

dϕ
= 0 and

d2r

dϕ2
= 0, which gives us the

following two equations:

0 =
c2E2r4

L2
− r2 + rS r ,

0 =
4 c2E2r3

L2
− 2 r + rS .

To eliminate E2/L2, we multiply the first equation with 4/r and subtract the second
equation. This results in

0 = − 2 r + 3 rS ⇐⇒ r =
3

2
rS =

3GM

c2
.

We have thus shown that there is a circular lightlike geodesic (or photon circle) at the
radius value 3GM/c2. As we can choose any plane through the origin as our equatorial
plane ϑ = π/2, there is actually a photon sphere at this radius value in the sense that
every great circle on this sphere is a lightlike geodesic.

We will show in the 3rd worksheet that the photon circles at r = 3rS/2 are unstable in
the following sense: A lightlike geodesic with an initial condition that deviates slightly
from that of a photon circle at r = 3rS/2 will spiral away from r = 3rS/2 and either go
to infinity or to the horizon.

For later convenience, we also calculate the value of the constant of motion L2/E2 that
corresponds to a photon circle: If we insert the value r = rS/2 into the equation

0 =
c2E2r3

L2
− r + rS
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we find

c2E2

L2
=

3

2
rS − rS

27

8
r3S

=
4

27 r2S
,

L2

E2
=

27 c2 r2S
4

=
27 c2 4G2M2

4 c4
=

27G2M2

c2
.

The photon sphere at r = 3rS/2 does, of course, not exist for stars with r∗ > 3rS/2. It is
relevant only for black holes and for (hypothetical) ultracompact stars where rS < r∗ <
3rS/2.

• Formula for the deflection angle:

We want to consider a light ray that comes in from infinity, goes through a minimum radius
value at r = rm and then escapes back to infinity. We want to express the deflection angle
δ in terms of rm and the mass of the central body.

We start out from (L2). E2/L2 is determined
by the condition that

0 =
( dr

dϕ

)2
∣
∣
∣
r=rm

=
c2E2

L2
r4m − r2m + rS rm

=⇒
c2E2

L2
=

1

r2m
−

rS
r3m

.

rm

δ

We can, thus, rewrite (L2) as

dϕ =
±dr

√( 1

r2m
−

rS
r3m

)

r4 − r2 + rS r

.

Integration over the light ray results in

∫ ϕ0+π+δ

ϕ0

dϕ =
(

−

∫ rm

∞

+

∫
∞

rm

) dr
√( 1

r2m
−

rS
r3m

)

r4 − r2 + rS r

where the signs of the two integrals on the right-hand side had to be chosen in angreement
with the fact that ϕ is always increasing. We have thus found an exact formula,

π + δ = 2

∫
∞

rm

rm dr
√(

1 −
rS
rm

)

r4 − r2m r2 + r2m rS r

,

for the deflection angle δ in terms of an elliptic integral. From the derivation it is clear
that the integrand has a singularity at the lower bound r = rm, so the evaluation of the
integral needs some care. A more detailed analysis shows that the integral is finite for all
values of rm that are bigger than 3rS/2. If we consider a sequence of light rays with rm
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approaching 3rS/2 from above, the deflection angle δ becomes bigger and bigger which
means that the light rays make more and more turns around the centre. In the limit
rm → 3rS/2 the integral goes to infinity and the limiting light ray spirals asymptotically
towards a circle at r = 3rS/2. We will not prove these facts here, because we will later
demonstrate that this is a general feature of lightlike geodesics in spherically symmetric
and static spacetimes: If an unstable photon circle is approached, the deflection angle
goes to infinity. We will also see that the singularity is always logarithmic.

The asymptotic behaviour of light rays for rm approaching 3rS/2 is relevant only for black
holes and for (hypothetical) ultracompact stars. For an ordinary star, like our Sun, the
possible values of rm are much bigger than the Schwarzschild radius rS. One can then
restrict to a Taylor approximation with respect to rS/rm:

δ + π = 2

∫
∞

rm

rm dr
√

r2
(
r2 − r2m

)
−

rS
rm

r
(
r3 − r3m

)
=

= 2

∫
∞

rm

rm dr
√

1 −
rS
rm

(
r3 − r3m

)

r
(
r2 − r2m

) r

√

r2 − r2m

=

= 2

∫
∞

rm

{

1 +
1

2

rS
rm

(
r3 − r3m

)

r
(
r2 − r2m

) + O
( r2S
r2m

)
}

rm dr

r
√

r2 − r2m

=

= 2

∫
∞

rm

rm dr

r
√

r2 − r2m
︸ ︷︷ ︸

= I1

+ ��2
1

��2

rS
rm

∫
∞

rm

(
r3 − r3m

)
rm dr

r2
√

r2 − r2m
3

︸ ︷︷ ︸

= I2

+ O
( r2S
r2m

)

.

The integrals I1 and I2 are elementary and can be looked up in a table (or calculated
with the help of a substitution), I1 = π/2 and I2 = 2 ; hence

π + δ = π + 2
rS
rm

+ O
( r2S
r2m

)

.

If quadratic and higher-order terms are neglected we get Einstein’s deflection formula

δ = 2
rS
rm

=
4GM

c2 rm
.

To within the same approximation, the Newtonian deflection formula of Cavendish and
Soldner gave half this value, recall Worksheet 1 .

In the 3rd worksheet we will further discuss Einstein’s deflection formula. We will see that
bending according to this formula can be mimicked by an appropriatelty shaped plastic
lens, and we will calculate the resulting focal length of a spherically symmetric deflector
of a given mass and a given radius.
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3rS/2

2π

4π

6π

rm

δ

Plot of the exact bending angle δ against the minimum radius rm.

• Shadow of a Schwarzschild black hole:

We fix an observer at radius rO and consider all light rays that go from the position of this
observer into the past. (To put this another way, we consider all light rays that arrive at
the position of the observer.) They fall into two categories: Category I consists of light
rays that go out to infinity, category II consists of light rays that go to the horizon at
r = rS. The borderline case that separates the two categories is given by light rays that
asymptotically spiral towards the light sphere at r = 3rS/2.

rO

θ0

Now assume that there are light sources distributed at large radii, but no other light
sources. Then the initial directions of light rays of category I correspond to points at
the observer’s sky that are bright, and the initial directions of light rays of category II
correspond to points at the observer’s sky that are dark, known as the shadow of the
black hole. The boundary of the shadow corresponds to light rays that spiral towards
r = 3rS/2. It is our goal to calculate the angular radius θ0 of the shadow, in dependence
of rS and rO.
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For any light ray, the ini-
tial direction makes an an-
gle θ with respect to the axis
that is given, according to
the picture, by

tan θ = lim
∆x→0

∆ y

∆ x
.

∆ x

∆y

rO

θ

From the Schwarzschild metric in the equatorial plane,

g = −
(

1−
rS
r

)

c2dt2 +
dr2

1−
rS
r

+ r2dϕ2 ,

we can read the length ∆x and ∆y in the desired limit,

tan θ =
r dϕ

(

1−
rS
r

)−1/2

dr

∣

∣

∣

r=rO
.

dr/dϕ can be expressed with the help of eq. (L2) from p.22, hence

tan2θ =
r2O

(

1−
rS
rO

)

E2r4O
c2L2

− r2O + rSrO

=
rO − rS

E2r3O
c2L2

− rO + rS

.

By elementary trigonometry,

sin2θ =
sin2θ

sin2θ + cos2θ
=

1

cot2θ + 1
=

1

(rO − rS)−1

( E2r3O
c2 + L2

− rO + rS

)

+ 1

=

=
rO − rS

E2r3O
c2L2

−��rO +��rS +��rO −��rS

=
c2L2

(

rO − rS
)

E2r3O
.

The angular radius θ0 of the shadow is given by the angle θ for a light ray that spirals
towards r = 3rS/2. This light ray must have the same constants of motion E and L as a
circular light ray at r = 3rS/2 (because the tangent vectors of these two light rays come
arbitrarily close to each other),

c2L2

E2
=

27

4
r2S

as we have calculated on p.23.
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This gives us θ0 in dependence of rS = 2GM/c2 and rO,

sin2θ0 =
27 r2S(rO − rS)

4 r3O
.

Note that

rO → ∞ : θ0 → 0 (i.e., the shadow vanishes).

rO = 3rS/2 : θ0 = π/2 (i.e., the shadow covers half of the sky).

rO → rS : θ0 → π (i.e., the shadow covers the whole sky).

The shadow is usually visualised in terms of the socalled escape cones. For each observer
position, the red cone indicates the part of the sky that is bright:

rO = 1.05 rS rO = 1.3 rS rO = 3 rS/2 rO = 2.5 rS rO = 6 rS

For the black hole at the centre of our galaxy (M ≈ 4× 106M�, rO ≈ 8 kpc) the angular
radius of the shadow is θ0 ≈ 15µas. One expects that this shadow will be seen with
radio telescopes in the near future, using Very Long Baseline Interferometry (VLBI). A
dedicated project, called the Event Horizon Telescope, is now in the planning stage. The
name is a bit misleading: First, it is not one telescope but rather a system of several
existing and planned VLBI stations around the Earth. Second, it will not make the event
horizon directly visible; what is meant is to reach an angular resolution comparable to
the size of the event horizon.

Note that the shadow would exist not only for a black hole, but in exactly the same way
also for an ultracompact star (rS < r∗ < 3rS/2), provided the star is dark.

Our calculation was based on the Schwarzschild metric, so it does not apply to a rotating

black hole. The latter is to be described by the Kerr metric; then the shadow turns out
to be non-circular. So the shape of the shadow tells directly if the black hole is rotating
or not. There is some evidence that the black hole at the centre of our galaxy is rotating
quite fast. However, our calculation with the Schwarzschild metric gives the correct order
of magnitude for the size of the shadow.

• Multiple imaging of a Schwarzschild black hole:

In this section we will briefly discuss the qualitative properties of multiple imaging in the
Schwarzschild spacetime. A more quantitative characterisation, including precise image
positions and magnitudes, will be given later with the help of the exact lens map.

We fix a static observer at radius rO and a static light source at radius rL. We exclude the
case that observer and light source are exactly aligned (i.e., that they are on a straight line
through the origin of the coordinate system). We want to determine how many images
the observer sees of the light source. Clearly, every lightlike geodesic from the light source
to the observer gives rise to an image.
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rO

rL

rO

rL

The qualitative imaging features follow from the fact that the bending angle grows mono-
tonically to infinity for light rays that approach the photon sphere at r = 3rS/2. As a
consequence, for any integer n = 0, 1, 2, 3, . . . there is a light ray from the light source to
the observer that makes n full turns in the clockwise sense, and another light ray from
the light source to the observer that makes n full turns in the counter-clockwise sense.
Hence, there are two infinite sequences of light rays from the light source to the observer,
one in the clockwise sense (left picture) and one in the counter-clockwise sense (right
picture). Either sequence has as its limit curve a light ray that spirals asymptotically
towards r = 3rS/2. The pictures are not just qualitatively correct; they show numeri-
cally integrated lightlike geodesics in the Schwarzschild spacetime. One sees that for each
sequence the light rays with n = 1, 2, 3, . . . lie practically on top of each other. Corre-
spondingly, the observer sees infinitely many images on either side of the centre. Each
sequence rapidly approaches the shadow.

In the picture, which is again the result
of a calculation, the shadow is shown as
a big black disk. On either side only
the outermost image (n = 0) can be iso-
lated, all the other ones clump together
and they are very close to the boundary
of the shadow.
We will later calculate image positions and magnifications with the exact lens map. We
will then see that the outermost images are brighter than all the other ones combined.
Of the two outermost images, the brighter one is called the primary image and the other
one is called the secondary image. All the other ones, which correspond to light rays that
make at least one full turn, are known as higher-order images or relativistic images. The
latter name is misleading as higher-order images also occur in the Newtonian theory of
bending (in the sense of Cavendish and Soldner).

Higher-order images have not been observed so far. Just as with the observation of the
shadow, there is some hope that they might be seen near the black hole at the centre of our
galaxy in the near future. The Very Large Telescope in Chile will soon be equipped with
a new instrument, called GRAVITY, for infrared interferometry. With this instrument it
could be possible to observe higher-order images of stars orbiting the black hole.
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• Travel time of light rays (Shapiro effect):

In combination with eq.(L2), eq. (L1) allows to calculate the travel time of any light ray
in the Schwarzschild spacetime. We will do this for a light ray that starts at a (big) radius
rL, passes through a minimum radius value rm and terminates at a (big) radius rO.

rm
rO

rL

From equations (L1) and (L2) on p.21/22 we find

(dr

dt

)2

=
( dr

dϕ

)2 (dϕ

dt

)2

=
(c2E2r4

L2
− r2 + rSr

) L2

(

1−
rS
r

)2

E2r4
=

=
(c2E2r3

L2
− r + rS

) L2
(

r − rS
)2

E2r5
.

As before, we express c2E2/L2 in terms of the minimum radius value rm via

0 =
( dr

dϕ

)2
∣

∣

∣

r=rm
=

c2E2r4m
L2

− r2m + rSrm =⇒
c2E2

L2
=

rm − rS
r3m

.

This results in

(dr

dt

)2

=
((rm − rS) r

3

r3m
− r + rS

) c2
(

r − rS
)2
r3m

(rm − rS)r5
,

dt =
±
√
rm − rS r

5/2 dr

c (r − rS) r
3/2
m

√

(rm − rS)r
3

r3m
− r + rS

.

Integration over the light ray gives the travel time

∆ t =
(

−
∫ rm

rL

+

∫ rO

rm

)

√
rm − rS r

5/2 dr

c (r− rS) r
3/2
m

√

(rm − rS)r
3

r3m
− r + rS

where the signs on the right-hand side had to be chosen in such a way that the time
coordinate is always increasing along the light ray. This is an exact formula for the travel
time in terms of an elliptic integral.
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If rm � rS, we can make a Taylor approximation, in exactly the same way as we did it
for the deflection formula:

∆ t =
(

∫ rL

rm

+

∫ rO

rm

)

√
rm

(

1−
rS
rm

)1/2

r5/2 dr

c r
(

1−
rS
r

)

r
3/2
m

√

r3

r2m
− r

√

1 −
rS
rm

(r3 − r3m)

r (r2 − r2m)

=

=
(

∫ rL

rm

+

∫ rO

rm

) r

c
√

r2 − r2m

{

1−
rS
2rm

+
rS
r

+
rS
2rm

(r3 − r3m)

r (r2 − r2m)
+ . . .

}

dr =

=
(

∫ rL

rm

+

∫ rO

rm

) r

c
√

r2 − r2m

{

1−
rS
2rm

+
rS
r

+
rS�����(r − rm)(r

2 + rmr + r2m)

2rmr�����(r − rm)(r + rm)
+ . . .

}

dr =

=
(

∫ rL

rm

+

∫ rO

rm

) r

c
√

r2 − r2m

{

1−
�
�
�rS

2rm
+

rS
r

+
�
�
�rS

2rm
+

rSrm
2r(r + rm)

+ . . .
}

dr =

=
1

c

(

∫ rL

rm

+

∫ rO

rm

) r dr
√

r2 − r2m
+

rS
c

(

∫ rL

rm

+

∫ rO

rm

) dr
√

r2 − r2m
+

+
rSrm
2c

(

∫ rL

rm

+

∫ rO

rm

) dr
√
r − rm

√
r + rm

3
+ . . .

The integrals are elementary:

∆ t =
1

c

(

√

r2L − r2m +
√

r2O − r2m

)

+

+
rS
2 c

(

2 ln
rL +

√

r2L − r2m
rm

+ 2 ln
rO +

√

r2O − r2m
rm

+

√

rL − rm
rL + rm

+

√

rO − rm
rO + rm

)

+ . . .

The zeroth-order term is, of course, the Euclidean travel time for a light ray with speed
c along a straight line. The deviation of the general-relativistic calculation from this
zeroth-order term is known as the Shapiro time delay.

In 1964, I. Shapiro suggested to use this effect as a fourth test of general relativity (after
perihelion precession, light deflection and gravitational redshift). In 1967 the first exper-
iment was done: A strong radio signal was sent to Venus, when it was in opposition to
the Earth, and the time was measured until the signal arrived back on the Earth, after
being reflected at the Venus atmosphere. Later experiments were done with transponders
on spacecraft, that sent the signal back with increased intensity. The best measurement
to date was done with the Cassini spacecraft in 2002. The general-relativistic time-delay
was verified to within an accuracy of 0.001% .
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• Angular radius of Einstein rings:

When light source and observer are perfectly aligned (i.e., directly opposite to each other)
in the Schwarzschild spacetime, an Einstein ring is seen.

rm

rOrL

θE

We want to determine the angular radius θE of the Einstein ring in dependence of the
radius coordinate rL of the light source, the radius coordinate rO of the observer and, of
course, the Schwarzschild radius rS.

We use the formula

dϕ =
± dr

√

(rm − rS)r
4

r3m
− r2 + rSr

.

which was derived on p.23 for a light ray in the equatorial plane of the Schwarzschild
spacetime. We integrate over the light ray, but this time for the case that the observer
is at finite radius rO and the light source is at finite radius rL. In the case of perfect
alignment, integration over the light ray gives

π =
(

∫ rL

rm

+

∫ rO

rm

) dr
√

(rm − rS)r
4

r3m
− r2 + rSr

.

This equation determines rm as a function of rL, rO and rS,

rm = f(rL, rO, rS) .

With the help of the implicit function theorem, one can indeed, check that the above
equation can be solved for rm. However, one cannot write down the resulting function f
explicitly as the unknown quantity rm occurs both in the limits and in the integrand of
an elliptic integral. It is, of course, possible, to determine rm numerically for any given
values of rL, rO and rS with arbitrary accuracy.

With rm (implicitly) determined, the angular radius θE of the Einstein ring can now be
calculated in a way that is just a repitition of what we have done for the calculation of
the shadow:

tan θE =
r dϕ

(

1−
rS
r

)−1/2

dr

∣

∣

∣

∣

∣

∣

∣

r=rO

=
rO

(

1−
rS
rO

)1/2

√

(rm − rS)r
4
O

r3m
− r2O + rSrO

.

On the right-hand side we have to substitute rm = f(rL, rO, rS) to get θE as a function
of rL, rO and rS as desired.

If all equations are linearised with respect to rS/rm, one gets a simple and quite explicit
formula for θE , see Worksheet 4.
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2.3 Fermat’s principle

We discuss a version of Fermat’s principle for light rays in general relativity that holds in an arbitrary
spacetime (M, g). No symmetry assumption will be made, and the causal structure need not be
restricted.

This version of Fermat’s principle was first suggested, in a local version restricted to convex
normal neighbourhoods of an event, by G. Temple, Proc. Roy. Soc. London A 168, 122 (1938).

It was independently rediscovered by I. Kovner, Astrophys. J. 351, 114 (1990). Kovner clearly
indicated the relevance of this variational principle for gravitational lensing, but he did not give
a complete proof.

For a complete proof see V. Perlick, Class. Quantum Grav. 3, 1319 (1990).

A nice discussion can be found in Schneider/Ehlers/Falco.

In an arbitrary general-relativistic spacetime
(M, g), we fix an event q = (q0, q1, q2, q3) ∈ M

and a curve
ξ : I −→ M

s 7−→ ξ(τ) =
(
ξ0(τ), ξ1(τ), ξ2(τ), ξ3(τ)

)

that is timelike,

gµν
ξµ(τ)

dτ

ξν(τ)

dτ
< 0 .

The parameter τ ranges over some open interval
I. We may choose τ as the proper time, but any
other smooth parametrisation would do as well.

We want to determine, by way of a variational
principle, all light rays (i.e., all lightlike geodesics)
that start at the event q and terminate on the
worldline γ. To that end we need two things:

q

ξ
(
T (η)

)

η

We have to choose the set of trial paths among which the solutions are to be sought, and we have to
choose the functional that is to be extremised. Guided by Fermat’s principle in ordinary optics, we
choose as the space of trial paths the set of all worldlines that go from q to ξ at the speed of light.
More precisely, we define the space of trial paths Lq,ξ as the set of all curves

η : [0, 1] −→ M , s 7−→ η(s) =
(
η0(s), η1(s), η2(s), η3(s)

)

such that:

( i ) η starts at the event q, i.e. η(0) = q,

( ii ) η terminates somewhere on the worldline ξ, i.e., there is a T (η) such that η(1) = ξ
(
T (η)

)
,

(iii) η is the worldline of an object that moves at the speed of light, i.e., gµν
dηµ(s)

ds

dην(s)

ds
= 0 for

all s ∈ [0, 1].

( iv ) η is future-oriented with respect to ξ, i.e., gµν
dηµ(s)

ds

∣
∣
∣
s=1

dξν(τ)

dτ

∣
∣
∣
τ=T (η)

< 0.
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Condition ( ii ) defines the arrival time functional

T : Lq,ξ −→ R

η 7−→ T (η)

This is the functional to be extremised. We can now state the following mathematical theorem which
is to be interpreted as a general-relativistic version of Fermat’s principle.

Theorem (Fermat’s principle): For a curve η ∈ Lq,ξ, the following equivalence holds:

η is a stationary point (i.e., a min-
imum, a maximum or a saddle) of
the arrival time functional T .






⇐⇒ η is a geodesic.

Proof of “⇐=”: (A proof of “=⇒”, under slightly more restrictive assumptions, can be found in
Schneider/Ehlers/Falco.) Let η ∈ Lq,ξ be a geodesic. Consider a variation µ of η, i.e., a map

µ : [0, 1]× ]− ε0, ε0[ −→ M

(s, ε) 7−→ µ(s, ε)

such that µ( · , 0) = η and µ( · , ε) ∈ Lq,ξ for all ε .

s

ε

−ε0

ε0

1
−→

µ

ξ

q

∂s
∂ε

The image of µ is a 2-surface (possibly with self-intersections) in the spacetime manifold. This
2-surface is parametrised by s and ε. The partial derivatives with respect to these parameters
define two vector fields (strictly speaking: “vector fields along the map µ”) that are suggestively
denoted ∂s and ∂ε.
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As all trial paths start at q and terminate on ξ we have

∂ε
∣
∣
s=0

= 0 and ∂ε
∣
∣
s=1

= ξ̇
(
T (µ(·, ε))

) d

dε
T
(
µ(·, ε)

)
.

It is our goal to prove that

d

dε
T
(
µ( · , ε)

)
∣
∣
∣
ε=0

= 0 .

As all trial paths are lightlike, we have g(∂s, ∂s) = 0 everywhere on the image of µ, i.e., for all
values of s and ε. Differentiation with respect to ε and integration over a trial path yields, for
any ε,

0 =

∫ 1

0

∂ε

(

g(∂s, ∂s)
)

ds =

∫ 1

0

∇∂ε

(

g(∂s, ∂s)
)

ds =

=

∫ 1

0

{(

∇∂εg
︸ ︷︷ ︸

=0

)(
∂s, ∂s

)
+ 2 g

(
∇∂ε∂s, ∂s

)}

ds =

= 2

∫ 1

0

{

g
(
∇∂s∂ε + [∂ε, ∂s]

︸ ︷︷ ︸

=0

, ∂s
)}

ds =

= 2

∫ 1

0

{

∂s

(

g
(
∂ε, ∂s

))

− g
(
∂ε,∇∂s∂s

)}

ds =

= 2 g
(
∂ε, ∂s

)
∣
∣
∣
s=1

− 2 g
(
∂ε, ∂s

)
∣
∣
∣
s=0

− 2

∫ 1

0

g
(
∂ε,∇∂s∂s

)
ds =

= 2 g
(
ξ̇
(
T (µ(·, ε))

)
, ∂s

∣
∣
s=1

) d

dε
T
(
µ(·, ε)

)
− 0 − 2

∫ 1

0

g
(
∂ε,∇∂s∂s

)
ds . (∗)

We evaluate this equation at ε = 0. As η is a geodesic, we have ∇∂s∂s = 0 for ε = 0, so the
integral in (∗) vanishes. As ξ̇ is timelike and ∂s is lightlike, the factor g

(
ξ̇
(
T (µ(·, ε))

)
, ∂s

∣
∣
s=1

)

cannot be zero. (By condition (iv) of our definition of the space of trial paths, it is negative.)
So (∗) implies that, indeed

d

dε
T
(
µ(·, ε)

)
∣
∣
∣
ε=0

= 0 .

�
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Remarks:

• We have proven that a geodesic must be a stationary point of the arrival time functional, i.e.,
a minimum, a maximum or a saddle. Actually, maxima do not occur. This is intuitively clear
because one can always produce neighbouring trial paths with a longer travel time by putting
wiggles into it. This is quite analogous to Fermat’s principle in ordinary optics where also only
minima and saddles occur, see e.g. M. Born and E. Wolf: Principles of Optics, 7th edition,
Cambridge Univ. Press (1999), p.137.

• In applications to gra-
vitational lensing, one
chooses ξ with a past-
oriented parametrisation.
q is to be interpreted as
an observation event and
ξ as the worldline of a
light source. The solu-
tion curves are all past-
oriented light rays from q

to ξ. They give all the
images of the light source
that are seen by the ob-
server at the event q.

q

ξ
(
T (η)

)

η

Fermat’s principle can be reduced to a purely spatial variational principle in the case that the
spacetime is conformally stationary. By definition, a spacetime is called stationary if it admits
coordinates (x0, x1, x2, x3) such that g00 < 0 and ∂0gµν = 0, i.e., such that the x0-lines are timelike and
the metric coefficients depend on (x1, x2, x3) only. A spacetime is called conformally stationary if it
can be made stationary by multiplying the metric with a scalar factor. (Recall that the multiplication
of the metric with a scalar factor is called a “conformal transformation”. The factor must be strictly
positive to preserve the signature.) Hence, a conformally stationary metric is of the form

g = g00(dx
0)2 + 2g0idx

0dxi + gijdx
idxj =

= − g00

{

− (dx0)2 + 2
g0i

−g00
︸ ︷︷ ︸

=: γ0i

dx0dxi +
gij

−g00
︸ ︷︷ ︸

=: γij

dxidxj
}

with
g00 < 0 , ∂0γ0i = 0 , ∂0γij = 0 .

In such a spacetime, we apply Fermat’s principle to the case that ξ is an integral curve of ∂0,
parametrised with its proper time with respect to the conformally rescaled metric, i.e.

(
ξ0(τ), ξ1(τ), ξ2(τ), ξ3(τ)

)
=

(
cτ, x1

0, x
2
0, x

3
0

)

with constants x1
0,x

2
0 and x3

0. q may be any event in the spacetime. As each trial path η ∈ Lq,ξ is
lightlike, we have gµν η̇

µη̇ν = 0. After dividing by the (strictly positive) factor −g00 this results in

0 = − (η̇0)2 + 2 γ0iη̇
0η̇i + γij η̇

iη̇j =⇒ η̇0 = γ0iη̇
i ±

√
(
γ0iγ0j + γij

)
η̇iη̇j .
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By condition (iv) of the definition of the trial paths, the plus sign must be chosen. We integrate over
the trial path from s = 0 to s = 1. As

η0(s)
∣
∣
s=1

= c T (η) and η0(s)
∣
∣
s=0

= constant ,

this gives us the arrival time functional as an integral,

T (η) =
1

c

∫ 1

0

{

γ0iη̇
i +

√
(
γ0iγ0j + γij

)
η̇iη̇j

}

ds + constant .

(The constant is, of course, irrelevant for the variational problem and can be disregarded.) As only
the spatial components (η1, η2, η3) enter, and as γ0i and γij are independent of x0, this reduces
Fermat’s principle to a variational problem for curves in 3-dimensional space.

An even simpler version of Fermat’s principle arises if we further specify to the case that the γ0i
are zero, i.e., that the x0-lines are orthogonal to the hypersurfaces x0 = constant. In this case, the
spacetime is called conformally static. The arrival time functional simplifies to

T (η) =
1

c

∫ 1

0

√

γij η̇iη̇j ds
(
+ constant

)
.

This is, up to the factor c, just the length functional of the positive definite Riemannian metric
γijdx

idxj on 3-space. We call this metric the Fermat metric (or the optical metric) of our conformally
static spacetime. The stationary points of the length functional are, of course, the geodesics. So in
this case Fermat’s principle reduces to the statement that the light rays are precisely the geodesics
of the Fermat metric γijdx

idxj if projected to 3-space. This special version of Fermat’s principle was
found by H. Weyl already in 1917. (Weyl did not allow for a time-dependent conformal factor, i.e.,
he assumed ∂0g00 = 0, but this generalisation is fairly obvious.)

In the even more special case that the Fermat metric is conformal to the (flat) Euclidean metric,

γijdx
idxj = n(x1, x2, x3)2 δijdx

idxj ,

Fermat’s principle takes precisely the same form as in ordinary optics for a medium with index of
refraction n(x1, x2, x3),

T (η) =
1

c

∫ `0

0

n(x1, x2, x3)d`
(
+ constant

)
,

where

d` =

√

δij
dxi

ds

dxj

ds
ds

is the Euclidean length element. In the standard terminology of optics,

L(η) =

∫ `0

0

n(x1, x2, x3)d`

is called the optical path length. For conformally static spacetimes in which the Fermat metric is
conformal to the flat metric, it is thus possible to mimic the light propagation by a medium with
an appropriately chosen index of refraction. This goes under the name of “analogue models” for
general-relativistic spacetimes. As an example, we will determine the index of refraction for the
Schwarzschild metric in the 5th worksheet.
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2.4 Example: Robertson-Walker spacetimes

By definition, a Robertson-Walker spacetime is a Lorentzian manifold with a metric of the form

g = − c2dt2 + a(t)2
dr2 + r2(dϑ2 + sin2ϑdϕ2)

(1 + kr2)2
.

Robertson-Walker spacetimes are the most basic cosmological spacetime models. They are homo-
geneous (no spatial points are distinguished from others) and isotropic (no spatial directions are
distinguished from others).

The function a(t) is known as the scale factor. The universe is expanding if ȧ(t) > 0 and contracting
if ȧ(t) < 0. The constant k gives the spatial curvature of the spacetime. k > 0 means spatially
positively curved, k = 0 means spatially flat, k < 0 means spatially negatively curved. By a (dimen-
sional) rescaling of the coordinates one can make k to +1, 0 or −1.

Every Robertson-Walker metric satisfies Einstein’s field equation

Rµν −
R

2
gµν + Λ gµν = κTµν

with the energy-momentum tensor of a perfect fluid,

Tµν =
(
µ +

p

c2

)
UµUν + p gµν , Uρ∂ρ = ∂t .

Only two of the ten components of Einstein’s field equation give independent equations. They are
known as the Friedmann equations, named after Russian mathematician Alexander Friedmann who
found them in 1922:

ȧ(t)2 + k c2

a(t)2
=

1

3

(
κc4µ(t) + Λc2

)
,

ä(t)

a(t)
= −

κc4

6

(

µ(t) +
3 p(t)

c2

)

+
Λc2

3
.

Obviously, the second equation admits a time-independent solution, a = constant, with µ > 0 and
p ≥ 0 only if Λ 6= 0. In other words, Λ is necessary if one wants to construct time-independent
homogeneous and isotropic cosmological models on the basis of general relativity. This is what
Einstein, actually, motivated to introduce the cosmological constant in 1917. Nowadays we are no
longer interested in time-independent cosmological models; nonetheless, the cosmological constant
plays a crucial role in modern cosmology, in particular as a possible explanation for the accelerated

expansion of the universe.

For each solution of the Friedmann equations, we can calculate the maximal time interval ]tmin, tmax[
on which it is defined. We speak of a

• big-bang model if tmin 6= −∞ ,

• big-crunch model if tmax 6= ∞ .

To apply Fermat’s principle to a Robertson-Walker universe, we rewrite the metric in the form

g = a(t)2
{

−
c2 dt2

a(t)2
+

dr2 + r2(dϑ2 + sin2ϑ dϕ2)

(1 + kr2)2

}

.
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We introduce a new time coordinate

T =

∫
dt

a(t)
,

known as the “conformal time”, such that

dt2

a(t)2
= dT 2 .

The transformation t 7→ T maps the domain ]tmin, tmax[ of the t-coordinate onto a maximal domain
]Tmin, Tmax[ of the T -coordinate. If Tmin 6= −∞, there are particle horizons and event horizons, even
in the spatially flat case (k = 0) where the metric inside the curly bracket is just the Minkowski
metric.

Hp

p

T = Tmin

Integral curves of ∂t (“particles”) outside of Hp cannot causally influence the event p.
Therefore, Hp is called the particle horizon of p.

HP

P

T = Tmin

Events outside of the light cone HP cannot be causally influenced by the particle P.
Therefore HP is called the event horizon of the particle P.
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To verify that our metric is, indeed, conformally static, we have to compare it with the form

g = − g00

{

− (dx0)2 + γij dx
idxj

}

and to verify that the γij are indeed independent of x0. Clearly, this is true with the identifications

g00 = − a(t)2 , x0 = c T , γij dx
idxj =

dr2 + r2(dϑ2 + sin2ϑ dϕ2)

(1 + kr2)2
.

The Fermat metric is conformal to the flat metric,

γij dx
idxj = n(r)2

(
dr2 + r2(dϑ2 + sin2ϑ dϕ2)

)

with an index of refraction

n(r) =
1

1 + kr2
.

In a medium with such an r-dependent index of refraction the light rays move precisely in the same
way as in a Robertson-Walker universe.
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φ(p)

p

S3

R
3

For k = 1, a medium with this index of refraction was considered already in the 19th century by
James Maxwell. It is known as Maxwell’s fish-eye. The Fermat metric (on R

3) is related to the
standard metric on the 3-sphere S3 by stereographic projection p 7→ φ(p). On S3, the geodesics are
great circles; hence, all the geodesics through a fixed point also pass through the antipodal point.
It was this property that caught the interest of Maxwell: Maxwell’s fish-eye is an optical system
where the light rays issuing from a fixed point are perfectly refocused into another point. (In the
R

3-representation, this works for all points with the exception of the origin; the latter is refocused
into the “point at infinity” that corresponds to the north pole N .)
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2.5 Redshift

It is our goal to derive a redshift formula for observer and light source in arbitrary motion (with
subluminal speed, of course) in an arbitrary spacetime.

This formula was first given by W. Kermack, W. McCrea and E. Whittaker, Proc. R.
Soc. Edinburgh 53, 31 (1932). The derivation we will give here follows D. Brill, in
D. Farnsworth, J. Fink, J. Porter and A. Thompson (eds.), Methods of local and global

differential geometry in general relativity, Springer (1972), p.45.

We consider, in an arbitrary general-relativistic spacetime, two timelike curves

ξ : I −→ M , τ 7−→ ξ
(
τ
)

and ξ̃ : I −→ M , τ̃ 7−→ ξ̃
(
τ̃
)
.

ξ is to be interpreted as the worldline of a light source (or emitter) and ξ̃ as the worldline of an
observer (or receiver). The parameters τ and τ̃ are arbitrary, for the time being.

Assume that the light source emits at time τ
a light ray λ that arrives at time τ̃ with the
receiver, and a second light ray at time τ +∆τ
that arrives at time τ̃ +∆τ̃ . Then we define the
frequency ratio

dτ̃

dτ
= lim

∆τ→∞

∆τ̃

∆τ
=

=
ωemitter

ωreceiver

= 1 + z .

As we have not required τ and τ̃ to be proper
time, here the word “frequency” does not nec-
essarily refer to the physical frequency as it
is measured with standard clocks. However,
the mathematical construction works for any
parametrisations. – The quantity

z =
ωemitter − ωreceiver

ωreceiver

is called the redshift. Clearly, z > 0 means that
the light signal arrives redshifted and z < 0
means that it arrives blueshifted.

ξ(τ)

ξ(τ +∆τ)

ξ̃(τ̃ )

ξ̃(τ̃ +∆τ̃ )

λ

It is now our goal to find a formula that allows to calculate z if ξ, ξ̃ and λ are known. To that end
we consider a variation

µ : [s1, s2]× I −→ M

(s, ε) 7−→ µ(s, ε)

such that

µ(s1, τ) = ξ
(
τ
)
, µ(s2, τ ) = ξ̃

(
τ̃ (τ)

)
, µ( · , τ) is a lightlike geodesic.
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ξ(τ)

ξ̃(τ̃ )

s

τ

s1 s2

µ

We calculate

∂s

(

g(∂s, ∂τ )
)

= ∇∂s

(

g
(
∂s, ∂τ

))

=

=
(
∇∂sg
︸ ︷︷ ︸

=0

)(
∂s, ∂τ

)
+ g

(
∇∂s∂s
︸ ︷︷ ︸

=0

, ∂τ
)
+ g

(
∂s ,∇∂s∂τ
︸ ︷︷ ︸

)

=∇∂τ ∂s +[∂s,∂τ ]

=

= g
(
∂s,∇∂τ , ∂s

)
+ g

(
∂s, [∂s ∂τ ]
︸ ︷︷ ︸

=0

)
=

=
1

2
∇∂τ

(

g
(
∂s, ∂s

)

︸ ︷︷ ︸

=0

)

−
1

2

(

∇∂τ g
︸ ︷︷ ︸

=0

)(
∂s, ∂s

)
= 0 .

This demonstrates that the function g
(
∂s, ∂τ

)
is constant along each of the light rays from ξ to ξ̃

that form our variation. In particular, this function takes the same value at the two end-points of
the light ray,

g
(
∂s, ∂τ

)∣
∣
s=s1,τ

= g
(
∂s, ∂τ

)∣
∣
s=s2,τ

, (∗)

gµν
dλµ

ds

∣
∣
∣
s=s1

dξν

dτ
= gµν

dλµ

ds

∣
∣
∣
s=s2

dξ̃ν

dτ̃

dτ̃

dτ
.

This gives us the desired redshift formula

1 + z =
gµν

dλµ

ds

∣
∣
∣
s=s1

dξν

dτ

gρσ
dλρ

ds

∣
∣
∣
s=s2

dξ̃σ

dτ̃

.
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We will now specialise this general redshift formula to the case that the spacetime is conformally
stationary,

g = − g00

{

− (dx0)2 + 2
g0i

−g00
︸ ︷︷ ︸

=: γ0i

dx0dxi +
gij

−g00
︸ ︷︷ ︸

=: γij

dxidxj
}

with

g00 < 0 , ∂0γ0i = 0 , and ∂0γij = 0 ,

recall p.35. The equation

e2f = − g00

defines a function f that, in general, depends on all four spacetime coordinates. The four-velocity of
observers that move on x0-lines is then given by

U = Uµ∂µ = c e−f∂0 , gµνU
µUν = − c2 .

We assume that emitter and observer move on x0-lines. We can then apply our above result (∗) to
the case that ∂τ = ∂0,

g
(

∂s ,
1

c
ef U

)∣
∣
∣
p
= g

(

∂s ,
1

c
ef U

)∣
∣
∣
p̃

where p is the event of emission and p̃ is the event of
reception. We have, thus,

g
(
∂s, U

)∣
∣
p

g
(
∂s, U

)∣
∣
p̃

= ef(p̃)−f(p) .

According to the general redshift formula, the left-
hand side is the frequency ratio 1 + z for the case
that emitter and receiver use standard clocks,

Up =
dξ

dτ
, Up̃ =

dξ̃

dτ̃
.

For this case the redshift z is thus given by the simple
formula

ln(1 + z) = f(p̃)− f(p)

p

p̃

Up

Up̃

which means that f is a redshift potential. We have thus shown that every conformally stationary
spacetime admits a redshift potential. One can show that the converse is also true: A redshift
potential exists if and only if the spacetime is conformally stationary.

In the stationary case, where f is independent of x0, the above redshift formula gives us z directly
in terms of the spatial coordinates (x1, x2, x3) of the emitter and the spatial coordinates (x̃1, x̃2, x̃3)
of the receiver. If f does depend on x0, we have to find out which pairs of points p and p̃ on the
worldlines of emitter and receiver can be connected by light rays. Only then can we calculate z with
the above redshift formula, e.g., as a function of the receiver’s proper time. A simple example of the
latter case is given by the Robertson-Walker spacetimes, see Worksheet 5.
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2.6 Example: Kottler spacetime

The Kottler spacetime is the generalisation of the Schwarzschild spacetime to the case that the
cosmological constant is allowed to be non-zero. More precisely, the Kottler metric is the unique
spherically symmetric solution of the vacuum Einstein equation with cosmological constant, Rµν =
Λ gµν . It reads

g = −
(
1 −

2GM

c2r
−

Λ

3
r2
)
c2dt2 +

dr2

1 −
2GM

c2r
−

Λ

3
r2

+ r2
(
dϑ2 + sin2ϑ dϕ2

)
.

It was found by F. Kottler in 1918. It is also known as the “Schwarzschild-deSitter metric” if Λ > 0
and as the “Schwarzschild-anti-deSitter metric” if Λ < 0. This terminology has its origin in the fact
that the Kottler metric goes over into the deSitter metric if M → 0 and Λ > 0, and into the anti-
deSitter metric if M → 0 and Λ < 0. For Λ → 0, the Kottler metric is of course the Schwarzschild
metric.
For all values of Λ, the Kottler metric has a true singularity at r = 0. Horizons occur at (real and
positive) values of r where

1 −
2GM

c2r
−

Λ

3
r2 = 0 .

One finds

• one horizon if Λ < 0,

• two horizons if 0 < Λ <
( c2

3GM

)2

,

• no horizon if
( c2

3GM

)2

< Λ.

We rewrite the Kottler metric in the form

g =
(
1 −

2GM

c2r
−

Λ

3
r2
){

− c2dt2 +
dr2

(

1 −
2GM

c2r
−

Λ

3
r2
)2

+
r2
(
dϑ2 + sin2ϑ dϕ2

)

1 −
2GM

c2r
−

Λ

3
r2

}

.

From this expression we read that the redshift potential f of the Kottler metric is given as

e2f = 1 −
2GM

c2r
−

Λ

3
r2 .

This gives us immediately the redshift for the case that emitter and receiver move on x0-lines and
use standard clocks,

1 + z =

√

1 −
2GM

c2r̃
−

Λ

3
r̃2

√

1 −
2GM

c2r
−

Λ

3
r2

where r and r̃ are the radius coordinates of emitter and receiver, respectively. Note that z → ∞ if
the emitter approaches the horizon.
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2.7 Geometry of light bundles

In this chapter we discuss how the cross section of a light bundle changes in dependence of an affine
parameter of a central light ray. This has relevance in view of

• the magnitude of images,

• the deformation of images.

A central role in this chapter will play the Sachs equations which are differential equations for the
socalled optical scalars.

The relevant equations for the cross sections of light bundles in general relativity were
first published in German by J. Ehlers and R. Sachs, Abh. Mainzer Akad. Wissensch.,
Math.-Naturw. Klasse Nr. 1, 1 (1961). The Sachs equations were then published in
English by R. Sachs, Proc. Roy. Soc. London A 264, 309 (1961), 270, 103 (1962).

Starting point is the geodesic deviation equation (also known as the Jacobi equation). We briefly
recall how this equation is derived. Assume that X is geodesic, ∇XX = 0, and that [X, Y ] = 0, i.e.,
that the integral curves of X and Y form a closed grid. Then one finds from the definition of the
curvature tensor, R(X, Y, Z) = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z, and from the fact that the torsion
vanishes, ∇YZ −∇ZY + [Z, Y ] = 0, the geodesic deviation equation

∇X∇XY = R(X, Y,X) .

This equation tells how, along any integral curve of the geodesic vector field X , the connecting vector
Y to an infinitesimally close neighbouring integral curve of X changes.

We now specify to the case that the geodesic vector field X is lightlike, g(X,X) = 0. Then each
integral curve of X is a light ray. We fix one of those integral curves of X and call it λ. A bundle of

light rays (or, more precisely, an infinitesimally thin bundle of light rays) around λ is defined by any
two vector fields Y1 and Y2 such that

(a) ∇X∇XYA = R(X, YA, X) for A = 1, 2;

(b) g(X, YA) = 0 for A = 1, 2;

(c) Y1, Y2 and X are linearly independent almost everywhere.

The bundle is then the set

B =
{
c1Y1 + c2Y2

∣
∣ c21 + c22 = 1 } .

Condition (a) means that “the tip of the arrow” YA describes an infinitesimally close neighbouring
geodesic. Condition (b) makes sure that this neighbouring geodesic is again lightlike and spatially
related to the central geodesic. Condition (c) requires that the bundle has a two-dimensional cross-
section except, possibly, at some isolated (“focal”) points were the bundle cross-section collapses into
a line or a point.
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X

E1

E2

λ

We can rewrite the Jacobi equation conveniently as a matrix equation if we express Y1 and Y2 with
respect to an appropriate basis. We say that a pair of vector fields (E1, E2) along λ is a Sachs bein

if E1 and E2 are

• orthonormal, i.e. g(EA, EB) = δAB ;

• orthogonal to X , i.e., g(X,EA) = 0;

• parallel along λ, i.e., ∇XEA = 0.

Note that, by the third condition, the Sachs bein is fixed along λ once it has been chosen at one
point of λ. The first two conditions imply that, at each point of λ, the three vectors X , E1 and E2

span the orthocomplement of X . We can, thus, write Y1 and Y2 as a linear combination of them,

YA = DA
BEB + yAX .

If we plug this into the Jacobi equation we get

d2DA
B

ds2
EB +

d2yA

ds2
X = g

(
X,DA

BEB, X
)
,

where we have used that ∇XEA = 0 and ∇XX = 0. Applying the operator g(EC , · ) to this equation
results in

d2DA
B

ds2
g(EC , EB)
︸ ︷︷ ︸

= δCB

+
d2yA

ds2
g(EC , X)
︸ ︷︷ ︸

=0

= DA
B g
(
EC , R(X,EB, X)

)
.

This gives us the matrix Jacobi equation

d2

ds2
D = DZ

where

D =
(
DA

B
)
, Z =

(
ZCB

)
, ZCB = g

(
EC , R(X,EB, X)

)
.
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Note that, owing to the symmetries of the Riemannian curvature tensor R, the optical tidal matrix

Z is symmetric,

ZCB = ZBC .

We can, thus, decompose Z into a trace part and a trace-free part,

Z =

(
Φ00 0
0 Φ00

)

+

(
Re(ψ0) Im(ψ0)
Im(ψ0) −Re(ψ0)

)

where we have introduced the real quantity

Φ00 =
1

2

(
Z11 + Z22

)
=

1

2
Ric(X,X) (N1)

and the complex quantity

ψ0 =
1

2

(
Z11 − Z22

)
+ i Z12 =

1

2
g
(
E1 + iE2, C(X,E1 + iE2, X)

)
. (N2)

In (N1), Ric denotes the Ricci tensor, Ric(X,X) = RµνX
µXν , and in (N2) C denotes the trace-free

part of the curvature tensor which is known as the Weyl tensor or as the conformal curvature tensor.
(The symbols Φ00 and ψ0 have been chosen in agreement with the Newman-Penrose formalism, just
for those readers who are familiar with it. For our purpose, however, this background is not relevant.
Just view Φ00 and ψ0 as being defined by the first equality sign in N(1) and (N2), respectively.)

To get a better understanding of the geometry behind the matrix Jacobi equation, we decompose
the matrices D and Z in an appropriate way. Recall that any matrix can be written as a product of
an orthogonal matrix and a symmetric matrix. (This result can be found in books on linear algebra
under the name of “polar decomposition”.) We can, thus, decompose our matrix D in the form

D = RM

where R is orthogonal,

R
T = R

−1 ,

and M is symmetric,

M
T = M .

Now we use the well-known fact that any symmetric matrix M can be diagonalised. We can, thus,
write the matrix M in the form

M = T
−1∆T

where T is orthogonal and ∆ is diagonal. This puts D into the form

D = RT
−1

︸ ︷︷ ︸

orthogonal

∆ T
︸︷︷︸

orthogonal

.
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As an orthogonal (2×2)-matrix is nothing but a rotation matrix, this gives us the following parametri-
sation for the matrix D:

D =

(
cosψ − sinψ
sinψ cosψ

) (
D+ 0
0 D−

) (
cosχ sinχ

− sinχ cosχ

)

.

Multiplication with the inverse of the first rotation matrix results in

(
cosψ sinψ

− sinψ cosψ

)

D =

(
D+ 0
0 D−

) (
cosχ sinχ

− sinχ cosχ

)

.

This matrix equation can be applied to the “two-column vector” whose components are the vector
fields E1 and E2,

(
cosψ sinψ

− sinψ cosψ

) (
Y1
Y2

)

'

(
D+ 0
0 D−

) (
cosχ sinχ

− sinχ cosχ

) (
E1

E2

)

where ' means equality up to multiples of X . This gives us two vector equations,

Y+ := cosψ Y1 + sinψ Y2 ' D+ cosχE1 + D+ sinχE2 ,

Y− := − sinψ Y1 + cosψ Y2 ' −D− sinχE1 + D− cosχE2 .

From these equations we read that the
eigenvalues D+ and D− determine the
semi-major and the semi-minor axis of the
bundle and the angle χ gives the rotation
of these axes with respect to the Sachs
bein. In this way D+, D− and χ deter-
mine the shape of the bundle. The angle
ψ is less relevant; it just tells how Y1 and
Y2 are rotated with respect to the princi-
pal axes.

With D parametrised by D+, D−, χ and
ψ, the matrix Jacobi equation has now
become a coupled system of second order
differential equations for these four scalar
quantities. It is convenient to reduce this
to first order form. To that end we intro-
duce the socalled deformation matrix

S = D
−1 d

ds
D .

|D+|

|D−|

E1

E2

Y1

Y2

χ

With

d

ds
D = DS , (D)

the matrix Jacobi equation reads

DZ =
d

ds

(
DS

)
= D

( d

ds
S
)
+
( d

ds
D
)
S = D

( d

ds
S
)
+ DSS .
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After multiplication with D
−1 from the left, we find

d

ds
S + S S = Z . (S)

This is the Sachs equation in matrix form. The two first-order matrix differential equations (D) and
(S) are equivalent to the second-order matrix Jacobi equation.

We decompose S into antisymmetric part, trace part and symmetric trace-free part,

S =

(
0 −ω

ω 0

)

+

(
θ 0
0 θ

)

+

(
σ1 σ2
σ2 −σ1

)

.

ω gives the rotation of the bundle, θ gives the expansion and (σ1, σ2) gives the shear. With this
notation, (D) reads

d

ds

(

θ + σ1 −ω + σ2

ω + σ2 θ − σ1

)

+

(

(θ + σ1)
2 + σ2

2 − ω2 −2θω + 2θσ2

2θω + 2θσ2 (θ − σ1)
2 + σ2

2 − ω2

)

=

=

(

Φ00 + Re(ψ0) Im(ψ0)

Im(ψ0) Φ00 − Re(ψ0)

)

.

This matrix equation gives us four scalar equations

d

ds
θ ±

d

ds
σ1 + θ2 ± 2 θ σ1 + σ2

1 + σ2
2 − ω2 = Φ00 ± Re(ψ0) , (A±)

±
d

ds
ω +

d

ds
σ2 ± 2 θ ω + 2 θ σ2 = Im(ψ0) , (B±)

We write the complex combination (A±)± i(B±) of these equations.

d

ds
(θ + iω) ±

d

ds
(σ1 + iσ2) + θ2 + 2 i θ ω ± 2 θ (σ1 + iσ2) + σ2

1 + σ2
2 − ω2 = Φ00 ± ψ0 . (S±)

After introducing the complex optical scalars

% = θ + i ω , σ = σ1 + i σ2 ,

the equations (S+) + (S−) and (S+)− (S−) read

d

ds
% = − %2 − |σ|2 + Φ00 , (S1)

d

ds
σ = −

(
%+ %

)
σ + ψ0 . (S2)

This system of first-order differential equations is known as the Sachs equations. It is equivalent
to the matrix equation (S). By the first Sachs equation, the Ricci-tensor term Φ00 influences the
real part of %, i.e., the expansion. This effect is known as Ricci focussing. Note, however, that the
conformal curvature term ψ0 produces shear, by the second Sachs equation, and that the shear also
influences the expansion, by the first Sachs equation. In this indirect way, ψ0 also has a focussing
effect.
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Similarly to the matrix equation (S), we can also decompose the matrix equation (D) into two
complex equations. We use the parametrisation of D in terms of D+, D−, χ and ψ, and we use the
parametrisation of S in terms of θ, σ1, σ2 and ω. Then the equation (D) reads

d

ds

{(

cosψ − sinψ
sinψ cosψ

) (

D+ 0
0 D−

) (

cosχ sinχ
− sinχ cosχ

)}

=

(

cosψ − sinψ
sinψ cosψ

) (

D+ 0
0 D−

) (

cosχ sinχ
− sinχ cosχ

) (

θ + σ1 −ω + σ2
ω + σ2 θ − σ1

)

.

On the left-hand side, we use the product rule; on the right-hand side we multiply out the the last
three matrices.

dψ

ds

(

− sinψ − cosψ
cosψ − sinψ

) (

D+ 0
0 D−

) (

cosχ sinχ
− sinχ cosχ

)

+

(

cosψ − sinψ
sinψ cosψ

) {

d

ds

(

D+ 0
0 D−

)} (

cosχ sinχ
− sinχ cosχ

)

+

(

cosψ − sinψ
sinψ cosψ

) (

D+ 0
0 D−

) (

− sinχ cosχ
− cosχ − sinχ

)

dχ

ds
=

(

cosψ −sinψ
sinψ cosψ

)





D+

(

cosχ
(

θ + σ1
)

+ sinχ
(

ω + σ2
)

)

D+

(

cosχ
(

− ω + σ2
)

+ sinχ
(

θ − σ1
)

)

D−

(

− sinχ
(

θ + σ1
)

+ cosχ
(

ω + σ2
)

)

D−

(

sinχ
(

ω − σ2
)

+ cosχ
(

θ − σ1
)

)



 .

We multiply from the left by

(

cosψ sinψ
−sinψ cosψ

)

and from the right by

(

cosχ −sinχ
sinχ cosχ

)

.

Then we get

dψ

ds

(

0 − 1
1 0

) (

D+ 0
0 D−

)

+
d

ds

(

D+ 0
0 D−

)

+

(

D+ 0
0 D−

) (

0 1
− 1 0

)

dχ

ds
=





D+

(

θ + σ1 cos(2χ) + σ2 sin(2χ)
)

D+

(

− ω − σ1 sin(2χ) + σ2 cos(2χ)
)

D−

(

ω − σ1 sin(2χ) + σ2 cos(2χ)
)

D−

(

θ − σ1 cos(2χ)− σ2 sin(2χ)
)





where we have used the familiar trigonometric identities

cos2χ− sin2χ = cos(2χ) and 2 sinχ cosχ = sin(2χ) .
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The last matrix equation gives 4 real scalar equations.

dD+

ds
= D+

(

θ + σ1cos(2χ) + σ2sin(2χ)
)

,

D+

dχ

ds
− D−

dψ

ds
= D+

(

− ω − σ1sin(2χ) + σ2cos(2χ)
)

,

dD−

ds
= D−

(

θ − σ1cos(2χ)− σ2sin(2χ)
)

,

D−

dχ

ds
− D+

dψ

ds
= D−

(

− ω + σ1sin(2χ)− σ2cos(2χ)
)

.

Using the optical scalars % = θ+ iω and σ = σ1 + iσ2 these equations can be conveniently comprised
into the following complex form.

dD±

ds
+ iD±

dχ

ds
− D∓

dψ

ds
= D±

(

% ± σ e−2iχ
)

. (D±)

This result clearly demonstrates the advantage of the D± notation which might have appeared
somewhat unmotivated until now. (This notation goes back to R. Kantowski.)

The two complex first-order equations (D+) and (D−) and the two complex first-order equation (S1)
and (S2) are equivalent to the second-order matrix Jacobi equation

d

ds2
D = DZ .

Before working out some examples and demonstrating the relevance of this formalism to image
magnification and deformation we will derive a conservation law from the matrix Jacobi equation.

Claim: Any two bundles D1 and D2 along the same lightlike geodesic satisfy

( d

ds
D1

)

D
T
2 − D1

( d

ds
D

T
2

)

= constant

where ( · )T denotes the transpose of a matrix.

Proof:

d

ds

{( d

ds
D1

)

D
T
2 − D1

( d

ds
D

T
2

)}

=

( d2

ds2
D1

)

D
T
2 +

�
�
�
�
�
�
�
�
��( d

ds
D1

)( d

ds
D

T
2

)

−
�
�
�
�
�
�
�
�
��( d

ds
D1

)( d

ds
D

T
2

)

− D1

( d2

ds2
D

T
2

)

=

D1ZD
T
2 − D1

(

D2 Z
)T

= D1

(

Z −Z
T
)

D
T
2 .

By symmetries of the curvature tensor, the optical tidal matrix is symmetric, Z = Z
T , so the last

expression is indeed zero. �
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This result has two important consequences

• Consider two bundles D1 and D2 along the same lightlike geodesic with the properties that
D1 has a vertex at the affine parameter value s1 and D2 has a vertex at the affine parameter
value s2, i.e.

D1(s1) = 0 ,
d

ds
D1(s1) = 1 ,

D2(s2) = 0 ,
d

ds
D2(s2) = 1 .

s1

s2

D2(s)

D1(s)

Then the conservation law

{( d

ds
D1

)

D
T
2 − D1

( d

ds
D

T
2

)}∣

∣

∣

s1

=
{( d

ds
D1

)

D
T
2 − D1

( d

ds
D

T
2

)}∣

∣

∣

s2

implies that

1D
T
2 (s1) − 0

d

ds
D

T
2 (s1) =

d

ds
D1(s2) 0 − D1(s2) 1 ,

hence

D
T
2 (s1) = −D1(s2) .

This remarkable relation is known as the “reciprocity law”. It was proven by I. Etherington,
Philos. Mag. and J. of Science 15, 761 (1933). We will later discuss important consequences
of the reciprocity law for distance measures that are used, in particular, in cosmology.
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• The conservation law is, of course, also true in the case that D1 = D2 = D. In this special
case it reads

( d

ds
D

)

D
T
− D

( d

ds
D

T
)

= constant ,

DSD
T
− D

(

DS
)T

= constant ,

DSD
T
− DS

T
D

T = constant ,

D
(

S − S
T
)

D
T = constant ,

D

(

0 −ω

ω 0

)

D
T = constant .

Now assume that the bundle has a vertex, i.e., that at one value of the affine parameter s = s0
the matrixD is the zero matrix. (Such a bundle is called a “homocentric bundle” or a “pencil”.)

s0

D(s)

Then the left-hand side of the above equation is the zero matrix at s = s0; as it is constant,
it must then be the zero matrix for all values of s. However, the matrix D was assumed to
have a non-zero determinant almost everywhere (recall that we assumed that the bundle has a
two-dimensional, non-degenerate cross-section for almost all values of s). So the left-hand side
of the above equation can be identically zero only if ω is identically zero. We have thus proven
the following result: A homocentric bundle is necessarily twist-free. For applications to lensing,
in most cases one considers bundles with a vertex at a (pointlike) observer or at a (pointlike)
light source. This is the reason why the twist of light bundles is rather irrelevant in view of
applications to lensing.
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2.8 Example: Spacetime of a straight string

We modify the Minkowski metric, written in cylindrical polar cooordinates, by a factor k2 in front
of the angular part:

g = − c2 dt2 + dz2 + dρ2 + k2 ρ2 dϕ2 .

The coordinates have their usual range, t ∈ R, z ∈ R, ρ ∈ R+ and ϕ ∈ R mod 2π .

For 0 < k < 1, the geometry in the
plane t = constant, z = constant
can be visualised in the following way.
While the radial length measure is the
same as in flat space, the circumfer-
ence of a circle at radius ρ is no longer
equal to 2πρ, as in flat space, but
rather equal to 2πkρ. There is, thus,
a deficit angle δ = 2π(1 − k). (For
k > 1 we get a negative δ, i.e., a sur-
plus angle.) We get a valid represen-
tation of this geometry by taking a
(flat) sheet of paper, cutting a piece
of opening angle δ away and gluing
the two boundaries together. What
we get is a cone, i.e. a geometry that
is flat everywhere but has a (“conic”)
singularity at ρ = 0.

p p

q

δ

identify

As the (t, z)-plane is obviously flat, this observation implies that the entire metric is flat except at
ρ = 0 where it is singular. Here “flat” is a local concept, meaning that the curvature tensor vanishes.
The global structure of the metric differs from Minkowski spacetime in two respects. First, there is
the conic singularity at ρ = 0 which cannot be removed by a coordinate transformation. Second, the
circumference of a circle at radius ρ is not equal to 2πρ but rather to 2πkρ.

As the curvature tensor vanishes, the metric satisfies the vacuum field equation without a cosmological
constant, Rµν = 0 , everywhere away from the axis ρ = 0 where the conic singularity sits. So it is to
be interpreted as the gravitational field of a souce that is concentrated on a line and surrounded by
vacuum. Such a source is called a (cosmic) string. The existence of cosmic strings was predicted first
by T. Kibble: J. Phys. A 9, 1387 (1976) as the result of phase transitions in the early universe. They
have not been detected until now. The infinitely long, straight and static string considered here is,
of course, a highly idealised model of a realistic cosmic string. This particular “flat spacetime with
a gravitational field” was first considered by L. Marder: Proc. Roy. Soc. London A 252, 45 (1959).

With the cone cut open and flattened, we can immediately deduce the multiple-imaging properties
in this string spacetime. Light rays (geodesics of the Fermat metric) are then represented by straight
lines. For the case 0.5 < k < 1 we read from the picture that the point p can be connected by
two light rays with any point in the shaded region, and by just one light ray with any point in the
unshaded region. So the string produces a double image in the case that observer and light source
are sufficiently well aligned.
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The double galaxy CSL-1 was considered as a candidate for lensing by a cosmic string for a while,
but then it was found that it actually is a physical pair of galaxies, not a double-image of one galaxy,
see E. Agol, C. Hogan, R. Plotkin: Phys.Rev. D73, 087302 (2006).

As the string spacetime has vanishing curvature tensor, the optical tidal matrix Z is zero, along any
light ray. Hence, the matrix Jacobi equation simply reads

d2

ds2
D = 0

which obviously has the solution

D(s) = D(0) + s
( d

ds
D

)

(0) .

For a bundle with a vertex at s = 0,

D(0) = 0 and
( d

ds
D

)

(0) = 1 ,

the solution further simplifies to

D(s) = s 1 .

s = 0D

If we parametrise D by the shape parameters D+, D−, χ and ψ, the last equation requires

D+(s) = s , D−(s) = s , χ(s) − ψ(s) = 0 .

The deformation matrix S takes the form

S(s) = D(s)−1 d

ds
D(s) =

1

s
1
d

ds

(

s 1
)

=
1

s
1 .

Decomposition into expansion, shear and twist,

S(s) =

(

θ(s) + σ1(s) −ω(s) + σ2(s)
ω(s) + σ2(s) θ(s)− σ1(s)

)

,

results in

θ(s) =
1

s
, ω(s) = σ1(s) = σ2(s) = 0 .

These equations hold in any spacetime with vanishing curvature tensor, whatever the global structure
of the spacetime may be.
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2.9 Distance measures and brightness of images

The first notion we want to discuss is the socalled area distance (or angular diameter distance). It
is based on the intuitive idea that

area at light source = (solid angle at observer) × distance2 .

To translate this idea into a mathematical for-
mula, we consider an observer at pO with 4-
velocity UO and a light ray λ parametrised in
a past-oriented sense such that λ(0) = pO and

g
(

UO, XO

)

= c

where XO = λ̇(0) is the tangent vector to the
light ray at the observer. The last condition
fixes the ambiguity in the choice of the affine
parametrisation. Assume that there is a light
source at pL = λ(sL) with 4-velocity UL.

Let D be the solution to the matrix Jacobi
equation with initial condition

D(0) = 0 ,
( d

ds
D

)

(0) = 1 .

This gives us a bundle with vertex at the ob-
server. With the help of the shape parameters
D+ and D− of this bundle we define, according
to the above idea, the area distance as

Darea(sL) =
√

∣

∣D+(sL)D−(sL)
∣

∣ .

pL

pO

λ

UL

UO

D

In flat spacetimes we have (recall Sect.2.8)

D+(s) = s and D−(s) = s ,

hence

Darea(s) = s .

In curved spacetimes, however, Darea need not be monotonic. It may even take the value Darea = 0
for s 6= 0, if the homocentric bundle from pO is refocused into pL. This happens, e.g., in a spatially
closed Robertson-Walker spacetime if observer and light source are antipodal.

With the help of the area distance, we will now derive the socalled focussing theorem. As a prepara-
tion, we prove the following result.

Claim : The area distance satisfies the differential equation

d

ds
Darea = θ Darea .
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Proof : As a homocentric bundle is twist-free, ω = 0, the differential equations (D±) from p.50 read

dD±

ds
+ iD±

dχ

ds
− D∓

dψ

ds
= D±

(

θ ± σ e−2iχ
)

.

Taking the real part gives us the following two equations.

dD+

ds
= D+

(

θ + Re
(

σ e−2iχ
)

)

,

dD−

ds
= D−

(

θ − Re
(

σ e−2iχ
)

)

.

Now multiply the first equation with D− and the second one with D+. The sum of the resulting
two equations gives

d

ds

(

D+D−

)

= 2D+D−θ ,

hence

d

ds
D 2

area = 2 θD 2

area ,

��2 �
��Darea

d

ds
Darea = ��2 θD�2

area ,

�

By differentiating another time with respect to s, we find

d2

ds2
Darea =

d

ds

(

θDarea

)

=
dθ

ds
Darea + θ

dDarea

ds
.

For the first term we use the Sachs equation (S1).

d2

ds2
Darea =

(

− θ2 − |σ|2 − 1

2
Rµν λ̇

µλ̇ν
)

Darea + θ2Darea .

With Einstein’s field equation

Rµν − R

2
gµν + Λ gµν = κTµν

the Ricci tensor can be expressed with the energy-momentum tensor, using the fact that λ̇ is lightlike,

d2

ds2
Darea =

(

−�
�θ2 − |σ|2 − κ

2
Tµνλ̇

µλ̇ν +�
�θ2
)

Darea .

Assume that the weak energy condition is satisfied, i.e., that the energy density is positive for all
observers,

TµνV
µV ν ≥ 0 if gµνV

µV ν < 0 .
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Then we have by continuity

Tµν λ̇
µλ̇ν ≥ 0

for the lightlike vector λ̇, hence

d2

ds2
Darea ≤ 0 .

This may be properly called the focussing inequality. Near s = 0, our initial conditions make sure
that the graph of the function Darea(s) is tangential to the flat-space solution Darea(s) = s. Now the
focussing inequality says that the graph of this function can curve away from the flat-space solution
only in the downward direction, i.e., that it stays below (or on) the flat-space solution.

We have thus proven the focussing theorem:
If Einstein’s field equation holds with an
energy-momentum tensor that satisfies the
weak energy condition, then gravity has a
focussing effect (as opposed to a defocussing
one).

Strictly speaking we have proven that, un-
der the stated energy condition, the focussing
inequality holds up to the first conjugate
point, i.e., up to the first point s > 0 where
Darea = 0 (if any). It does not necessarily
hold beyond the first conjugate point because
the definition of Darea involves a square root
which is not differentiable at zero.

s

Darea

Darea(s) = s

Darea(s)

The definition of the area distance was based on the idea that the size of an object decreases with the
square of its distance. Similarly, we could use the idea that the intensity of a light source decreases
with the square of its distance, i.e.

intensity ∼ (solid angle at light source)× distance2 .

This leads to an analogous construction as we used for the area distance, but this time with a bundle
that has a vertex at the light source. We call this bundle D̃. By the reciprocity theorem, the
cross-sectional area of the bundle D̃ at the observer would be equal to the cross-sectional area of
the bundle D at the light source if we would use the same parametrisation of the light ray for both
constructions. However, as the solid angle at the light source is to be measured in the rest system of
the light source, the condition g(UO, XO) = c has now to be replaced by the condition g(UL, XL) = c

where XL is the tangent vector to the light ray at the light source. Therefore, we define the corrected
luminosity distance as

D′
lum =

g(UO, XO)

g(UL, XL)
Darea .

With the help of the general redshift formula (recall Section 2.5), this can be rewritten as

D′
lum =

(

1 + z
)

Darea .
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If we think of the light source as emitting photons isotropically in the whole solid angle of 4π, then
the inverse square of the corrected luminosity distance is proportional to the number flux (photons
per area per time) at the observer. If one wants to determine the energy flux, one has to take into
account that each photon undergoes a redshift. We have thus to replace the corrected luminosity
distance D′

lum by the (“uncorrected”) luminosity distance

Dlum = (1 + z)D′
lum = (1 + z)2Darea .

This quantity is related to the energy flux F at the observer by

F =
L

4πD 2
lum

where L is the (bolometric) luminosity of the light source.

Astronomers describe the brightness of images in terms of magnitudes. As human senses respond
logarithmically to a physical stimulus (“Weber-Fechner law”), magnitudes are proportional to the log
of the energy flux. The precise definition of magnitudes goes back to british astronomer N. Pogson
(1829 – 1891) and reads, in our notation,

m = − 2.5 log10(L) + 2.5 log10
(

D 2

lum

)

+ m0

wherem0 is a universal constant. The factor 2.5 ≈ 5
√
100 was chosen such that the scale approximately

coincides with the classification of stars (“first magnitude” to “sixth magnitude”) that was used in
the star catalogue of Hipparchos (129 BC).

The above consideration gives the brightness of images for point sources. For extended sources it is
appropriate to introduce the surface brightness

B =
L

area at light source

and the intensity (or irradiance)

I =
F

solid angle at observer
.

Then

I =
F

solid angle at observer
=

B

4πD 2
lum

(area at light source)

(solid angle at observer)
=

BD 2
area

4πD 2
lum

=
B

4π(1 + z)4
.

Surprisingly, all distance measures have dropped out. For a source of known surface brightness, the
intensity is completely determined by the redshift. Also note that the angle between the viewline
and the surface of the light source does not enter. (This corresponds to Lambert’s law in ordinary
optics.) The formula was derived under the assumption that all the light comes from the surface of
the light source and that each surface element radiates isotropically. This is not true, e.g., for our
Sun where the radiation is produced in a layer of finite thickness (the socalled photosphere). For
this reason, in the case of the Sun the relation between intensity and surface brightness does depend
on the viewing angle. This leads to the phenomenon of “Randverdunklung”, i.e., the Sun appears
considerably darker near the rim than near the centre.
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2.10 Example: Ellis wormhole

The best known example of a wormhole is the Ellis wormhole. Its metric reads

g = − c2 dt2 + dr2 + (r2 + a2)
(

dϑ2 + sin2ϑ dϕ2
)

with a constant a > 0. The coordinate ranges are t ∈ R, r ∈ R, (ϑ, ϕ) ∈ S2. This metric was first
considered by H. Ellis [J. Math. Phys. 14, 104 (1973)] who called it a “drainhole”. More precisely,
the given metric is a special case of a class of wormhole metrics discussed in the Ellis paper.

Note that r = 0 is not a point but a regular sphere with area 4πa2. The 2-surface t = constant,
ϑ = π/2 can be visualised as a tube that opens out into asymptotically flat ends for r → ∞ and
for r → −∞. The minimal diameter of this tube is at r = 0 which is known as the “neck” or the
“throat” of the wormhole.

The name “wormhole”, which was coined by John Wheeler, refers to the topology that results by
gluing the two asymptotic ends together. However, we do not make this identification in the follow-
ing.

We will demonstrate below that the Ellis wormhole is traversible, i.e., an observer can move through
the throat, from one asymptotic end to the other, with subluminal velocity.

By symmetry, r = 0 is a light sphere (or photon sphere), i.e., a light ray sent tangentially to this
sphere stays on the sphere. This light sphere is unstable, just as the light sphere at r = 3rS/2 in
the Schwarzschild spacetime, so light rays can asymptotically spiral towards it. Hence, the quali-
tative lensing features of an Ellis wormhole are very similar to the qualitative lensing features of a
Schwarzschild black hole. The radii r = ∞, r = 0 and r = −∞ in the Ellis spacetime correspond to
the radii r = ∞, r = 3rS/2, r = rS in the Schwarzschild spacetime. In particular, an Ellis wormhole
has a shadow, just as the Schwarzschild black hole (or an ultracompact Schwarzschild star), whose
boundary corresponds to light rays that asymptotically spiral towards the light sphere at the neck
of the wormhole, see Worksheet 8. Also, an Ellis wormhole produces two families of infinitely many
images of every light source, just as shown in the picture on p.28 for the Schwarzschild case.

The Ricci tensor of the Ellis spacetime has only one non-vanishing component,

Rrr =
−2a2

(r2 + a2)2
.

We will now show that, by Einstein’s field equation, this gives a negative energy density for some
observers. Assume that the observer moves radially, i.e., that his four-velocity is of the form

V = α∂t + β∂r .
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The normalisation condition on the four-velocity requires

gµνV
µV ν = α2gtt + β2grr = −α2c2 + β2 = −c2

which is equivalent to

β2 = (α2 − 1) c2 .

α can be chosen arbitrarily. We assume that Einstein’s field equation holds, allowing for a non-zero
cosmological constant. Then the energy density of our observer is

TµνV
µV ν =

1

κ

(

Rµν −
R

2
gµν + Λgµν

)

V µV ν =

=
1

κ

(

RrrV
rV r −

Rστg
στ

2
gµνV

µV ν + ΛgµνV
µV ν

)

=

=
1

κ

(

Rrrβ
2 −

Rrrg
rr

2
(−c2) + Λ(−c2)

)

=

=
1

κ

(

Rrr

(

β2 +
c2

2

)

− Λ c2
)

=

=
1

κ

( −2a2

(r2 + a2)2
(

α2 −
1

2

)

c2 − Λ c2
)

.

This expression is negative for α sufficiently large, whatever Λ may be. One says that the weak

energy condition holds in a spacetime if the energy density is non-negative for all observers. We
have thus shown that the Ellis wormhole violates the weak energy condition. It is a matter of debate
if negative energy densities exist. In any case, all known kind of matter has a non-negative energy
density. So we see that some sort of “exotic matter” is needed to produce an Ellis wormhole. – It can
be shown that for a rather large class of traversible wormholes, known as the Morris-Thorne class,
the energy density must be negative for some observers. Here “traversible” means that an observer
can move through the throat from one asymptotic end to the other at subluminal speed. It is easy
to see that the Ellis wormhole is, indeed, traversible: For a radial light ray we have

0 = − c2 dt2 + dr2 ⇐⇒
dr

dt
= ± c .

Hence, the travel time T for such a light ray from r = rO > 0 to r = rL < 0 is given by

c

∫ T

0

dt =

∫ rO

rL

dr ⇐⇒ c T = rO − rL = |rO|+ |rL| .

As a massive body can follow a light ray arbitrarily closely, it can move from r = rO > 0 to r = rL < 0
in a finite travel time

T =
1

c

(

|rO|+ |rL|+ ε
)

with arbitrarily small ε > 0.

Let us now discuss the focussing theorem in the Ellis spacetime for the case that observer and light
source are static and on the same radial line, ϑO = ϑL and ϕO = ϕL.
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λ(0)

rO

rL

D

D is the solution to the matrix differential equation

d2

ds2
D = DZ

with initial condition

D(0) = 0 ,
( d

ds
D

)

(

0
)

= 1 .

The affine parameter s is fixed by the condition

g
(

UO, λ̇(0)
)

= c .

We need to determine the relation between s and r along the past-oriented radial light ray λ con-
necting the observer and the light source. We assume rO > rL. Then the tangent vector λ̇ must be
of the form

λ̇(s) = u(s) ∂r + v(s) ∂t

with u(s) < 0 and v(s) < 0, hence

0 = g
(

λ̇(s), λ̇(s)
)

= u(s)2 grr + v(s)2 gtt = u(s)2 − c2 v(s)2 ,

c = g
(

UO, λ̇(0)
)

= g
(

∂t, u(0)∂r + v(0)∂t
)

= u(0) gtr + v(0) gtt = −v(0) c2 .

As

E = −
∂L

∂ṫ
= c2 ṫ = c2v

is a constant of motion,

v(s) = v(0) = −
1

c
,

u(s) = c v(s) = − 1 .

This results in

λ̇(s) = − ∂r −
1

c
∂t .
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In particular, s and r are related along the light ray by

dr

ds
= − 1 .

With the initial condition r(0) = rO integration yields

r(s) = rO − s .

After these preparations, we now turn to the focussing equation,

d2

ds2
Darea =

(

− |σ|2 −
1

2
Rµν λ̇

µλ̇ν
)

Darea .

As the spacetime is rotationally symmetric about the radial light ray λ, the bundle D has a circular
cross-section, hence σ = 0. The Ricci term is

Rµν λ̇
µλ̇ν = Rrrλ̇

rλ̇r =
−2a2(−1)2

(r2 + a2)2
=

−2a2
(

(rO − s)2 + a2
)2 ,

hence the focussing equation reduces to

d2

ds2
Darea =

a2Darea
(

(rO − s)2 + a2
)2 > 0 .

In contrast to spacetimes that satisfy the weak-energy condition, the Ellis geometry has a defocussing

effect on the light bundle.

s

Darea

Darea(s) = s

DEllis
area (s)

2.11 Image deformation

In the following we use the parametrisation of bundles D in terms of D+, D−, χ and ψ, see p.47. We
define the ellipticity of the bundle as

ε(s) =
( D+(s)

D−(s)
−
D−(s)

D+(s)

)

e2iχ(s) .
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The complex quantity ε gives the shape and the orientation of the elliptic bundle cross-section, as
can be read from the picture on p.47. In particular, ε = 0 holds if and only if D2

+ = D2
−, i.e., if and

only if the bundle has a circular cross-section. |ε| → ∞ means that either |D+/D−| or |D−/D+| goes
to infinity, i.e., that the ellipse degenerates into a line.

We will now derive a differential equation for ε. As we are mainly interested in homocentric bundles,
which are necessarily twist-free, we restrict to the case that ω = 0.

Claim: For a twist-free bundle (ω = 0), the ellipticity ε satisfies the differential equation

dε

ds
= ± 2 σ

√

|ε|2 + 4 ,

where the sign must be chosen in accordance with the sign of D+D−. (D+D− changes sign at every
conjugate point of multiplicity one, recall Worksheet 6.)

Proof: We start out from the differential equations for D+, D−, χ and ψ which where combined into
the complex equations (D±) on p.50,

dD±

ds
+ iD±

dχ

ds
− iD∓

dψ

ds
= D±

(

% ± σ e−2iχ
)

.

For a twist-free bundle, the optical scalar % = θ + iω reduces to the real quantity θ. We write the
real parts of our differential equations,

dD+

ds
= D+

(

θ + Re(σ e−2iχ)
)

, (1)

dD−

ds
= D−

(

θ − Re(σ e−2iχ)
)

, (2)

and the imaginary parts,

D+
dχ

ds
− D−

dψ

ds
= D+Im

(

σ e−2iχ
)

,

D−

dχ

ds
− D+

dψ

ds
= −D−Im

(

σ e−2iχ
)

.

We divide the last two equations by D− and D+, respectively, and take the difference. This results
in

( D+

D−

−
D−

D+

) dχ

ds
=

( D+

D−

+
D−

D+

)

Im
(

σ e−2iχ
)

. (3)

Now we calculate

dε

ds
=

d

ds

{( D+

D−

−
D−

D+

)

e2iχ
}

=

= e2iχ
{ 1

D−

dD+

ds
−
D+

D2
−

dD−

ds
−

1

D+

dD−

ds
+
D−

D2
+

dD+

ds
+ 2i

dχ

ds

(D+

D−

−
D−

D+

)}

=

= e2iχ
{dD+

ds

( 1

D−

+
D−

D2
+

)

−
dD−

ds

( 1

D+
+
D+

D2
−

)

+ 2i
dχ

ds

( D+

D−

−
D−

D+

)}

.
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With equations (1), (2) and (3), this yields

dε

ds
= e2iχ

{(

θ+Re
(

e−2iχσ
)

)(D+

D−

+
D−

D+

)

−
(

θ−Re
(

e−2iχσ
)

)(D−

D+
+
D+

D−

)

+2 i Im
(

e−2iχσ
)

(D+

D−

+
D−

D+

)}

=

= e2iχ
{

2Re
(

e−2iχσ
)

+ 2 i Im
(

e−2iχσ
)

}(D+

D−

+
D−

D+

)

=

= �
��e2iχ 2��

�

e−2iχ σ
(D+

D−

+
D−

D+

)

.

This completes the proof, since

√

|ε|2 + 4 =

√

(D+

D−

−
D−

D+

)2

+ 4 =

=

√

D2
+

D2
−

− 2 +
D2

−

D2
+

+ 4 ==

√

D2
+

D2
−

+ 2 +
D2

−

D2
+

== ±
(D+

D−

+
D−

D+

)

.

�

Note that this differential equation admits the solution ε = 0 if and only if the shear vanishes along
the whole ray. Clearly, a bundle whose cross-section is everywhere circular must be shear-free.

We have now all the relevant equations at our disposal for determining the apparent shape of spherical
objects: We have to solve the coupled system of differential equations

dθ

ds
= − θ2 − |σ|2 − Φ00 ,

dσ

ds
= 2 θ σ + ψ0 ,

dε

ds
= 2 σ

√

|ε|2 + 4 ,

with initial conditions

1

θ
(0) = 0 , σ(0) = 0 , ε(sL) = 0 .

The first two conditions have to hold for a bundle with a vertex at the observer position s = 0, recall
Problem 2 of Worksheet 6, the third condition requires that the bundle has a circular cross-section
at the position of the light source, s = sL. After the solution

(

θ(s), σ(s), ε(s)
)

to this initial value
problem has been found, we can calculate the quantity dε/ds(0) which gives us the apparent shape
of the object.

Note that image deformation is produced by the conformal curvature term ψ0. More precisely, ψ0

produces shear, and the shear produces a change in the ellipticity.
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2.12 Example: Plane gravitational wave

As an example for image deformation produced by a gravitational field, we consider an exact plane
gravitational wave solution of Einstein’s field equation. To construct the relevant metric, we begin
with Minkowski spacetime,

g = (dx1)2 + (dx2)2 + (dx3)2 − (dx0)2 .

We perform a coordinate transformation, (x1, x2, x3, x0) 7→ (x1, x2, u, v), to “double-null coordinates”
via

x0 =
1√
2
(v + u) , x3 =

1√
2
(v − u) .

Then

(dx0)2 − (dx3)2 =
1

2

(
dv + du

)2 − 1

2

(
dv − du

)2
=

=
1

2

(
��du2 + 2 dv du + ��dv2

)
− 1

2

(
��du2 − 2 dv du + ��dv2

)
= 2 dv du ,

hence the Minkowski metric reads

g = (dx1)2 + (dx2)2 − 2 dv du .

To describe a wave propagating at the speed of light, we add a term that leaves ∂v lightlike,

g = (dx1)2 + (dx2)2 − 2 dv du + hAB(u)x
AxBdu2 . (B)

Here and in the following, we use again the summation convention for capital indices A,B, · · · = 1, 2,
and

(
hAB(u)

)
may be any symmetric 2 × 2 matrix, depending on u. Each x1-x2-surface (i.e., each

surface {u = constant, v = constant}) is a Euclidean plane perpendicular to the propagation direction
of the wave.

Calculating the Ricci tensor shows that the vacuum Einstein equation Rµν = 0 holds if and only if
hAB(u) is trace-free,

hAB(u)δ
AB = 0 . (T )

Metrics of the form (B) made their first appearence in a purely mathematical paper by H. Brinkmann
[“Einstein spaces which are mapped conformally on each other” Math. Annalen 94, 119 (1925)]. The
coordinates (x1, x2, u, v) are known as Brinkmann coordinates. If the condition (T) is satisfied, the
metric (B) can be interpreted as a (pure) gravitational wave. For the case that (T) is not satisfied, it
can be shown that the energy-momentum has the form of that of an electromagnetic field; the metric
can then be interpreted as a combination of a gravitational wave and an electromagnetic wave.

In the following we assume that (T) holds, i.e., that we have a (pure) gravitational wave. hAB(u)
can then be written in the form

(
hAB(u)

)
=

(
f(u) g(u)
g(u) − f(u)

)

.

The profile functions f(u) and g(u) determine the shape of the gravitational wave. The fact that
(within the class of metrics considered) two scalar functions are necessary to determine the wave can
be interpreted by saying that “a gravitational wave has two polarisation states”. This is in agreement
with the well-known result that in the linearised Einstein theory there are two polarisation states
(the plus-mode and the cross-mode) of plane harmonic waves.
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Before we discuss image deformation we look at a light cone (all lightlike geodesics issuing from a
chosen event) in our exact gravitational wave spacetime.

The picture on the right shows a famous hand-
drawing by Roger Penrose [“ A remarkable prop-
erty of plane waves in general relativity” Rev.
Modern Phys. 37, 215 (1965)]. One sees that,
with the exception of a single light ray that is a
straight line, all light rays that are issuing from
the event R into the past are refocussed into an-
other event Q. Actually, taking the fourth dimen-
sion into account which is missing in the picture, a
pure gravitational wave refocusses light rays into a
line (“astigmatic focussing”). A combined gravita-
tional and electromagnetic wave can refocus light
rays into a point (“anastigmatic focussing”).

The following picture of the light cone was produced with Mathematica. The profile functions were
chosen as g(u) = 0 and f(u) = k2 with a non-zero constant k. The x2 dimension is omitted. The
similarity with the Penrose drawing is striking.

x

v-u

v+u

We now turn to the calculation of image deformation. We choose, as our central light ray, the u-line
at (x1 = 0, x2 = 0, v = v0) with some constant v0. It is easy to check that the u component of the
geodesic equation yields

du

ds
= constant .

We may thus choose the affine parameter such that u = −s along the ray. The minus sign makes
sure that the light ray is parametrised in the past-oriented sense, which is our usual convention. The
tangent vector to the light ray is then K = −∂u.
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To calculate image deformation, we consider a bundle determined by the matrix Jacobi equation

d2D

ds2
= DZ

with initial conditions

D(0) = 0 ,
dD

ds
(0) = 1 .

Recall that the optical tidal matrix Z = (ZAB) is given by

ZAB = g
(
EA, R(K,EB, K)

)

where K is the tangent vector to the ray (i.e., K = ∂u in the case at hand), and (E1, E2) is a Sachs
basis. Owing to the symmetry of the problem it is obvious that we can choose E1 = ∂1 and E2 = ∂2.
Calculation of the curvature tensor yields

ZAB(s) = hAB(−s)

where we have used that u = −s. We will explicitly determine D(s) for the case that

g(u) = 0 , f(u) = k2 = constant .

In this case, the matrix Jacobi equation reads

d2D

ds
= D

(
k2 0
0 − k2

)

.

Then the solution matching our initial conditions is obviously diagonal,

D(s) =

(
D+(s) 0

0 D−(s)

)

.

The resulting differential equations
d2D+(s)

ds2
= k2D+(s) ,

d2D−(s)

ds2
= − k2D−(s) ,

can be easily solved:

D+(s) = A cosh(ks) + B sinh(ks) ,

D−(s) = E cos(ks) + F sin(ks) .

The initial conditions require

A = E = 0 , E k = F k = 1 ,

hence

D+(s) =
1

k
sinh(ks) ,

D−(s) =
1

k
sin(ks) .
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The picture shows the bundle from the
vertex at s = 0 until the first conju-
gate point is reached at s = π/k. The
gravitational wave has a defocussing ef-
fect in the x1 direction and a focussing
effect in the x2 direction. At s = π/k
the bundle collapses into a line, demon-
strating that there is a conjugate point
of multiplicity one.

The ellipticity is, quite generally,

ε(s) =
( D+(s)

D−(s)
− D−(s)

D+(s)

)

e2iχ(s) .

s

ε(s)

0
π

k

In our case, D(s) is diagonal, hence
χ(s) = 0. With our results forD+(s)
and D−(s) inserted, we find

ε(s) =
sinh(ks)

sin(ks)
− sin(ks)

sinh(ks)
.

With the Bernoulli-l’Hôpital rule
one finds that ε(s) → 0 for s → 0, as
it must be at a vertex, while ε(s) →
∞ for s → π/k, as it must be for a
conjugate point of multiplicity one.

2.13 Lens equations

In the first part of this section we review the lens equation of the quasi-Newtonian approximation
formalism which was introduced by S. Refsdal [“The gravitational lens effect”, Mon. Not. R. Astron.
Soc. 128, 295 (1964)].

The only input from general relativity is Einstein’s approximation formula for the bending angle

α̂ =
2rS
rm

=
4GM

c2rm
.
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Assume a time-independent situation, with a deflecting mass concentrated in a plane, and the laws
of Euclidean geometry (flat space) valid outside of this plane:

��
��
��

��
��
��

~ξ

~η

β

θ

α̂

observer

deflector plane

source plane
DL

DO

Further assume that the angles β, θ and α̂ are so small that they can be identified with their sine or
with their tangent. Then we read from the picture that

~η =
DL +DO

DO

~ξ − DL
~̂α ,

This is called the lens equation of the quasi-Newtonian approximation formalism. For given distances,
DL and DO, the lens equation gives the lens map ~ξ 7→ ~η if the bending angle ~̂α is known.

It is often convenient to rewrite the lens equation in dimensionless form. To that end, we divide by
DL +DO.

~η

DL +DO
︸ ︷︷ ︸

=:~β

=
~ξ

DO
︸︷︷︸

=:~θ

− DL

DL +DO

~̂α
︸ ︷︷ ︸

=:~α

.

Then the lens equation takes the simple form

~β = ~θ − ~α .

Clearly, in either form the lens equation is good for nothing as long as we don’t know what the
bending angle ~̂α (or the reduced bending angle ~α) is. That’s where Einstein’s formula comes in. For

a point mass M at ~ξ = ~ξ′ Einstein’s formula gives

~̂α =
4GM

c2

(
~ξ − ~ξ′

)

∣
∣~ξ − ~ξ′

∣
∣
2 .
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For a surface mass density Σ
(
~ξ′
)
, we assume that the superposition principle holds,

~̂α =
4G

c2

∫

R2

(
~ξ − ~ξ′

)

∣
∣~ξ − ~ξ′

∣
∣2
Σ
(
~ξ′
)
d2~ξ′ .

Here d2~ξ′ = dξ′1dξ
′

2 is the (Euclidean) surface element in the deflector plane. The superposition
principle holds in Newtonian theory, i.e., the Newtonian potential of a sum of mass distributions
is the sum of the individual potentials; according to Einstein’s theory, which is non-linear, the
superposition principle can be used only as an approximation for weak fields. In combination with
the lens equation, the (approximate) formula for ~̂α as a function of ~ξ allows to derive the light

deflection properties for any given surface mass density Σ
(
~ξ′
)
in the deflector plane.

The following properties hold.

• If the mass distribution is rotationally symmetric, Σ
(
~ξ′
)

= f
(∣
∣~ξ′

∣
∣
)
, then ~̂α and hence ~η are

parallel to ~ξ, so the lens equation becomes a scalar equation

η =
DL +DO

DO

ξ − DL α̂ .

• The two-dimensional vector field ~ξ 7→ ~̂α
(
ξ
)
is a gradient and hence curl-free,

δABα̂
B =

∂

∂ξA
V
(
~ξ
)

with the lensing potential

V
(
~ξ
)
=

4G

c2

∫

R2

Σ
(
~ξ′
)
ln
∣
∣~ξ − ~ξ′

∣
∣ d2~ξ′ .

Proof:

∂

∂ξA
4G

c2

∫

R2

Σ
(
~ξ′
)
ln
∣
∣~ξ − ~ξ′

∣
∣ d2~ξ′ =

=
4G

c2

∫

R2

Σ
(
~ξ′
) 1
∣
∣~ξ − ~ξ′

∣
∣

∂

∂ξA

√
(
ξB − ξ′B

)(
ξC − ξ′C

)
δBC d2~ξ′ =

4G

c2

∫

R2

Σ
(
~ξ′
) �2

(
ξB − ξ′B

)
δBA

�2
∣
∣~ξ − ~ξ′

∣
∣2

d2~ξ′ = δABα̂
B
(
ξ
)
.

�

• The matrix
(

δAB

∂βB

∂ξC

)

is symmetric, hence it has two real eigenvalues.

Proof:

δABα̂
B =

∂

∂ξA
V =⇒ δABη

B =
DL +DO

DO

δABξ
B − DL

∂

∂ξA
V
(
~ξ
)

=⇒ δAB

∂ηB

∂ξC
=

DL +DO

DO

δAC − DL

∂

∂ξC
∂

∂ξA
V
(
~ξ
)
= δCB

∂ηB

∂ξA
.

�
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• If we use the dimensionless form of the lens equation, ~β = ~θ − ~α, the matrix
(
δBA

∂βA

∂θC
)
is

symmetric, hence it has two real eigenvalues.

Proof:

βA = θA − DL

(DL +DO)
α̂A =⇒

∂βA

∂θC
= δAC − DL

(DL +DO)

∂

∂θC
∂

∂ξD
V
(
~ξ
)
δAD =

= δAC − DLDO

(DL +DO)

∂2

∂θC∂θD
V
(
DO

~θ
)
δAD =⇒

δBA

∂βA

∂θC
= δBC − DLDO

(DL +DO)

∂2

∂θC∂θB
V
(
DO

~θ
)
.

The last expression is obviously symmetric with respect to the indices B and C. �

All lensing features are coded in the lens equation ~β = ~θ − ~α :

• Multiple imaging is determined by how many θ1, . . . , θn are mapped by the lens equation onto
the same β.

• Brightness of images is given by the magnification µ which is defined as

µ−1 = det
(∂~β

∂~θ

)

where

∂~β

∂~θ
=

(

δAB

∂βB

∂θC

)

.

In other words, µ−1 is the determinant of the Jacobi matrix of the lens map. It relates the
area of a domain in the deflector plane to the area of its image under the lens map in the
source plane. The bigger µ, the brighter the image. Note that µ = 1 if α̂ = 0. In this sense, µ
compares the brightness with the brightness of an “unlensed image”.

As the two eigenvalues of the symmetric matrix ∂~β/∂~θ can have different signs, µ can be
negative. An image with negative µ is side-inverted in comparison to an imgage with positive
µ. This is observable for an extended non-symmetric source, e.g. for a galaxy with jets.

• Caustic points are characterised by µ = ∞. This happens, for instance, in the case of an Ein-
stein ring. Of course, the image isn’t really infinitely bright. This infinity in the mathematical
formalism just indicates that the ray optical treatment breaks down. A wave optical treatment
would give a finite brightness.
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The quasi-Newtonian lens map we have discussed so far relies on a number of approximations. In
particular, it assumes that the gravitational field is weak and that bending angles are small. We will
now investigate if a lens map can be formulated without such approximations, in the full formalism
of general relativity.

The quasi-Newtonian lens map is a map from a deflector plane to a source plane. In an arbitrary
general-relativistic spacetime, an exact lens map can be set up by replacing

deflector plane 7−→ celestial sphere SpO of observer,

source plane 7−→ three-dimensional submanifold T of spacetime, ruled by timelike curves.

The timelike curves that rule T are to be interpreted as the worldlines of light sources. Of course,
in an unspecified general-relativistic spacetime, there is no natural choice for T . Any two-parameter
family of light sources may be chosen.

We consider two events on T as equivalent if they are situated on the same worldline, and we denote
the two-dimensional quotient manifold by T /∼. In other words, the points in T /∼ are in a one-to-one
relation with the chosen light sources.

The lens map

σ : SpO −→ T /∼

is defined in the following way: Given
an element in SpO , i.e. a point on
the celestial sphere of the observer,
we consider the past-oriented lightlike
geodesic with this initial direction. We
follow this lightlike geodesic until it hits
T , then we project to T /∼.

Clearly, for any chosen point in SpO ,
neither existence nor uniqueness of the
image point in T /∼ is guaranteed: Ex-
istence may fail because it might hap-
pen that the corresponding lightlike
geodesic never meets T . Uniqueness
may fail because it might happen that
it intersects T several times. For this
reason, one has to investigate for each
case individually what is the maxi-
mal domain on which σ is defined and
whether or not it is single-valued.
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T
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?

This exact gravitational lens map was introduced in S. Frittelli and E. T. Newman, “Exact gravi-
tational lens equation”, Phys. Rev. D 59, 124001 (1999). It has been used for investigating some
general features of gravitational lensing, but only a few examples have been worked out. All of
them concern spacetimes with symmetries, where a natural choice for the source surfaces T can be
made. In the following we consider spherically symmetric and static spacetimes where, because of
the symmetry, the exact lens map simplifies considerably.
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In the case of a spherically symmetric and static spacetime, the metric reads

g = e2f(r)
(

− c2dt2 + S(r)2dr2 + R(r)2
(

dϑ2 + sin2ϑ dϕ2
)

)

.

We know already a couple of examples of spherically symmetric and static spacetimes: Schwarzschild
spacetime, Kottler spacetime, and the Ellis wormhole.

In a spherically symmetric and static spacetime, it is very natural to choose a hypersurface r = rL
for the source surface T , which is ruled by the t-lines. The two-dimensional manifold T /∼ is then
just a sphere, parametrised by ϑ and ϕ. In other words, the lens map becomes a map from a sphere
to a sphere. Because of the rotational symmetry about the radial line, it is completely determined
by a map from an angle Θ to an angle Φ, as illustrated in the diagram.

r = rO

r = rL

ϕ = 0

Θ

Φψ

∂r∂ϕ

The picture is purely spatial. The angle Θ determines, on the celestial sphere of the observer at
radius rO, the initial direction of a light ray with respect to the radial direction. The angle Φ is the
angle swept out by the ϕ coordinate on the path of the light ray from the observer until it meets
the sphere r = rL. Note that Φ may take any value in R, because a light ray can make arbitrarily
many turns before arriving at r = rL. This construction gives us, for every choice of rO and rL in a
spherically symmetric and static spacetime, a lens map

]− π, π [−→ R

Θ 7−→ Φ

However, it is not guaranteed that the lens map is defined on the whole interval ] − π, π [ because
it might happen that a light ray never arrives at the sphere r = rL. Also, the lens map may be
multi-valued because it might happen that a light ray intersects this sphere more than once.
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We will now write down a “lens equation” that determines the lens map Θ 7−→ Φ. We will see that
it is given by an integral that involves the metric coefficients S(r) and R(r).

We start out from the Lagrangian for geodesics in the equatorial plane. As we are only interested in
the paths of lightlike geodesics, we can ignore the factor e2f(r). (Recall that such a conformal factor
changes only the parametrisations, but not the paths, of lightlike geodesics.) From this Lagrangian,

L =
1

2

(

− c2ṫ2 + S(r)2ṙ2 + R(r)2ϕ̇2
)

,

we get the constants of motion

E = − ∂L
∂ṫ

= c2 ṫ , L =
∂L
∂ϕ̇

= R(r)2ϕ̇ .

For lightlike geodesics we must have

0 = − c2ṫ2 + S(r)2ṙ2 + R(r)2ϕ̇2 ,

0 = − c2
ṫ2

ϕ̇2
+ S(r)2

ṙ2

ϕ̇2
+ R(r)2,

0 = − c2
E2R(r)4

c4 L2
+ S(r)2

( dr

dϕ

)2

+ R(r)2,

( dr

dϕ

)2

=
R(r)2

S(r)2

( E2R(r)2

c2 L2
− 1

)

. (G)

L/E can be expressed in terms of the angle Θ in the following way:

The picture shows that

tanΘ = lim
∆ x→0

∆ y

∆ x
=

=
R(r)dϕ

S(r)dr

∣

∣

∣

r=rO

rO

Θ

∆x

∆y

where the second equality was read from the metric. With (G) inserted, this results in

1

tan2Θ
=

����S(rO)
2

����R(rO)
2

����R(rO)
2

����S(rO)
2

( E2R(rO)
2

c2 L2
− 1

)

,

E2R(rO)
2

c2 L2
=

1

tan2Θ
+ 1 =

cos2Θ+ sin2Θ

sin2Θ
=

1

sin2Θ
.
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This allows us to replace L/E in (G),

( dr

dϕ

)2

=
R(r)2

S(r)2

( R(r)2

R(rO)2sin
2Θ

− 1
)

,

dϕ =
±R(rO)sinΘS(r) dr

R(r)
√

R(r)2 − R(rO)2sin
2Θ

.

Integration of this equation over the light ray gives Φ as a function of Θ. In general, the integration
must be done piecewise. The plus or minus sign has to be chosen in such a way that, for 0 ≤ Θ ≤ π,
the angle ϕ is always increasing. We consider two examples: If r is increasing monotonically from
rO to rL, the integration yields

Φ =

∫ Φ

0

dϕ = R(rO) sinΘ

∫ rL

rO

S(r) dr

R(r)
√

R(r)2 − R(rO)2sin
2Θ

.

If, on the other hand, r decreases from rO to a minimum value rm(Θ) and then increases again to
rL, the integration yields

Φ =

∫ Φ

0

dϕ = R(rO) sinΘ

(
∫ rO

rm(Θ)

+

∫ rL

rm(Θ)

)

S(r) dr

R(r)
√

R(r)2 − R(rO)2sin
2Θ

,

where rm(Θ) is determined by the equation

R
(

rm(Θ)
)2

= R(rO)
2sin2Θ .

The exact lens map for spherically symmetric and static spacetimes was introduced in V. Perlick,
“On the exact gravitational lens equation in spherically symmetric and static spacetimes”, Phys.
Rev. D 69, 064917 (2004).

2.14 Example: Barriola-Vilenkin monopole

Monopoles have not been detected sofar. There is some speculation that they might have come into
existence during phase transitions in the early universe. The mathematically simplest example of a
monopole was introduced in M. Barriola and A. Vilenkin, “Gravitational field of a global monopole”,
Phys. Rev. Lett. 63, 341 (1989). The metric reads

g = − c2dt2 + dr2 + k2 r2
(

dϑ2 + sin2ϑ dϕ2
)

with a constant k < 1. In the equatorial plane ϑ = π/2, the metric

g = − c2 dt2 + dr2 + k2 r2 dϕ2

coincides precisely with the metric of a straight string in a plane perpendicular to the string axis,
recall Section 2.8.
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So we can use, for the sake of illustration, the same
picture with a deficit angle δ that we have used
for the string spacetime. However, now this pic-
ture is to be thought of as rotationally symmetric
with respect to a vertical axis. With all three spa-
tial dimensions taken into account, δ indicates a
deficit solid angle which implies that the Barriola-
Vilenkin metric is non-flat. (Only the restriction
to the equatorial plane is flat.) Calculation of the
Ricci tensor yields

Rϑϑ = 1 − k2 , Rϕϕ =
(

1 − k2
)

sin2ϑ ,

and zero for all other components Rµν . From this
we can easily calculate the Ricci scalar,

p p

q

δ

identify

R = Rµνg
µν = Rϑϑg

ϑϑ + Rϕϕg
ϕϕ =

1− k2

k2 r2
+

(1− k2)���
sin2ϑ

k2 r2���
sin2ϑ

=
2(1− k2)

k2 r2
.

Clearly, R → ∞ for r → 0 which means that there is a curvature singularity at r = 0.

The exact lens map Θ 7→ Φ in the Barriola-Vilenkin spacetime can be derived with the help of
elementary geometry. We use the fact that in the equatorial plane the metric is the flat metric of a
cone.

rO

rL

Θ

α

kΦ

As the angular sum in a triangle equals π,
we read from the diagram that

α + kΦ + π − Θ = π ,

hence

α = Θ − kΦ .

On the other hand, the sine theorem yields

sinα

rO
=

sin(π −Θ)

rL
.

Inserting the first equation into the second
gives the lens equation

rL sin(Θ− kΦ) = rO sinΘ

by which the lens map Θ 7→ Φ is (implic-
itly) determined.
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Integrating the equation

dϕ =
±R(rO)sinΘ dr

R(r)
√

R(r)2 − R(rO)2sin
2Θ

over the light ray, taking into account that for the Barriola-Vilenkin spacetime the metric coefficients
are S(r) = 1 and R(r) = kr, gives the same lens equation rL sin(Θ− kΦ) = rO sin Θ.

−π

π/k

π

−π

−π/k

π
Θ

Φ

If rO ≤ rL, the angle Θ ranges over the maximal domain from −π to π. On this domain, Φ is
monotonically increasing from −π/k to π/k. The plot shows the lens map for the case k = 0.75 and
rO = 0.75rL. From the diagram we can read the number of images and the occurrence of Einstein
rings. Recall that Θ1 and Θ2 are image positions of the same light source if and only if Φ(Θ2)−Φ(Θ1)
is an integer multiple of 2π. We see that there is a double imaging region (shaded in the diagram)
and a single-imaging region. Einstein rings occur with an angular radius ΘE if and only if Φ(±ΘE)
is an integer multiple of π. We see that in the case at hand the values Φ = ±π occur, indicated by
dashed lines, but no other multiples of π. So there is one Einstein ring whose angular radius ΘE

is found by projecting onto the Θ axis from the intersection of the graph of the lens map with the
dashed line at Φ = π.
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3. Applications to astrophysics

3.1 Microlensing

In this section we want to apply the mathematical formalism we have developed to the observed
light curves of microlensing events. Recall from Chapter 1 that different sorts of such light curves
are observed. Here we restrict to the simplest case of a light curve which has only one maximum and
is symmetric with respect to this maximum. A typical example is the following.

We first try the simplest mathematical model we can think of: We use the quasi-Newtonian lens
equation for a point mass as the deflector. The lens equation reads

~η =

(

DL +DO

)

DO

~ξ − DL
~̂α

and for a point mass at ξ = ~0 the bending angle is given by

~̂α =
4GM

c2

~ξ
∣

∣~ξ
∣

∣

2 ,

recall Section 2.13. Dividing the lens equation by DO +DL gives

~η

DL +DO

=
~ξ

DO

− DL
(

DL +DO

)

4GM

c2

~ξ
∣

∣ξ
∣

∣

2 .

In terms of the dimensionless (angular) variables

~β =
~η

DO +DL

, ~θ =
~ξ

DO

,

this can be rewritten as

~β = ~θ − DL
(

DL +DO

)

4GM

c2
�
�DO

~θ

D�2
O

∣

∣~θ
∣

∣

2 .
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If we write ~β = β ~e with a unit vector ~e and β ≥ 0, the lens equation becomes a scalar equation,

β = θ − 4GMDL

c2
(

DL +DO

)

DO

1

θ

where

~θ = θ ~e .

Note that θ can be positive or negative.

An Einstein ring occurs if the light source is on the axis, β = 0. This happens if θ2 = θ2E , where

θE :=

√

4GMDL

c2
(

DO +DL

)

DO

.

With this abbreviation, the scalar lens equation reads

β = θ − θ2E
θ

.

For given β, this is a quadratic equation for θ,

θ2 − β θ − θ2E = 0 ,

which has two solutions

θ± =
β

2
±
√

β2

4
+ θ2E . (I)

This demonstrates that for each light source that is not on the axis there are precisely two images.

The magnification µ of each image is given as the inverse of the determinant of the Jacobi matrix of
the lens map. From

(

β1

β2

)

=
(

1 − θ2E
θ21 + θ22

)

(

θ1
θ2

)

we get the Jacobi matrix,

(∂~β

∂~θ

)

=









1− θ2E
θ2

+
2θ2Eθ

2
1

θ4
2θ2Eθ1θ2

θ4

2θ2Eθ1θ2

θ4
1− θ2E

θ2
+

2θ2Eθ
2
2

θ4









.

Calculation of the determinant yields

µ−1 =
(

1− θ2E
θ2

)2

+
(

1− θ2E
θ2

)2θ2E
(

θ21 + θ22
)

θ4
+

�
�
�
��4θ4Eθ
2
1θ

2
e

θ8
−

�
�
�
��4θ2Eθ
2
1θ

2
2

θ8
=

=
(

1− θ2E
θ2

)(

1−
�
�
�θ2E

θ2
+ �2

θ2E
θ2

)

= 1− θ4E
θ4

.
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So the magnification of the image at θ± is

µ± =
1

1− θ4E
θ4±

=
θ4
±

(

θ2± − θ2E
)(

θ2± + θ2E
) .

As (I) implies θ+θ− = −θ2E , this can be rewritten as

µ± =
θ4
±

(

θ2± + θ+θ−
)(

θ2± − θ+θ−
) =

± θ�42
±

��θ±
(

θ+ + θ−
)

��θ±
(

θ+ − θ−
) =

±
(

β

2
±
√

β2

4
+ θ2E

)2

β 2

√

β2

4
+ θ2E

.

With the abbreviation

u =
β

θE
this yields

µ± =
±
( u2

2
± u

√

u2

4
+ 1 + 1

)

2 u

√

u2

4
+ 1

=
1

2
± u2 + 2

2u
√
u2 + 4

.

Note that µ+ > 0 while µ− < 0. This indicates that the second image is side-inverted with respect
to the first image. For an extended light source with a non-symmetric shape this is observable.

In microlensing situations, the two images cannot be resolved. What can be observed is the total
magnification

µ =
∣

∣µ+

∣

∣ +
∣

∣µ−

∣

∣ = µ+ − µ− =
1

2
+

u2 + 2

2u
√
u2 + 4

− 1

2
+

u2 + 2

2u
√
u2 + 4

=
u2 + 2

u
√
u2 + 4

.

We evaluate this for a light source that moves
in a straight line,

β1 = θE
t

tE
,

β2 = θE um

where tE and um are constants. tE is the time
the light source needs for traveling through
the angular distance θE , while um tells how
close the light ray comes to the axis; for um =
0 the light source passes through the axis at
time t = 0 which means that an Einstein ring
is formed.

umθE

β1

β2
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For such a moving light source, we have

u =
β

θE
=

√

β2
1 + β2

2

θE
=

√

u2
m +

t2

t2E

and the magnification is given, as a function of time t, as

µ =
u2 + 2

u
√
u2 + 4

=

u2
m +

t2

t2E
+ 2

√

u2
m +

t2

t2E

√

u2
m +

t2

t2E
+ 4

.

Note that µ → 1 tor t → ±∞
which means that, far away from
the moment of closest approach
to the axis, the brightness is that
of an unlensed image.

The diagram shows plots of µ as
a function of t for three different
values of um. For um → 0 the
maximum goes to infinity.

11

t

µ

To compare with observations, we assume that over the duration of the microlensing event the travel
time of light from the light source to the observer can be considered as a constant. Then our equation
for µ as a function of t gives us directly the light curve as predicted by our theoretical model. We can
compare this with a light curve that is actually observed. By choosing um appropriately, we can fit
the maximum of the predicted light curve to the maximum of the observed light curve. By choosing
tE appropriately, we can fit the half-width. These are the two parameters in our model that can be
varied. For many observed microlensing events, the observed light curve can be very well described
by this simple theoretical model, see the example below. (Obviously, if the light curve has a less
symmetric shape a more complicated model of the deflector is necessary.) We can then read the
values of tE and um from the observed light curve. However, this information alone does not allow
to determine the mass of the deflector. Additional information is needed, e.g. about the distances
DO and DL.
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We have seen that the simplest
(symmetric) microlensing light curves
can be well explained in the quasi-
Newtonian approximation formalism
with a point lens model. We will
now investigate whether they could also
be explained as being produced by
a more exotic lens, e.g. a Barriola-
Vilenkin monopole. We will use the ex-
act lens map for spherically symmetric
and static spacetimes, Θ 7→ Φ, which is
based on the adjacent diagram, recall
p.73.

We have worked out this lens map for
metrics of the form

r = rO

r = rL

ϕ = 0

Θ

Φψ

∂r∂ϕ

g = e2f(r)
{

− c2dt2 + S(r)2dr2 + R(r)2
(

dϑ2 + sin2ϑ dϕ2
)

}

.

The metric of the Barriola-Vilenkin monopole,

g = − c2dt2 + dr2 + k2 r2
(

dϑ2 + sin2ϑ dϕ2
)

,

is of this form with

f(r) = 0 , S(r) = 1 , R(r) = k r .

We have derived on p.76 that, for the Barriola-Vilenkin monopole, the lens map Θ 7→ Φ is implicitly
given by the equation

rL sin(Θ− kΦ) = rO sinΘ . (BV1)

For later purpose, we solve this equation for cotΘ:

rL sinΘ cos
(

kΦ
)

− rL cosΘ sin
(

kΦ
)

= rO sinΘ ,

sin Θ
(

rL cos
(

kΦ
)

− rO

)

= rL cosΘ sin
(

kΦ
)

,

cotΘ =
rL cos

(

kΦ
)

− rO

rL sin
(

kΦ
) . (BV2)

We will also need an expression for dΦ/dΘ. Differentiation of (BV2) with respect to Θ yields

−
1

sin2Θ
=

(

− rL k sin
2
(

kΦ
)

−
{

rL cos
(

kΦ
)

− rO
}

k cos
(

kΦ
)

)

rL sin
2
(

kΦ
)

dΦ

dΘ
,

sin2Θ + cos2Θ

sin2Θ
=

k
(

rL − rO cos
(

kΦ
)

)

rL sin
2
(

kΦ
)

dΦ

dΘ
.
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After inserting (BV2) on the left-hand side, this results in

1 +

(

rL cos
(

kΦ
)

− rO

)2

r2L sin
2
(

kΦ
) =

k
(

rL − rO cos
(

kΦ
)

)

rL sin
2
(

kΦ
)

dΦ

dΘ
,

k rL
dΦ

dΘ
=

r2L + r2O − 2 rLrO cos
(

kΦ
)

rL − rO cos
(

kΦ
) . (BV3)

After these preparations, we will now calculate the luminosity distance Dlum which will give us the
brightness of images. For the Barriola-Vilenkin metric, the redshift potential f(r) is zero, so the
luminosity distance equals the area distance,

D2
lum = D2

area .

To calculate the area distance we consider, around the ray from the observer to the light source, a
light bundle with vertex at the observer. The area distance is the ratio of the cross-sectional area of
this bundle at the light source to its opening solid angle. By symmetry, one of the two semi-axes of
the cross-section is in the plane of the central ray, the other one is perpendicular to it, as is illustrated
in the picture.

We write the area of the cross section as the product of the horizontal semi-axis times the vertical
semi-axis. This gives us the area distance as a product

D2
area =

∣

∣D+D−

∣

∣ ,

recall Section 2.9.
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ψ

R(rL)dΦ
dΘ

Θ

D+ is the ratio of the horizontal cross-section to the corresponding opening angle. From the picture
we read that

D+ =
cosψ R(rL) dΦ

dΘ
=

cosψ k rL dΦ

dΘ

dϑ

d`

dα

D− is the ratio of the vertical cross-section to the corresponding opening angle. From the picture we
read that

D− =
d`

dα
=

R(rL) sinΦ��dϑ

sin Θ��dϑ
=

k rL sin Φ��dϑ

sinΘ��dϑ
.
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The formula for D+ involves the angle ψ. This angle can be expressed in terms of the angle Θ (and
the radii rL and rO) in the following way.

On p.74 we have shown that the constants of motion E and L satisfy

c2L2

E2
= R(rO)

2 sin2Θ .

The same argument, now at the position of the light source, demonstrates that

c2L2

E2
= R(rL)

2 sin2ψ .

Inserting the resulting expression

cosψ =

√

1− sin2ψ =

√

1 −
R(rO)

2

R(rL)2
sin2Θ =

√

1 −
r2O
r2L

sin2Θ

into the formulas for D+ and D− results in

∣

∣D+D−

∣

∣ =
∣

∣

∣
k
dΦ

dΘ

√

r2L − r2Osin
2Θ

k rL sinΦ

sinΘ

∣

∣

∣
=

=
∣

∣

∣
k2 rL

dΦ

dΘ

√

r2L − r2O + r2Lcot
2Θ sinΦ

∣

∣

∣
.

We substitute for cot2Θ from (BV2) and for dΦ/dΘ from (BV3).

∣

∣D+D−

∣

∣ =
∣

∣

∣
k

√

r2L − r2O +

(

rLcos(kΦ)− rO
)2

sin2(kΦ)

(

r2L + r2O − 2 rL rO cos
(

kΦ
)

)

rL − rO cos
(

kΦ
) sinΦ

∣

∣

∣
=

=
∣

∣

∣

k sinΦ

sin
(

kΦ
)

√

r2L + r2O cos2(kΦ) − 2 rL rO cos(kΦ)

rL − rO cos
(

kΦ
)

(

r2L − r2O + r2L cot
2Θ
) ∣

∣

∣
.

This gives us the brightness of images in terms of the energy flux

F =
L

4 πD2
lum

=
L

4 π
∣

∣D+D−

∣

∣

=

=
L
∣

∣sin(kΦ)
∣

∣

4 π k
∣

∣sin Φ
∣

∣

(

r2L − r2O + r2Lcot
2Θ
) . (BVF)

Here L denotes the luminosity of the light source, recall p.58.
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We evaluate this formula for a
light source moving in a straight
line, see diagram,







x(t)

y(t)

z(t)






=







v t

yL

zL






=

=







rL(t) cos
(

α(t)
)

sin
(

Φ(t)
)

rL(t) sin
(

α(t)
)

sin
(

Φ(t)
)

rL(t) cos
(

Φ(t)
)







where v, yL and zL are constants.
According to the picture, zL
should be negative. v is a measure
for the speed of the light source
and yL for its minimum distance
from the axis. If yL = 0 the light
source passes through the axis at
t = 0 which means that, at this
moment, an Einstein ring is pro-
duced.

Solving for rL(t) and Φ(t) yields,
respectively,

observer

path of light source

rL(t)

yL

Φ(t)

rL(t) =
√

v2t2 + y2L + z2L , tanΦ(t) =

√

v2t2 + yL2

zL
. (BVM)

We assume that 0.5 < k < 1 so that we have a double-imaging zone and a single-imaging zone (recall
Section 2.14). If yL is sufficiently small, the light source crosses the double-imaging zone during a
time interval −t0 < t < t0. For t in this interval there are two images, one with 0 ≤ Φ1(t) ≤ π and
a second one with Φ2(t) = Φ1(t)−2π. For |t| > t0 there is only one image with 0 ≤ Φ1(t) ≤ π. The
brightness of each image is given as a function of time by inserting rL(t) and Φ(t) = Φ1/2(t) from
(BVM) into the flux formula (BVF). For times |t| < t0 we add the fluxes from both images together.
This gives us the total flux as a function of t which can be plotted.

Note that t is the time at the light source. Therefore, our construction gives us the observed light
curve only if the travel time of the light rays can be considered as constant during the whole mi-
crolensing event.

Also, for a moving source Dlum and Darea differ, strictly speaking, by a redshift factor; this, however,
can be ignored as long as the speed v of the light source is small in comparison to the speed of light.
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The diagram shows the resulting light curve for a Barriola-Vilenkin monopole with k = 0.99999915.
We have chosen zL = −0.6 rO and yL = 0.6× 10−6rO. The dotted curve shows, for the sake of com-
parison, the light curve of a point
lens in the quasi-Newtonian ap-
proximation, with the two free pa-
rameters um and ΘE fitted such
that the two curves coincide as
well as possible near their max-
ima. One clearly sees qualitative
differences: The Barriola-Vilenkin
monopole produces a light curve
that has a characteristic discontinu-
ity in the derivative where the light
source crosses the boundary of the
double-imaging region.

D−2
lum

t

3.2 Arcs and rings

In this section we are going to discuss how strong deformation effects, such as the formation of giant
arcs and Einstein rings, can be theoretically described. For images of examples see p.12/13/14. We
begin with the simplest mathematical model of a deflector, i.e., a point lens in the quasi-Newtonian
approximation. We will see what sort of arcs such a simple model can explain, and we will then
discuss how the model can be modified to explain more complicated shapes.

For a point lens, the lens equation reads

~β = ~θ −
θ2E
θ2
~θ

with

θE :=
√

4GMDLc
2(DL +DO)DO ,

recall p.78/79. The lens map is a map, ~θ → ~β, from the deflector plane to the source plane. We
want to consider an extended light source with a circular contour, i.e., a circle in the source plane,
and we want to calculate the pre-images of this circle in the deflector plane. (There are two such
pre-images, because a point lens produces double-imaging.) The shapes of these pre-images give us
the apparent shapes of the light source in the observer’s sky.

For each non-zero ~β, the pre-images can be found in the following way. We write ~β = β ~e with a
unit vector ~e and a scalar β > 0. From the lens equation we read that then ~θ must be of the form
~θ = θ ~e where θ may be positive or negative. The lens equation becomes a scalar equation,

β = θ −
θ2E
θ

⇐⇒ θ2 − β θ − θ2E = 0 .

This quadratic equation for θ has two solutions,

θ± =
β

2
±

√

β2

4
+ θ2E .
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Now we consider an extended light source with a circular contour given by

~β =

(

δ + ε cosϕ

ε sinϕ

)

, ϕ ∈ [0, 2π] .

δ is the (angular) distance of the centre of the circle from the axis and ε is the (angular) radius of
the circle. The two pre-images of this circle are given by

~θ± = θ± ~e =

(

β

2
±

√

β2

4
+ θ2E

)

~β

β
=

=
1

2



 1 ±

√

1 +
4 θ2E
β2




~β =

=
1

2



 1 ±

√

1 +
4 θ2E

δ2 + 2 δ ε cosϕ + ε2





(

δ + ε sinϕ

ε cosϕ

)

.

This gives us the contours of the two images in the sky, parametrised by the angle ϕ which ranges
from 0 to 2π. The diagrams show plots of these parametrised curves, for a fixed value of ε and three
different values of δ. We have chosen ε = 0.1 θE and, from left to right, δ = 0.4 θE, δ = 0.2 θE and
δ = 0.12 θE. The dashed line is the Einstein ring, i.e., the circle

∣

∣~θ
∣

∣ = θE which is the pre-image
under the lens map of a point source precisely on the axis.

For all values of δ there is a pair of arcs. If the light source approaches the axis, δ → 0, the arcs
become longer and longer and approach the Einstein ring. Note that there is a mirror symmetry
with respect to the Einstein ring. This is a characteristic feature not only of the point lens but of
all rotationally symmetric deflectors. Some arcs which are observed show this mirror symmetry, but
others do not. In the latter case we need a deflector model that is not rotationally symmetric.
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We will now determine the shape of arcs that are produced by lenses without rotational symmetry.
We will restrict to the case that the deviation from rotational symmetry can be treated as a small
perturbation.

As before, we assume that the quasi-Newtonian approximation is valid, so we start out from the
quasi-Newtonian lens equation

(

η1

η2

)

=
(DL +DO)

DO

(

ξ1

ξ2

)

− DL





α̂1

(

~ξ
)

α̂2

(

~ξ
)





where the bending angle ~̂α is the gradient of the lensing potential,





α̂1

(

~ξ
)

α̂2

(

~ξ
)



 =











∂V
(

~ξ
)

∂ξ1

∂V
(

~ξ
)

∂ξ2











, V
(

~ξ
)

=
4G

c2

∫

R2

Σ
(

~ξ′
)

ln
∣

∣~ξ′ − ~ξ
∣

∣ d2 ~ξ′ .

We want to consider the case that V consists of a rotationally symmetric part and a small pertur-
bation, i.e., that

V
(

~ξ
)

= V0
(∣

∣~ξ
∣

∣

)

+ ε V1
(

~ξ
)

where ε is so small that, in the following, we may linearise all equations with respect to ε.

We divide the lens equation by (DL +DO).

1

(DL +DO)

(

η1

η2

)

=
1

DO

(

ξ1

ξ2

)

−
DL

(DL +DO)



















V ′

0

(∣

∣~ξ
∣

∣

)

∣

∣~ξ
∣

∣

(

ξ1

ξ2

)

+ ε











∂V1
(

~ξ
)

∂ξ1

∂V1
(

~ξ
)

∂ξ2





























Switching to dimensionless (angular) variables

(

β1

β2

)

=
1

(DL +DO)

(

η1

η2

)

,

(

θ1

θ2

)

=
1

DO

(

ξ1

ξ2

)

,

gives us the lens equation in the form

(

β1

β2

)

=

(

θ1

θ2

)

−
DL

(DL +DO)



















V ′

0

(

DO

∣

∣~θ
∣

∣

)

∣

∣~θ
∣

∣

(

θ1

θ2

)

+
ε

DO











∂V1
(

DO
~θ
)

∂θ1

∂V1
(

DO
~θ
)

∂θ2





























.

We introduce the abbreviations

s
(∣

∣~θ
∣

∣

)

= 1 −
DL V

′

0

(

DO

∣

∣~θ
∣

∣

)

(DL +DO)
∣

∣~θ
∣

∣

, ψ
(

~θ
)

=
DL V1

(

DO
~θ
)

DO (DL +DO)
.
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Then the lens equation can be written more concisely as

(

β1

β2

)

= s
(∣

∣~θ
∣

∣

)

(

θ1

θ2

)

− ε











∂ψ
(

~θ
)

∂θ1

∂ψ
(

~θ
)

∂θ2











.

We first consider the unperturbed system

(

β1

β2

)

= s
(∣

∣~θ
∣

∣

)

(

θ1

θ2

)

.

For a light source on the axis, β1 = β2 = 0, there is an Einstein ring of angular radius
∣

∣~θ
∣

∣ = θE ,
where θE is determined by the equation s(θE) = 0 . (The latter equation may have several solutions;

we pick one of them for the following consideration.) The Einstein ring
∣

∣~θ
∣

∣ = θE is mathematically
characterised as the set in the deflector plane where the magnification µ becomes infinite. Quite
generally, this set is called the critical curve of the lens map, and its image under the lens map
is called the caustic. So in the unperturbed case the critical curve is a circle,

∣

∣~θ
∣

∣ = θE , and the

caustic is a point, ~β = ~0. We now ask what happens to the critical curve and to the caustic if the
perturbation is switched on.

To determine the critical curve, we have to find all ~θ where

µ−1 = det
(∂~β

∂~θ

)

= 0 .

It is convenient to introduce polar coordinates (r, ϕ) in the deflector plane,

θ1 = r cosϕ , θ2 = r sinϕ .

By the chain rule, the partial derivatives satisfy

∂ψ

∂θ1
= cosϕ

∂ψ

∂r
−

1

r
sinϕ

∂ψ

∂ϕ
,

∂ψ

∂θ2
= sinϕ

∂ψ

∂r
+

1

r
cosϕ

∂ψ

∂ϕ
.

Then the lens map reads

(

β1

β2

)

= s(r)

(

r cosϕ

r sinϕ

)

− ε









cosϕ
∂ψ

∂r
−

1

r
sinϕ

∂ψ

∂ϕ

sinϕ
∂ψ

∂r
+

1

r
cosϕ

∂ψ

∂ϕ









.

With the abbreviation

f(r) = s(r) r

this can be rewritten as

(

β1

β2

)

=
(

f(r) − ε
∂ψ

∂r

)

(

cosϕ

sinϕ

)

−
ε

r

∂ψ

∂ϕ

(

− sinϕ

cosϕ

)

.
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The equation µ−1 = 0 holds at all points where the partial derivatives ∂~β/∂θ1 and ∂~β/∂θ2 are linearly
dependent. On the other hand, the transformation from Cartesian to polar coordinates, (θ1, θ2) 7→
(r, ϕ), is regular everywhere except at r = 0. (As we want to consider a small neighbourhood of the
Einstein ring r = θE 6= 0, the coordinate singularity at r = 0 is irrelevant for us.) Therefore, the

equation µ−1 = 0 is equivalent to the condition of ∂~β/∂r and ∂~β/∂ϕ being linearly dependent. We
now calculate these partial derivatives.

∂

∂r

(

β1

β2

)

=
(

f ′(r) − ε
∂2ψ

∂r2

)

(

cosϕ

sinϕ

)

− ε
{ 1

r

∂2ψ

∂ϕ∂r
−

1

r2
∂ψ

∂ϕ

}

(

− sinϕ

cosϕ

)

.

∂

∂ϕ

(

β1

β2

)

= − ε
∂2ψ

∂ϕ∂r

(

cosϕ

sinϕ

)

+
(

f(r) − ε
∂ψ

∂r

)

(

− sinϕ

cosϕ

)

−
ε

r

∂2ψ

∂ϕ2

(

− sinϕ

cosϕ

)

−
ε

r

∂ψ

∂ϕ

(

− cosϕ

− sinϕ

)

=

= ε
( 1

r

∂ψ

∂ϕ
−

∂2ψ

∂ϕ∂r

)

(

cosϕ

sinϕ

)

+
(

f(r) − ε
∂ψ

∂r
−

ε

r

∂2ψ

∂ϕ2

)

(

− sinϕ

cosϕ

)

.

These two vectors are linearly dependent if and only if

f ′(r) − ε
∂2ψ

∂r2

ε
( 1

r

∂ψ

∂ϕ
−

∂2ψ

∂ϕ∂r

)

=

ε
( 1

r2
∂ψ

∂ϕ
−

1

r

∂2ψ

∂ϕ∂r

)

f(r) − ε
( ∂ψ

∂r
+

1

r

∂2ψ

∂ϕ2

)

.

We evaluate this equation up to linear order with respect to ε.

f ′(r) f(r) − ε
{

f(r)
∂2ψ

∂r2
+ f ′(r)

( ∂ψ

∂r
+

1

r

∂2ψ

∂ϕ2

)

}

= O
(

ε2
)

.

This equation gives the critical curve in implicit form, i.e., in the form of an equation Φ(r, ϕ) = 0.
For the unperturbed system, the critical curve is the Einstein ring r = θE . For the perturbed system,
the critical curve is, thus, given by an equation of the form

r = θE + ε δ(ϕ) + O
(

ε2
)

with a function δ(ϕ) to be determined. By Taylor expansion,

f(r) = f ′(θE) ε δ(ϕ) + O
(

ε2
)

, f ′(r) = f ′(θE) + O(ε) ,

where we have used that f(θE) = s(θE) θE = 0 .
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Inserting the Taylor expansions of f(r) and f ′(r) into the expression for the critical curve yields

f ′(θE)
2 ε δ(ϕ) − ε f ′(θE)

{ ∂ψ

∂r
+

1

r

∂2ψ

∂ϕ2

}∣

∣

∣

r=θE

= O
(

ε2
)

,

and, comparing leading-order terms,

f ′(θE) δ(ϕ) =
{ ∂ψ

∂r
+

1

r

∂2ψ

∂ϕ2

}∣

∣

∣

r=θE

.

With δ(ϕ) determined by this equation, the critical curve is given by

r = θE +
ε

f ′(θE)

{ ∂ψ

∂r
+

1

r

∂2ψ

∂ϕ2

}∣

∣

∣

r=θE

where we have neglected terms of second or higher order with respect to ε.

The caustic is the image of the critical curve under the lens map, so it is given by the equation

(

β1

β2

)

=
(

f(r) − ε
∂ψ

∂r

)

(

cosϕ

sinϕ

)

−
ε

r

∂ψ

∂ϕ

(

− sinϕ

cosϕ

)

+ O
(

ε2
)

=

=
(

f ′(θE) ε δ(ϕ) − ε
∂ψ

∂r

∣

∣

∣

r=θE

)

(

cosϕ

sinϕ

)

−
ε

r

∂ψ

∂ϕ

∣

∣

∣

r=θE

(

− sinϕ

cosϕ

)

+ O
(

ε2
)

.

If we neglect second and higher order terms with respect to ε, we find

(

β1

β2

)

= ε

{

(

�
�
�∂ψ

∂r
+

1

r

∂2ψ

∂ϕ2
−

�
�
�∂ψ

∂r

)

(

cosϕ

sinϕ

)

−
ε

r

∂ψ

∂ϕ

(

− sinϕ

cosϕ

)}∣

∣

∣

∣

∣

r=θE

.

This equation gives us the caustic as a parametrised curve, ϕ 7→ ~β, in the source plane. Is this curve
smooth, i.e., is the tangent vector everywhere non-zero? We calculate

d

dϕ

(

β1

β2

)

= ε

{

1

r

∂3ψ

∂ϕ3

(

cosϕ

sinϕ

)

+
�
�
��1

r

∂2ψ

∂ϕ2

(

− sinϕ

cosϕ

)

−
�

�
��1

r

∂2ψ

∂ϕ2

(

− sinϕ

cosϕ

)

−
1

r

∂ψ

∂ϕ

(

− cosϕ

− sinϕ

)}

∣

∣

∣

r=θE

,

hence

d

dϕ

(

β1

β2

)

=
ε

θE

dF (ϕ)

dϕ

(

cosϕ

sinϕ

)

with

F (ϕ) =
{ ∂2ψ

∂ϕ2
+ ψ

}∣

∣

∣

r=θE

.
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Now assume that dF (ϕ)/dϕ is either strictly positive or strictly negative for all ϕ ; then

∫

2π

0

dF (ϕ)

dϕ
dϕ 6= 0 .

On the other hand, ϕ = 0 is the same point as ϕ = 2π, hence

∫

2π

0

dF (ϕ)

dϕ
dϕ = F (2π) − F (0) = 0 .

So our hypothesis must be false. This leaves us two possibilities. The first possibility is that dF (ϕ)/dϕ
is identically zero; this happens if the perturbation does not break the rotational symmetry, so the
caustic is still a point. Such trivial perturbations are of no interest for our present discussion. The
second possibility is that there is a point ϕ = ϕ0 where dF (ϕ)/dϕ changes its sign. (Actually, because
of the 2π-periodicity of ϕ, it is clear that then there must be at least two such points: One where
dF (ϕ)/dϕ changes from positive to negative values and another one where it changes back from
negative to positive values. A more careful analysis shows that, in the case at hand, the function
dF (ϕ)/dϕ must have at least four zeros.) At such a point the tangent vector to the caustic turns
backwards which means that the caustic has a cusp. We have thus proven that the caustic must

have a cusp, for any non-trivial perturbation. (Actually, it must have at least four cusps.)

The following pictures show an example, taken from P. Schneider, J. Ehlers and E. Falco [Gravi-

tational Lenses, Springer (1992)]. Here the unperturbed system is a singular isothermal sphere (cf.
Worksheet 10), and the perturbation is of quadrupole symmetry (i.e., it preserves the reflection
symmetry with respect to both axes). This is a reasonable model for a galaxy.

The picture on the right
shows the Einstein ring
of the unperturbed system
(dotted) and the critical
curve of the perturbed sys-
tem (dashed). The pictures
on the next page show the
caustic (diamond shaped
curve with four cusps) in the
source plane and, for four
different positions of an ex-
tended source with circular
contour, the resulting arcs
in the deflector plane. In
contrast to the rotationally
symmetric case, it is now
possible to have more than
two arcs, and they need not
be symmetric with respect
to the origin.
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3.3 Weak lensing

If a light source is not close to the caustic, then its image is only slightly distorted. Even in this case it
is possible to get information on the surface mass density Σ of the deflector with statistical methods.
The idea is to assume that, in the case of no deflection by intervening masses, the ellipticities of
background galaxies would be random. Any deviation from randomness would then be interpreted
as a gravitational lens effect. A rather sophisticated mathematical formalism has been evaluated for
numerically calculating surface mass densities from such statistical observations. This goes under
the name of weak lensing. The method of weak lensing has been used, in particular, for determining
the surface mass density in galaxy clusters; for pictures see p.16. In the following we give a rough
outline of the general method.
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Again, we start out from the quasi-Newtonian lens equation

(

η1

η2

)

=
(DL +DO)

DO

(

ξ1

ξ2

)

− DL





α̂1

(

~ξ
)

α̂2

(

~ξ
)





where the bending angle ~̂α is the gradient of the lensing potential,





α̂1

(

~ξ
)

α̂2

(

~ξ
)



 =











∂V
(

~ξ
)

∂ξ1

∂V
(

~ξ
)

∂ξ2











, V
(

~ξ
)

=
4G

c2

∫

R2

Σ
(

~ξ′
)

ln
∣

∣~ξ′
′

− ~ξ
∣

∣ d2 ~ξ′ .

It is our goal to get information on the surface mass density Σ from statistical observations of the
ellipticities of background galaxies. For this purpose, it is convenient to stick with the dimensional
form of the lens equation, so we will not switch to the dimensionless (angular) variables ~β and ~θ.

We calculate the Jacobi matrix of the lens map ~ξ 7→ ~η ,

∂~η

∂~θ
=

(DL +DO)

DO















(

1 0

0 1

)

−
DLDO

(DL +DO)









∂2V

∂ξ2
1

∂2V

∂ξ1∂ξ2

∂2V

∂ξ1∂ξ2

∂2V

∂ξ2
2























.

We define

κ
(

~ξ
)

=
DLDO

2(DL +DO)

(

∂2V

∂ξ2
1

+
∂2V

∂ξ2
2

)

,

γ1
(

~ξ
)

=
DLDO

2(DL +DO)

(

∂2V

∂ξ2
1

−
∂2V

∂ξ2
2

)

,

γ2
(

~ξ
)

=
DLDO

(DL +DO)

∂2V

∂ξ1∂ξ2
.

Then the Jacobi matrix reads

∂~η

∂~θ
=

(DL +DO)

DO







(

1 0

0 1

)

−





κ + γ1 γ2

γ2 κ − γ1











=

=
(DL +DO)

DO







(

1 − κ 0

0 1 − κ

)

−





γ1 γ2

γ2 − γ1











.

κ is a measure of the expansion of a bundle with vertex at the observer, and (γ1, γ2) is a measure
of its shear. In this sense, the quantities κ and (γ1, γ2) are the quasi-Newtonian analogues of the
quantities θ and (σ1, σ2) for light bundles in the full formalism, recall p.48.
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With the complex shear

γ = γ1 + i γ2 = |γ| e2iϕ0

the Jacobi matrix of the lens map reads

∂~η

∂~θ
=

(DL +DO)

DO







(

1 − κ 0

0 1 − κ

)

−





|γ| cos(2ϕ0) |γ| sin(2ϕ0)

|γ| sin(2ϕ0) − |γ| cos(2ϕ0)











=

=
(DL +DO)

DO

{(

cosϕ0 − sinϕ0

sinϕ0 cosϕ0

) (

1 − κ − |γ| 0

0 1 − κ + |γ|

) (

cosϕ0 sinϕ0

− sinϕ0 cosϕ0

)}

.

The last equality sign can be easily verified by multiplying out the expression on the right-hand side.
From this last expression we read that the Jacobi matrix (i.e., the linearised lens map) consists of
a rotation by −ϕ0, a stretching of the axes by 1 − κ − |γ| and 1 − κ + |γ| respectively, and a
rotation by ϕ0, see diagram.

θ1

θ2

β1

β1

lens

map

ab ϕ0

This means that an ellipse with semi-axes a and b is mapped onto a circle if

b

a
=

1 − κ − |γ|

1 − κ + |γ|
.

In the quasi-Newtonian approximation formalism it is usual to use, as a measure for the ellipticity,
the complex quantity

ε =
a− b

a+ b
e2iϕ0 =

1 −
b

a

1 +
b

a

e2iϕ0 =

1 −
1 − κ − |γ|

1 − κ + |γ|

1 +
1 − κ − |γ|

1 − κ + |γ|

e2iϕ0 =

=
��1 − �κ + |γ| ,−��1 + �κ + |γ|

1 − κ + �
�|γ| + 1 − κ − �

�|γ|
e2iϕ0 =

��2 |γ|

��2 ( 1 − κ )
e2iϕ0 =

γ

( 1 − κ )
.

96



The method of weak lensing is based on the hypothesis that intrinsic ellipticities are distributed
randomly. Then ε = γ/(1 − κ) can be measured by subdividing the field of view into sufficiently
large subfields and averaging over the background galaxies in each subfield. What information on the
surface mass density Σ can be deduced from these measured values of ε = γ/(1 − κ) ? Recall that
κ and γ have been defined as second-order derivatives of the lensing potential, and thus as integrals
over Σ,

κ
(

~ξ
)

=
DLDO

2(DL +DO)

(

∂2V

∂ξ2
1

+
∂2V

∂ξ2
2

)

=

=
DLDO

2(DL +DO)

4G

c2

∫

R2

Σ
(

~ξ′
)

( ∂2

∂ξ2
1

+
∂2

∂ξ2
2

)

ln
∣

∣~ξ′ − ~ξ
∣

∣ d2 ~ξ′ ,

γ
(

~ξ
)

=
DLDO

2(DL +DO)

(

∂2V

∂ξ2
1

−
∂2V

∂ξ2
2

+ 2 i
∂2V

∂ξ1∂ξ2

)

=

=
DLDO

2(DL +DO)

4G

c2

∫

R2

Σ
(

~ξ′
)

( ∂2

∂ξ2
1

−
∂2

∂ξ2
2

+ 2 i
∂2

∂ξ1∂ξ2

)

ln
∣

∣~ξ′ − ~ξ
∣

∣ d2 ~ξ′ .

In the case of κ, we can use that ln
∣

∣~ξ′ − ~ξ
∣

∣ is the Green function of the two-dimensional Laplacian,

( ∂2

∂ξ2
1

+
∂2

∂ξ2
2

)

ln
∣

∣~ξ′ − ~ξ
∣

∣ = 2 π δ
(

~ξ′ − ~ξ
)

,

where δ is the Dirac-delta distribution, hence

κ
(

~ξ
)

=
4 πGDLDO

c2 (DL +DO)
Σ
(

~ξ
)

.

In the case of γ, the integration cannot be carried through explicitly, but the integral can be simplified
to

γ
(

~ξ
)

=
− 4GDLDO

c2 (DL +DO)

∫

R2

Σ
(

~ξ′
)

d2 ~ξ′
(

ξ1 − ξ′
1
− i

(

ξ2 − ξ′
2

)

)

2
.

If ε
(

~ξ ) has been determined by observations, the equation 1−κ = ε γ becomes an integral equation

for the unknown function κ
(

~ξ
)

, namely

1 − κ
(

~ξ
)

= − ε
(

~ξ
)

∫

R2

2 κ
(

~ξ′
)

d2 ~ξ′
(

ξ1 − ξ′
1
− i

(

ξ2 − ξ′
2

)

)2
.

97



This equation can be solved iteratively: Start with a guess for κ as your zeroth order approximation.
Insert it on the right-hand side and calculate what the left-hand side gives for κ. Use this as your
first order approximation, feed it into the right-hand side and calculate what the left-hand side now
gives for κ. Use this as your second order approximation, and so on.

This gives the basic idea of how the blue clouds in the pictures on p.16 have been determined. Note
that it is primarily κ, not Σ, that is determined. These two quantities differ by a constant factor.
Calculation of the surface mass density Σ from the dimensionless quantity κ requires that the factor
DLDO/(DL+DO) is known (or can be reasonably guessed). Also note that there are many technical
problems when this method is worked out in practice. Most importantly, every telescope shows ideal
points as fuzzy discs of a certain finite diameter. (This is caused by aberrations of the telescope optic,
in addition to the theoretical limits placed on the resolving power by diffraction.) As a consequence,
there is a systematic error in the measurement of ellipticities, making all ellipses more circular than
they actually are. Typically, this systematic error is bigger than the effect on the ellipticities caused
by weak lensing! Therefore, any weak lensing observation requires a careful measurement of how
ideal points are mapped by the telescope used. This deformation effect varies over the field of view
of the telecope, and it is known as the point-spread function.

This last chapter on applications to astrophysics was largely based on the quasi-Newtonian approx-
imation formalism. As a matter of fact, this approximation formalism can satisfactorily explain all
lensing observations up to now. However, with the further improvement of telescopes, in particular
radio telescopes, it can be expected that lensing effects beyond the quasi-Newtonian approximation
formalism will be observed soon. In particular, we expect that the shadow of the black hole at the
centre of our galaxy will be seen within a few years. The very notion of this shadow cannot be
understood on the basis of approximations assuming that bending angles are small. So we will really
need the full formalism of General Relativity for understanding these features. The mathematical
methods developed in Chapter 2 of this course provide the necessary tools for investigating this next
generation of lensing observations.
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