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I. Maxwell’s equations
We put Maxwell’s equations axiomatically at the beginning. We will
then derive all electromagnetic phenomena to be discussed from Max-

well’s equations.

I.1 Maxwell’s equations in differential form

In SI units, Maxwell’s equations read

∇ ·B = 0 (MI)

∇×E +
∂

∂t
B = 0 (MII)

∇ ·D = ρ (MIII)

∇×H − ∂

∂t
D = J (MIV)

Here

ρ = electric charge density (scalar field, depending on r and t),
J = electric current density (vector field, depending on r and t).

E, D, B and H are vector fields, depending on r and t.

traditional names better names

E electric field strength electric field strength

B magnetic induction magnetic field strength
D electric displacement electric excitation

H magnetic field strength magnetic excitation

The names in the right-hand column are more systematic:

The fields E and B produce the force onto a charged particle, see
the Lorentz force equation below, so they should be called the “field

strengths”.

The fields D and H couple to the sources ρ and J , see (MIII) and
(MIV), so they should be called the “excitations” (meaning the fields
that are “excited” by the sources).
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Also, in a relativistic formulation E and B are combined into one

geometric quantity (the “field strength tensor”), and D and H are
combined into one geometric quantity (the “excitation tensor”).

If the sources ρ and J are given, Maxwell’s equations give 1+3+1+3 =
8 scalar differential equations for the 3+3+3+3 = 12 components of

E, B, D and H. So one needs additional equations to determine the
fields. These additional equations are the socalled constitutive equa-

tions.

I.2 Constitutive equations

Constitutive equations characterise a particular medium. In the sim-
plest case (“linear isotropic medium”) they are of the form

D( r , t ) = ε0 εr( r , t )E( r , t ) (CI)

B( r , t ) = µ0 µr( r , t )H( r , t ) (CII)

ε0 and µ0 are constants of nature. In SI units:

ε0 = absolute permittivity = 8.85 · 10−12 C2

N m2

µ0 = absolute permeability = 1.26 · 10−6 N

A2

c = 1/
√
ε0 µ0 has the dimension of a velocity and turns out to be

the vacuum velocity of light (see discussion of electromagnetic waves

below).

εr and µr are dimensionless scalar quantities that may depend on r

and t. Their values (at r and t) characterise the medium (at r and t).

εr = relative permittivity

µr = relative permeability.

Vacuum is characterised by constitutive equations (CI) and (CII) with

εr = 1 and µr = 1.

Note that (CI) and (CII) are valid only for the simplest kind of media.
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In general, constitutive equations can be much more complicated, e.g.

• in anisotropic media, D is in general not parallel to E and B is
in general not parallel to H (in crystals, for instance, the scalar
quantity εr must be replaced by a matrix);

• D and B at some instant of time t may depend on E and H at
earlier times (in a ferromagnet, for instance, B at some instant
of time depends on what has been done to the ferromagnet in the

past; such media are called “memory materials” or “hysteretic
materials”).

In the following we will restrict to simple media with constitutive
equations of the form (CI) and (CII).
If ρ and J are given, and if the constitutive equations are known,

Maxwell’s equations give a system of differential equations for E and
B.

I.3 Lorentz force

An electromagnetic field with electric field strength E and magnetic

field strength B exerts the Lorentz force

F = q
(

E + v ×B
)

onto a charged particle with charge q and velocity v. This can be used
for measuring E and B: Measure the force onto a charge with v = 0

to determine E and measure the forces onto charges with different v
to determine B.

If the mass of the charged particle is denoted m, the Lorentz force
gives a second-order differential equation

m r̈(t) = q
(

E
(

r(t), t
)

+ ṙ(t)×B
(

r(t), t
)

)

for the particle’s trajectory

r(t) = x(t) x̂ + y(t)ŷ + z(t) ẑ .
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Example: Consider a charged particle in a constant electric field,

B = 0 , E = E ẑ with E = constant ,

with initial conditions

r(0) = 0 , ṙ(0) = v0 x̂ .

Then the three components of the Lorentz force equation

m r̈(t) = q E ẑ

read

ẍ(t) = 0 , ÿ(t) = 0 , z̈(t) =
qE

m
.

Upon integrating twice,

x(t) = α t + δ , y(t) = β t + ξ , z(t) =
qE

2m
t2 + γ t + η

with integration constants α , β , γ , δ , ξ , η. Matching to the initial
conditions yields

α = v0 , β = γ = δ = ξ = η = 0

and thus

r(t) = v0 t x̂ +
qE

2m
t2 ẑ .

The particle’s trajectory is a parabola, see next page.

For the motion of a charged particle in a magnetic field see 1st work-
sheet.

Note that in a magnetic field the Lorentz force F = q v × B is per-

pendicular to the velocity. With F = mr̈ and v = ṙ this implies

d

dt
|ṙ(t)|2 =

d

dt

(

ṙ(t) · ṙ(t)
)

= 2 ṙ(t) · r̈(t) = 0 .

In a magnetic field, the magnitude of the velocity of a

charged particle is constant, i.e., the magnetic field does
no work.
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z

E

v0 x̂

Parabolic trajecory of a charged particle in a constant electric field.

Note: The traditional Lorentz force equation considered here is actu-
ally only a non-relativistic approximation, valid as long as the parti-

cle’s velocity is small in comparison to the velocity of light.

I.4 Maxwell’s equations in integral form

For general theoretical investigations one usually considers Maxwell’s
equations in differential form, as given above. However, rewriting
Maxwell’s equations in integral form is sometimes helpful when inves-

tigating problems with symmetry. (Adapt the integration domain to
the symmetry!) Also, experimentalist often prefer the integral form

because measuring E, B and other fields at a point is an idealisa-
tion: Any real measurement involves an integration over some finite

domain, because every measuring device has a finite extension. We
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now rewrite the four Maxwell equations, one by one, in integral form

and interpret the resulting equations.

(MI) Integration of ∇ ·B = 0 over a volume V yields
∫

V
∇ ·B dτ = 0

where dτ is the volume element. With the Gauss theorem we get
the first Maxwell equation in integral form:

∫

∂V
B · da = 0

where ∂V is the boundary of V (a closed surface, see figure), and
da is the vectorial area element (by convention outward-pointing).

This equation expresses the fact that the flow of B through any

da

V
∂V

closed surface is zero, i.e., that the magnetic field has no sources.

(A modification of the first Maxwell equation has been suggested
where the right-hand side of (MI) is not zero. This would cor-

respond to the existence of “magnetic sources”, called magnetic

monopoles. However, up to now there is no experimental indica-
tion that they exist.)

(MII) Integration of ∇ ×E + ∂

∂t
B = 0 over a (non-closed) surface S

yields
∫

S

(

∇×E
)

· da = −
∫

S

( ∂

∂t
B

)

· da ,

where da denotes, as before, the vectorial area element. On the

left-hand side we use the Stokes theorem, on the right-hand side
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we commute differentiation with integration. This gives the sec-

ond Maxwell equation in integral form:

∫

∂S
E · d` = − d

dt

∫

S
B · da .

Here ∂S is the boundary of S (a closed curve), see picture. d` is

����
����
����
����

����
����
����
����

d`

da

S

∂S

the vectorial length element along ∂S. The usual sign conventions
are: If the thumb of your right hand points in the direction of da,

the remaining four fingers point in the direction of d`. – This
equation says that the temporal change of the flow of B through

a non-closed surface equals, up to sign, the circulation of E in the
boundary of this surface (“Faraday’s law”).

(MIII) Integration of ∇ ·D = ρ over a volume V yields
∫

V
∇ ·D dτ =

∫

V
ρ dτ .

Rewriting the left-hand side with the Gauss theorem yields the
third Maxwell equation in integral form:

∫

∂V
D · da =

∫

V
ρ dτ .
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This equation expresses the fact that the flow of D through any

closed surface is equal to the total charge surrounded by this sur-
face (“Gauss law”).

(MIV) Integration of ∇×H − ∂

∂t
D = J over a (non-closed) surface S

yields
∫

S

(

∇×H
)

· da =

∫

S

( ∂

∂t
D

)

· da +

∫

S
J · da .

On the left-hand side we use the Stokes theorem, on the right-

hand side we commute differentiation with integration. This gives
the fourth Maxwell equation in integral form:

∫

∂S
H ·d` =

d

dt

∫

S
D·da+

∫

S
J ·da .

This equation says that the flow of J through a non-closed sur-

face plus the temporal change of the flux of D through this sur-
face equals the circulation of H in the boundary of this surface

(“Ampère-Maxwell law”).

The integral form of Maxwell’s equations is equivalent to the differen-
tial form: From the integral form the differential form can be recovered

by choosing the integration domain arbitrarily small.

Summary: The basic equations of electrodynamics are

• Maxwell’s equations (in differential or in integral form);

• the constitutive equations (depending on the medium);

• the Lorentz force equation.

From this basic set of equations all electrodynamic phenomena can be
derived.
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II. Conservation laws
In this section we derive two important conservation laws fromMaxwell’s
equations: Charge conservation and energy conservation.

II.1 Charge conservation

The third and fourth Maxwell equation

∇ ·D = ρ (MIII)

∇×H − ∂

∂t
D = J (MIV)

imply
∂

∂t
∇ ·D =

∂

∂t
ρ ,

∇ ·
(

∇×H
)

− ∇ ·
( ∂

∂t
D

)

= ∇ · J .

Partial derivatives commute (if applied to continuously differentiable

functions). This implies

∇ ·
( ∂

∂t
D

)

=
∂

∂t
∇ ·D

and, after a quick calculation,

∇ ·
(

∇×H
)

= 0 .

We have thus found

∂

∂t
ρ + ∇ · J = 0 .

This is the law of charge conservation in differential form (continuity

equation). Integration over a volume V yields
∫

V

∂

∂t
ρ dτ = −

∫

V
∇ · J dτ

On the left-hand side we commute differentiation and integration, on

the right-hand side we use the Gauss theorem:
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d

dt

∫

V
ρ dτ = −

∫

∂V
J · da .

This is the law of charge conservation in integral form: The temporal
change of the total charge in a volume V equals the negative flow of J

through the boundary of V . (The minus sign ensures that the charge
decreases if the flow is outward.)

Note that charge conservation holds in any medium; the constitutive
equations have not been used.

Historical note: Before Maxwell the equation (MIV) was believed to

read ∇×H = J (“Ampères law”). Maxwell modified this equation
by introducing the socalled displacement current − ∂

∂t
D for the sole

reason that only then would charge conservation be satisfied. (The
displacement current is negligibly small for slowly varying fields. This
is the reason why it was detected experimentally only after its theo-

retical introduction by Maxwell.)

II.2 Energy conservation

We will discuss energy conservation only for media with constitutive
equations of the form

D(r, t) = εr(r) ε0E(r, t)

B(r, t) = µr(r)µ0H(r, t)

with εr and µr independent of time.

Define

u(r, t) =
1

2

(

E(r, t) ·D(r, t) + B(r, t) ·H(r, t)
)

,

N(r, t) = E(r, t)×H(r, t) .

N is called the Poynting vector. We will derive a conservation law

which suggests to interpret u as the energy density of the electromag-
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netic field andN as the energy flow vector of the electromagnetic field.

From the constitutive equations we find

∂

∂t
u(r, t) = εr(r) ε0E(r, t) · ∂

∂t
E(r, t) + µr(r)µ0H(r, t) · ∂

∂t
H(r, t) .

On the other hand, we find using the × product rule for the ∇ oper-

ator, Maxwell’s equations and the constitutive equations

∇ ·N(r, t) = ∇ ·
(

E(r, t)×H(r, t)
)

=

=
(

∇×E(r, t)
)

·H(r, t) − E(r, t) ·
(

∇×H(r, t)
)

=

= −
( ∂

∂t
B(r, t)

)

·H(r, t) − E(r, t) ·
( ∂

∂t
D(r, t) + J(r, t)

)

=

= −µr(r)µ0

( ∂

∂t
H(r, t)

)

·H(r, t) − εr(r) ε0E(r, t) · ∂

∂t
E(r, t)

−E(r, t) · J(r, t) .
Comparing these two expressions yields

∂

∂t
u(r, t) +∇·N (r, t) = −E(r, t)·J(r, t) .

For J = 0 (or, more generally, if E ·J = 0), this is again a continuity
equation, i.e., it says that the energy of the electromagnetic field is

conserved.

For E · J 6= 0, the energy of the electromagnetic field is partly con-

verted into other forms of energy. In most cases this other form of
energy is heat (“Joulean heat”); however, it could also be e.g. defor-
mation energy.

In analogy to the charge conservation law, one can integrate the energy
law over a volume V and use the Gauss theorem to find

d

dt

∫

V
u dτ = −

∫

∂V
N · da −

∫

V
E · J dτ .
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This is the energy law in integral form: The temporal change of the

energy of the electromagnetic field in a volume V equals the negative
flow of the Poynting vector over the boundary of V minus the amount

of energy that is converted into other energy forms, typically Joulean
heat.

Summary: Maxwell’s equations imply two conservation laws.

• The charge is always conserved, in any medium.

• For simple media, one can derive an energy law. The energy of
the electromagnetic field is conserved if E ·J = 0. Otherwise, the

energy of the electromagnetic field is partly converted into some
other form of energy.
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III. The electromagnetic potentials

Recall that for vector fields F and B the folowing implications hold.

F = ∇V for some V =⇒ ∇ × F = 0 (SI)

B = ∇ × A for some A =⇒ ∇ · B = 0 (SII)

To prove this, write ∇ = x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

and use the fact that
partial derivatives commute.

We will now investigate whether the converse of (SI) and (SII) holds.

Converse of (SI):

Assume ∇ × F = 0. We want to find V such that F = ∇V .

Fix a point r0 and a constant V0. Define

V (r) = V0 +

∫

P
F · dℓ = V0 +

∫ 1

0

F
(

ℓ(s)
)

· dℓ(s)

ds
ds

where P is any path from the fixed chosen r0 to r and ℓ(s) is a

parametrisation of P with ℓ(0) = r0 and ℓ(1) = r, see picture.

r0 = ℓ(0)

r = ℓ(1)

ℓ(s)

Pdℓ
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Then

(i) V is well-defined, i.e., independent of the path chosen.
Proof: Consider two different paths P1 and P2 from r0 to r. Let

S be the surface bounded by these two paths, see picture,

r0

r

S

P1

P2

such that the boundary ∂S consists of P1 with positive orientation
and P2 with negative orientation. Then, by Stokes theorem,
∫

P1

F · dℓ −
∫

P2

F · dℓ =

∫

∂S
F · dℓ =

∫

S

(

∇ × F
)

· da = 0

because ∇ × F = 0 by assumption. �

(ii) F = ∇ V .
Proof: Note that the way we defined V implies that V (r0) = V0.

Thus for any path P from r0 to r:
∫

P
F ·dℓ = V (r)− V0 = V (r)− V (r0) = V

(

ℓ(1)
)

− V
(

ℓ(0)
)

=

∫ 1

0

d

ds
V

(

ℓ(s)
)

ds =

∫ 1

0

(

∇V
)(

ℓ(s)
)

· dℓ(s)

ds
ds =

∫

P
(∇V ) · dℓ .

Since this holds for any path from r0 to any r, the integrands

must be equal, F = ∇V . �
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We have thus shown that the converse of (SI) is also true:

∇ × F = 0 ⇐⇒ F = ∇V for some V

Our proof shows that, if F with ∇ × F = 0 is given, the desired
V is of the form V (r) = V0 +

∫

P F · dℓ where P is a path from a

fixed chosen point r0 to r and V0 is a chosen constant. Obviously, V
is determined by F up to an additive constant.

Remarks:

(a) In physics, V is called a potential of F if F = −∇V . The reason
for the minus sign comes from mechanics: If a particle moves in

a force field F , Newton’s second law implies

F
(

r(t)
)

= m r̈(t) .

If F = −∇V , the potential V gives the potential energy of the

particle, and the law of conservation of enegy reads

d

dt

( m

2
|ṙ(t)|2 + V

(

r(t)
)

)

= ṙ ·
(

m r̈ + ∇V
(

r(t)
)

)

= 0 .

Our above argument shows that this law holds if and only if the
force field F satisfies ∇ × F = 0. Such force fields are called
conservative.

(b) Recall that the gradient of V is perpendicular to the surfaces
V = constant. Thus, we have proven that a vector field F is curl
free, ∇×F = 0, if and only if its integral curves are everywhere

perpendicular to a family of surfaces, see picture next page. For
a vector field F with ∇ × F 6= 0, the integral curves have a

’twist’; then it is impossible to find surfaces which are everywhere
perpendicular to this integral curves.
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F

V = V1

V = V2

V = V3

(c) If the equation ∇×F = 0 holds

only on part of 3-dimensional
space, e.g. with an infinite cylin-

der removed, then we cannot con-
clude that F = ∇V . Our proof
fails because in this mutilated

space it is not possible to write
any two paths P1 and P2 connect-

ing two points as the boundary of
a surface, see picture.

P1

P2
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Converse of (SII):

Assume ∇ ·B = 0. We want to find A such that B = ∇ × A, i.e.

Bx =
∂

∂y
Az − ∂

∂z
Ay ,

By =
∂

∂z
Ax − ∂

∂x
Az ,

Bz =
∂

∂x
Ay − ∂

∂y
Ax .

Let us try to find a solution with Az = 0. Then the first desired
equation

Bx = − ∂

∂z
Ay

requires

Ay(x, y, z) = −
∫ z

0

Bx(x, y, z′) dz′ + g(x, y)

and the second desired equation

By =
∂

∂z
Ax

requires

Ax(x, y, z) =

∫ z

0

By(x, y, z′) dz′ + h(x, y) .

These two conditions imply
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∂

∂x
Ay − ∂

∂y
Ax =

−
∫ z

0

( ∂

∂x
Bx +

∂

∂y
By

)

(x, y, z′) dz′ +
∂

∂x
g(x, y) − ∂

∂y
h(x, y) .

As, by assumption, ∇ · B = 0, we can substitute

∂

∂x
Bx +

∂

∂y
By = − ∂

∂z
Bz

to find

∂

∂x
Ay − ∂

∂y
Ax =

∫ z

0

∂

∂z
Bz(x, y, z′) dz′ +

∂

∂x
g(x, y) − ∂

∂y
h(x, y) =

Bz(x, y, z) − Bz(x, y, 0) +
∂

∂x
g(x, y) − ∂

∂y
h(x, y) .

This demonstrates that the third desired equation is true if g and h

satisfy

Bz(x, y, 0) =
∂

∂x
g(x, y) − ∂

∂y
h(x, y) .

Clearly, such functions g and h exist, e.g.

g(x, y) =

∫ x

0

Bz(x
′, y, 0) dx′ and h(x, y) = 0 .

We have thus shown that the converse of (SII) is also true:
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∇ · B = O ⇐⇒ B = ∇ × A for some A

Our proof shows that, if B with ∇ · B = 0 is given, the desired A

can be chosen, e.g., as

Ax(x, y, z) =

∫ z

0

By(x, y, z′) dz′ ,

Ay(x, y, z) = −
∫ z

0

Bx(x, y, z′) dz′ +

∫ x

0

Bz(x
′, y, 0) dx′ ,

Az(x, y, z) = 0 .

A is not uniquely determined by B: If B = ∇×A1 and B = ∇×A2,
we must have ∇×

(

A2 − A1

)

= 0. From our earlier result we know

that this is true if A2 − A1 = ∇V . Thus, B determines A up to the
freedom of adding a gradient.

Remark:

As in the case of (SI), the converse of (SII) is not true if the equation
∇ · B = 0 holds only on part of the three-dimensional space. In

this case, our proof fails because our calculation of integrals along the
coordinate axes need not be true if the equation ∇ · B = 0 does not
hold everywhere.
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We are now ready to define the electromagnetic potentials.

The first Maxwell equation

∇ · B = 0 (MI)

implies that there is a vector field A such that

B = ∇ × A .

Then the second Maxwell equation

∇ × E +
∂

∂t
B = 0 (MII)

takes the form

∇ ×
(

E +
∂

∂t
A

)

= 0 .

This equation implies that there is a scalar field V such that

E +
∂

∂t
A = −∇V .

We have thus expressed E and B in terms of A and V :

B = ∇ × A , (PI)

E = −∇V − ∂

∂t
A . (PII)
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V is a scalar function of r and t, called the scalar potential.

A is a vector-valued function of r and t, called the vector potential.

V and A are unique up to gauge transformations

A 7−→ A + ∇f , (GI)

V 7−→ V − ∂

∂t
f . (GII)

where f is an arbitrary scalar function of r and t, called the gauge

function.

The fact that the potentials are defined only up to gauge transfor-

mations shows that they cannot be measurable. They are auxiliary
mathematical quantities which are used to calculate the measurable
fields E and B.

With E and B expressed in terms of the potentials V and A, the
first two Maxwell equations (MI) and (MII) are automatically satis-

fied. The remaining two Maxwell equations (MIII) and (MIV) become
equations for V and A. The special form of these equations depend

on the constitutive equations.

We want to work this out for the simplest kind of constitutive equa-

tions,

D(r, t) = εr ε0 E(r, t) ,

B(r, t) = µr µ0 H(r, t) ,

with constant εr and µr. Then the third Maxwell equation

∇ · D = ρ (MIII)
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takes the form

ρ = εr ε0 ∇ · E = εr ε0 ∇ ·
(

− ∇V − ∂

∂t
A

)

which, with the Laplace operator

∆ = ∇
2 = ∇ · ∇ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

can be rewritten as

∆V +
∂

∂t
∇ · A = − ρ

εr ε0

. (MIII′)

On the other hand, the fourth Maxwell equation

∇ × H − ∂

∂t
D = J (MIV)

takes the form

J =
1

µr µ0

∇ × B − εr ε0

∂

∂t
E =

1

µr µ0

∇ ×
(

∇ × A
)

+ εr ε0

∂

∂t

(

∇V +
∂

∂t
A

)

=

1

µr µ0

(

∇
(

∇ · A
)

−
(

∇ · ∇
)

A
)

+ εr ε0

∂

∂t

(

∇V +
∂

∂t
A

)

.

With the abbreviation

v =
1√

εr ε0 µr µ0
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the last equation can be rewritten as

∆A − 1

v2

∂2

∂t2
A − ∇

(

∇ · A +
1

v2

∂

∂t
V

)

= −µr µ0 J (MIV′)

Claim: We can always make a gauge transformation (GI), (GII) such
that the new potentials satisfy the Lorentz gauge condition

∇ · A +
1

v2

∂

∂t
V = 0 . (LG)

Proof: Under a gauge transformation, the left-hand side of (LG) trans-
forms as

∇ · A +
1

v2

∂

∂t
V 7−→ ∇ · A + ∇ · ∇f +

1

v2

∂

∂t
V − 1

v2

∂2

∂t2
f .

The resulting expression can be made equal to zero by choosing f such

that

∆f − 1

v2

∂2

∂t2
f = −∇ · A − 1

v2

∂

∂t
V .

For any given A and V , solutions f to this inhomogeneous wave equa-

tion exist. (We will find a particular solution to the inhomogeneous
wave equation when deriving the retarded potentials in the next chap-

ter.) �

With the Lorentz gauge condition (LG), the equations (MIII’) and
(MIV’) simplify to

∆V − 1

v2

∂2

∂t2
V = − ρ

εrε0

(WI)

∆A − 1

v2

∂2

∂t2
A = −µr µ0 J (WII)
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(WI) and (WII) are referred to as the inhomogeneous wave equations

for the potentials. They give us four scalar equations for the four scalar
variables V , Ax, Ay, Az. Working with V and A instead of E and B

is advantageous because it reduces the number of variables from six to
four. Even more importantly, (WI) and (WII) are uncoupled equations

for the potentials V and A. Note, however, that the potentials are
coupled by the Lorentz gauge condition. The wave equations (WI) and
(WII) demonstrate that electromagnetic fields, expressed in terms of

the potentials, propagate with velocity v in the considered medium.
In vacuo, we have εr = µr = 1 and v = c where

c =
1√
ε0 µ0

≈ 300 000 km/s .

Note: Even with the Lorentz gauge condition imposed, the potentials
V and A are not unique. There is still the freedom of making gauge

transformations (GI) and (GII) with a gauge function that satisfies
the homogeneous wave equation ∆f − 1

v2

∂2

∂t2
f = 0.

Summary: In any kind of media, E and B can be expressed in terms
of the potentials V and A according to (PI) and (PII). The first two
Maxwell equations (MI) and (MII) are then automatically satisfied.

In media with constant εr and µr, the remaining two Maxwell equa-
tions reduce to the inhomogeneous wave equations (WI) and (WII) if

we impose the Lorentz gauge condition (LG) on the potentials.

The solutions to Maxwell’s equations, for given ρ and J , in a medium
with constant εr and µr can thus be found in four steps:

1. Find the general solution V and A to the wave equations (WI)

and (WII).

2. Single out those solutions that satisfy the Lorentz gauge condition

(LG).

3. Determine E and B from (PI) and (PII).

4. Determine D and H from the constitutive equations.
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IV. Solving Maxwell’s equations in
free space
We restrict to media with constitutive equations of the form

D(r, t) = εr ε0 E(r, t) , B(r, t) = µr µ0 H(r, t) ,

where εr and µr are constants.

In this chapter we want to solve Maxwell’s equations for given sources
ρ(r, t) and J(r, t) in free space. (For Maxwell’s equations in bounded

regions see Chapter V below.)

The following is clear from the outset:

• The solution can exist only if ρ and J satisfy the continuity equa-
tion

∂

∂t
ρ + ∇ · J = 0 .

• The solution is unique only up to the freedom of adding a solution

of the homogeneous equations (i.e., to the equations with ρ = 0
and J = 0). Physical interpretation: We may add source-free

electromagnetic waves that “come in from infinity” and “go out
to infinity”.

According to the results of Chapter III, we have to solve:

∆V − 1

v2

∂2

∂t2
V = − ρ

εrε0
, (WI)

∆A − 1

v2

∂2

∂t2
A = −µr µ0 J , (WII)

∇ · A +
1

v2

∂

∂t
V = 0 , (LG)
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where v = 1/
√

εr ε0 µr µ0 .

The linearity of the left-hand sides implies:

general solution of the inhomogeneous equations

=
general solution of the homogeneous equations

+
one particular solution of the inhomogeneous equations

We shall discuss the general solution of the homogeneous equations in
Section IV.1 and one particular solution of the inhomogeneous equa-

tions in Section IV.2 below.

IV.1 General solution of the homogeneous equations

We want to find the general solution of

∆V − 1

v2

∂2

∂t2
V = 0 ,

∆A − 1

v2

∂2

∂t2
A = 0 ,

∇ · A +
1

v2

∂

∂t
V = 0 ,

in the class of functions that admit an expansion with respect to

plane harmonic waves (discrete and/or continuous Fourier expansion).
Thus, we have to determine all solutions of the form

V (r, t) = V0 cos
(

k · r − ω t + α
)

,

A(r, t) = A0 cos
(

k · r − ω t + α
)

.
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The general solution is then a superposition of such solutions.

(One could try, more generally, a wave vector k1, a frequency ω1 and

a phase shift α1 for V (r, t) and a wave vector k2, a frequency ω2 and a
phase shift α2 for A(r, t). Then one would find that the Lorentz gauge

condition cannot be satisfied unless k1 = k2, ω1 = ω2 and α1 = α2.)

The equation ∆V − 1

v2

∂2

∂t2
V = 0 requires

−V0

(

|k|2 − ω2

v2

)

cos
(

k · r − ω t + α
)

= 0

and thus the dispersion relation ω = v |k| .

So the waves have phase velocity and group velocity both equal to v,

vph =
ω

|k| = v and vgr =
dω

d|k| = v .

The equation ∆A − 1

v2

∂2

∂t2
A = 0 requires the same condition.

The Lorentz gauge condition ∇ · A +
1

v2

∂

∂t
V = 0 requires

(

− A0 · k + V0
ω

v2

)

sin
(

k · r − ω t + α
)

= 0

and thus

A0 · k = V0
ω

v2
.

We are free to make gauge transformations,

A 7−→ A′ = A + ∇f , V 7−→ V ′ = V − ∂

∂t
f ,
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that leave the Lorentz gauge condition unchanged. Choosing

f(r, t) = − V0

ω
sin

(

k · r − ω t + α
)

= − A0 · k
|k|2 sin(k · r − ωt + α)

transforms the potentials into

A′(r, t) = A⊥
0 cos

(

k · r − ω t + α
)

, V ′(r, t) = 0 ,

k

A0

A⊥
0

where

A⊥
0 = A0 − A0 · k

|k|2
k .

Note that ∇ · A′ = 0, so the primed potentials satisfy, indeed, the
Lorentz gauge condition.

Dropping the primes on A′ and V ′, we can thus write the general plane
harmonic wave solution of the homogeneous wave equations and the

Lorentz gauge condition as

A(r, t) = A⊥
0 cos

(

k · r − |k| v t + α
)

, V (r, t) = 0

where A⊥
0 is any vector with A⊥

0 · k = 0.

Thus, E = −∇V − ∂

∂t
A and B = ∇ × A take the form

E (r, t) = E0 sin
(

k · r − |k| v t + α
)

,

B(r, t) = B0 sin
(

k · r − |k| v t + α
)

,
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where E0 = − |k| v A⊥
0 and B0 = −k × A⊥

0 =
1

v

k

|k| × E0.

Any such solution de-
scribes a transverse li-
nearly polarised plane
harmonic wave.

Note that B0 is deter-
mined by E0 and the
wave vector k.

��

��

��

k

B0 =
1

v

k

|k| × E0

E0

The general solution of the homogeneous wave equation is an arbitrary
superposition of such waves. This can be a finite sum, an infinite series

(Fourier series), or an integral (Fourier integral). A circularly polarised
wave, e.g., is a superposition of just two such linearly polarised waves,
see 2nd worksheet. The general form of a Fourier integral solution is

given by the potentials V (r, t) = 0 and

A(r, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
A⊥

0 (k) cos
(

k ·r − |k| v t + α(k)
)

dkxdkydkz

where A⊥
0 (k) · k = 0 ; otherwise A⊥

0 (k) and α(k) are arbitrary.

Note: We have worked here with the potentials. As an alternative,

one can show that E and B themselves satisfy the wave equation, see
3rd worksheet. For the homogeneous case (i.e., ρ = 0 and J = 0), one

finds

∆E − 1

v2

∂

∂t2
E = 0 and ∆B − 1

v2

∂

∂t2
B = 0 .

So one could discuss the general solution of the homogeneous Maxwell
equations directly in terms of E and B, without using the potentials.
However, using the potentials is of great advantage if we now turn to

the inhomogeneous equations.
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IV.2 The retarded potentials

We want to find one particular solution of the inhomogeneous wave

equations for the potentials. We consider the equation for the scalar
potential

∆V − 1

v2

∂2

∂t2
V = − ρ

εr ε0
(WI)

with a given ρ that depends on r and t. We will guess a solution and

then prove that it does the job.

Heuristic consideration: A static charge Q at r0 produces the time-
independent Coulomb potential

V (r) =
1

4 π εr ε0

Q

|r − r0|
.

By superposition, a static charge density ρ produces the time-independent
potential

V (r) =
1

4 π εr ε0

∫

R

ρ(r′) dτ ′

|r − r′| ,

where R denotes all of 3-dimensional space.

For a time-dependent charge density, one has to take into account
that the action in our medium travels with speed v, thus needs time

|r − r′|/v from r′ to r. So it seems reasonable to guess that, for a
time-dependent charge density, the potential is

V (r, t) =
1

4 π εr ε0

∫

R

ρ
(

r′, t − |r−r′|
v

)

dτ ′

|r − r′| . (RI)

Claim: (RI) is a solution of (WI).

Proof: We need the 3-dimensional Dirac delta “function”, defined by

δ(3)(r) = 0 for r 6= 0 ,

∫

R
δ(3)(r) dτ = 1 .
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Obviously, this can be true only if “δ(3)(0) = ∞”, i.e., δ(3) cannot be
a function in the usual sense. (Actually, it is a socalled generalised

function or distribution.) The defining properties of the Dirac delta
function imply that for any ordinary function f(r) we must have

f(r) δ(3)(r − a) = f(a) δ(3)(r − a)

(check this for r = a and for r 6= a), thus

∫

R
f(r) δ(3)(r − a) dτ = f(a) .

A particular representation of the Dirac delta function is given by

δ(3)(r) =
1

4 π
∇ · r

|r|3 ,

see 3rd worksheet.

To calculate ∆V (r, t), we now proceed step by step. (Note that ∇ acts
on r, i.e. r′ and t are constants with respect to this differentiation!)

With the abbreviations R = r − r′, R = |R|, tr = t − R/v :

• ∇R = ∇|r−r′| = ∇

√

(x − x′)2 + (y − y′)2 + (z − z′)2 =

=
2 (x − x′) x̂ + 2 (y − y′) ŷ + 2 (z − z′) ẑ

2
√

(x − x′)2 + (y − y′)2 + (z − z′)2
=

r − r′

|r − r′| =
R

R
.

• ∇tr = −1

v

R

R
,

• ∇ρ(r′, tr) =
∂ρ

∂t

(

r′, tr
)

∇tr = − ∂ρ

∂t

(

r′, tr
) R

v R
,
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• ∇
ρ(r′, tr)

R
=

∇ρ(r′, tr)

R
− ρ(r′, tr)

R2
∇R =

= − ∂ρ

∂t

(

r′, tr
) R

v R2
− ρ(r′, tr)

R

R3
=

= −
( R

v

∂ρ

∂t

(

r′, tr
)

+ ρ
(

r′, tr
)

) R

R3

• ∆
ρ(r′, tr)

R
= −

(

∇R

v

∂ρ

∂t

(

r′, tr
)

+
R

v

∂

∂t
∇ρ(r′, tr) + ∇ρ(r′, tr)

)

· R
R3

−
( R

v

∂ρ

∂t

(

r′, tr
)

+ ρ(r′, tr)
)

∇ · (r − r′)

|r − r′|3 =

= −
(

���������R

vR

∂ρ

∂t

(

r′, tr
)

− R

v2

∂2ρ

∂t2
(

r′, tr
) R

R
+ �������

∇ρ(r′, tr)
)

· R

R3

−
( R

v

∂ρ

∂t

(

r′, tr
)

+ ρ(r′, tr)
)

4 π δ(3)(r − r′) =

=
1

v2

∂2ρ

∂t2
(

r′, tr
) 1

R
−

( R

v

∂ρ

∂t

(

r′, tr
)

+ ρ(r′, tr)
)

4 π δ(3)(r − r′) .

With δ(3)(r − r′) = δ(3)(r′ − r) :

(

∆ − 1

v2

∂2

∂t2

) ρ
(

r′ , t − |r−r′|
v

)

|r − r′| =

= −
( |r − r′|

v

∂ρ

∂t

(

r′ , t− |r − r′|
v

)

+ ρ
(

r′ , t− |r − r′|
v

)

)

4 π δ(3)(r′−r) .
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Dividing by 4 π εr ε0 and integrating r′ over R yields the desired

result

(

∆ − 1

v2

∂2

∂t2

) 1

4 π εr ε0

∫

R

ρ
(

r′ , t − |r−r′|
v

)

dτ ′

|r − r′| = − 1

εr ε0
ρ(r, t) .

�

An analogous calculation gives a solution A of (WII). These solutions

V (r, t) =
1

4 π εr ε0

∫

R

ρ
(

r′, t − |r−r′|
v

)

dτ ′

|r − r′| (RI)

A(r, t) =
µr µ0

4 π

∫

R

J
(

r′, t − |r−r′|
v

)

dτ ′

|r − r′| (RII)

are called the retarded potentials. The name refers to the fact that ρ
and J are taken at the retarded time tr = t − |r − r′|/v . The action

travels from the charge to the observer at speed v:

�
�
�
�

�
�
�
�

r r′r − r′

observer
charge

The observer at r notices an action at time t if the charge at

r′ was moved at the retarded time tr = t − |r − r′|/v .
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Claim: The retarded potentials satisfy the Lorentz gauge condition

if ρ and J satisfy the continuity equation.

Proof: See 4th worksheet.

For time-independent ρ and J , the retarded potentials reduce to the
electro- and magnetostatic potentials:

V (r) =
1

4 π εr ε0

∫

R

ρ(r′) dτ ′

|r − r′| ,

A(r) =
µr µ0

4 π

∫

R

J(r′) dτ ′

|r − r′| .

If one knows these formulas for the static case by heart, it is easy to
reproduce the formulas for the time-dependent case: Just replace

V (r) by V (r, t)

A(r) by A(r, t)

ρ(r′) by ρ(r′, tr)

J(r′) by J(r′, tr)

where tr = t − |r − r′|/v .

The general solution of the inhomogeneous equations is given by the

retarded potentials plus the general solution of the homogeneous equa-
tions.

Recall: Solutions to the homogeneous equation are (source-free) elec-

tromagnetic waves.

So there are many different solutions for any given ρ and J . It de-

pends on the physical situation which of them is realised in nature. If
no electromagnetic waves come in from infinity, the retarded poten-
tials give the right solution, otherwise one has to add a solution of the

homogeneous equations.
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IV.3 The retarded potentials for a moving point charge

We want to evaluate the retarded potentials (RI) and (RII) for the case

of a point particle with charge q that moves along a given trajectory
r0(t

′).

We write t′ for the time pa-
rameter along the particle’s

trajectory because we want to
leave the symbol t for the time

where the field is measured at
position r.

�
�
�
�

�
�
�
�

trajectory

r
r0(t

′)

Then the charge density and the current are given at position r′ and
time t′ as

ρ(r′, t′) = q δ(3)
(

r′ − r0(t
′)
)

,

J(r′, t′) = q ṙ0(t
′) δ(3)

(

r′ − r0(t
′)
)

.

To calculate V (r, t), we rewrite ρ
(

r′, t − |r−r′|
v

)

with the help of the
(one-dimensional) Dirac delta function as

ρ
(

r′, t − |r − r′|
v

)

=

∫ ∞

−∞
δ
(

t′ − t +
|r − r′|

v

)

ρ(r′, t′) dt′ .

Then the retarded potential (RI) takes the form

V (r, t) =
1

4 π εr ε0

∫

R

∫ ∞

−∞

ρ(r′, t′) δ
(

t′ − t + |r−r′|
v

)

|r − r′| dt′ dτ ′ =

=
1

4 π εr ε0

∫ ∞

−∞

∫

R

q δ(3)
(

r′ − r0(t
′)
)

δ
(

t′ − t + |r−r′|
v

)

|r − r′| dt′ dτ ′ =

=
q

4 π εr ε0

∫ ∞

−∞

δ
(

t′ − t + |r−r0(t′)|
v

)

|r − r0(t′)|
dt′ .
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We substitute, for fixed r and t, the integration variable t′ into a new

integration variable s via

s = t′ − t +
|r − r0(t

′)|
v

= t′ − t +

√

(

r − r0(t′)
)

·
(

r − r0(t′)
)

v
,

ds = dt′ − ��2
(

r − r0(t
′)
)

· ṙ0(t
′)

��2 v |r − r0(t′)|
dt′ .

This results in

V (r, t) =
q

4 π εr ε0

∫ ∞

−∞

δ(s) ds
{

|r − r0(t′)| − 1
v

(

r − r0(t′)
)

· ṙ0(t′)
} =

=
q

4 π εr ε0

1
{

|r − r0(tr)| − 1
v

(

r − r0(tr)
)

· ṙ0(tr)
}

where t′ = tr if s = 0, i.e., tr is determined by the equation

tr − t +
|r − r0(tr)|

v
= 0 . (∗)

After an analogous calculation for A(r, t) we find the retarded poten-
tials for a point charge as

V (r, t) =
q

4 π εr ε0

1
{

|r − r0(tr)| − 1
v

(

r − r0(tr)
)

· ṙ0(tr)
} ,

A(r, t) =
q µr µ0

4 π

ṙ0(tr)
{

|r − r0(tr)| − 1
v

(

r − r0(tr)
)

· ṙ0(tr)
} .

These expressions were found independently by Liénard and Wiechert
in 1899 and are known as the “Liénard-Wiechert potentials”. Here

the retarded time tr is implicitly given, as a function of r and t, by
equation (∗).
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From the Liénard-Wiechert potentials we can calculate the fields E =

−∇V − ∂
∂tA and B = ∇×A, for any given particle trajectory r0(t

′).
Several computer programs have been written, based on these formu-

las, that interactively visualise the electromagnetic fields of a moving
point charge, see e.g. http://www.cco.caltech.edu/∼phys1/java/

phys1/MovingCharge/MovingCharge.html .

In the following we want to derive, from the Liénard-Wiechert po-
tentials, the important fact that an accelerated point charge emits

electromagnetic radiation. To that end we have to calculate the fields
E and B and, thereupon, the Poynting vector N .

To simplify notation, we
write R for the vector from

the position of the charge at
the retarded time tr to the

position r where the field is
measured at time t,

R = r − r0(tr) ,

R = |R| ,

see picture.

�
�
�
�

�
�
�
�

trajectory

r

r0(tr)

R

Then the Liénard-Wiechert potentials read

V (r, t) =
q

4 π εr ε0

1
{

R − R ·
ṙ0(tr)

v

} ,

A(r, t) =
q µr µ0

4 π

ṙ0(tr)
{

R − R ·
ṙ0(tr)

v

} .

Calculating the fields E = −∇V − ∂
∂tA and B = ∇×A requires to

know ∂
∂ttr and ∇tr. From differentiating the equation (∗) we find

∂tr
∂t

=
(

1 −
R

R
·
ṙ0(tr)

v

)−1

,
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∇tr =
−R

v R

(

1 −
R

R
·
ṙ0(tr)

v

)−1

.

Also, we need the gradient of R = |r − r0(tr)| :

∇R =
1

2R
∇R2 =

1

2R
∇
((

r − r0(tr)
)
·
(
r − r0(tr)

))

=

=
1

2R
∇
(
r · r − 2 r · r0(tr) + r0(tr) · r0(tr)

)
=

=
1

2R

(

2r − 2r0(tr)− 2
(
r · ṙ0(tr)

)
∇tr + 2

(
r0(tr) · ṙ0(tr)

)
∇tr

)

=

=
R

R
−

R · ṙ0(tr)

R
∇tr

We want to determine E and B only for the case that the speed of

the charged particle is small in comparison to the speed of light in
the medium, |ṙ0(tr)| � v . We indicate terms which are of linear or

higher order with respect to |ṙ0(tr)|/v by “. . . ” in the following.

E(r, t) = −∇V (r, t)−
∂

∂t
A(r, t) =

=
q

4 π εr ε0

∇R−
(

R ·
r̈0(tr)

v

)

∇tr + . . .

(

R −R ·
ṙ0(tr)

v

)2
−

q µr µ0

4 π

r̈0(tr)
∂tr
∂t

+ . . .

(

R −R ·
ṙ0(tr)

v

) =

=
q

4 π εr ε0






R

R
+
(

R ·
r̈0(tr)

v

)
R

Rv
+ . . .

R2
(
1 + . . .

) −
r̈0(tr) ( 1 + . . . )

v2R ( 1 + . . . )




 =

=
q

4 π εr ε0

(

R

R3
+

(
R · r̈0(tr)

)
R− r̈0(tr)R

2

v2R3
+ . . .

)
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B(r, t) = ∇×A(r, t) =
q µ0 µ+r

4 π

∇tr × r̈0(tr) + . . .
(

R −R ·
ṙ0(tr)

v

) =

=
q

4 π εr ε0

R× r̈0(tr)

v3R2
+ . . .

If we neglect all terms of linear or higher order with respect to |ṙ0(tr)|/v

and use the bac-cab rule, we find

E(r, t) =
q

4 π εr ε0

{

R

R3
+

R×
(
R× r̈0(tr)

)

R3 v2

}

,

B(r, t) =
1

v

R

R
×E(r, t) .

To calculate the Poynting vector, we write E = E|| + E⊥ where

E|| =
qR

4 π εr ε0R

is parallel to R and

E⊥ =
qR×

(
R× r̈0(tr)

)

4 π εr ε0R3 v2

is perpendicular to R.

Then the Poynting vector reads

N = E×H =
1

µr µ0

E×B =
1

µr µ0

(
E|| +E⊥

)
×
(1

v

R

R
×E⊥

)
=

=
1

µr µ0 v

(
R

R

∣
∣E⊥

∣
∣
2
−
∣
∣E||

∣
∣E⊥

)
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The first term is parallel to R,

N|| =
1

µr µ0 v

R

R

∣
∣E⊥

∣
∣2 ,

whereas the second term is perpendicular to R,

N⊥ =
1

µr µ0 v

∣
∣E||

∣
∣E⊥ .

Recall that N gives the energy flux of the electromagnetic field. If

we consider a sphere of radius R around the charge, the energy flux
through the surface of the sphere is given by N||, see picture.

r̈0(tr)

R

N||

N⊥

Θ

N|| =
1

µr µ0 v

R

R

∣
∣E⊥

∣
∣
2
=

1

µ0 µr v

q2

16 π2ε20 ε
2
rR

6v4
R

R

∣
∣
∣R×

(
R×r̈0(tr)

)
∣
∣
∣

2

=

=
q2 µ0 µr R

16 π2v R7

∣
∣
∣R
(
R · r̈0(tr)

)
− r̈0(tr)R

2
∣
∣
∣

2

=

=
q2 µ0 µr R

16 π2v R7

{

����������

R2
(
R · r̈0(tr)

)2
− ��2

(
R · r̈0(tr)

)2
R2 +

∣
∣r̈0(tr)

∣
∣
2
R4
}

.
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With Θ = ]
(
R , r̈0(tr)

)
:

N|| =
q2 µ0 µr R

16 π2v R7
R4 ( 1 − cos2Θ)

∣
∣r̈0(tr)

∣
∣
2
=

=
q2 µ0 µr

∣
∣r̈0(tr)

∣
∣
2

16 π2v R3
sin2ΘR .

So the radiated energy flux is maximal in the directions per-
pendicular to the acceleration (Θ = π/2) and it is zero in the

directions parallel to the acceleration (Θ = 0, π).

N||

r̈0(tr)

Θ

The picture shows how the “tip of the arrow” N|| varies if Θ varies
from zero to π. This is known as the “radiation pattern” of an ac-

celerated charge.

Examples:

• If a charged particle moves with constant speed in a circle, the
radiation is zero in the directions towards the centre and away
from the centre.

• An oscillating electric dipole does not radiate along the dipole
axis; the radiation is maximal in directions perpendicular to the
dipole axis. In this case the acceleration |r̈0| is proportional to

ω2, so N|| is proportional to ω4.
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N||

z

θ

Radiation pattern of oscillating electric dipole

Finally, we want to calculate the total power P (tr) radiated by the
particle at time tr.

Let S be the sphere of radius R, centered at the position of the charge
at time tr. Then

P (tr) =

∫

S

N|| · da =

=

∫ π

Θ=0

∫ 2π

φ=0

q2 µ0 µr

∣
∣r̈0(tr)

∣
∣
2

16 π2v
sin2Θ

R

R3
·
R

R
R2 sinΘ dΘ dφ

︸ ︷︷ ︸

=da

=

=
q2 µ0 µr

∣
∣r̈0(tr)

∣
∣
2

16 π2v

∫ π

Θ=0

sin3Θ dΘ
︸ ︷︷ ︸

=4/3

∫ 2π

φ=0

dφ

︸ ︷︷ ︸
=2π

=
q2 µ0 µr

∣
∣r̈0(tr)

∣
∣
2

6 π v
.

After renaming tr into t, we get the “Larmor formula”

P (t) =
q2 µ0 µr

∣
∣r̈0(t)

∣
∣
2

6 π v
=

q2
∣
∣r̈0(t)

∣
∣
2

6 π ε0 εr v3
.

In vacuum (µr = εr = 1, v = c) the Larmor formula simplifies to

P (t) =
q2µ0

∣
∣r̈0(t)

∣
∣2

6 π c
=

q2
∣
∣r̈0(t)

∣
∣2

6 π ε0 c3
.
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Keep in mind that we have derived the Larmor formula under the

assumption that the charged particle’s speed is small in comparison
to the speed of light. For particles moving nearly at the speed of light

(e.g. electrons in a synchrotron) one has to use a modified Larmor
formula which is not treated here.

Note that in a medium the speed |ṙ0(t)| of a charged particle may

even be bigger than the speed of light v in this medium. If this is the
case, the emitted radiation is known as Cherenkov radiation.

The Larmor formula demonstrates that.

P (t) ∼ |r̈0(t)|
2 .

Whenever (the magnitude or direction of) the velocity vector ṙ0(t)
of a charged particle changes, electromagnetic radiation is emitted.

Thereby the particle loses kinetic energy. This recoil effect is known
as “radiation reaction”.

As a consequence, a classical charged particle on a circular

path loses kinetic energy. So a classical electron, circling
around the nucleus of an atom, would quickly spiral into the

nucleus. This was a fundamental problem of Rutherford’s
model of the atom when interpreted in terms of classical elec-
trodynamics. One needs quantum mechanics to explain the

stability of atoms.

Here is an important special situation to which the Larmor formula
applies.

Whenever a charged particle is decelerated, it radiates. The

emitted radiation is known as “bremsstrahlung” (german for
“deceleration radiation”). Bremsstrahlung occurs, e.g., when

electrons are sent into a block of matter. It was first observed
in the 1890s by N. Tesla.
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Summary: In a medium with constant εr and µr, the general solution

to the homogeneous Maxwell equations is a superposition of plane
harmonic waves. These waves are transverse, with dispersion relation

ω = v|k|. Electric and magnetic field are related by

B =
1

v

k

|k|
×E .

A particular solution to the inhomogeneous equations is given by the
retarded potentials. The general solution to the inhomogeneous equa-

tions is given by the retarded potentials plus the general solution to
the homogeneous equations.

For a point particle, the retarded potentials take the form of the

Liénard-Wiechert potentials. From these one can derive the Poynt-
ing vector and, in particular, the Larmor formula. It demonstrates
that an accelerated charged particle emits electromagnetic radiation.
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V. Solving Maxwell’s equations in
bounded space
In Chapter IV we have discussed solutions to Maxwell’s equations

in free space. We will now investigate how these results have to be
modified if Maxwell’s equations are to hold only in a certain region V ,
with prescribed boundary conditions on ∂V . The special form of the

boundary conditions depends on the physical nature of the material
on either side of ∂V .

V

∂V

We will concentrate on the case that there is a simple medium, with
constant permittivity εr and constant permeability µr, in V and a

perfect conductor outside V . As a preparation, we discuss the general
jump conditions for electromagnetic fields at the interface between two

media.

V.1 Jump conditions (discontinuity conditions) at the inter-

face between two media

At an interface between two media, where the material properties be-

have discontinuously, electric and magnetic fields E and B are, in
general, discontinuous as well. However, we will now derive that, for
any kind of media, Maxwell’s equations require that some components

of E and B must be continuous.
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n

B

B
′

V

V ′

∂V
n

E

E
′

V

V ′

∂V

Let E and B be the limit values of electric and magnetic fields at a
point of the boundary surface ∂V if we approach it from V . Similarly,

let E ′ and B
′ be the limit values of electric and magnetic fields at a

point of the boundary surface ∂V if we approach it from V ′. Let n be

the unit vector normal to ∂V .

Claim:
(B −B

′ ) · n = 0

(E −E
′ )× n = 0

i.e., the normal component of B and the tan-
gential component of E are continuous.

Proof: Apply Maxwell’s equation (MI) in integral form to a “pill-box”
centered around a point of ∂V . The surface of the pill-box consists of

three parts: Sbottom, Stop, and Smantle.

n

Sbottom

Stop

Smantle

∂V
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∫

Sbottom

B · da +

∫

Stop

B · da +

∫

Smantle

B · da = 0 .

Now let the height of the pill-box go to zero and make the diameter
of the pill-box infinitesimally small:

B · (− dan ) + B
′ · ( dan ) + 0 = 0 .

As da 6= 0, this proves (B −B ′ ) · n = 0 .

To prove the boundary condition for E, we apply Maxwell’s equation

(MII) in integral form to a rectangular loop centered around a point
of ∂V . The loop consists of four parts, Pbottom, Pright, Ptop, and Pleft.

n

t

S

Pbottom

Ptop

PrightPleft

∂V

∫

Pbottom

E·d` +

∫

Pright

E·d` +

∫

Ptop

E·d` +

∫

Pleft

E·d` = −
d

dt

∫

S

B·da .

We have chosen the surface S spanned by the loop perpendicular to
the boundary. Now we send Pright and Pleft to zero length and we

make Pbottom and Ptop infinitesimally short. If t is the unit vector
perpendicular to S, we find

E · (n× t d` ) + 0 + E
′ · (−n× t d` ) + 0 = 0 .

As d` 6= 0, this proves that (E−E ′ ) ·(n×t ) = 0. With the identity
a · (b× c) = c · (a× b):

t ·
(
(E −E

′ )× n
)
= 0 .
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As we can choose such a loop for any vector t tangent to ∂V , this

proves that (E − E
′ ) × n ‖ n . On the other hand, we know

from the definition of the cross product that (E −E ′ )×n ⊥ n , so

(E −E
′ ) × n = 0 .

�

By definition, a perfect conductor is a medium in which charges can
freely move without any time delay. As a consequence, the charges

will always arrange themselves in such a position that the electric and
magnetic fields are zero. Thus, if in the previous argument the region
V ′ is occupied by a perfect conductor, we have E ′ = 0 and B ′ = 0.

From the discontinuity conditions derived we thus find:

If the region V is surrounded by a perfect conductor, the
electric and magnetic fields inside V satisfy the boundary

conditions
B · n = 0 on ∂V

E × n = 0 on ∂V

where n is the unit vector normal to ∂V .

This is true for any medium inside V and for arbitrarily time-dependent
fields. For time-independent fields, E = −∇V and our boundary con-

dition E × n = 0 requires the scalar potential V to be constant on
∂V ; in other words, ∂V is to be an equipotential. This is not true for

time-dependent fields because then E = −∇V − ∂
∂tA.
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V.2. Electromagnetic fields in a wave guide

As an example for solving Maxwell’s equations in bounded regions,

let V be a cylindrical hollow with arbitrarily shaped but constant
cross-section, surrounded by a perfect conductor. We assume that the
cylinder is infinitely long. It is then called a wave guide. (A cylinder

of finite length, with end surfaces, is called a cavity.)

We choose Cartesian coordinates such that the axis of the wave guide
coincides with the z-direction.

x

y

z

V
∂V

We assume that inside V there is a medium of constant relative per-

mittivity εr and constant relative permeablity µr, and that in this
region there are no charges and no currents, so:

D(r, t) = εr ε0 E(r, t) , B(r, t) = µr µ0 H(r, t) ,

ρ(r, t) = 0 , J(r, t) = 0 .

Thus, with our usual abbreviation v = ( εr µr ε0 µ0 )−1/2, Maxwell’s
equations require that inside V :

∇ · B = 0 (MI)

∇ × E +
∂

∂t
B = 0 (MII)

∇ · E = 0 (MIII)

∇ × B −
1

v2

∂

∂t
E = 0 (MIV)
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Outside V we assume a perfect conductor, so our boundary conditions

are

B · n = 0 and E × n = 0 on ∂V .

n

E

BV
∂V

We want to find the solution to this set of differential equations with
boundary conditions in the form of harmonic waves,

E(x, y, z, t) = Re
{
E(x, y) ei(kz−ωt)

}
, (HWI)

B(x, y, z, t) = Re
{
B(x, y) ei(kz−ωt)

}
, (HWII)

where E and B are complex-valued vector fields. The general solution

is then a superposition of such waves.

Note that here we seek the general solution by a Fourier expansion
with respect to z, but not with respect to x and y. This is different
from what we have done for waves in free space. Correspondingly, here

k is the wave number in z-direction and not the modulus of a wave
vector k. The ansatz (HWI) and (HWII) is convenient here because

the geometry of the wave guide distinguishes the z coordinate.

Feeding the harmonic wave ansatz (HWI) and (HWII) into Maxwell’s
equations yields a system of partial differential equations for the com-

ponents of the complex amplitude vectors E and B. We give the
derivation in detail for the first Maxwell equation (MI):

0 = ∇ · B = Re
{
∇ ·

(
B ei(kz−ωt)

)}
=

= Re
{ ( ∂

∂x
Bx +

∂

∂y
By + ikBz

)

︸ ︷︷ ︸

Z

ei(kz−ωt)
}
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After decomposing Z into modulus and phase, Z = |Z|eiα, we find

0 = Re
{(

|Z| ei(α+kz−ωt)
}

= |Z| cos(α + kz − ωt) .

This equation can hold for all t only if Z = 0 which gives the desired

differential equation for B resulting from (MI).

By applying an analogous argument to all Maxwell equations, we get
the following set of partial differential equations for E and B.

(MI)
∂

∂x
Bx +

∂

∂y
By + ikBz = 0 ,

(MII)
∂

∂y
Ez − ikEy − iωBx = 0 ,

−
∂

∂x
Ez + ikEx − iωBy = 0 ,

∂

∂x
Ey −

∂

∂y
Ex − iωBz = 0 ,

(MIII)
∂

∂x
Ex +

∂

∂y
Ey + ikEz = 0 ,

(MIV)
∂

∂y
Bz − ikBy +

iω

v2
Ex = 0 ,

−
∂

∂x
Bz + ikBx +

iω

v2
Ey = 0 ,

∂

∂x
By −

∂

∂y
Bx +

iω

v2
Ez = 0 .
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One usually refers to Ez and Bz as to the “longitudinal” components

of E and B. Correspondingly Ex, Ey, Bx and By are called the “trans-
verse” components of E and B. This terminology should not be con-

fused with the terminology for waves in free space that was used in
Section III. There “transverse” meant that the amplitude vectors are

perpendicular to the wave vector k and we have seen that electromag-
netic waves in a medium with constant εr and constant µr are always
transverse in this sense. Here “transverse” means that the amplitude

vectors are perpendicular to the axis of the wave guide, and we will
see that, in general, this is not the case, i.e., that the longitudinal

components Ez and Bz are non-zero.
One introduces the following terminology.

TEM (transverse electromagnetic) mode if Ez = 0 and Bz = 0 ,

TE (transverse electric) mode if Ez = 0 and Bz 6= 0 ,

TM (transverse magnetic) mode if Ez 6= 0 and Bz = 0 .

We first discuss TEM modes. It is our goal to show that they cannot

exist in a hollow cylinder.

For a TEM mode we have (MII) and (MIII) yield

∇ × E =







∂Ez

∂y −
∂Ey

∂z

∂Ex

∂z − ∂Ez

∂x

∂Ey

∂x − ∂Ex

∂y







=






∂0
∂y

− 0

0 − ∂0
∂x

i ω Bz




 = 0

which means that E can be written as the gradient of a complex scalar
field Φ. (To prove this, decompose E into real and imaginary parts,
E = E1 + iE2. Then ∇×E = 0 implies ∇×E1 = 0 and ∇×E2 = 0,

hence E1 = ∇Φ1 and E2 = ∇Φ2 and the statement holds with Φ =
Φ1 + iΦ2.) From E = ∇Φ we calculate

∆Φ = ∇ · E =
∂Ex

∂x
+

∂Ey

∂y
= − i k Ez = 0 .
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We now use the boundary condition

E ‖n on ∂V .

As E = ∇Φ, this implies that Φ = constant on ∂V. As we are free to

add a constant to Φ, we may assume that

Φ = 0 on ∂V .

We now apply the Gauss theorem to the vector field Φ∗
∇Φ where the

star means complex conjugation. (To prove that the Gauss theorem

holds for complex vector fields, decompose into real and imaginary
parts.) ∫

V

∇ ·
(
Φ∗

∇Φ
)
dτ =

∫

∂V

Φ∗
∇Φ · da .

The right-hand side vanishes because Φ is zero on ∂V. On the left-
hand side we use the product rule:

∫

V

(

Φ∗ ∆Φ + ∇Φ∗ · ∇Φ
)

dτ = 0 .

As ∆Φ = 0 in V, and ∇Φ∗ · ∇Φ = |∇Φ|2, we have
∫

V

∣
∣∇Φ

∣
∣
2
dτ = 0 .

As
∣
∣∇Φ

∣
∣
2
≥ 0, this implies that E = ∇Φ = 0 in V. From (MII) we

then find that By = Bx = 0 in V, i.e., all components of the magnetic

field vanish as well. Thus, our assumption that we have a TEM mode
has led us to the conclusion that both the electric and the magnetic

field must vanish:

In a hollow cylinder of arbitrary cross-section,

a TEM mode cannot exist.

Note that in a hollow between two cylinders (e.g., in a coaxial cable),
a TEM mode can exist. Our proof does not work in this case because
the equation ∇ × E = 0 does not imply E = ∇Φ if it holds only on

a domain with “holes”. (In mathematical terms, the region must be
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simply connected.) Also, we cannot set Φ = 0 on the whole boundary

if the boundary consists of two connected components, an inner one
and an outer one.

We now consider the TE modes in detail. TM modes can be treated

analogously. For TE modes Maxwell’s equations become

(MI)
∂

∂x
Bx +

∂

∂y
By + ikBz = 0 ,

(MII) kEy + ωBx = 0 ,

kEx − ωBy = 0 ,

∂

∂x
Ey −

∂

∂y
Ex − iωBz = 0 ,

(MIII)
∂

∂x
Ex +

∂

∂y
Ey = 0 ,

(MIV)
∂

∂y
Bz − ikBy +

iω

v2
Ex = 0 ,

−
∂

∂x
Bz + ikBx +

iω

v2
Ey = 0 ,

∂

∂x
By −

∂

∂y
Bx = 0 ,

(MII) and (MIV) allow to express Ex, Ey, Bx and By in terms of Bz :

Ey = −
ω

k
Bx =

−i ω v2

(
ω2 − v2 k2

)
∂

∂x
Bz ,

Ex =
ω

k
By =

i ω v2

(
ω2 − v2 k2

)
∂

∂y
Bz .

55



Thus, the solution is known if Bz is known. (Here one has to make

sure that ω2 6= v2k2 because otherwise we would divide by zero. One
can show that, indeed, TE modes with ω2 = v2k2 cannot exist. The

proof is similar to our proof that TEM modes cannot exist.)

To determine Bz, we start from (MIV) which implies

∂2

∂x2
Bz = ik

∂

∂x
Bx +

iω

v2

∂

∂x
Ey ,

∂2

∂y2
Bz = ik

∂

∂y
By −

iω

v2

∂

∂y
Ex .

Adding these two equations and using (MI) and (MII) results in

( ∂2

∂x2
+

∂2

∂y2

)

Bz =
(
k2 −

ω2

v2

)
Bz . (HE)

Thus, Bz satisfies the eigenvalue equation of the two-dimensional La-

place operator. [ The eigenvalue equation of the (N-dimensional) La-
place operator is known as the (N-dimensional) Helmholtz equation.]

The boundary condition B · n = 0 requires












− i k v2

(
ω2 − v2 k2

)
∂Bz

∂x

i k v2

(
ω2 − v2 k2

)
∂Bz

∂y

Bz












· n = 0 on ∂V (BC)

where we have written B as a column vector with components Bx, By

and Bz.

Up to here everything is true for cylinders of arbitrary cross-sectional
shape. We will now work out the solution for the case that the cross-
section is rectangular, with width a in the x-direction and width b in

the y-direction, see picture.
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a

b

x

y

z

V

∂V

To solve the Helmholtz equation (HE) with the boundary condition
(BC) for this case, we make a separation ansatz

Bz(x, y) = X(x) Y (y) .

This puts (HE) into the form

X ′′(x) Y (y) + X(x) Y ′′(y) +
( ω2

v2
− k2

)
X(x) Y (y) = 0 .

After dividing by X(x) Y (y) :

−
X ′′(x)

X(x)
=

Y ′′(y)

Y (y)
+

ω2

v2
− k2 = k2

x .

As the first expression is independent of y and the second is inde-

pendent of x, the quantity we called k2
x must be a constant. The

differential equation

X ′′(x) + k2
x X(x) = 0

has the general solution

X(x) = α sin(kxx) + β cos(kxx) ,

X ′(x) = α kx cos(kxx) − β kx sin(kxx) .
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Our boundary condition (BC) requires

at x = 0 : X ′(0) = α kx = 0 ⇒ α = 0 ;

at x = a : X ′(a) = − β kx sin(kxa) = 0 ⇒ kxa = nπ

where n is a non-negative integer. Thus, the solution is

X(x) = β cos(kxx) with kx =
nπ

a
.

Similarly, the differential equation Y ′′(y) + k2
y Y (y) = 0 , where

k2
y = − k2

x +
ω2

v2
− k2 ,

leads to the solution

Y (y) = γ cos(kyy) with ky =
mπ

b
.

If we write β γ = B0, the general TE mode is, thus, of the form

Bz(x, y) = B0 cos
(nπx

a

)
cos

(mπy

b

)

Ey(x, y) = −
ω

k
Bx(x, y) =

− i ω v2 n π B0
(
ω2 − v2 k2

)
a

sin
(nπx

a

)
cos

(mπy

b

)

Ex(x, y) =
ω

k
By(x, y) =

− i ω v2 mπ B0
(
ω2 − v2 k2

)
b

cos
(nπx

a

)
sin

(mπy

b

)
,

where n and m are non-negative integers. The dispersion relation

(ω − k−relation) reads

(nπ

a

)2
+

(mπ

b

)2
=

ω2

v2
− k2 .

58



One refers to a TE mode labeled by integers n and m as to a TEnm

mode. The usual convention is that the first index refers to the larger
dimension of the wave guide, i.e., our notation is valid if a ≥ b.

Note that ω and k are not related by the usual dispersion relation

ω = kv. The reason is that we made a Fourier expansion only with
respect to the z coordinate. The dispersion relation for TEnm modes,

ω = v

√
(nπ

a

)2
+

(mπ

b

)2
+ k2

requires that, for real k, we must have

ω ≥ ωn,m

where the cut-off frequency ωnm is given by

ωnm = v

√
(nπ

a

)2
+

(mπ

b

)2
.

Quite generally, for any kind of waves, one uses the following termi-

nology.

A value of ω where the wave length becomes infinite

(k = 2π/λ → 0) is called a “cut-off frequency” and a
value of ω where the wave length becomes zero (k =

2π/λ → ∞) is called a “resonance frequency”.

Thus, any TEnm mode must have a frequency bigger than the cut-off
frequency ωnm. One can show that a TE00 mode cannot exist. (The

proof is similar to the proof that TEM modes cannot exist.) Hence,
ω10 is the minimum frequency for all TE modes.

Solutions with imaginary k are not harmonic waves but rather expo-
nentially decaying fields. They are refered to as evanescent modes.

From the dispersion relation we find the phase velocity and the group

velocity of the TEnm modes:
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vp =
ω

k
= v

√

1 +
ω2

n,m

v2k2
≥ v ,

vg =
dω

dk
=

v
√

1 +
ω2

n,m

v2k2

≤ v .

If inside the wave guide there is vacuum, we have εr = µr = 1 and
v is the vacuum velocity of light, v = c = (ε0 µ0)

−1/2. Thus, in this

case vp is bigger than the vacuum velocity of light. However, this is
no reason to worry because signals do not travel at the phase velocity.
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VI. Plasmas

There are four states of matter: solid, liquid, gas and plasma.

Difference between gas and plasma:

A gas consists of neutral atoms or molecules.

A plasma consists of (negatively charged) electrons
and (positively charged) ions.

The transition from a gas to a plasma is called ionisation.

The name “plasma” was introduced in 1928 by the US American
chemist and physicist (Nobel laureate in chemistry) Irwin Langmuir.
It derives from a greek word meaning “moldable” or “deformable”.

99 % of the visible matter in the Universe is a plasma. On Earth,
plasmas are rare.

Plasmas in nature: stars, interstellar matter, lightning, ionosphere

(aurora) ...

Manmade plasmas: fluorescent tubes, fusion reactors (tokamak, Iter),

plasma screens ...

In the following we introduce a simple two-fluid model for a plasma,
within the framework of Maxwell’s equations, and discuss some basic

features of plasma waves.

VI.1. Two-fluid model

We want to model a plasma as a mixture of two charged fluids. One
fluid models the electrons, the other fluid models the ions. We will fur-

ther restrict to a simply ionised plasma. This means that we assume
that each ion results from a neutral atom by stripping one electron.

Hence the charge of each ion is equal, up to sign, to the electron charge.

The plasma is modeled in terms of the sources ρ and J of Maxwell’s
equations. We assume that there is no further medium. So we consider

Maxwell’s equations in vacuo, i.e. with constitutive equations
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D = ε0 E and B = µ0 H .

We assume that the sources are of the form

ρ = ρe + ρi and J = J e + J i .

The index e stands for “electron”, the index i stands for “ion”.

ρe = qe ne and J e = qe ne ve ,

ρi = qi ni and J i = qi ni vi ,

where

qe electron charge (negative constant)

qi = −qe ion charge (positive constant)

ne electron number density (scalar function of r and t)

ni ion number density (scalar function of r and t)

ve electron velocity field (vector function of r and t)

vi ion velocity field (vector function of r and t)

Then Maxwell’s equations take the following form.

∇ · B = 0 (MI)

∇ × E +
∂

∂t
B = 0 (MII)

ε0 ∇ · E = qe

(
ne − ni

)
(MIII)

∇ × B − ε0 µ0
∂

∂t
E = µ0 qe

(
ne ve − ni vi

)
(MIV)

62



If ne, ni, ve and vi are known, this is a system of differential equations

for E and B. It describes the electromagnetic field generated by a
plasma if the motion of the plasma is known. However, for a moving

plasma we do not know ne, ni, ve and vi beforehand. So we have to
treat ne, ni, ve and vi as unknowns which together with E and B

form the total set of dynamical variables. It order to get a determined
system for our dynamical variables, we have to supplement Maxwell’s
equations with the Lorentz force equation for the electrons and for the

ions:
d

dt
ve =

qe

me

(
E + ve × B

)
, (LI)

d

dt
vi =

qi

mi

(
E + vi × B

)
. (LII)

Here d/dt is the total time derivative and

me electron mass (positive constant)

mi ion mass (positive constant)

We will later use the fact that mi ≫ me.

Maxwell’s equations (MI), (MII), (MIII), (MIV) together with the
Lorentz force equations (LI) and (LII) give a system of (non-linear)

partial differential equations for the dynamical variables E, B, ne, ni,
ve and vi. This mathematical system is refered to as the “two-fluid

model” of a plasma.

[ More precisely, what we consider here is called the “cold two-fluid
model” because collisions between the particles (electrons and ions)

are ignored. For a hot plasma one has to add pressure terms to the
Lorentz force equations (LI) and (LII) in order to take collisions into

account. Actually, the cold two-fluid model has many important ap-
plications. E.g., it is a good model even for the solar corona, although

its temperature is some 106 K, because its density is so low that colli-
sions play no important role. ]
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VI.2. Plasma waves

We consider plasma waves as small perturbations of a plasma at rest.

Unperturbed state :

E = 0 , B = 0 , ve = 0 , vi = 0 , ne = n0
e , ni = n0

i .

(MIII) requires that n0
e = n0

i .

Perturbed state:

E = Re
{

E
1 ei(k·r−ωt)

}
,

B = Re
{

B
1 ei(k·r−ωt)

}
,

ve = Re
{

v
1
e ei(k·r−ωt)

}
,

vi = Re
{

v
1
i ei(k·r−ωt)

}
,

ne = n0
e + Re

{
n1

e ei(k·r−ωt)
}

,

ni = n0
e + Re

{
n1

i ei(k·r−ωt)
}

,

where E
1, B

1, v
1
e, v

1
i , n1

e and n1
i are complex amplitudes which are

so small that we have to take them into account only to within linear

order. In other words, in the following we will neglect products of any

two of such terms.

It is our goal to derive the dispersion relation for plasma waves, i.e.,
the relation between k = |k| and ω.

To that end we insert our fields in the perturbed state into Maxwell’s
equations (MII) and (MIV) and into the Lorentz force equations (LI)

and (LII). Keeping only terms of linear order, we find

64



(MII): k × E
1 − ω B

1 = 0 ,

i.e., B
1 is perpendicular to k and to E

1 ;

(MIV): i k×B
1 + i ε0 µ0 ω E

1 = µ0 qe n0
e

(
v

1
e − v

1
i

)
;

(LI): − i ω v
1
e =

qe

me
E

1 ⇒ v
1
e =

i qe

ω me
E

1 ;

(LII): − i ω v
1
i = −

qe

mi
E

1 ⇒ v
1
i = −

i qe

ω mi
E

1 .

The Maxwell equations (MI) and (MIII) need not be considered be-
cause they give no additional information in view of the dispersion

relation.

We insert (LI) and (LII) into (MIV):

i k × B
1 + i ε0 µ0 ω E

1 = µ0 qe n0
e

( i qe

ω me
E

1 +
i qe

ω mi
E

1
)

.

k × B
1 + ε0 µ0 ω E

1 =
µ0 q2

e n0
e

ω me

(

1 +
me

mi

)

E
1 .

As me/mi is small, it can be neglected in comparison to 1 . (Even for
a hydrogen nucleus, which is the lightest ion, we have mi ≈ 1836 me.)
So

k × B
1 =

ε0 µ0

ω

( q2
e n0

e

ε0 me
− ω2

)

E
1 .

We will now assume that

q2
e n0

e

ε0 me
6= ω2 . (∗)

(
We will briefly comment on the case that (∗) is violated at the end of

this chapter.
)

Then we can conclude that E
1 is a multiple of k × B

1

and, thus, perpendicular to k. We already knew that B
1 is perpen-

dicular to k and to E
1, so k, B

1 and E
1 are mutually perpendicular.

65



Thus, to within our approximations electromagnetic waves in a plasma

are transverse, as in vacuo. Also, as the relations between B
1 and E

1

are real, the electric and the magnetic fields are in phase. Hence B
1

and E
1 can be chosen real.

��

��

��

k

B
1

E
1

From (MII) we find

k ×
(
k × E

1
)

= ω k × B
1 .

If we insert on the right-hand side the expression for k × B
1 found

above, this results in

k
(

k · E1

︸ ︷︷ ︸
= 0

)
− E

1 k2 = ε0 µ0

( q2
e n0

e

ε0 me
− ω2

)
E

1 .

As E
1 is supposed to be different from 0, we can compare the coeffi-

cients on both sides and find, with ε0 µ0 = 1/c2 :

ω2 −
q2
e n0

e

ε0 me
= c2 k2 .

This is the desired dispersion relation for plasma waves. If the electron

density n0
e is sent to zero, we recover the vacuum dispersion relation

ω = c k .
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If we introduce the plasma frequency ωp ,

ω2
p =

q2
e n0

e

ε0 me
,

the dispersion relation for plasma waves takes the form

ω =
√

c2 k2 + ω2
p .

k

ω

ωp

Note that the electron density n0
e and, thus, the plasma frequency ωp

is, in general, a function of r and t.

From the dispersion relation we can calculate the phase velocity vp

and the group velocity vg :

vp =
ω

k
= c

√

1 +
ω2

p

c2 k2
≥ c ,

vg =
dω

dk
=

c
√

1 +
ω2

p

c2 k2

≤ c .
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The fact that vp ≥ c is no reason to worry because signals do not

travel with the phase velocity.

For k → ∞, the dispersion relation for plasma waves approaches the

vacuum dispersion relation ω = c k which is indicated as a dashed
line in the picture. In particular, for k → ∞ we have vp → c and
vg → c .

For k → 0, the frequency ω does not go to zero but rather ω → ωp

and vg → 0 .

Recall the following general terminology which was introduced already
when we discussed wave guides.

A value of ω where the wave length becomes infinite
(k = 2π/λ → 0) is called a “cut-off frequency” and a
value of ω where the wave length becomes zero (k =

2π/λ → ∞) is called a “resonance frequency”.

For the case of waves in a non-magnetised plasma considered here,

we have a cut-off frequency at ω = ωp and we have no resonance
frequency. For waves in a magnetised plasma (B0 6= 0), e.g., one finds

both cut-off and resonance frequencies.

Finally, we have to remind ourselves that for our derivation we had

to assume that (∗) holds. If this inequlity is violated, i.e., if ω =
ωp, we cannot conclude that E

1 must be orthogonal to k . Indeed,
solutions with ω = ωp and E

1 ‖k exist. They are refered to as plasma

oscillations.
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Suggestions for exam preparation:

• Study these notes. Important formulas and statements, which are

very likely to come up in exam questions, are given in red boxes.
(Of course, it would not be sufficient just to learn all red boxes

by heart; it is also necessary to understand this material and to
know how to apply it.)

• Look through the exam papers of the preceding three years (on

the departmental web page). Exam papers of earlier years will
not be useful because the syllabus of PHYS274 has considerably

changed since then.

• Study again the four worksheets we have done. Solutions are
available on LUVLE.
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