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The most elementary form to describe the dynamics of particles is in

terms of Newton’s equations (Newtonian dynamics). For many appli-

cations, e.g.

• accelerator physics

• celestial mechanics

• systems with constraints

• passage to quantum mechanics

• · · ·

Newton’s equations are not appropriate.

It is much more useful to use Lagrangian or Hamiltonian dynamics.

In the first lecture we start out from Newtonian dynamics and perform

the passage to Lagrangian dynamics.
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First consider one particle with mass m and trajectory ~x(t) .

Assume that the force ~F ( ~x, ~v, t ) onto the particle is known. Then

Newton’s equation

m~̈x(t) = ~F
(
~x(t), ~̇x(t), t

)

gives a second-order differential equation for the trajectory.

Here and in the following, ( )˙ = d
dt
.

To every initial conditions

~x(0) = ~x0, ~̇x(0) = ~v0

there is a unique solution ~x(t).

This follows from the existence and uniqueness theorem for ordinary

differential equations.
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In Cartesian coordinates:

~x(t) =
3∑

i=1

xi(t)~ei , ~̇x(t) =
3∑

i=1

ẋi(t)~ei ,

~̈x(t) =
3∑

i=1

ẍi(t)~ei , ~F (~x, ~v, t) =
3∑

i=1

F i(~x, ~v, t)~ei .

Newton’s equations of motion read

mẍi(t) = F i
(
~x(t), ~̇x(t), t

)
, i = 1, 2, 3 .

These equations are not covariant, i.e, they do not preserve their form

if we change to curvilinear coordinates. (For proof see next page.)
Curvilinear coordinates are useful because they can be adapted

• to the symmetry of the situation (in accelerator physics, e.g., choose

desired path of particle as coordinate line);

• to constraints (not very relevant to accelerator physics).
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Transformation from Cartesian coordinates (x1, x2, x3) to new coordi-

nates (x′1, x′2, x′3):

xi = xi(x′1, x′2, x′3) : ẋi(t) =

3∑

j=1

∂xi

∂x′j

(
x′1(t), x′2(t), x′3(t)

)
ẋ′j(t) .

~̇x(t) =

3∑

i=1

ẋi(t)~ei =

3∑

j=1

ẋ′j(t)

3∑

i=1

∂xi

∂x′j

(
x′1(t), x′2(t), x′3(t)

)
~ei

︸ ︷︷ ︸

~e ′
j

(
x′1(t),x′2(t),x′3(t)

)

.

The ~e ′
j are constant only if the new coordinates are rectilinear.

~̈x(t) =
3∑

i=1

ẍi(t)~ei =
3∑

j=1

ẍ′j(t)~e ′
j

(
x′1(t), x′2(t), x′3(t)

)

+
3∑

j=1

3∑

i=1

3∑

k=1

∂2xi

∂x′jx′k

(
x′1(t), x′2(t), x′3(t)

)
ẋ′j(t) ẋ′k(t)~ei .

Thus, ẍi = 0 ⇒ ẍ′i = 0 only if the x′i are rectilinear coordinates.
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Example: Newton’s force-free equation in spherical polar coordinates

(x′1, x′2, x′3) = (r, ϑ, ϕ),

x1 = r sinϑ cosϕ ,

x2 = r sinϑ sinϕ ,

x3 = r cosϑ .

~eϕ

~eϑ

~er

Then ẍi = 0 is equivalent to

r̈ − r sin2ϑ ϕ̇2 − r ϑ̇2 = 0 ,

ϑ̈ +
2

r
ṙ ϑ̇ − sinϑ cosϑ ϕ̇2 = 0 ,

ϕ̈ +
2

r
ṙ ϕ̇ + 2 cotϑ ϑ̇ ϕ̇2 = 0 .
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We want to reformulate Newton’s equation in a way that is covariant,

i.e., we seek a formulation that takes the same form in any coordinates.

This will be the Lagrangian formulation. We do this first for some
special cases before discussing the general framework of Lagrangian

dynamics.

(a) Particle in a potential

Assume that the force is of the form

~F (~x) = −∇V (~x)

with some scalar function V (~x). Then Newton’s equation takes the

form

m~̈x(t) = −∇V
(
~x(t)

)
.

(Example: Particle with charge q in an electrostatic field

~E(~x) = −∇φ(~x), where V (~x) = q φ(~x).)
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Kinetic energy: T (~̇x) = m
2
|~̇x|2

Potential energy: V (~x)

Total energy T + V is preserved along trajectory:

d

dt

(

T
(
~̇x(t)

)
+ V

(
~x(t)

) )

=
(

m~̈x(t) + ∇V
(
~x(t)

) )

· ~̇x(t) = 0 .

Introduce Lagrange function L = T − V :

L
(
x1, x2, x3, ẋ1, ẋ2, ẋ3

)
=

m

2

( (
ẋ1

)2
+

(
ẋ2

)2
+

(
ẋ3

)2
)

− V
(
x1 , x2 , x3

)
.

Then we have
∂L

∂ẋi
= mẋi ,

∂L

∂xi
= −

∂V

∂xi
.

Hence, Newton’s equations mẍi +
∂V

∂xi
= 0 are equivalent to the

Euler-Lagrange equations

d

dt

∂L

∂ẋi
−

∂L

∂xi
= 0 . (EL)
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The Euler-Lagrange equations are covariant, i.e., they preserve their

form under arbitrary coordinate transformations.

Of course, the Lagrange function looks different if expressed in other
coordinates. What covariance means is the following:

Assume that L satisfies (EL). Make a coordinate transformation

xi = xi
(
x′1, x′2, x′3

)
.

Define the new Lagrange function L′ via

L′
(
x′1, x′2, x′3, ẋ′1, ẋ′2, ẋ′3

)
= L

(
x1, x2, x3, ẋ1, ẋ2, ẋ3

)
.

Then L′ satisfies the primed Euler-Lagrange equations,

d

dt

∂L′

∂ẋ′i
−

∂L′

∂x′i
= 0 .

We now prove that the Euler-Lagrange equations are, indeed, covariant

in this sense.
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Assume that (EL) holds,
d

dt

∂L

∂ẋi
−

∂L

∂xi
= 0 .

Make coordinate transformation xi = xi(x′1, x′2, x′3) .

ẋi =
3∑

j=1

∂xi

∂x′j
ẋ′j ,

∂ẋi

∂x′k
=

3∑

j=1

∂2xi

∂x′jx′k
ẋ′j ,

∂ẋi

∂ẋ′k
=

∂xi

∂x′k
.

d

dt

∂L′

∂ẋ′k
=

d

dt

( 3∑

i=1

∂L

∂ẋi

∂ẋi

∂ẋ′k

)

=
d

dt

( 3∑

i=1

∂L

∂ẋi

∂xi

∂x′k

)

=

=
3∑

i=1

( d

dt

∂L

∂ẋi

) ∂xi

∂x′k
+

3∑

i=1

∂L

∂ẋi

d

dt

( ∂xi

∂x′k

)

=

=
3∑

i=1

( ∂L

∂xi

) ∂xi

∂x′k
+

3∑

i=1

∂L

∂ẋi

3∑

j=1

( ∂2xi

∂x′k∂x′j
ẋ′j

)

=

=

3∑

i=1

( ∂L

∂xi

∂xi

∂x′k
+

∂L

∂ẋi

∂ẋi

∂x′k

)

=
∂L′

∂x′k
.
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Example: In spherical polar coordinates

x1 = r sinϑ cosϕ , x2 = r sinϑ sinϕ , x3 = r cosϑ ,

the Lagrange function

L(~x1, x2, x3, ẋ1, ẋ2, ẋ3) =
m

2

( (
ẋ1

)2
+

(
ẋ2

)2
+

(
ẋ3

)2
)

− V (x1, x2, x3) .

takes the form

L′(r, ϑ, ϕ, ṙ, ϑ̇, ϕ̇) =
m

2

(

ṙ2 + r2
(
ϑ̇2 + sin2ϑ ϕ̇2

) )

− V ′(r, ϑ, ϕ) .

Remark: If a force field ~F (~x) has non-vanishing curl, ∇ × ~F 6= ~0, it

cannot be written as ~F = −∇V . It is then impossible to bring the

equation of motion m~̈x = ~F into the form of the Euler-Lagrange equa-

tions.
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(b) Charged particle in electromagnetic field (non-relativistic)

On a particle with charge q , an electromagnetic field ~E(~x, t), ~B(~x, t)

exerts the Lorentz force. For non-relativistic motion (i.e., | ~̇x | << c ),

the Lorentz force equation reads

m~̈x(t) = q
(

~E
(
~x(t), t

)
+ ~̇x(t) × ~B

(
~x(t), t

) )

.

~E and ~B have to satisfy the Maxwell equations, in particular

∇ · ~B = 0 , ∇ × ~E +
∂

∂t
~B = ~0 .

Owing to the first equation, ~B can be written as the curl of a vector
potential ~A,

~B = ∇ × ~A .

Owing to the second equation, ~E + ∂ ~A/∂t can then be written as the

gradient of a scalar potential φ,

~E = −∇φ −
∂

∂t
~A .
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We define the Lagrange function in this situation by

L =
m

2

∣
∣ ~̇x

∣
∣2 − q φ + q ~A · ~̇x .

Then the Euler-Lagrange equations

d

dt

∂L

∂ẋi
−

∂L

∂xi
= 0

take the form

d

dt

(
m~̇x + q ~A

)
+ q∇φ − q∇

(
~A · ~̇x

)
= 0 ,

m ~̈x = − q∇φ − q
∂

∂t
~A

︸ ︷︷ ︸

q ~E

+ q
(

∇( ~A · ~̇x) − (~̇x · ∇) ~A
)

︸ ︷︷ ︸

q ~̇x×(∇× ~A)= q ~̇x× ~B

.

Thus, the Euler-Lagrange equations are equivalent to the Lorentz force

equation.
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Owing to the covariance of the Euler-Lagrange equations, L can be

rewritten in arbitrary coordinates if this is desired.

In addition, the freedom of changing the potentials by gauge transfor-

mations

~A 7−→ ~A + ∇f , φ 7−→ φ −
∂

∂t
f

allows to change the Lagrangian according to

L 7−→ L + q
∂

∂t
f + q ∇f · ~̇x = L +

d

dt
(qf)

with an arbitrary function f(~x, t).

Such a change of the Lagrangian leaves the Euler-Lagrange equations
unaltered.
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(c) Charged particle in electromagnetic field (relativistic)

For relativistic motion, the Lorentz force equation reads

d

dt

( m~̇x(t)
√

1 − | ~̇x(t) |2

c2

)

= q
(

~E
(
~x(t), t

)
+ ~̇x(t) × ~B

(
~x(t), t

) )

(LF)

where m is the particle’s rest mass. The difference to the non-

relativistic case is in the square-root on the left-hand side.

We define the Lagrange function

L = −mc2

√

1 −
| ~̇x(t) |2

c2
− q φ + q ~A · ~̇x

which for small velocities,

√

1 − | ~̇x(t) |2

c2
≈ 1 − 1

2
|~̇x(t)|2

c2
, reproduces

the Lagrange function for the non-relativistic case up to an irrelevant

additive constant.
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With the relativistic Lagrange function, the Euler-Lagrange equations

yield

d

dt

( m~̇x
√

1 − | ~̇x |2

c2

+ q ~A
)

+ q∇φ − q∇
(
~A · ~̇x

)
= 0 ,

d

dt

( m~̇x
√

1 − | ~̇x |2

c2

)

= − q∇φ − q
∂

∂t
~A + q

(

∇( ~A · ~̇x) − (~̇x · ∇) ~A
)

.

The right-hand side is the same as for the non-relativistic case, so

d

dt

( m~̇x
√

1 − | ~̇x |2

c2

)

= q
(

~E + ~̇x × ~B
)

,

i.e., the Euler-Lagrange equations of our Lagrange function are, indeed,

equivalent to the relativistic Lorentz force equation (LF).
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(d) Damped harmonic oscillator

Sometimes it is said that dissipative systems (i.e., systems with friction
or other damping mechanisms) cannot be put into Lagrangian form.

This is true only as long as one wants to have a time-independent

Lagrange function.

We consider the damped harmonic oscillator and show that it admits

a (time-dependent) Lagrange function.

Newton’s equation for a damped harmonic oscillator reads

mẍ = − k x − λ ẋ ,

where the constant k describes the restoring force and the constant λ

describes the damping.
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For the Lagrangian

L(x, ẋ, t) = e
λ t
m

( m

2
ẋ2 −

k

2
x2

)

the Euler-Lagrange equation

d

dt

∂L

∂ẋ
−

∂L

∂x
= 0

reads

d

dt

(

e
λ t
m mẋ

)

+ e
λ t
m k x = 0 ,

�
�
��

e
λ t
m

(

mẍ + λ ~̇x + k x
)

= 0 ,

so it is equivalent to Newton’s equation.

This example demonstrates that sometimes it is necessary to work

with an explicitly time-dependent Lagrange function even if the force

is time-independent.
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(e) Interacting particles

For N particles wthout constraints, the Lagrange function depends on

6N coordinates (and possibly on time) : 3N position coordinates and

3N velocity coordinates.

For non-interacting particles, the total Lagrange function is of the
form

L =
N∑

I=1

LI

where I labels the particles and LI depends on position and velocity

coordinates of the Ith particle only.

In this case the 3N Euler-Lagrange equations for L decompose into the

Euler-Lagrange equations for the LI, i.e., the motion can be studied

for each particle separately.
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For interacting particles, the Lagrange function (if it exists) contains

interaction terms, i.e., summands which depend on position and ve-

locity coordinates of two or more particles. For pair-interaction

L =

N∑

I=1

(

LI +

N∑

J=1
J>I

LIJ

)

where LIJ depends on position and velocity coordinates of the Ith and

the Jth particle. Here is an example.

For two particles with (Newtonian) gravitational interaction, the La-

grange function is

L =
m1

2
| ~̇x1 |

2

︸ ︷︷ ︸
L1

+
m2

2
| ~̇x2 |

2

︸ ︷︷ ︸
L2

+
Gm1 m2

| ~x2 − ~x1 |
︸ ︷︷ ︸

L12

.

(Coulomb interaction for slowly moving charged particles is analo-

gous.)
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The six Euler-Lagrange equations are

�
�
��m1

(

~̈x1 −
Gm2

(
~x2 − ~x1

)

| ~x2 − ~x1 |3

)
= ~0 ,

�
�
��m2

(

~̈x2 −
Gm1

(
~x1 − ~x2

)

| ~x1 − ~x2 |3

)
= ~0 .

Summary: In many relevant (but not in all) cases, the equations of

motion can be written in the form of the Euler-Lagrange equation

d

dt

∂L

∂ẋi
−

∂L

∂xi
= 0 , i = 1, . . . , n .

The dynamics is then completely coded in the Lagrange function

L(x1 . . . xn, ẋ1, . . . , ẋn, t).

For N particles without constraints, n = 3N .

The Euler-Lagrange equations are covariant with respect to arbitrary

coordinate transformations.
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The inventor of Lagrangian dynamics:

Joseph-Louis Lagrange ( 1736, Torino – 1813, Paris )

Director of Mathematics at Berlin Academy (1766 to 1787 )

“Mécanique analytique” (published 1788 in Paris )
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Recall:

In the Lagrangian formulation, all information on the dy-

namics of a system is coded in the Lagrange function ( or
“Lagrangian” )

L(x1, . . . , xn, ẋ1, . . . ẋn, t) .

n is the number of degrees of freedom.

For N particles without constraints, n = 3N .

Not all dynamical systems admit a Lagrangian formulation,

but many important ones do. In particular, we have seen that

the motion of charged particles in an electromagnetic field,

both non-relativistically and relativistically, can be put into

Lagrangian form.
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If L is known, the Euler-Lagrange equations

d

dt

∂L

∂ẋi
−

∂L

∂xi
= 0 , i = 1, . . . , n

determine the dynamics of the system. More precisely, the Euler-

Lagrange equations give a system of second-order ordinary differen-

tial equations for
(

x1(t), . . . , xn(t)
)

,

n
∑

j=1

∂2L

∂ẋiẋj
ẍj +

n
∑

j=1

∂2L

∂ẋixj
ẋj −

∂L

∂xi
= 0 , i = 1, . . . , n .

This admits a unique solution, if initial conditions for xi and ẋi are
given, provided that the system can be solved for the ẍj. A necessary

and sufficient condition for this is

det
( ∂2L

∂ẋiẋj

)

6= 0 .

If this is true, L is called “regular”.
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In any of the examples considered in Lecture 1, the Lagrange function

was regular. (However, non-regular Lagrangians play an inportant

role in other branches of physics, in particluar in the Lagrange for-

malism for fields. P. A. M. Dirac has developed a special formalism

for dealing with them.)

Recall that the Euler-Lagrange equations are covariant, i.e, they pre-
serve their form under arbitrary coordinate transformations

(

x1, . . . , xn
)

7→
(

x′1, . . . , x′n
)

.

It is often recommendable to use coordinates adapted to the symme-

tries of the system.

The space coordinatised by the
(

x1, . . . , xn
)

is called the “configura-

tion space”. The trajectories of the dynamical system are curves in

the configuration space.
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The sum
(

x1
1, . . . , x

n
1

)

+
(

x1
2, . . . , x

n
2

)

of two points in configuration

space has no coordinate-independent meaning. It is invariant only

under linear coordinate transformations. However, we want to be

free to make non-linear coordinate transformations.

Thus, in general the configuration space is not a vector space. It is

what in Differential Geometry is called an n-dimensional “manifold”.

Therefore, instead of “configuration space” one often says “configu-
ration manifold”.

At any fixed point
(

x1
1, . . . , x

n
1

)

of the configuration space, the set

of possible n-tuples
(

ẋ1, . . . , ẋn
)

corresponds to the set of possible
tangent vectors of curves through that point. In other words, the
(

ẋ1, . . . , ẋn
)

coordinatise the tangent space to the configuration man-

ifold at the chosen point.
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The union of all tangent spaces, at all points in the configuration

manifold is called the “tangent bundle”. In the language of Differ-

ential Geometry, the Lagrangian L(x1, . . . , xn, ẋ1, . . . , . . . xn, t) is a

time-dependent function on the tangent bundle of the configuration

space.

xi − lines

ẋi − lines
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In the Lagrange formalism, there is a particularly simple relation be-

tween symmetries and conservation laws.

Assume that the Lagrange function is independent of one of the co-

ordinates, say
∂L

∂x1
= 0 .

x1 is then called a “cyclic coordinate” and the Euler-Lagrange equa-

tions say that ∂L
∂ẋ1 is a constant of motion,

d

dt

∂L

∂ẋ1
= 0 .

Thus, integrating the equations of motion is greatly simplified if we

can choose the coordinates such that L is independent of some of the

coordinates.
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Example: Consider a Lagrange function for one particle in spherical

polar coordinates, L(r, ϑ, ϕ, ṙ, ϑ̇, ϕ̇). If L is independent of ϕ, we get

d

dt

∂L

∂ϕ̇
= 0 .

The constant of motion ∂L/∂ϕ̇ is the z-component of the angular
momentum. If L is independent of ϕ and ϑ, this argument applies

to arbitrarily rotated axes, i.e., all three components of the angular

momentum must be conserved.

The case that L is independent of one of the velocity coordinates,

say ∂L/∂ẋ1 = 0, only occurs for systems with constraints. x1 is then

called a “Lagrange multiplier”.

There is a more general connection between symmetries and con-

servation laws, for transformations not necessarily along xi lines or
ẋi-lines. We will discuss it in the Hamltonian formalism.
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The Euler-Lagrange equations are equivalent to a variational princi-

ple, known as the “Principle of Stationary Action” or “Hamilton’s

Principle”. (The latter name is a bit confusing: Hamilton’s Principle

belongs into Lagrangian dynamics, not into Hamiltonian dynamics!)

The “action functional”

S =

∫ t2

t1

L
(

x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t), t
)

dt

assigns to each curve in the configuration space a number. The Prin-
ciple of Stationary Action says that the solution curves of the Euler-

Lagrange equations are those curves that make the action functional

stationary, i. e., a minimum, a maximum, or a saddle.
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More precisely: Fix a curve in configuration space and consider

a “variation”, i.e., a one-parameter family of neighbouring curves
(

x1
ε(t), . . . , x

n
ε (t)

)

, all defined on the same time interval [t1, t2] with

the same end points,
(

x1
ε(t1), . . . , x

n
ε (t1)

)

=
(

a1, . . . , an
)

,

(

x1
ε(t2), . . . , x

n
ε (t2)

)

=
(

b1, . . . , bn
)

,

such that ε = 0 gives the original curve.

(a1, . . . , an)

(b1, . . . , bn)

(x1
ε(t), . . . , x

n
ε (t))

t

ε
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Claim: The original curve is a solution of the Euler-Lagrange equa-

tions if and only if ∂εS
∣

∣

ε=0
= 0 for all possible variations.

Proof:

∂εS = ∂ε

∫ t2

t1

L
(

x1
ε(t), . . . , x

n
ε (t), ẋ

1
ε(t), . . . , ẋ

n
ε (t), t

)

dt =

=

∫ t2

t1

(

n
∑

i=1

∂L

∂xi
ε

∂εx
i
ε +

n
∑

i=1

∂L

∂ẋi
ε

∂εẋ
i
ε

)

dt =

=

∫ t2

t1

(

n
∑

i=1

∂L

∂xi
ε

∂εx
i
ε +

n
∑

i=1

∂L

∂ẋi
ε

(

∂εx
i
ε

)

˙
)

dt =

=

∫ t2

t1

n
∑

i=1

∂L

∂xi
ε

∂εx
i
ε dt +

n
∑

i=1

∂L

∂ẋi
ε

∂εx
i
ε

∣

∣

∣

t2

t1
−

∫ t2

t1

n
∑

i=1

( ∂L

∂ẋi
ε

)

˙∂εx
i
ε dt .

The middle term vanishes because ∂εx
i
ε(t1) = ∂εx

i
ε(t2) = 0 as all

curves have the same end points.
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So we get

∂εS =

∫ t2

t1

n
∑

i=1

( ∂L

∂xi
ε

−
( ∂L

∂ẋi
ε

)

˙
)

∂εx
i
ε dt .

Setting ε = 0 ,

∂εS
∣

∣

ε=0
=

∫ t2

t1

n
∑

i=1

( ∂L

∂xi
−

(∂L

∂ẋi

)

˙
)

∂εx
i
ε

∣

∣

∣

ε=0
dt .

The right-hand side is zero, for all possible variations, if and only if

the bracket vanishes, i.e., if and only if the Euler-Lagrange equations

hold. �

Remark: For many cases of interest, the solution is actually a mini-
mum. However, saddles also occur frequently. Therefore, the older

name “Principle of Minimal Action” is not justified.
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If the Lagrange function is changed by a total time derivative,

L 7→ L +
d

dt
f ,

where f is an arbitrary function of xi, ẋi and t, the action functional
S =

∫ t2
t1

Ldt changes according to

S 7→ S + f
(

x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t), t
)

∣

∣

∣

t2

t1
.

For variations with fixed end points, S 7→ S + constant .

This proves that adding a total time derivative to the Lagrangian

does not change the solutions to the Euler-Lagrange equations. We

have already met an example of this kind: For a charged particle in an

electromagnetic field, a gauge transformation of the electromagnetic

potential adds a total time derivative to the Lagrangian.
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We now perform the passage to the Hamiltonian formulation. In a

sense, the Hamiltonian formalism will turn out to be even more pow-

erful than the Lagrangian formalism. In the Lagrangian formalism

the equations of motion are covariant with respect to arbitrary trans-

formations of the xi. The Hamiltonian formalism puts the equations

of motion into a form that is covariant even with respect to a larger

group of transformations, called “canonical transformations”.

Given a Lagrangian, we define the “canonical momenta”

pi =
∂L

∂ẋi
i = 1, . . . , n .

This set of equations can be solved for the ẋi if and only if the La-

grangian is regular,

det
( ∂2L

∂ẋiẋj

)

6= 0 .
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If this regularity condition is satisfied, we can define the “Hamilton

function” (or “Hamiltonian” for short) as

H
(

x1, . . . , xn, p1, . . . , pn, t
)

=
n
∑

i=1

pi ẋ
i − L

(

x1, . . . , xn, ẋ1, . . . , ẋn, t
)

.

On the right-hand side the ẋi have to be expressed in terms of the
xj and pj which, by our regularity assumption, is possible.

The transformation from L to H , at fixed x1, . . . , xn, t , is called a

“Legendre transformation”.

The total differential of the Hamiltonian is

dH =

�
�
�
�
�
�
�
�
�
�n

∑

i=1

pi dẋ
i +

n
∑

i=1

ẋi dpi −

n
∑

i=1

∂L

∂xi
dxi −

�
�
�
�
�
�
�
�
�
�
��n

∑

i=1

∂L

∂ẋi
dẋi −

∂L

∂t
dt .

We compare with the identity

dH =

n
∑

i=1

∂H

∂pi

dpi +

n
∑

i=1

∂H

∂xi
dxi +

∂H

∂t
dt .
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We find

∂H

∂pi

= ẋi ,
∂H

∂xi
= −

∂L

∂xi
,

∂H

∂t
= −

∂L

∂t
.

Thus, for regular Lagrangians, the Euler-Lagrange equations

∂L

∂xi
=

d

dt

∂L

∂ẋi
= ṗi

are equivalent to “Hamilton’s equations”

∂H

∂pi

= ẋi ,
∂H

∂xi
= − ṗi , .

The Euler-Lagrange equations are second-order ordinary differential

equations for x1(t), . . . , xn(t).

Hamilton’s equations are first-order ordinary differential equations

for x1(t), . . . , xn(t), p1(t), . . . , pn(t).

We now determine the Hamiltonian for some examples.
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(a) Particle in a potential

Recall the Lagrangian for a particle in a potential V (~x),

L
(

~x, ~̇x
)

= T
(

~̇x
)

− V
(

~x
)

=
m

2

∣

∣ ~̇x
∣

∣

2
− V

(

~x
)

.

In Cartesian coordinates, the canonical momenta coincide with the

usual mechanical momentum coordinates,

pi =
∂L

∂ẋi
= mẋi .

Solving for the velocities gives, in vector notation,

~̇x =
1

m
~p .

Thus, the Hamiltonian is

H
(

~x, ~p
)

= ~p · ~̇x − L(~x, ~̇x) = ~p · ~̇x −
m

2

∣

∣ ~̇x
∣

∣

2
+ V

(

~x
)

=

=
1

m

∣

∣ ~p
∣

∣

2
−

m

2

1

m2

∣

∣ ~p
∣

∣

2
+ V

(

~x
)

=
1

2m

∣

∣ ~p
∣

∣

2
+ V

(

~x
)

.
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As
1

2m

∣

∣ ~p
∣

∣

2
=

m

2

∣

∣ ẋ
∣

∣

2

is the kinetic energy, the Hamiltonian is equal to the total energy,

H = T + V , expressed in terms of position and momentum coordi-

nates.

(b) Charged particle in electromagnetic field (non-relativistic)

For a charged particle in an electromagnetic field, the non-relativistic

Lagrangian was

L =
m

2

∣

∣ ~̇x
∣

∣

2
− q φ + q ~A · ~̇x

where φ and ~A are the electromagnetic potentials. In Cartesian co-

ordinates, the canonical momenta are

pi =
∂L

∂ẋi
= mẋi + q Ai .
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Solving for the velocities gives, in vector notation,

~̇x =
1

m

(

~p − q ~A
)

.

The Hamiltonian reads

H(~x, ~p) = ~p · ~̇x − L(~x, ~̇x) =

= ~p ·
1

m
(~p − q ~A) −

m

2

1

m2

∣

∣ ~p − q ~A
∣

∣

2
+ q φ − q ~A ·

1

m
(~p − q ~A) =

=
1

2m

∣

∣ ~p − q ~A
∣

∣

2
+ q φ .

The first term is, again, the kinetic energy.
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(c) Charged particle in electromagnetic field (relativistic)

For relativistic motion, the Lagrangian was

L = −mc2

√

1 −
| ~̇x(t) |2

c2
− q φ + q ~A · ~̇x

Now the canonical momenta, in Cartesian coordinates, are

pi =
∂L

∂ẋi
=

mẋi

√

1 − | ~̇x |2

c2

+ q Ai .

To solve this for the velocities, we use vector notation,

~p − q ~A =
m~v

√

1 − |~v |2

c2

.

Squaring both sides and solving for |~v |2 yields

|~v |2 =
c2

∣

∣ ~p − q ~A
∣

∣

2

c2 m2 +
∣

∣ ~p − q ~A
∣

∣

2 .
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This allows to express the velocities in terms of the momenta,

~v =
c
(

~p − q ~A
)

√

c2 m2 +
∣

∣ ~p − q ~A
∣

∣

2
.

Then the Hamiltonian takes the form

H(~x, ~p) = ~p · ~v − L(~x, ~v) =

=
c ~p ·

(

~p − q ~A
)

√

c2 m2 +
∣

∣ ~p − q ~A
∣

∣

2
+ mc2

cm
√

c2 m2 +
∣

∣ ~p − q ~A
∣

∣

2
+

+ q φ −
q c ~A ·

(

~p − q ~A
)

√

c2 m2 +
∣

∣ ~p − q ~A
∣

∣

2
. =

= c

√

c2 m2 +
∣

∣ ~p − q ~A
∣

∣

2
+ q φ .
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(d) Damped harmonic oscillator

Recall the Lagrangian for the damped harmonic oscillator,

L(x, ẋ, t) = e
λ t
m

( m

2
ẋ2 −

k

2
x2

)

.

The canonical momentum is

p = e
λ t
m mẋ ,

and the Hamiltonian

H(x, p, t) = p ẋ − L(x, ẋ, t) =

= e−
λ t
m

1

m
p2 − e

λ t
m
m

2
e−

2λ t
m

1

m2
p2 + e

λ t
m

k

2
x2 =

= e−
λ t
m

1

2m
p2 + e

λ t
m

k

2
x2 .

In the next lecture we discuss some general features of the Hamilto-

nian formalism.
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The inventor of Hamiltonian dynamics:

Sir William Rowan Hamilton ( 1805, Dublin – 1865, Dublin )

Professor of Astronomy at Trinity College ( 1827 – 1865 )

“Theory of Systems of Rays” ( 1827 )

“On a General Method in Dynamics” ( 1834/35 )
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Recall: In the Hamiltonian formulation, all information on the dy-

namics of a system is coded in the Hamiltonian function

H(x1, . . . , xn, p1, . . . pn, t) .

For N particles without constraints, n = 3N .

The passage from the Lagrangian to the Hamiltonian description is

possible if the Lagrangian is regular,

det
( ∂2L

∂ẋiẋj

)

6= 0 .

Then the set of equations

pi =
∂L

∂ẋi
, i = 1, . . . , n

can be solved for the ẋi and the Hamiltonian can be defined as the

Legendre transform of the Lagrangian,

H
(

x1, . . . , xn, p1, . . . , pn, t
)

=
n
∑

i=1

pi ẋ
i − L

(

x1, . . . , xn, ẋ1, . . . , ẋn, t
)

.
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If H is known, Hamilton’s equations

ẋi =
∂H

∂pi

, ṗi = −
∂H

∂xi
,

determine the dynamics.

This is a first-order system of ordinary differential equations for

curves x1(t), . . . , xn(t), p1(t), . . . , pn(t). For every set of initial val-

ues xi(t0), pj(t0) there is a unique solution.

Along a solution of Hamilton’s equation,

dH

dt
=

n
∑

i=1

( ∂H

∂xi

dxi

dt
+

∂H

∂pi

dpi

dt

)

+
∂H

∂t
=

=
n
∑

i=1

(

−
dpi

dt

dxi

dt
+

dxi

dt

dpi

dt

)

+
∂H

∂t
=

∂H

∂t
.

Thus, if H does not depend on time explicitly, H is a constant of
motion.
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Hamilton’s equations

ẋi =
∂H

∂pi

, ṗi = −
∂H

∂xi

are more symmetric than the Euler-Lagrange equations. E.g., they

preserve their form under the transformation

x′i = pi , p′
i = −xi ,

where, of course, the transformed Hamiltonian is given as

H ′(x′1, . . . , x′n, p′
1, . . . , p

′
n) = H(x1, . . . , xn, p1, . . . , pn) .

Transformations that leave the form of Hamilton’s equations un-

changed are called “canonical transformations” and will be discussed

in Lecture 4 in detail. In general, a canonical transformation mixes

the xi with the pi.
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Recall: In the Lagrange formalism we were allowed to make only

transformations of the xi alone (“point transformations”),

xi = xi(x′1, x′2, x′3) ,

with the transformation of the ẋi determined by differentiation along

curves,

ẋi =
n
∑

j=1

∂xi

∂x′j
ẋ′j ,

∂ẋi

∂ẋ′k
=

∂xi

∂x′k
.

Under such point transformations, the pi transform as

pi =
∂L

∂ẋi
=

n
∑

k=1

∂L′

∂ẋ′k

∂ẋ′k

∂ẋi
=

n
∑

k=1

∂L′

∂ẋ′k

∂x′k

∂xi
=

n
∑

k=1

p′
k

∂x′k

∂xi
.

We see that the transformation matrix of the pi is the inverse of the

transformation matrix of the ẋi, hence

n
∑

i=1

pi ẋ
i =

n
∑

i=1

n
∑

k=1

n
∑

j=1

p′
k

∂x′k

∂xi

∂xi

∂x′j
ẋ′j =

n
∑

k=1

n
∑

j=1

p′
k δ

k
j ẋ

′j =
n
∑

j=1

p′
j ẋ

′j .
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The ẋi are coordinates of tangent vectors to curves in the configura-

tion manifold, the pi are coordinates of covectors (duals to tangent

vectors).

Usual convention: Use upper indices for vectors and lower indices for
covectors. Then summing over an upper and a lower index always

gives a coordinate-independent expression.

The union of all cotangent spaces is called the “cotangent bundle”

to the configuration manifold. The Hamiltonian is a ( possibly time-

dependent ) function on the cotangent bundle.

In the physical literature, the cotangent bundle of the configuration

manifold is called the “phase space”.
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tangent bundle

xi − lines

ẋi − lines

Lagrangian L

cotangent bundle
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pi − lines

Hamiltonian H
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If a Hamiltonian is given that does not explicitly depend on time,

through each point of phase space there is exactly one solution curve

to Hamilton’s equations. This is similar to the flow lines of a station-

ary flow. One speaks of the “phase flow” determined by the Hamil-

tonian. A picture of the phase flow is called a “phase portrait”.

For systems with one degree of freedom, the shape of the flow lines

is determined by the fact that along them

H = constant .

For systems with two degrees of freedom, the phase space is already

four-dimensional, i.e., one can depict only projections of the phase

flow into lower-dimensional spaces.

-9-



Example: For the undamped harmonic oscillator, the flow lines are

the curves where the Hamiltonian

H(x, p) =
p2

2m
+

k x2

2

is constant. Thus, the flow lines are ellipses.

x

p
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For the damped harmonic oscillator,

mẍ + λ ẋ + k x = 0 ,

the Hamiltonian depends explicitly on time,

H(x, p, t) = e−
λ t
m

p2

2m
+ e

λ t
m

k

2
x2 .

Hence, the phase flow is non-stationary and the Hamiltonian is not

preserved along the flow lines,

dH

dt
=

∂H

∂t
6= 0 .

As we do not have a constant of motion, we have to solve the equa-

tions of motion to determine the phase space trajectories. As the

equation of the damped harmonic oscillator is a linear ordinary dif-
ferential equation, this can be done with an exponential ansatz.
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In the case of undercritical damping,

0 ≤
k

m
−

λ2

4m2
= ω2 ,

the general solution to Hamilton’s equations is

x(t) = e−
λt
2m

(

x(0)
(

cos(ωt) +
λ

2mω
sin(ωt)

)

+
p(0)

mω
sin(ωt)

)

,

p(t) = e
λt
2m

(

−x(0)
(

mω +
λ2

4mω

)

sin(ωt) + p(0)
(

cos(ωt) −
λ

2mω
sin(ωt)

)

)

.

In the following picture
(

x(t), p(t)
)

is plotted for a particular initial
condition

(

x(0), p(0)
)

.
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x

p
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You might be surprised that p(t) becomes arbitrarily large for t → ∞.

Note, however, that ẋ(t) → 0 for t → ∞, because p and ẋ are related

by

p(t) = mẋ(t) e
λ t
m ,

so

mẋ(t) = e−
λt
2m

(

−x(0)
(

mω +
λ2

4mω

)

sin(ωt) + p(0)
(

cos(ωt) −
λ

2mω
sin(ωt)

)

)

.

Thus, a plot in the (x, ẋ)−space instead of the (x, p)−space looks

completely different, see next page.
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x

ẋ
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In (x, ẋ)−space, the flow of the damped harmonic oscillator shrinks

the area. This is characteristic of dissipative systems.

x

ẋ
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In the (x, p)−space, how-

ever, the flow of the damped

harmonic oscillator shrinks

the area in the x−dimension

and blows it up in the
p−dimension.

x

p
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We will now prove that in (x, p)−space the flow of the damped har-

monic oscillator preserves the phase space area, i.e., that it behaves

like an incompressible fluid.

The solution to Hamilton’s equations can be written in matrix form,

(

x(t)

p(t)

)

= M(t)

(

x(0)

p(0)

)

where

M(t) =







e−
λt
2m

(

cos(ωt) + λ

2mω
sin(ωt)

)

e−
λt
2m

1
mω

sin(ωt)

−e
λt
2m

(

mω + λ2

4mω

)

sin(ωt) e
λt
2m

(

cos(ωt) − λ

2mω
sin(ωt)

)






.

Thus, the flow is a one-parameter family of linear maps M(t). Since

det
(

M(t)
)

= cos2(ωt) −
λ2 sin2(ωt)

4m2ω2
+ sin2(ωt) +

λ2 sin2(ωt)

4m2ω2
= 1 ,

the flow preserves, indeed, the area of the phase space volume.
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This is the special case of a general result, known as Liouville’s

Theorem: The flow of a (possibly time-dependent) Hamiltonian in

2n−dimensional phase space preserves the 2n−dimensional phase

space volume. We will prove it in the next lecture when we dis-

cuss canonical transformations.

We will then also verify that the phase space volume has a coordinate-

independent meaning. This is another important advantage of the

Hamilton over the Lagrange formalism. In the tangent bundle the

volume depends on the chosen coordinates.
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In this lecture we will discuss the group of transformations that leave

Hamilton’s equations

ẋi =
∂H

∂pi

, ṗi = −
∂H

∂xi
,

invariant. We begin by introducing a useful notation.

For any two phase space functions f(x1, . . . , xn, p1, . . . , pn, t) and

g(x1, . . . , xn, p1, . . . , pn, t) define the “Poisson bracket”

{f, g} =

n∑

i=1

( ∂f

∂xi

∂g

∂pi

−
∂f

∂pi

∂g

∂xi

)

.

We compare this expression with the total time derivative of f along
a solution to Hamilton’s equations,

df

dt
=

n∑

i=1

( ∂f

∂xi

dxi

dt
+

∂f

∂pi

dpi

dt

)

+
∂f

∂t
=

=

n∑

i=1

( ∂f

∂xi

∂H

∂pi

−
∂f

∂pi

∂H

∂xi

)

+
∂f

∂t
.
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This shows that

df

dt
= {f,H} +

∂f

∂t
.

Thus, if f does not depend on time explicitly, its total time deriva-

tive along solutions of Hamilton’s equations is given by the Poisson

bracket with the Hamiltonian.

In particular: If f does not depend on time explicitly, we have

df

dt
= 0 ⇐⇒ {f,H} = 0 .

i.e., f is a constant of motion if and only if its Poisson bracket with

H vanishes.
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The Poisson bracket

{f, g} =
n∑

i=1

( ∂f

∂xi

∂g

∂pi

−
∂f

∂pi

∂g

∂xi

)

satisfies the following calculation rules.

• Linearity: {f, a g + b h} = a {f, g} + b {f, h} .

• Antisymmetry: {f, g} = −{g, f} .

• Jacobi identity:
{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}
= 0 .

These are the defining properties of a Lie Algebra.

In addition, the Poisson bracket satisfies the derivation rule

{f, g h
}

= g {f, h} + h {f, g} .
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We are now ready to define canonical transformations.

Definition: A transformation

x′i = x′i(x1, . . . , xn, p1, . . . , pn) ,

p′
i = p′

i(x
1, . . . , xn, p1, . . . , pn) ,

is called “canonical” if

{x′i, x′j} = 0 , {p′
i, p

′
j} = 0 , {x′i, p′

j} = δi
j .

In the literature one can find several alternative definitions of canon-

ical transformations, all of which turn out to be equivalent to the

one chosen here. One of these alternative characterisations is the

following.
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Claim: A transformation is canonical if and only if it leaves the Pois-

son bracket of any two phase space functions invariant,

{f, g} = {f ′, g′}′ .

Here

f ′(x′1, . . . , x′n, p′
1, . . . , p

′
n, t) = f(x1, . . . , xn, p1, . . . , pn, t) ,

g′(x′1, . . . , x′n, p′
1, . . . , p

′
n, t) = g(x1, . . . , xn, p1, . . . , pn, t) ,

{f ′, g′}′ =
n∑

i=1

( ∂f ′

∂x′i

∂g′

∂p′
i

−
∂f ′

∂p′
i

∂g′

∂x′i

)

.
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Proof: For arbitrary transformations, we find

{f, g} =
n∑

i=1

(
∂f

∂xi

∂g

∂pi

−
∂f

∂pi

∂g

∂xi

)

=

n∑

i=1

n∑

j=1

n∑

k=1

(
( ∂f ′

∂x′j

∂x′j

∂xi
+

∂f ′

∂p′
j

∂p′
j

∂xi

) ( ∂g′

∂x′k

∂x′k

∂pi

+
∂g′

∂p′
k

∂p′
k

∂pi

)

−
( ∂f ′

∂x′j

∂x′j

∂pi

+
∂f ′

∂p′
j

∂p′
j

∂pi

) ( ∂g′

∂x′k

∂x′k

∂xi
+

∂g′

∂p′
k

∂p′
k

∂xi

)
)

=

n∑

j=1

n∑

k=1

(

∂f ′

∂x′j

∂g′

∂x′k
{x′j, x′k} +

∂f ′

∂p′
j

∂g′

∂p′
k

{p′
j, p

′
k}

+
∂f ′

∂x′j

∂g′

∂p′
k

{x′j, p′
k} +

∂f ′

∂p′
j

∂g′

∂x′k
{p′

j, x
′k}

)

.

The right-hand side is equal to {f ′, g′}′ for all functions f ′ and g′ if

and only if the transformation is canonical. �
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Note: Here one has to be careful about the notation. For f = xi, the

function f ′ is NOT equal to x′i; it is rather xi expressed in terms of

the x′i and the p′
i , i.e., x

′i 6= xi′.

Examples:

• Every point transformation is a canonical transformation.

• The transformation x′i = pi , p
′
i = −xi is canonical.

Our old picture remains

true only under point

transformations, not un-

der arbitrary canonical

transformations.
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xi − lines

pi − lines
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The fact that canonical transformations are of crucial relevance for

the Hamiltonian formalism is in the following result.

Claim: A transformation is canonical if and only if it preserves the

form of Hamilton’s equations for all Hamiltonian functions, i.e., if

and only if

ẋi =
∂H

∂pi

, ṗi = −
∂H

∂xi
,

implies

ẋ′i =
∂H ′

∂p′
i

, ṗ′
i = −

∂H ′

∂x′i
,

where

H ′(x′1, . . . , x′n, p′
1, . . . , p

′
n, t) = H(x1, . . . , xn, p1, . . . , pn, t) .
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Proof: Assume that Hamilton’s equations hold. Then

ṗ′
i =

n∑

k=1

(
∂p′

i

∂xk
ẋk +

∂p′
i

∂pk

ṗk

)

=
n∑

k=1

(
∂p′

i

∂xk

∂H

∂pk

−
∂p′

i

∂pk

∂H

∂xk

)

=

n∑

k=1

n∑

j=1

(

∂p′
i

∂xk

(∂H ′

∂x′j

∂x′j

∂pk

+
∂H ′

∂p′
j

∂p′
j

∂pk

)

−
∂p′

i

∂pk

(∂H ′

∂x′j

∂x′j

∂xk
+

∂H ′

∂p′
j

∂p′
j

∂xk

)
)

.

After rearranging, we find

ṗ′
i =

n∑

j=1

(

∂H ′

∂x′j
{p′

i, x
′j} +

∂H ′

∂p′
j

{p′
i, p

′
j}

)

.

An analogous calculation leads to

ẋ′i =

n∑

j=1

(

∂H ′

∂p′
j

{x′i, p′
j} +

∂H ′

∂x′j
{x′i, x′j}

)

.

Thus, the primed Hamilton equations hold, for any H ′, if and only if

the transformation is canonical. �
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There are actually two different aspects to the relation between Hamil-

ton’s equations and canonical transformations.

First, as we have seen, canonical transformatiosn leave Hamilton’s
equations invariant.

Second, the phase flow defined by the Hamiltonian can be viewed as

a one-parameter family of canonical transformations.

This can be formulated in the following way.

Claim: Consider any Hamiltonian H
(
x1, . . . , xn, p1, . . . , pn, t

)
. Fix a

time t0 and a time interval ε. Then the transformation

(

x1(t0), . . . , x
n(t0), p1(t0), . . . , pn(t0)

)

7−→
(

x1(t0 + ε), . . . , xn(t0 + ε), p1(t0 + ε), . . . , pn(t0 + ε)
)

is canonical, where the xi(t) and pj(t) satisfy Hamilton’s equations.
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Proof: It suffices to give the proof for infinitesimally small ε because

then the general result follows by integration. As

xi(t0 + ε) = xi(t0) + ε ẋi(t0) =

= xi(t0) + ε
∂H

∂pi

(

x1(t0), . . . , x
n(t0), p1(t0), . . . , pn(t0), t0

)

,

pi(t0 + ε) = pi(t0) + ε ṗi(t0) =

= pi(t0) − ε
∂H

∂xi

(

x1(t0), . . . , x
n(t0), p1(t0), . . . , pn(t0), t0

)

,

we have to prove that the transformation

x′i = xi + ε
∂H

∂pi

(

x1, . . . , xn, p1, . . . , pn, t0

)

,

p′
i = pi − ε

∂H

∂xi

(

x1, . . . , xn, p1, . . . , pn, t0

)

,

is canonical.
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This is true since

{x′i, x′j} = {xi, xj} + ε
{

xi ,
∂H

∂pj

}

+ ε
{ ∂H

∂pi

, xj
}

=

= 0 + ε
∂2H

∂pipj

− ε
∂2H

∂pjpi

= 0 ,

and, analogously, {p′
i, p

′
j} = 0 and {x′i, p′

j} = δi
j . �

Thus, shifting the points

along the solution curves

to Hamilton’s equations

always gives a canonical
transformation. Recall our

example of the damped

harmonic oscillator.

x

p
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We will now relate canonical transformations to what is called the

symplectic structure of phase space. To that end, we rewrite the

Poisson bracket in matrix notation,

{f, g} =
( ∂f

∂x1
· · ·

∂f

∂xn

∂f

∂p1

· · ·
∂f

∂pn

)





0 1

−1 0






















∂g

∂x1

·
·
·
∂g

∂xn

∂g

∂p1

·
·
·
∂g

∂pn


















.

The antisymmetric 2n × 2n matrix

J =





0 1

−1 0





is called the “symplectic matrix” in 2n dimensions.
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The Poisson bracket reflects the “symplectic structure” of phase

space.

“Symplectic” in greek has the same meaning as “complex” in latin.

The name was introduced by Herrman Weyl in the 1920s.

It refers to the fact that the 2n × 2n matrix J is “composed” of four

n × n blocks, corresponding to the phase space being coordinatised

by x1, . . . , xn and p1, . . . , pn.

Canonical coordinates can be characterised by the fact that they pre-
serve the symplectic structure in a certain sense.

To work this out, we write the chain rule in matrix form.
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( ∂f

∂x1
· · ·

∂f

∂xn

∂f

∂p1

· · ·
∂f

∂pn

)

=

=
( ∂f ′

∂x′1
· · ·

∂f ′

∂x′n

∂f ′

∂p′
1

· · ·
∂f ′

∂p′
n

)








(
∂x′j

∂xk

) (
∂x′j

∂pk

)

(
∂p′j

∂xk

) (
∂p′j
∂pk

)








︸ ︷︷ ︸
S

and

















∂g

∂x1

·
·
·
∂g

∂xn

∂g

∂p1

·
·
·
∂g

∂pn


















=










(
∂x′j

∂xk

) (
∂p′j

∂xk

)

(
∂x′j

∂pk

) (
∂p′j
∂pk

)










︸ ︷︷ ︸

ST


















∂g′

∂x′1

·
·
·

∂g′

∂x′n

∂g′

∂p′1

·
·
·

∂g′

∂p′n


















.

-16-



The unprimed and primed Poisson brackets are

{f, g} =
( ∂f ′

∂x′1
· · ·

∂f ′

∂x′n

∂f ′

∂p′
1

· · ·
∂f ′

∂p′
n

)

S J ST

















∂g′

∂x′1

···
∂g′

∂x′n

∂g′

∂p′1

···
∂g′

∂p′n

















,

{f ′, g′}′ =
( ∂f ′

∂x′1
· · ·

∂f ′

∂x′n

∂f ′

∂p′
1

· · ·
∂f ′

∂p′
n

)

J

















∂g′

∂x′1

···
∂g′

∂x′n

∂g′

∂p′1

···
∂g′

∂p′n

















.
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Thus, the transformation is canonical if and only if its Jacobi matrix

leaves the symplectic matrix invariant.

S J ST = J ;

For this reason, canonical transformations are also called “symplectic
transformations”.

From the determinant theorem we find for a canonical transformation

det(S) det(J) det(ST ) = det(J) .

As det(ST ) = det(S) and det(J) = 1, we have found that a canonical
transformation has to satisfy

det(S) = ±1 .
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As the volume element transforms with the Jacobi determinant S,

dx′1 · · · dx′n dp′
1 · · · dp′

n = det(S) dx1 · · · dxn dp1 · · · dpn ,

we have proven that a canonial transformation leaves the phase space

volume invariant (up to sign; a negative sign corresponds to a change
of orientation from right-handed to left-handed.)

In particular, we have proven Liouville’s theorem:

The phase flow of any Hamiltonian is volume-preserving, i.e., it be-

haves like an incompressible fluid.
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Lagrangian and Hamiltonian Dynamics

Volker Perlick

(Lancaster University)

Lecture 5

Hamilton-Jacobi Theory

(Cockcroft Institute, 15 March 2010)



In this lecture we will discuss Hamilton-Jacobi theory which is about
a particular method for solving Hamilton’s equations.

Recall: Hamilton’s equations

ẋi =
∂H

∂pi

, ṗi = − ∂H

∂xi
,

preserve their form under canonical transformations

x′i = x′i(x1, . . . , xn, p1, . . . , pn) ,

p′
i = p′

i(x
1, . . . , xn, p1, . . . , pn) ,

{x′i, x′j} = 0 , {p′
i, p

′
j} = 0 , {x′i, p′

j} = δi
j ,

where the Poisson brackets are defined by

{f, g} =
n∑

i=1

( ∂f

∂xi

∂g

∂pi

− ∂f

∂pi

∂g

∂xi

)

.
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The basic idea of Hamilton-Jacobi theory is to find a canonical trans-
formation such that in the new coordinates the Hamiltonian depends
only on the p′

i, and not on the x′i. Then Hamilton’s equations read

ẋ′i =
∂H ′

∂p′
i

, ṗ′
i = 0 .

The second set of equations says that the p′
i are constants of motion,

p′
i(t) = p′

i(0) .

Thus the first set, whose right-hand side depends only on the p′
i, can

be integrated,

x′i(t) =
∂H ′

∂p′
i

(

p′
1(0), . . . , p

′
n(0)

)

t + x′i(0) .

So the problem has been shifted from solving Hamilton’s equations
to finding the desired canonical transformation.

-3-



To work this out, we proceed in three steps.

• We discuss some properties of constants of motion in the
Hamiltonian formalism.

• We consider Hamiltonian dynamical systems which admit
n independent constants of motion such that the Poisson
bracket of any pair of them vanishes. This is a necessary
condition such that they can serve as momentum coordi-
nates. Systems which admit such constants of motion are
called “completely integrable”.

• We investigate how to actually find a canonical transforma-
tion such that the new momenta are constants of motion.
This will be done in terms of a “generating function”, and
the partial differential equation this generating function has
to satisfy is known as the Hamilton-Jacobi equation.
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Throughout we consider a time-independent Hamiltonian

H(x1, . . . , xn, p1, . . . , pn)

on a 2n−dimensional phase space.

We begin by discussing some properties of constants of motion. Re-
call that for any f(x1, . . . , xn, p1, . . . , pn) that does not depend ex-
plicitly on time, we have

df

dt
= {f,H} ,

i.e., f is a constant of motion if and only if its Poisson bracket with
H vanishes. What does {f,H} = 0 mean?

f determines a “flow” on phase space, given by solving Hamilton’s
equations with f instead of H,

dxi

dε
=

∂f

∂pi

,
dpi

dε
= − ∂f

∂xi
.

We write ε instead of t because the curve parameter has not the
physical meaning of time if f is not the Hamiltonian of the system.
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Now the differentiation of H along any such flow line is

dH

dε
=

n∑

i=1

(∂H

∂pi

dpi

dε
+

∂H

∂xi

dxi

dε

)

=

=
n∑

i=1

(

− ∂H

∂pi

∂f

∂xi
+

∂H

∂xi

∂f

∂pi

)

= −{f,H} .

Thus, if {f,H} = 0, the flow determined by f leaves H invariant.
This shows that every constant of motion is associated with a one-
parameter group of symmetry transformations. This is the general
relation between symmetries and constants of motion in the Hamil-
tonian formalism.

We will now define the notion of “complete integrability”. Again,
we restrict to systems with a time-independent Hamiltonian. (Time-
dependent Hamiltonians can be treated in a space-time formalism,
adding t as an additional configuration space coordinate.)
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Definition: Hamilton’s equations with a time-independent Hamilto-
nian H(x1, . . . , xn, p1, . . . , pn) are called “completely integrable” if
there are n functions

f1(x
1, . . . , xn, p1, . . . , pn) , . . . , fn(x

1, . . . , xn, p1, . . . , pn)

which

(a) are constants of motion, i.e. {H, fi} = 0 ,

(b) have vanishing Poisson brackets, i.e. {fi, fj} = 0 ,

(c) have linearly independent differentials df1, . . . , dfn .

Note that (b) and (c) are necessary conditions for the existence of a
canonical transformation such that p′

i = fi for i = 1, . . . , n.

One can always choose f1 = H. One just has to omit points where
dH = 0 (“equilibrium points” or “fixed points of the Hamiltonian
flow”). There (c) cannot hold with f1 = H.
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Complete integrability is a global notion. One wants to have the
fi on all of phase space (perhaps with some exceptional points,
where the differentials become linearly dependent, omitted), not
just on local neighborhoods. On sufficiently small neighborhoods
of a non-equilibrium point, the desired fi always exist.

Instead of “completely integrable” one often says “exactly in-
tegrable” or just “integrable”. The latter name is misleading.
Hamilton’s equations are always integrable in the sense that there
is a unique solution curve to every initial condition. However,
they are in general not completely integrable.

Every system which is simple enough such that the solution can
be explicitly written down is, indeed, completely intregrable,
but many physically interesting systems are not completely inte-
grable. Here are some examples.
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Example 1: Every Hamiltonian system with one degree of freedom,
n = 1, is completely integrable, with f1 = H. One has to remove the
equilibrium points. For the undamped harmonic oscillator, there is
one equilibrium point at x = 0, p = 0.

x

p
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Example 2: For a particle in a rotationally symmetric potential,
Hamilton’s equations are completely integrable. The Hamiltonian
is given, in Cartesian coordinates, as

H(x1, x2, x3, p1, p2, p3) =
p2
1 + p2

2 + p2
3

2m
+ V (r) ,

r =
√

(x1)2 + (x2)2 + (x3)2 .

The f1, f2, f3 can be found in the following way: Consider the com-
ponents of the angular momentum

L1 = x2p3 − x3p2 , L2 = x3p1 − x1p3 , L3 = x1p2 − x2p1 .

By direct computation of the Poisson brackets, one verifies that

{Li,H} = 0 ,

i.e., the Li are constants of motion.
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However, we cannot choose fi = Li for i = 1, 2, 3 because

{L1, L2} = L3 , {L2, L3} = L1 , {L3, L1} = L2 ,

whereas we want to have {fi, fj} = 0. Fortunately, a quick calculation
shows that

{|~L|2, L3} = 0 ,

where

|~L|2 = L2
1 + L2

2 + L2
3 ,

so we can choose

f1 = H , f2 = |~L|2 , f3 = L3 .

The differentials df1, df2, df3 are linearly dependent at points where
~p is a multiple of ~x.
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Example 3: Hamilton’s equations for a relativistic particle in a con-
stant magnetic field is completely integrable. In Lecture 2 we have
seen that, if the magnetic field is ~B = ∇ × ~A, the Hamiltonian in
Cartesian coordinates reads

H
(
x1, x2, x3, p1, p2, p3

)
= c

√

c2 m2 +
∣
∣ ~p − q ~A

∣
∣
2
.

For a constant magnetic field we can choose the vector potential ~A as

~A =





−B0 x
2/2

B0 x
1/2

0



 , ∇ × ~A =





0
0
B0



 .

The desired constants of motion are

f1 = H , f2 = p3 , f3 = L3 = x1p2 − x2p1 .

The differentials df1, df2, df3 are linearly dependent at points where
p1 − qA1 = p2 − qA2 = 0.
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Example 4: The Three-Body Problem is not completely inte-
grable. For three particles, moving under the influence of their
mutual Newtonian gravitational attraction, it is impossible to
find nine constants of motion with the desired properties.

By definition, completely integrable systems admit n indepen-
dent constants of motion with vanishing Poisson brackets. We
will now investigate how to find a canonical transformation that
makes these constants of motion into the new momenta. To that
end we introduce the notion of a “generating function”.

We restrict to the four standard types of generating functions
which are used in practice. Not all canonical transformations
can be generated by one of them.
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Claim:

Any function F1

(
x1, . . . , xn, x′1, . . . , x′n) with det

(
∂2F1
∂xix′j

)

= 0 gener-

ates a canonical transformation

pi =
∂F1

∂xi
, p′

i = − ∂F1

∂x′i .

Any function F2

(
x1, . . . , xn, p′

1, . . . , p
′
n

)
with det

(
∂2F2

∂xip′j

)

= 0 generates

a canonical transformation

pi =
∂F2

∂xi
, x′

i =
∂F2

∂p′
i

.

Any function F3

(
p1, . . . , pn, x

′1, . . . , x′n) with det
(

∂2F3
∂pix

′j

)

= 0 gener-

ates a canonical transformation

xi = − ∂F3

∂pi

, p′
i = − ∂F3

∂x′i .

Any function F4

(
p1, . . . , pn, p

′
1, . . . , p

′
n

)
with det

(
∂2F4
∂pip

′
j

)

= 0 generates

a canonical transformation

xi = − ∂F4

∂pi

, x′i =
∂F4

∂p′
i

.
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F1, F2, F3, F4 are called “generating functions of 1st, 2nd, 3rd, or 4th
kind”, respectively.

Proof: We give the proof for generating functions of the 2nd kind
which are most frequently used. (The proof for 1st, 3rd and 4th kind
is analogous.) Let F2

(
x1, . . . , xn, p′

1, . . . , p
′
n

)
, be given. The condition

det
(

∂2F2
∂xip′j

)

= 0 guarantees that the set of equations

pi =
∂F2

∂xi
, x′i =

∂F2

∂p′
i

,

can be solved for the primed coordinates. We have to prove that this
transformation is canonical. The differential of F2 is

dF2 =
n∑

i=1

∂F2

∂xi
dxi +

n∑

j=1

∂F2

∂p′
j

dp′
j =

=
n∑

i=1

pi dx
i +

n∑

j=1

n∑

i=1

x′j
(∂p′

j

∂xi
dxi +

∂p′
j

∂pi

dpi

)

.
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dF2 =
n∑

i=1

(

pi +
n∑

j=1

x′j ∂p
′
j

∂xi

)

︸ ︷︷ ︸
Ai

dxi +
n∑

i=1

n∑

j=1

x′j ∂p
′
j

∂pi
︸ ︷︷ ︸

Bi

dpi .

As dF2 is a total differential, we must have

0 =
∂Ai

∂xk
− ∂Ak

∂xi
, 0 =

∂Bi

∂pk

− ∂Bk

∂pi

, 0 =
∂Ak

∂pi

− ∂Bi

∂xk

0 =
n∑

j=1

(∂x′j

∂xk

∂p′
j

∂xi
+

�
�
�
�
�
�
�
�
�
�
�

x′j ∂2p′
j

∂xi∂xk
− ∂x′j

∂xi

∂p′
j

∂xk
−

�
�
�
�
�
�
�
�
�
�
�

x′j ∂2p′
j

∂xk∂xi

)

0 =
n∑

j=1

(∂x′j

∂pk

∂p′
j

∂pi

+
�
�
�
�
�
�
�
�
�
��

x′j ∂2p′
j

∂pi∂pk

− ∂x′j

∂pi

∂p′
j

∂pk

−
�
�
�
�
�
�
�
�
�
��

x′j ∂2p′
j

∂pk∂pi

)

0 = δi
k +

n∑

j=1

(∂x′j

∂pi

∂p′
j

∂xk
+

�
�
�
�
�
�

�
�
�
�
�

x′j ∂2p′
j

∂xk∂pi

− ∂x′j

∂xk

∂p′
j

∂pi

−
�

�
�
�
�
�
�
�
�
�
�

x′j ∂2p′
j

∂pi∂xk

)
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These three sets of equations can be comprised in matrix form,

ST J S = J ,

where S is the Jacobi matrix of the transformation and J is the
symplectic matrix,

S =








(
∂x′j

∂xk

) (
∂x′j
∂pk

)

(
∂p′j
∂xk

) (
∂p′j
∂pk

)








, J =





0 1

−1 0



 .

This equation is equivalent to

S J
(
ST J S

)
S−1 J = S J J S−1 J ,

and, as J J = −1, to

S J ST = J .

This proves that the transformation is canonical (= symplectic), re-
call Lecture 4. �

-17-



The goal of Hamilton-Jacobi theory is to find a canonical transfor-
mation

pi =
∂W

∂xi
, x′i =

∂W

∂p′
i

,

where W
(
x1, . . . , xn, p′

1, . . . , p
′
n

)
is a generating function of the second

kind, such that the new Hamiltonian is independent of the x′i. Then
the p′

i are constants of motion,

p′
i(t) = αi ,

and the Hamiltonian is a constant of motion,

H ′(p′
1, . . . , p

′
n) = E .

The equation H
(
x1, . . . , xn, p1, . . . , pn

)
= H ′(p′

1, . . . , p
′
n) becomes a

non-linear first order partial differential equation for W ,

H
(

x1, . . . , xn,
∂W

∂x1
, . . . ,

∂W

∂xn

)

= E .

This is the (time-independent) “Hamilton-Jacobi equation”.
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A “complete integral” of the Hamilton-Jacobi equation is a solution
W

(
x1, . . . , xn, α1, . . . , αn

)
that depends on n parameters α1, . . . , αn

such that the derivatives

∂W

∂α1

, . . . ,
∂W

∂αn

are linearly independent. E is then a function of the α1, . . . , αn.
( If one chooses the Hamiltonian as one of the constants of motion,
say p′

1 = H ′, one has E = α1 . ) The general solution to Hamilton’s
equations is then

p′
i(t) = αi , x′i(t) =

∂E

∂αi

t + βi

which can be adapted to arbitrary initial conditions.

For simple examples (harmonic oscillator, particle in homogeneous
field etc.), the Hamilton-Jacobi method is of no advantage. However,
for many difficult problems it is the only method which allows to find
the solution or, at least, to investigate its qualitative properties.
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If we fix the values of the parameters α1, . . . , αn, a solution to the
Hamilton-Jacobi equation foliates the x−space into “phase surfaces”
or “wave fronts”

W
(
x1, . . . , xn, α1, . . . , αn

)
= constant .

W = constant
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Example: We solve the Hamilton-Jacobi equation for the two-dimen-
sional harmonic oscillator,

H(x1, x2, p1, p2) =
p2
1 + p2

2

2m
+

k1(x
1)2

2
+

k2(x
2)2

2
.

The Hamilton-Jacobi equation reads

1

2m

(∂W

∂x1

)2

+
1

2m

(∂W

∂x2

)2

+
k1(x

1)2

2
+

k2(x
2)2

2
= E .

We make a separation ansatz,

W = W1 + W2 ,
∂W1

∂x2
=

∂W2

∂x1
= 0 .

The Hamilton-Jacobi equation takes the form

1

2m

(∂W1

∂x1

)2

+
k1(x

1)2

2
︸ ︷︷ ︸

α1

+
1

2m

(∂W2

∂x2

)2

+
k2(x

2)2

2
︸ ︷︷ ︸

α2

= E .

From this equation we read that α1 and α2 depend neither on x1 nor
on x2.

-21-



The equations

(∂W1

∂x1

)2

= 2m
(
α1 − k1

2
(x1)2

)
, W1 =

∫ √

2m
(
α1 − k1

2
(x1)2

)
dx1 ,

(∂W2

∂x2

)2

= 2m
(
α2 − k2

2
(x2)2

)
, W2 =

∫ √

2m
(
α2 − k2

2
(x2)2

)
dx2 ,

yield the desired complete integral W = W1 + W2, with

E = α1 + α2 .

In the primed coordinates, integration of Hamilton’s equations is now
trivial,

x′i(t) =
∂E

∂αi

t + βi = t + βi , i = 1, 2 .

To find the trajectories in the unprimed coordinates, we use

x′i =
∂W

∂αi

, i = 1, 2 .
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This results in

t + βi =
∂

∂αi

∫ √

2m
(
αi − ki

2
(xi)2

)
dxi =

=

∫
mdxi

√

2m
(
αi − ki

2
(xi)2

)
=

√
m

ki

arcsin
(
√
ki x

i

√
2αi

)

.

Solving for xi yields

xi(t) =

√

2αi

ki

sin
(
√

ki

m

(
t + βi

))

.
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Lagrangian and Hamiltonian Dynamics

Volker Perlick

(Lancaster University)

Lecture 6

Stability and Linearisation

(Cockcroft Institute, 22 March 2010)



In this lecture we will discuss the notions of stability and linearisation.
Both notions are related to the question of how a dynamical system
behaves in the neighborhood of a fixed point.

We will consider two different notions of stability:

• Lyapunov stability

• asymptotic stability

These notions can be defined for time-independent (= autonomous )
first-order system of ordinary differential equations,

d

dt
zA(t) = FA

(

z1(t) , . . . , z`(t)
)

, A = 1, . . . , ` .

This includes all time-independent Hamiltonian systems, see next
page.
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Hamilton’s equations can be written in the form

d

dt









z1

.

.

.

z2n









=





0 1

−1 0















∂H

∂z1

.

.

.
∂H

∂z2n











,

where ` = 2n and

z1 = x1 , . . . , zn = xn , zn+1 = p1 , . . . , z2n = pn .

If the Hamiltonian is time-independent, this system of equations is,
indeed, of the desired form

d

dt
zA = FA

(

z1 , . . . , z`
)

, A = 1, . . . , ` .
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The inventor of stability theory:

Aleksandr Mikhailovich Lyapunov ( 1857, Yaroslavl – 1918, Odessa )

Professor of Applied Mathematics, St. Petersburg ( 1902 – 1917 )

“General problem of the stability of motion” ( 1892 )
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We now introduce the stability notions. Assume that our sytem

d

dt
zA(t) = FA

(

z1(t) , . . . , z`(t)
)

, A = 1, . . . , `

has an equilibrium point (=fixed point ) at ζ1, . . . , ζ`.

By definition, this means that

FA

(

ζ1 , . . . , ζ`
)

= 0 , A = 1 . . . , ` ,

so the solution with initial condition zA(0) = ζA is the constant curve
zA(t) = ζA.

The following definition says under what condition an equilibrium
point is called Lyapunov stable or asymptotically stable.
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Definition: The equilibrium point ζ1, . . . , ζ` is said to be

• “Lyapunov stable” if for every ε > 0 there is a δ > 0 such that

√

√

√

√

∑̀

A=1

(

zA(0) − ζA
)2

< δ =⇒

√

√

√

√

∑̀

A=1

(

zA(t) − ζA
)2

< ε for all t > 0 ;

• “attractive” if there is a δ > 0 such that

√

√

√

√

∑̀

A=1

(

zA(0) − ζA
)2

< δ =⇒ zA(t) → ζA for t → ∞ ;

• “asymptotically stable” if it is Lyapunov stable and attractive.
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Roughly speaking:

An equilibrium point is Lyapunov stable if solutions stay arbitrarily
close to it if they start sufficiently close to it.

An equilibrium point is attractive if solutions converge upon it if they
start sufficiently close to it.

An equilibrium point is asymptotically stable if solutions converge
upon it if they start sufficiently close to it and stay close to it during
this convergence process.

Note that, in general, an equilibrium point may be attractive without
being Lyapunov stable, see example next page.
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This picture shows the solution curves (flow lines) of a two-dimensional
system, ` = 2. The equilibrium point (heavy dot) is attractive but
not Lyapunov stable.
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A sufficient (but not necessary) condition for stability is the existence
of a Lyapunov function:

Theorem: Let Φ
(

z1, . . . , , z`
)

be a differentiable function, defined in
a neighborhood of an equilibrium point ζ1, . . . , ζ`, such that

(a)

Φ
(

z1, . . . , z`
)

{

= 0 if (z1, . . . , z`) = (ζ1 . . . , ζ`) ,

> 0 if (z1, . . . , z`) 6= (ζ1 . . . , ζ`) ,

(b)

∑̀

A=1

∂Φ
(

z1, . . . , z`
)

∂zA
FA

(

z1, . . . , z`
)

≤ 0

for all (z1, . . . , z`) 6= (ζ1 . . . , ζ`) .

Then (ζ1, . . . , ζ`) is Lyapunov stable. If the inequality in (b) is strict,
(ζ1, . . . , ζ`) is asymptotically stable. Φ is called a “Lyapunov func-
tion” in the first case and a “strict Lyapunov function” in the second
case.
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This result is easy to understand: Condition (a) implies that Φ has
a minimum at the equilibrium point. Condition (b) requires that Φ
is non-increasing along solution curves,

dΦ

dt
=

∑̀

A=1

∂Φ

∂zA

dzA

dt
=

∑̀

A=1

∂Φ

∂zA
FA ≤ 0 .

Graph of a Lyapunov function
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Example: Consider the damped harmonic oscillator

m
d2x

dt2
+ λ

dx

dt
+ k x = 0 .

In first-order form, with

z1 = x, z2 =
dx

dt
,

the equation of motion reads

dz1

dt
= z2 ,

dz2

dt
= −

k

m
z1 −

λ

m
z2 .

For non-vanishing, undercritical damping, 0 < λ < 2
√

mk , the
function

Φ
(

z1, z2
)

=
m

2

(

z2 +
αλ

m
z1

)2

+
k

2
(z1)2

is a strict Lyapunov function, for any 0 < α < 1.
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This demonstrates that the equilibrium is asymptotically stable.

z1

z2
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For the undamped case, λ = 0 , the mechanical energy

Φ
(

z1, z2
)

=
m

2
(z2)2 +

k

2
(z1)2

is a Lyapunov function. This demonstrates that the equilibrium is
Lyapunov stable. However, it is not asymptotically stable, so it is
impossible to find a strict Lyapunov function.

z1

z2
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We now turn to linear systems,

d

dt









z1(t)
.
.
.

z`(t)









= Q









z1(t)
.
.
.

z`(t)









,

where Q is a constant ` × `−matrix. The general solution is









z1(t)
.
.
.

z`(t)









= etQ









z1(0)
.
.
.

z`(0)









,

where

etQ =

∞
∑

N=0

tN

N !
QN .

In this case
(

z1 , . . . , z`
)

= (0, . . . , 0) is an equilibrium point. Its sta-
bility can be investigated with the methods of linear algebra (matrix
calculation).
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If we can find an ` × `−matrix M such that

(a) M is symmetric and has strictly positive eigenvalues,

(b) QTM + MQ has non-positive eigenvalues,

then the function

Φ
(

z1 , . . . , z`
)

=
(

z1 · · · z`
)

M









z1

.

.

.

z`









is a Lyapunov function, i.e., the equilibrium is Lyapunov stable.

If, instead of condition (b), we have the stronger condition that
QTM + MQ has strictly negative eigenvalues, the Lyapunov func-
tion is strict and the equilibrium is asymptotically stable.
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A Hamiltonian system is linear if and only if the Hamiltonian is a
quadratic form (plus an irrelevant constant),

H( z1 , . . . , z2n ) =
2n
∑

A=1

2n
∑

B=1

HAB zA zB ,

with constant coefficients HAB, where

z1 = x1 , . . . , zn = xn , zn+1 = p1 , . . . , z2n = pn .

If a non-linear Hamiltonian system is given, it can be “linearised” in
the following way:

Choose canonical coordinates such that

(x1 , . . . , xn , p1 , . . . , pn ) = ( 0 , . . . , 0 )

is an equilibrium point.

Then Taylor-expand the Hamiltonian around this point up to second
order in all coordinates.
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The zeroth order term is irrelevant and can be dropped; first order
terms do not appear because the zero point is an equilibrium point.
So the resultant Hamiltonian is a quadratic form and gives linear
equations of motion. It is called the “linearised Hamiltonian”.

Solving Hamilton’s equations with the linearised Hamiltonian gives
a good approximation to the original solution curves as long as the
latter stay close to the equilibrium point.

If the equilibrium point is Lyapunov stable, this is true for all time if
the initial conditions are chosen sufficiently close to the equilibrium
point.

If the equilibrium point is not Lyapunov stable, the approximation
may become very bad for large times, even if the initial condition
was chosen very close to the equilibrium point.
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Example 1: The “Duffing oscillator” is an anharmonic oscillator with
Hamiltonian

H(x, p) =
p2

2m
+

k x2

2
+

µx4

4
.

x = p = 0 is an equilibrium point. The linearised Hamiltonian gives
the harmonic oscillator,

H lin(x, p) =
p2

2m
+

k x2

2
.

The equilibrium point is Lyapunov stable. Thus, if the initial con-
dition is chosen close to the equilibrium point, the linearisation is a
good approximation for all time. In other words: for small elonga-
tions the Duffing oscillator behaves like the harmonic oscillator.
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Example 2: A trivial but instructive example is the Hamiltonian for
the free relativistic particle,

H = c

√

m2 c2 + p2
1 + p2

2 + p2
3 .

x1 = x2 = x3 = p1 = p2 = p3 = 0 is an equilibrium point, correspond-
ing to the particle being at rest at the origin of the coordinate system.
Taylor expansion yields

H = mc2

√

1 +
p2
1 + p2

2 + p2
3

m2 c2
= mc2

(

1 +
p2
1 + p2

2 + p2
3

2m2 c2
+ . . .

)

.

After dropping the irrelevant constant term, linearisation gives the
Hamiltonian for the free non-relativistic particle,

H lin =
p2
1 + p2

2 + p2
3

2m
.

Clearly, the equilibrium is not Lyapunov stable.
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In accelerator physics, one considers a charged particle in an electro-
magnetic field and chooses a reference trajectory.

One decomposes the motion into longitudinal and transverse dynam-
ics.

By a series of transformations one puts the Hamiltonian into a form
such that the reference trajectory becomes an (approximate) equi-
librium point for the transverse dynamics.

Linearisation of the transverse dynamics around this equilibrium
point gives an approximation which is good if the particle stays close
to the reference trajectory.

The derivation of the linearised accelerator Hamiltonian is given in
detail by Andy Wolski in his Cockcroft Lectures on “Linear Dynam-
ics”.

We conclude with some references on Lagrangian and Hamiltonian
Dynamics.
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Elementary textbooks:

H. Goldstein: “Classical Mechanics” Addison-Wesley (1950)

E. Sudarshan and N. Mukunda: “Classical Dynamics” Wiley
(1974)

H. Iro: “A Modern Approach to Classical Mechanics” World
Scientic (2002)

With emphasis on geometry:

V. Arnold: “Mathematical Methods of Classical Mechanics”
Springer (1974)

On stability:

A. Lyapunov: “Stability of motion” Academic Press (1966)
[Translation of a paper from 1893]
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