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1. Historic Introduction

1826 W. Olbers formulates the “Olbers paradox”: If we live in a static and eternal universe
uniformly filled with stars, then the sky at night must be infinitely bright. The same
observation had been made already earlier, by T. Digges (≈ 1580), by J. Kepler (1610)
and by J.-P. de Cheseaux (1744).

1915 A. Einstein publishes the field equation of general relativity, in the version without a
cosmological constant.

1916 A. Einstein introduces the cosmological constant in order to get static cosmological
solutions.

1922/24 A. Friedmann finds the class of homogeneous and isotropic perfect-fluid solutions to
Einstein’s field equation named after him.

1927 G. Lemâıtre re-obtains the Friedmann solutions and comes to the conclusion that the
universe began with an initial singularity which he called the “primeval atom”. In the
1960s, F. Hoyle coins the term “big bang”.

1929 E. Hubble discovers the linear distance-redshift relation (“Hubble law”) which is usually
recognised as observational evidence for an expanding universe.

1936 F. Zwicky postulates the existence of dark matter in order to explain the stability of
galaxy clusters.

1941 A. McKellar observes spectral lines from rotational transitions in cyanogen (CN) molecules
in the interstellar medium. He comes to the conclusion that the interstellar medium must
have a temperature of approximately 2.3 Kelvin. In hindsight, this is the first detection
of the cosmic background radiation.

1946-49 G. Gamow and his PhD student R. Alpher develop a theory how hydrogen, helium
and the heavier elements were created in the correct proportions after the initial singu-
larity from a state they called “Ylem”. As a joke, Gamow puts H. Bethe, who actually
was not involved, as a co-author on their paper (Alpher-Bethe-Gamow = αβγ).

1948 R. Alpher and R. Herman predict the cosmic background radiation.

1948 H. Bondi, T. Gold and F. Hoyle invent the steady-state theory in which the universe is
expanding, but the matter density remains constant because of a continuous creation of
matter. The steady-state theory remains an important rival to the big-bang theory until
the detection of the cosmic background radiation is recognised.

1956 W. Rindler introduces in his PhD Thesis the notions of event horizons and particle
horizons.

1955-57 E. Leroux, T. Shmaonov and E. Ohm independently observe microwave radiation
with the features of the predicted cosmic background radiation. Their observations remain
widely unnoticed and are not recognised at the time.
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1960-1970 V. Belinsky, I. Khalatnikov and L. Lifshits study general features of cosmological
models with an initial singularity.

1964 A. Doroshkevich and I. Novikov make precise predictions for the existence of the cosmic
background radiation.

1963-1969 R. Penrose and S. Hawking prove a series of theorems to the effect that the
formation of a singularity is generic for solutions to Einstein’s field equation where the
energy-momentum tensor satisfies certain “energy conditions”.

1964 A. Penzias and R. Wilson, when testing a new radio antenna, discover a mysterious
isotropic noise. R. Dicke explains to them that they have found the predicted cosmic
background radiation. Penzias and Wilson win the Nobel Prize in 1978.

1970-1980 V. Rubin performs a long series of spectral measurements to determine the rota-
tion curves in galaxies. This provides strong evidence for the existence of dark matter.

1980 A. Starobinsky and A. Guth independently introduce the idea of inflation, i.e., that at
an early stage the universe was exponentially expanding.

1989-1993 The satellite COBE investigates the cosmic background radiation. It is found
that the radiation has a black-body spectrum with a temperature that is almost but not
exactly isotropic. For these discoveries J. Mather and G. Smoot win the Nobel Prize in
2006.

1998 By using supernovae of type Ia as standard candles two teams independently find evidence
for the fact that the expansion of the universe is accelerating. For the mysterious type of
“matter” that causes the accelerated expansion M. Turner coins the word “dark energy”.
S. Perlmutter, B. Schmidt and A. Riess win the Nobel Prize in 2011 for the discovery of
the accelerated expansion.

2001-2010 The satellite WMAP investigates the cosmic background radiation.

2008-2013 The satellite Planck complements these observations.

3



2. Brief review of general relativity
A general-relativistic spacetime is a pair (M, g) where:

• M is a four-dimensional manifold; local coordinates will be denoted (x0, x1, x2, x3) and
Einstein’s summation convention will be used for greek indices µ, ν, σ, . . . = 0, 1, 2, 3, for
lower case latin indices i, j, k, . . . = 1, 2, 3 and for upper case latin indices A,B,C, . . . =
1, 2.

• g is a Lorentzian metric on M , i.e. a covariant second-rank tensor field, g = gµνdx
µ⊗dxν ,

that is

(a) symmetric, gµν = gνµ, and

(b) non-degenerate with Lorentzian signature, i.e., for any p ∈ M there are coordinates
defined near p such that g|p = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

As the metric is non-degenerate, we may introduce contravariant metric components by

gµνgνσ = δµσ .

Here and in the following, δµσ denotes the Kronecker delta, δµσ = 1 if µ = σ and δµσ = 0 if µ 6= σ.
We use gµν and gστ for raising and lowering indices, e.g.

gρτA
τ = Aρ , Bµνg

ντ = Bµ
τ .

The metric contains all information about the spacetime geometry and thus about the gravi-
tational field. In particular, the metric determines the following.

• The causal structure of spacetime:

A curve s 7→ x(s) =
(

x0(s), x1(s), x2(s), x3(s)
)

is
called

spacelike

lightlike

timelike











⇐⇒ gµν
(

x(s)
)

ẋµ(s)ẋν(s)











> 0

= 0

< 0

Timelike curves describe motion at subluminal
speed and lightlike curves describe motion at the
speed of light. Spacelike curves describe motion at
superluminal speed which is forbidden for signals.

timelike
lightlike

spacelike

For timelike curves we can choose the parametrisation such that gµν
(

x(τ)
)

ẋµ(τ)ẋµ(τ) =
−c2. The parameter τ is then called proper time.

The motion of a material continuum, e.g. of a fluid, can be described by a vector field
U = Uµ∂µ with gµνU

µUν = −c2. The integral curves of U are to be interpreted as the
worldlines of the fluid elements.
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• The geodesics:

By definition, the geodesics are the solutions to the Euler-Lagrange equations

d

ds

∂L(x, ẋ)

∂ẋµ
−

∂L(x, ẋ)

∂xµ
= 0

of the Lagrangian

L
(

x, ẋ
)

=
1

2
gµν(x)ẋ

µẋν .

These Euler-Lagrange equations take the form

ẍµ + Γµ
νσ(x)ẋ

ν ẋσ = 0

where

Γµ
νσ =

1

2
gµτ

(

∂νgτσ + ∂σgτν − ∂τgνσ
)

are the socalled Christoffel symbols.

The Lagrangian L(x, ẋ) is constant along a geodesic (see Worksheet 1), so we can speak
of timelike, lightlike and spacelike geodesics. Timelike geodesics (L < 0) are to be inter-
preted as the worldlines of freely falling particles, and lightlike geodesics (L = 0) are to
be interpreted as light rays.

The Christoffel symbols define a covariant derivative that takes tensor fields into tensor
fields, e.g.

∇νU
µ = ∂νU

µ + Γµ
ντU

τ ,

∇νAµ = ∂νAµ − Γρ
νµAρ .

• The curvature.

The Riemannian curvature tensor is defined, in coordinate notation, by

Rτ
µνσ = ∂µΓ

τ
νσ − ∂νΓ

τ
µσ + Γρ

νσΓ
τ
µρ − Γρ

µσΓ
τ
νρ .

The curvature tensor determines the rela-
tive motion of neighbouring geodesics: If
X = Xµ∂µ is a vector field whose integral
curves are geodesics, and if J = Jν∂ν con-
nects neighbouring integral curves of X (i.e.,
if the Lie bracket between X and J vanishes),
then the equation of geodesic deviation or Ja-
cobi equation holds:

(

Xµ∇µ

)(

Xν∇ν

)

Jσ = Rσ
µνρX

µJνXρ .

If the integral curves of X are timelike, they
can be interpreted as worldlines of freely
falling particles. In this case the curvature
term in the Jacobi equation gives the tidal

force produced by the gravitational field.

X

J
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The curvature tensor satisfies the identities

Rτ
µνσ = −Rτ

νµσ ,

Rτµνσ = −Rσµντ ,

Rτ
µνσ +Rτ

σµν +Rτ
νσµ = 0 (1st Bianchi identity) ,

∇ρR
τ
µνσ +∇νR

τ
ρµσ +∇µR

τ
νρσ = 0 (2nd Bianchi identity) .

From the curvature tensor one defines the Ricci tensor

Rµν = Rσ
σµν

and the Ricci scalar
R = Rµνg

µν .

The Ricci tensor is symmetric, Rµν = Rνµ. In three dimensions, the curvature tensor is com-
pletely determined by the Ricci tensor and the metric tensor. In two dimensions, the curvature
tensor is completely determined by the Ricci scalar and the metric tensor.
The spacetime metric is determined, in terms of its sources, by Einstein’s field equation

Rµν −
R

2
gµν + Λ gµν = κTµν .

The curvature quantity

Gµν = Rµν −
R

2
gµν

is called the Einstein tensor field, Λ is called the cosmological constant, and κ is called Einstein’s

gravitational constant.
Based on cosmological observations we believe that we live in a universe with a positive cos-
mological constant that is of the order of Λ ≈ 10−52m−2, as we will discuss in detail later.
Einstein’s gravitational constant is related to Newton’s gravitational constant G according to
κ = 8πG/c2 as follows from the Newtonian limit of Einstein’s theory.
The energy-momentum tensor Tµν on the right-hand side of the field equation depends on the
matter model that is used for the source of the gravitational field. The most important cases
are the following.

• Vacuum: Tµν = 0
Then the field equation simplifies to Rµν = Λgµν , as can be verified by calculating the
trace of the field equation and then re-inserting the result into the field equation. The
vacuum field equation is a system of ten scalar second-order non-linear partial differential
equations for the ten independent metric coefficients gµν . The best known solutions to
Einstein’s vacuum field equation with Λ = 0 are the Schwarzschild solution and the Kerr
solution. An important solution with Λ > 0 is the deSitter metric and with Λ < 0 the
anti-deSitter metric. Both will be discussed in this course.

• Electrovacuum: Tµν = FµαFν
α − 1

4
gµνFαβF

αβ

In this case Einstein’s field equation together with Maxwell’s equations gives a system of
partial differential equations for the gµν and the electromagnetic field strength Fµν . The
best-known electrovacuum solutions without a cosmological constant are the Reissner-
Nordström solution (field outside of a charged spherically symmetric static object) and
the Kerr-Newman solution (field of a charged and rotating black hole).
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• Perfect fluid: Tµν =
(

µ +
p

c2

)

UµUν + p gµν

For solving Einstein’s field equation with a perfect-fluid source, one has to specify an
equation of state linking the pressure p to the energy density µ. Then Einstein’s equation
together with the Euler equation

(

µ+
p

c2

)

Uρ∇ρU
σ +∇τ

(

gτσ +
1

c2
U τUσ

)

= 0

gives a system of partial differential equations for the gµν , the four-velocity Uρ and the
energy density µ. Actually, the Euler equation is a consequence of the energy conservation
law ∇µT

µν = 0 which follows from Einstein’s field equation. So in the case of a perfect
fluid Einstein’s field equation determines the equation of motion of the matter source.

Perfect fluid solutions without a cosmological constant are of interest as models for the in-
terior of stars. The interior Schwarzschild solution is an example; it describes a spherically
symmetric static star with constant density µ. In this course we will intensively study the
socalled Friedmann solutions, which are the simplest cosmological models of our universe.
They are perfect fluid solutions, possibly with a cosmological constant. If time permits, we
will also consider some other cosmological solutions, e.g. the rather pathological Goedel
universe (Kurt Goedel’s birthday present to Einstein on occasion of his 70th birthday in
1949) which is a dust solution (p = 0) with a cosmological constant, and maybe also some
cosmological models that are homogeneous but not isotropic (Bianchi models).

2. Homogeneous and isotropic cosmology

In Section 2.1 we give a characterisation of spacetime models that are spatially homogeneous and
isotropic and we discuss their properties. This consideration is purely kinematic, i.e., Einstein’s
field equation is not used. In the subsequent section we will then solve the field equation within
the class of spatially homogeneous and isotropic spacetimes, and we will discuss some solutions
and their properties in detail.

2.1 Robertson-Walker spacetimes

By definition, a Robertson-
Walker spacetime is a general-
relativistic spacetime that can
be sliced into 3-dimensional
spacelike submanifolds that are
homogeneous and isotropic, see
picture. The general form of such
metrics was determined indepen-
dently by H. P. Robertson and
by A. Walker in 1935.

M

homogeneous
and isotropic
Riemannian
submanifolds

7



The first step is to determine the geometry of the time slices. The assumption that they
are spacelike means that they inherit from the spacetime metric a Riemannian (i.e., positive
definite) metric. So the task is to determine all 3-dimensional Riemannian manifolds that are
homogeneous and isotropic. Here “homogeneous” means that there are no distinguished points
and “isotropic” means that there are no distinguished directions.
We consider a 3-dimensional manifold with a Riemannian metric gikdx

idxk whose curvature
tensor we denote by Ri

jkl. (Recall our convention of having latin indices running from 1 to 3.)
As Ri

jk
l = −Ri

kj
l and Ri

jk
l = −Rl

jk
i, we can define at each point a linear map from the space

of antisymmetric second-rank tensors Λ2 =
{

ωlidx
l ⊗ dxi

∣

∣ωli = −ωil

}

onto itself by

Λ2 −→ Λ2

ωlidx
l ⊗ dxi 7−→ ω̂jkdx

j ⊗ dxk = Ri
jk

lωlidx
j ⊗ dxk .

Owing to the first Bianchi identity, this linear map is symmetric (with respect to the positive
definite scalar product induced by the metric), so it has three linearly independent eigenvectors.
If the eigenvalues would be different from each other, the eigenvectors would define distinguished
directions in the tangent space, in contradiction to the assumption of isotropy. So the three
eigenvalues must be equal, i.e, the linear map must be a multiple of the identity map,

Ri
jk

l = K
(

δikδ
l
j − δijδ

l
k

)

(⋆)

with a scalar factor K. (Note that
(

δikδ
l
j − δijδ

l
k

)

ωli = ωjk − ωkj = 2ωjk, i.e., that the antisym-
metrised product of Kroneckers acts, indeed, as the identity operator on antisymmertric tensor
fields, up to a factor 2 that was absorbed in the K.) The condition of homogeneity requires
K to be a constant. It is common to write (⋆) in terms of the covariant components of the
curvature tensor. Then the conditions of homogeneity and isotropy require that

Rijkl = K
(

gikglj − gijglk
)

, K = constant.

One says that a Riemannian manifold is a “space of constant curvature” if this condition holds.
It is interesting to note that in all dimensions n 6= 2, and thus in particular in the case n = 3
considered here, K is necessarily a constant if the condition of isotropy holds at every point,
i.e., the condition of homogeneity need not be required separately. To prove this, it is sufficient
to apply the second Bianchi identity to the curvature tensor from (⋆) and to contract two pairs
of indices away; this results in (n− 2)∇iK = 0.

We have demonstrated that homogeneous and isotropic Riemannian manifolds are necessarily
spaces of constant curvature. One can prove that, conversely, the spaces of constant curvature
are precisely those Riemannian manifolds for which the conditions of homogeneity and isotropy
hold locally. More precisely, one can prove the following:

• Any two Riemannian manifolds of constant curvature with the same dimension and the
same K are locally isometric. In other words, locally there is only one such geometry for
each K. The global structure is not uniquely determined. Spaces of constant curvature
that are geodesically complete are called space forms. For low dimensions, the space forms
have been classified.
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• A space of constant curvature is a space with the maximal number of local symmetries.
Local symmetries are characterised in terms of Killing vector fields, see Worksheet 2. By
definition, a vector field K = Ki∂i is a Killing vector field if the Lie derivative of the metric
in the direction of K vanishes. If K has no zeros, this is equivalent to saying that there is a
coordinate system in which K = ∂1 and the metric coefficients are independent of x1. One
can show that the linear combination of two Killing vector fields with constant coefficients
is again a Killing vector field, i.e., that the Killing vector fields form a vector space over
the real numbers. One can further show that the dimension of this vector space for an
n-dimensional manifold cannot be bigger than n(n+1)/2. So on a 3-dimensional manifold
there are at most six linearly independent Killing vector fields. The maximal number is
just reached in the case of homogeneity and isotropy where we have 3 translations and 3
rotations.

So the possible time-slices in a Robertson-Walker spacetime are 3-dimensional Riemannian
manifolds of constant curvature. As a pre-exercise, to get a better geometric intuition, we
consider the 2-dimensional Riemannian manifolds of constant curvature. In this case we use
capital indices, taking the values 1 and 2, and we write the curvature tensor as

RABCD = K
(

gACgBD − gABgCD

)

, K = constant.

This implies that the Ricci tensor is

RCD = RA
ACD = K

(

gCD − 2gCD

)

= −KgCD

and the Ricci scalar is
R = −2K .

So with our conventions the Ricci scalar is negative for a space of positive constant curvature
and vice versa. We consider the cases K = 0, K > 0 and K < 0 separately.

K = 0 : The condition K = 0 means that RABCD = 0 which is certainly true for the Euclidean
plane.

g = dx2 + dy2 .

If we transform to polar coordinates,

x = aχ cosϕ ,

y = aχ sinϕ ,

where a is a constant with the dimension of a length and χ is a dimensionless radial
coordinate, the metric reads

g = a2
(

dχ2 + χ2dϕ2
)

.

All other 2-dimensional Riemannian manifolds of constant curvature K = 0 are locally
isometric to the Euclidean plane. The space forms, i.e., the geodesically complete cases,
can be constructed as quotient manifolds from the plane, i.e., by identifying points on the
plane. In addition to the plane itself, there are four of them: The cylinder, the torus, the
Moebius strip and the Klein bottle.
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K > 0 : An obvious candidate for a space of constant positive curvature is the sphere of radius a
which is defined as a submanifold of Euclidean 3-space by the equation X2+Y 2+Z2 = a2.
We can parametrise the sphere by angle coordinates (χ, ϕ) via

X = a cosϕ sinχ ,

Y = a sinϕ sinχ ,

Z = a cosχ .

Then we have on the sphere

dX = a cosϕ cosχ dχ−a sinϕ sinχ dϕ ,

dY = a sinϕ cosχ dχ+a cosϕ sinχ dϕ ,

dZ = −a sinχ dχ .

X

Y

Z

Inserting these results into the expression dX2+dY 2+dZ2 demonstrates that the Euclidean
3-metric induces on the sphere the metric

g = a2
(

dχ2 + sin2χ dϕ2
)

.

By calculating the Christoffel symbols and, thereupon, the Riemann tensor one easily
verifies that the condition of constant curvature is indeed satisfied with K = 1/a2.

Again, all other 2-dimensional spaces of constant curvature K > 0 are locally isometric
to the sphere. The only other space form is 2-dimensional projective space which results
from the sphere by identifying antipodal points. 2-dimensional projective space cannot be
globally embedded into Euclidean 3-space.

K < 0 : Guided by the case K > 0, one tries a similar construction but now in a way that the
curvature comes out as K = −1/a2. This requires to change some signs in the signature
of the ambient space and of the embedding formula: The manifold is now given by the
equation X2+Y 2−T 2 = −a2 and the ambient space has Minkowskian signature, i.e., the
metric is dX2 + dY 2 − dT 2. This defines a hyperboloid which can be parametrised as

X = a cosϕ sinhχ ,

Y = a sinϕ sinhχ ,

T = a coshχ .

Then we have on the hyperboloid

dX = a cosϕ coshχ dχ−a sinϕ sinhχ dϕ ,

dY = a sinϕ coshχ dχ+a cosϕ sinhχ dϕ ,

dZ = a sinhχ dχ .

X

Y

T
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Inserting these results into the expression dX2 + dY 2 − dZ2 demonstrates that the 3-
dimensional Minkowski metric induces on the hyperboloid the metric

g = a2
(

dχ2 + sinh2χ dϕ2
)

.

Again, the Christoffel symbols and the components of the curvature tensor are readily
calculated and one finds that, indeed, this is a space of constant curvature with K =
−1/a2.

The space of constant negative curvature is known as hyperbolic space, as Lobachevsky

space or as Lobachevsky-Bolyai space, named after Nikolai Lobachevsky and Jánós Bolyai
who independently discovered this geometry in the 1820s. In hyperbolic space, the sum of
the angles in a geodesic triangle is smaller than π while on a sphere it is bigger. Hyperbolic
geometry satisfies all axioms of Euclid, i.e., all axioms of flat geometry, with the exception
of the parallel axiom.

In addition to the isometric embedding into 3-dimensional Minkowski space, hyperbolic
space can be represented in various different ways. However, it cannot be isometrically
embedded into 3-dimensional Euclidean space. (A non-global embedding is possible in the
form of a surface of revolution generated by a tractrix.)

Other space forms of negative curvature can be constructed as quotient manifolds from
the hyperboloid in Minkowski spacetime.

We summarise our results in the following way: A 2-dimensional Riemannian manifold of con-
stant curvature K is given by the metric

g = a2
(

dχ2 + η(χ)2dϕ2
)

, η(χ) =























sinχ for K =
1

a2
> 0 ,

χ forK = 0 ,

sinhχ forK = −
1

a2
< 0 .

The transition from 2 to 3 dimensions simply requires the circle parametrised by ϕ to be re-
placed with a sphere parametrised by standard spherical coordinates (ϑ, ϕ), i.e., a 3-dimensional
Riemannian manifold of constant curvature K is given by the metric

g = a2
(

dχ2 + η(χ)2{dϑ2 + sin2ϑ dϕ2}
)

, η(χ) =























sinχ for K =
1

a2
> 0 ,

χ forK = 0 ,

sinhχ forK = −
1

a2
< 0 .

One cannot visualise a 3-dimensional space of constant curvature, except in the case K = 0,
but one can visualise the equatorial section ϑ = π/2 which is a 2-dimensional space of constant
curvature.
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There are two alternative coordinate representations of spaces of constant curvature. Firstly,
we can make a coordinate transformation (χ, ϑ, ϕ) 7→ (η, ϑ, ϕ) with η(χ) from above. For K > 0
we find

η = sinχ , dη = cosχ dχ =
√

1− η2 dχ ,

for K = 0 we simply have
η = χ , dη = dχ

and for K < 0
η = sinhχ , dη = coshχ dχ =

√

1 + η2 dχ.

The three cases can be written in a unified way as

dχ =
dη

√

1− k η2
where







k = 1 ifK > 0 ,
k = 0 ifK = 0 ,
k = −1 ifK < 0 ,

so the metric becomes

g = a2
(

dη2

1− kη2
+ η2

{

dϑ2 + sin2ϑ dϕ2
}

)

where k = 1, 0 or −1.

Secondly, another coordinate transformation (η, ϑ, ϕ) 7→ (ρ, ϑϕ) can be found such that the
metric takes the form

g =
a2
(

dρ2 + ρ2
{

dϑ2 + sin2ϑ dϕ2
}

)

(

1 +
k

4
ρ2
)2

.

This transformation and the geometric meaning of the coordinate ρ will be discussed in Work-
sheet 2. All three coordinate representations of spaces of constant curvature are frequently used
for applications in cosmology.

Now we know the 3-dimensional homogeneous and isotropic Riemannian manifolds. This was
the first step for constructing Robertson-Walker spacetimes. The second step is adding the time
dimension.
As we assume that the spacetime admits a
slicing into 3-dimensional Riemannian sub-
manifolds of constant curvature, there is
a distinguished timelike direction at each
point, viz., the direction perpendicular to the
slices. These timelike directions have as their
integral curves a distinguished family of ob-
server worldlines. Along these worldlines we
can use proper time as a parametrisation.
Homogeneity requires that the proper time
that elapses between any two fixed sclices
is the same along all worldlines perpendic-
ular to the slices. Hence, the proper time
parametrisatiom defines a time coordinate t
on the spacetime such that the slices become
submanifolds {t = constant}. Then the met-
ric reads

t = t3

t = t2

t = t1
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g = −c2dt2 + a(t)2
(

dχ2 + η(χ)2{dϑ2 + sin2ϑ dϕ2}
)

=

= −c2dt2 + a(t)2
(

dη2

1− kη2
+ η2

{

dϑ2 + sin2ϑ dϕ2
}

)

=

= −c2dt2 +
a(t)2

(

dρ2 + ρ2
{

dϑ2 + sin2ϑ dϕ2
}

)

(

1 +
k

4
ρ2
)2

which is the general form of a Robertson-Walker metric. We have no mixed metric components,
g0i = 0, because the t-lines are perpendicular to the {t = constant}-sclices. The coefficient in
front of dt2 must be −c2 because t is supposed to be proper time on the worldlines perpendicular
to the slices. And the spatial part is a metric of constant curvature with a scale factor that may
depend on t, indicating that the universe may expand or contract.

A Robertson-Walker universe is locally (but not globally) fixed by the curvature parameter k
and by the scale factor a(t). There is a freedom in choosing the topology. We say that for k = 1
the natural topology is a 3-sphere while for k = 0 and k = −1 it is R3. However, we are free to
form quotient manifolds, e.g., to consider a Robertson-Walker universe with k = 0 that has a
toroidal spatial topology. Therefore it is misleading to call the universes with k > 0 “closed”
and the ones with k ≤ 0 “open”. By the same token, the time slices of a Robertson-Walker
universe may have a finite volume (and be geodesically complete) even if k = 0 or k = −1.

If the scale factor takes the value 0, the metric degenerates. In such cases the function a has to
be restricted to a maximal interval on which a(t) 6= 0. As only a(t)2 matters, we may choose
a(t) > 0 without loss of generality. So a is a map of the form

a : ] ti, tf [−→ ] 0,∞ [

t 7−→ a(t) .

Here either ti = −∞ or ti is a finite value with a(t) → 0 for t → ti and, analogously, either
tf = ∞ or tf is a finite value with a(t) → 0 for t → tf . The index i stands for “initial” and the
index f stands for “final”.

Models with ti 6= −∞ are called big bang models while models with tf 6= ∞ are called big

crunch models. Models with a(t) = constant are called steady state models.

The t-lines, i.e., the timelike curves perpendicular to the slices of constant curvature, are called
the worldlines of the standard observers. In particular in expanding Robertson-Walker models
it is also common to call the flow of the vector field ∂t the Hubble flow.

A (trivial) example of a Robertson-Walker spacetime is Minkowski spacetime in inertial coor-
dinates. In this case k = 0 and a = constant. Of course, from one such slicing of Minkowski
spacetime into flat spacelike hyperplanes we can change to another one by a Lorentz boost,
see the picture on the next page. So this example demonstrates that the family of standard
observers in a Robertson-Walker spacetime is not necessarily unique.
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x̃1

x̃0

x̃1

x̃0

Another (less trivial) example of a Robertson-Walker universe is the Milne model which was
suggested, as a special-relativistic model of our universe, by E. Milne in 1935. It has hyperbolic
spatial geometry, k = −1, and a scale factor a(t) = ct.

The Milne model can be isometrically embedded into
Minkowski spacetime where it covers the future light-
cone of an event, see picture on the right. Therefore,
it is a vacuum solution of Einstein’s field equation with
Λ = 0 and thus not a realistic model of our universe.
The slices t = constant are 3-dimensional hyperboloids
(red) and the worldlines of the standard observers are
straight lines (blue). This model starts at ti = 0 with
a big bang in the sense that at this time all standard
observers were compressed into one point, but this is
of course neither a curvature singularity nor a point of
infinite matter density (if Einstein’s field equation is
considered).

x̃1

x̃0

The geodesics in a Robertson-Walker spacetime are the solutions to the Euler-Lagrange equa-
tions

d

ds

(∂L
(

x, ẋ
)

∂ẋµ

)

=
∂L

(

x, ẋ
)

∂xµ

with the Lagrangian

L
(

x, ẋ
)

=
1

2
gµν ẋ

µẋν =
1

2

(

− c2ṫ2 + a(t)2
{

χ̇2 + η(χ)2
(

ϑ̇2 + sin2ϑ ϕ̇2
)

})

where the overdot means derivative with respect to the affine parameter s. The four components
of the Euler-Lagrange equation read

d

ds

(

− c2ṫ
)

= a(t)
da(t)

dt

{

χ̇2 + η(χ)2
(

ϑ̇2 + sin2ϑ ϕ̇2
)

}

, (G1)

d

ds

(

a(t)2χ̇
)

= a(t)2η(χ)
dη(χ)

dχ

(

ϑ̇2 + sin2ϑ ϕ̇2
)

, (G2)
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d

ds

(

a(t)2η(χ)2ϑ̇
)

= a(t)2η(χ)2sinϑ cos ϑ ϕ̇2 , (G3)

d

ds

(

a(t)2η(χ)2sin2ϑϕ̇
)

= 0 . (G4)

From (G3) and (G4) we read that, if we choose initial conditions ϑ̇(so) = 0 and ϕ̇(so) = 0,
then the solution satisfies ϑ̇(s) = 0 and ϕ̇(s) = 0 for all s. In other words, a geodesic remains
radial if it starts in the radial direction. Of course, this is an obvious consequence of the
isotropy. Moreover, the spacetime is spatially homogeneous. Therefore, if we want to know all
the geodesics issuing from a certain event, we may choose the coordinate system such that this
event is on the worldline χ = 0, i.e., at the spatial origin of the coordinate system. Combining
these two observations tells us that it is sufficient to consider radial geodesics, ϑ̇ and ϕ̇ = 0, with
the initial condition

(

t(so) = to, χ(so) = 0
)

. Then (G3) and (G4) are automatically satisfied.
We analyse the remaining equations for the case of timelike and lightlike geodesics separately.

(a) Timelike geodesics: Then we can choose proper time as the affine parameter, s = τ , hence

−c2ṫ2 + a(t)2χ̇2 = −c2 .

As ϑ̇ = 0 and ϕ̇ = 0, equation (G2) requires

d

dτ

(

a(t)2χ̇
)

= 0 , a(t)2χ̇ = A .

The constant of motion A determines the initial velocity with respect to the standard
observers. Equation (G1) will not be needed in the following because it yields no additional
information. Inserting the second equation into the first results in

−c2
ṫ2

χ̇2
+ a(t)2 =

−c2a(t)4

A2
,

c2
ṫ2

χ̇2
= a(t)2

(

1 +
c2a(t)2

A2

)

,

A2c2
(

dt

dχ

)2

= a(t)2
(

A2 + c2a(t)2
)

,

Ac
dt

dχ
= ±a(t)

√

A2 + c2a(t)2 ,

dχ =
±Ac dt

a(t)
√

A2 + c2a(t)2
.

If we integrate this equation with the initial condition
(

t(τo) = to, χ(τo) = 0
)

, we find

χ = ±

∫ t

to

Ac dt̃

a
(

t̃
)
√

A2 + c2a(t̃)2
.

Note that χ takes only positive values.Without loss of generality we may assume that
A ≥ 0. Then we have to choose the plus sign for times t > to and the minus sign for
times t < to. For A = 0 one gets the t-line which we have chosen as the spatial origin.
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As we can choose any t-line, we have thus proven that all the standard observers are
freely falling, i.e., that they stay on their worldlines without a thrust. Of course, this
is an obvious consequence of the isotropy: If the standard observers were non-geodesic,
they had a non-vanishing 4-acceleration and this 4-acceleration would distinguish a spatial
direction.

Note that in a spatially compact universe χ cannot take all positive values. This happens,
e.g., in a Robertson-Walker universe with k = 1 and the spatial topology of a 3-sphere,
where χ is restricted to values between 0 and π. In this case a timelike geodesic with
A 6= 0 may return to the same point in space (i.e., to the same standard observer) from
where it started. An example of this kind will be treated in Worksheet 3.

(b) Lightlike geodesics: A lightlike radial curve must satisfy

−c2ṫ2 + a(t)2χ̇2 = 0 .

This equation alone already determines the paths of lightlike geodesics, i.e., we need neither
(G1) nor (G2). The reason is, again, obvious from the isotropy: Any radial lightlike curve
is necessarily a geodesic (up to parametrisation). We find

c2
( dt

dχ

)2

= c2
ṫ2

χ̇2
= a(t)2 , dχ =

± c dt

a(t)
,

and, upon integration with the chosen initial condition,

χ = ±

∫ t

to

c dt̃

a
(

t̃
) .

As before, the plus sign must be chosen for t > to and the minus sign for t < to.

The picture illustrates radial lightlike
geodesics that issue into the future (blue)
and radial lightlike geodesics that issue
into the past (red) for a case where χ is
restricted to an interval 0 < χ < χmax (for
a spherical universe χmax = π) and where
the scale factor restricts the t coordinate
to a finite interval ti < t < tf . Note that
every point in this diagram represents a
sphere because the ϑ and ϕ coorrdinates
are not shown. In a non-spherical but
spatially compact universe χmax may de-
pend on ϑ and ϕ; this happens, e.g., in
a Robertson-Walker universe with k = 0
and a toroidal topology.

χ

t

χmax

to

ti

tf
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We will now discuss three observable features of Robertson-Walker universes all of which are
related to lightlike geodesics: The redshift, the horizons and various distance measures.

(i) The redshift: The redshift can be defined, for any pair of worldlines parametrised by
proper time in any spacetime model, in the following way. Assume that from one of the
worldlines light rays are emitted at proper times labelled te and that they are received on
the other worldline at proper times labelled to. The indices e and o stand for “emitter”
and “observer”, respectively. Then we can calculate the frequency ratio

dto
dte

= lim
∆te→0

∆to
∆te

=
ωe

ωo

=
λo

λe

where we have used that a process with period ∆te has frequency ωe = 2π/∆te and
similarly for ∆to and ωo. Also, for light propagating in vacuo we can use the dispersion
relation ωλ = c to convert a frequency ω into a wave-length λ. The limit ∆te → 0 is
necessary to make the result unique. Astronomers define the redshift z as the change of
wave-length divided by the emitted wave-length, i.e.

z =
λo − λe

λe

=
dto
dte

− 1 .

The figure illustrates this situation for the case that both the emitter and the observer are
standard observers in a Robertson-Walker spacetime. Without loss of generality, we choose
the coordinate system such that the observer is at the origin, χo = 0, while the emitter is
at a certain radius coordinate χe. Here it is important to recall that the time coordinate
t gives proper time for the standard observers, i.e., ωe = 2π/∆te and ωo = 2π/∆to are,
indeed, the frequencies as measured with standard clocks.

χ

t

χe

te

te +∆te

to

t0 +∆to
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Differentiating the equation for lightlike geodesics

χe = −

∫ te

to

c dt

a(t)
=

∫ to

te

c dt

a(t)

with respect to te yields

0 =
c

a(to)

dto
dte

−
c

a(te)
,

dto
dte

=
a(to)

a(te)
,

hence

z =
a(to)

a(te)
− 1 .

This is the redshift law for standard observers in a Robertson-Walker universe. If the
observer and/or the emitter is not a standard observer, one has to apply additional Doppler
factors that are determined by the velocity relative to a standard observer.

With a Taylor expansion

a(te) = a(to) +
da

dt

(

to)(te − to) +
1

2

d2a

dt2
(

to)(te − to)
2 + . . .

we find

z =
a(to)− a(te)

a(te)
=

−
da

dt

(

to)(te − to)−
1

2

d2a

dt2
(

to)(te − to)
2 + . . .

a(to) +
da

dt

(

to)(te − to) + . . .

=

=

da

dt

(

to)(to − te)−
1

2

d2a

dt2
(

to)(t0 − te)
2 + . . .

a(to)
(

1−
da

dt

(

to)
(to − te)

a(to)
+ . . .

)

=

=
(da

dt

(

to)(to − te)−
1

2

d2a

dt2
(

to)(t0 − te)
2 + . . .

) 1

a(to)

(

1 +
da

dt

(

to)
(to − te)

a(to)
+ . . .

)

=

=
1

a(to)

da

dt

(

to)(to − te) +

(

1

a(to)2

(da

dt

(

to)
)2

−
1

2a(to)

d2a

dt2
(

to)

)

(

to − te
)2

+ . . .

It is common to define the Hubble constant

H(to) :=
1

a(to)

da

dt

(

to)

and the deceleration parameter

q(to) :=
−a(to)

(da

dt

(

to
)

)2

d2a

dt2
(

to) .

Then the expression for the redshift becomes

z = H(to)(to − te) +H(to)
2

(

1 +
q(to)

2

)

(to − te)
2 + . . .
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The travel time to − te can be viewed as a measure for the distance (if multiplied with c,
for dimensional reasons). We will discuss other distance measures below in this section
and we will see that all of them coincide up to first order in to − te. So we may say that
the relation between distance and redshift is unambiguously determined by the Hubble
constant to within a linear approximation. Note that the Hubble “constant” and the
deceleration parameter depend on to. We will discuss later in detail that we believe to live
in a universe where now (at time to) the Hubble constant is positive and the deceleration
parameter is negative, i.e., in a universe that is expanding and where the expansion rate
is even increasing.

(ii) Horizons: There are two types of horizons in a Robertson-Walker universe, known as
“particle horizons” and “event horizons”. Here the word “particle” is used as synonymous
with “standard observer”. These notions are defined in the following way.

Fix an event po. Then the particle horizon of po separates particles that can be seen at po
from those that cannot.

Fix a particle (i.e., a standard observer) Po. Then the event horizon of Po separates events
that can be seen by Po from those that cannot.

Here po is a point in the spacetime while Po is a worldline. Always keep in mind that
events have particle horizons whereas particles have event horizons.

It is now our goal to give a mathematical criterion for the existence or non-existence
of horizons. To that end we perform a coordinate transformation where only the time
coordinate is transformed, (t, χ, ϑ, ϕ) 7→ (T, χ, ϑ, ϕ), defined by

T =

∫ t

to

dt̃

a
(

t̃
)

where to is a constant that can be chosen at will, except for the restriction ti < to < tf .
Then to corresponds to To = 0 while ti and tf correspond to

Ti =

∫ ti

to

dt̃

a
(

t̃
) = −

∫ to

ti

dt̃

a
(

t̃
) < 0

and

Tf =

∫ tf

to

dt̃

a
(

t̃
) > 0 ,

respectively. If we express the scale factor as a function of T ,

a(t) = â(T ) ,

the metric reads

g = â(T )2
(

− c2dT 2 + dχ2 + η(χ)2
{

dϑ2 + sin2ϑ dϕ2
}

)

.

Multiplying a metric with a positive function is called a conformal transformation. We
see that T is proper time along the worldlines of the standard observers with respect to
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the conformally transformed metric â(T )−2g; therefore, T is called the conformal time.
We see that the coefficients of the metric â(T )−2g are independent of T , i.e., that this
metric is static. The given representation thus shows that every Robertson-Walker metric
is conformally static, i.e., conformal to a static metric.

If we use the conformal time coordinate T instead of t, the equation for lightlike radial
geodesics,

χ = ±

∫ t

to

c dt̃

a(t̃)
,

reads
χ = ± c T ,

i.e., in a (χ, c T )-diagram the radial light rays are represented by lines under 45 degrees.
Note that c T is a dimensionless time coordinate, just as χ is a dimensionless radius
coordinate.

It is now obvious that the following existence criteria for horizons are true, see the figure
below.

Particle horizons exist if and only if c |Ti| < χmax.

Event horizons exist if and only if c Tf < χmax.

In particular, horizons do not exist if Ti = −∞ and Tf = ∞, i.e., if the function T 7→ â(T )
is defined on all of R.

The picture shows the situation for a case where Ti, Tf and χmax are finite. The past
light-cone of the event po is shown in red, so the particle horizon of po is situated at the
radius coordinate χh. The event horizon of the particle Po is shown in blue.

χ

cT

χh χmax

cTi

cTf

po

Po
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(iii) Distance measures
There are various ways of assigning a distance to a pair of standard observers. We will
discuss several of them, interpreting one of the standard observers as the emitter of light
and the other as the observer. As the scale factor depends on time, each of the distance
measures has to be viewed as a function of the observation time to. We choose the observer
as the origin of the spatial coordinate system unless otherwise stated. Astronomers prefer
to use the redshift z as an independent variable because it is directly measurable (if
spectral lines can be identified). Following this practice, we write each of the distance
measures as a power series in terms of z (“Kristian-Sachs series”). We will see that all
distance measures coincide to within linear order.

– Distance by travel time of light

If a light ray starts at time te at the emitter and arrives at time to at the observer,
we can use the expression

DT = c(to − te)

as a measure for the distance between emitter and observer. DT is not a directly
measurable quantity because te is not known. However, in some cases te and thus
DT can be estimated.

With the series expansion for the redshift from p.18,

z = H(to)(to − te) +H(to)
2

(

1 +
q(to)

2

)

(to − te)
2 + . . . ,

we can express DT as a power series in terms of z. For that purpose, we write

to − te = αz + βz2 + . . .

and insert this expression into the series expansion for the redshift,

z = H(to)
(

α z + β z2
)

+H(to)
2

(

1 +
q(to)

2

)

α2z2 + . . . =

= H(to)α z +
{

H(to)β +H(to)
2

(

1 +
q(to)

2

)

α2

}

z2 + . . .

Comparison of coefficients yields

1 = H(to)α , 0 = H(to)
{

β +H(to)
(

1 +
q(to)

2

)

α2

}

hence

α =
1

H(to)
, β = −

1

H(to)

(

1 +
q(to)

2

)

.

This gives the expansion for DT = c(to − te) as a power series in terms of z,

DT =
c z

H(to)
−

(

1 +
q(to)

2

) c z2

H(to)
+ . . .
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– Proper distance

From a mathematical point of view, the most natural way of measuring the distance
between two standard observers (emitter and observer) at time to is the proper length
of the radial line that connects them in the hypersurface t = to. From the form of
the metric

g = −c2dt2 + a(t)2
(

dχ2 + η(χ)2(dϑ2 + sin2ϑ dϕ2)
)

,

we read that along a radial line (t = to, ϑ = constant and ϕ = constant) proper
length ℓ is given by

dℓ2 = a(to)
2dχ2 ,

so the proper distance between an emitter at χe = χ and an observer at χo = 0 is

Dp =

∫ χ

0

a(to)dχ = a(to)χ .

From this expression we find a new version of the Hubble law,

dDp

dt

(

to
)

=
da

dt

(

to
)

χ =
da

dt

(

to
) Dp

a(to)
= H(to)Dp .

We may interpret this formula
as saying that “the radial veloc-
ity of a distant source is propor-
tional to its distance, with the
Hubble constant as the factor of
proportionality”. This formula
is exact, i.e., not only valid to
within a linear approximation.
In this sense, it is more univer-
sal than the linear relation be-
tween travel time and redshift
which is true only if terms of
higher-order in the travel time
are neglected. On the other
hand, the “radial velocity” and
the “distance” in this formula
are purely theoretical quantities

χ

t

Dpt0

te

that are not related to observations: The proper distance Dp is based on connecting
two events in a hypersurface t = to, i.e., at equal times; no signal can realise this
connecting line. Moreover, the “radial velocity” dDp/dt does not give the velocity of
the emitter relative to its neighbourhood but rather the change of a mathematically
defined distance between emitter and observer. Therefore, it is no contradiction to
the rules of relativity that this “radial velocity” may very well be bigger than c. In
view of the fact that the Hubble constant relates a distance to a velocity it is usually
given in units of (km/s)/Mpc. Of course, this is the same as an inverse time.
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As in the case of the distance by travel time of light, we may write Dp as a series
in terms of the redshift z. In this case we need the Taylor expansion of χ using the
equation for a radial light ray from p. 16,

χ =

∫ to

te

c dt

a(t)
=

∫ t0

te

c dt

a(to) +
da

dt

(

to
)

(t− to) + . . .

=

=

∫ t0

te

c dt

a(to)
(

1 +H(to)(t− to) + . . .
) =

=
c

a(to)

∫ to

te

(

1−H(to)(t− to) + . . .
)

dt =

=
c

a(to)

{

to − te −H(to)
(t2o
2
−

t2e
2
− to

(

to − te
)

)

+ . . .
}

=

=
c

a(to)

(

to − te
)

+
c

2a(to)
H(to)(to − te)

2 + . . .

Inserting the Taylor expansion of to − te in terms of z yields

Dp = a(to)χ = c
{ z

H(to)
−

(

1 +
q(to)

2

) z2

H(to)

}

+
c z2

2H(to)
+ · · · =

=
c z

H(to)
−

c

2H(to)

(

1 + q(to)
)

z2 + . . .

– Area distance (=angular diameter distance)

In Newtonian physics, which is based on the assumption that Euclidean geometry
holds in our 3-space, the apparent size of an object is inverse proportional to the
square of its distance. If we have “standard rulers” (i.e., objects whose true size we
know) at our disposal, we can determine their distance directly from measuring their
apparent size in the sky. In a curved geometry, we can define a distance measure
in such a way that this relation still holds. This can be done either by comparing
the true cross-sectional area of the object to the solid angle it suspends in the sky,
or by comparing the true length of a particular diameter of the object to the angle
this diameter suspends in the sky. The first distance measure is known as the “area
distance” and the second as the “angular diameter distance”. In a Robertson-Walker
universe the two notions coincide because of the isotropy. Moreover, isotropy implies
that it suffices to consider the area of spheres about the observer. So we choose the
observer as the spatial origin, as before, and we consider the past light-cone of an
observation event at time to. For any earlier time te, the intersection of this light-cone
with the hypersurface t = te is a sphere of coordinate radius

χ =

∫ to

te

c dt

a(t)
.

23



χ

t

t0

te

From the metric we read that the area of this sphere is 4πa(te)
2η(χ)2. The area

distance DA is defined by equating this expression to the Euclidean expression for
the area of a sphere,

4πa(te)
2η(χ)2 = 4πD2

A ,

hence
DA = a(te)η(χ) .

As η(χ) = sinχ, η(χ) = χ or η(χ) = sinhχ, we have in any case η(χ) = χ + O(χ3),
so we may write

DA = a(te)
(

χ+O(χ3)
)

.

With the Taylor series for χ from above this can be rewritten as

DA =
a(te)

a(to)
a(to)

(

c

a(to)

(

to − te
)

+
cH(to)

2a(to)
(to − te)

2 + . . .

)

=
1

(1 + z)

(

DT +
H(to)

2 c
D2

T + . . .

)

Inserting the Taylor series for DT yields

DA =
(

1− z + . . .
)

(

{ c z

H(to)
−

(

1 +
q(to)

2

) c z2

H(to)
+ . . .

}

+
H(to)

2

c z2

H(to)2
+ . . .

)

=
c z

H(to)
−
(

3 + q(to)
) c z2

2H(to)
+ . . .

If we had standard rulers available distributed over the universe, we could measure
DA and z for each of them and then determine H(to) and q(to) from this formula.
Actually, we have better “standard candles” than “standard rulers”, i.e., it is more
promising to consider the luminosity of a light source rather than its size, see the
next item.
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– Luminosity distance
In Newtonian physics, not only the apparent size but also the apparent luminosity of a
light source falls off with the square of the distance. So if we have “standard candles”
(i.e., objects whose true luminosity we know) at our disposal, we can determine their
distance directly from measuring their apparent luminosity. The apparent luminosity
is given by the energy flux arriving at the observer. Astronomers use a logarithmic
scale and express the energy flux in magnitudes.
In analogy to the area distance, which was defined in a way that it is related to the
true size of a light source by the same formula as in the Newtonian (i.e., Euclidean)
case, we can define a luminosity distance in a way that it is related to the true
luminosity by the Newtonian formula. In a Robertson-Walker universe, we may again
take advantage of the isotropy and consider the future light-cone of an emission event
at time te. In this case it is convenient to place the emitter in the spatial origin,
χe = 0, and to have the observer at a radius coordinate χo = χ. Then for any
observation time to > te, the intersection of the considered future light-cone with the
hypersurface t = to has area 4πa(to)

2η(χ)2. We assume that the emitter sends photon
isotropically into all spatial directions. If the apparent luminosity were measured in
terms of a number flux of photons, the desired distance measure would be given by
the equation

4πa(to)
2η(χ)2 = 4πD̃2

L .

χ

t

to

te

One calls D̃L the corrected luminosity distance. Actually, the apparent luminosity is
not given by the number flux of photons but rather by the energy flux. The latter
differs from the first by a redshift factor, because the energy of a photon undergoes
a redshift on its way from the emitter to the observer. Therefore, one defines the
(uncorrected) luminosity distance DL by the equation

DL = (1 + z)D̃L = a(to)(1 + z)η(χ) .
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This is related to the energy flux F at the observer by the formula

F =
L

4πD2

L

where L is the true luminosity of the source. (One usually considers the luminosity in-
tegrated over all frequencies which is called the bolometric luminosity.) Astronomers
use a logarithmic scale, as all human senses respond logarithmically to a physical
stimulus (“Weber-Fechner law”) and define the (apparent) magnitude m of a light
source such that

m = − 2.5 log
10
(L) + 2.5 log

10

(

D2

L

)

+ m0

where m0 is a constant. Note that the luminosity distance can be rewritten as

DL =
a(to)

a(te)
a(te) (1 + z) η(χ) = (1 + z)2a(te) η(χ) .

Comparison with the formula for the area distance demonstrates that

DL = (1 + z)2DA .

This relation between luminosity distance and area distance is obvious in a Robertson-
Walker universe. Actually, it is true in any spacetime, but the general proof is rather
involved and will not be given here. It is based on the so-called reciprocity theorem

for light bundles which was proven by Etherington in 1933.
With the relation between luminosity distance and area distance at hand, we can
now easily write the luminosity distance as a power series in terms of z,

DL =
(

1 + 2z + z2
)

( c z

H(to)
−

(

3 + q(to)
) c z2

2H(to)
+ . . .

)

=

=
c z

H(to)
+
(

1− q(to)
) c z2

2H(to)
+ . . .

If we have standard candles distributed in the universe, we can measure their lu-
minosity distance and their redshift and determine H(to) and q(to) from the last
equation. The best standard candles we have to date are supernovae of type Ia. In
the next chapter we will discuss in detail how they have been used to determine
q(to) in the late 1990s. The surprising result was that q(to) < 0, i.e., that the ex-
pansion of our universe is accelerating. The present value of the Hubble constant
is H(to) =

(

67.8 ± 0.77
)

(km/s)/Mpc. This, however, was not determined from the
relation between luminosity distance and redshift, which yields a considerably lower
accuracy, but rather from the cosmic background radiation, see below.

For each of the distance measures we have discussed the series expansion in terms of
z is true in any Robertson-Walker universe. The results are purely kinematical in the
sense that Einstein’s field equation has not been used. Also note that our formulas,
which include terms up to the second order, are independent of k, i.e., they hold for
universes of k = 1, k = 0 and k = −1. The third-order terms, however, do depend
on k, at least for DA and DL, because then the O(χ3) term in η(χ) = χ + O(χ3)
has to be taken into account. To date the third-order terms are beyond the reach of
observations.
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2.2 Friedmann solutions

In this section we will study those Roberston-Walker spacetimes that satisfy Einstein’s field
equation with a perfect fluid source. We will see that any Robertson-Walker spacetime can
be viewed as such a solution if we do not impose conditions on the density or the pressure.
However, in view of applications to cosmology it is of particular interest to study solutions
where certain properties of the density or the pressure have been specified. This is what one
calls the Friedmann solutions.

It is convenient to use Robertson-Walker spectimes in the coordinate representation

g = −c2dt2 + a(t)2
(

dη2

1− k η2
+ η2

(
dϑ2 + sin2ϑ dϕ2

))
.

Writing a prime for the derivative of the scale factor with respect to the time coordinate t, one
finds that the components of the Ricci tensor are

Rtt = − 3

a(t)
a′′(t) ,

Rηη =
1

(1− k η2)

(
2 k +

2

c2
a′(t)2 +

a(t)

c2
a′′(t)

)
,

Rϕϕ = sin2ϑRϑϑ = η2
(
1− k η2

)
Rηη ,

and Rµν = 0 for µ 6= ν. As a consequence, the Ricci scalar reads

R =
6

c2a(t)2

(
c2k + a′(t)2 + a(t)a′′(t)

)
.

We want to solve Einstein’s field equation with an energy-momentum tensor of a perfect fluid,

Tµν =
(
µ+

p

c2

)
UµUν + p gµν

where the fluid is supposed to be at rest with respect to the standard observers. The latter
condition requires, in combination with the normalisation condition UµUµ = −c2, that

Uµ = δµt , Uν = gνt = −c2δtν .

We interpret Uµ as the 4-velocity of the mean flow of galaxies.

For the components of the energy-momentum tensor we find

Ttt =
(
µ+

p

c2

)
(gtt)

2 + p gtt = µ c4 ,

Tηη = pgηη =
pa(t)2

1− k η2
,

Tϕϕ = sin2ϑTϑϑ = η2 (
(
1− k η2

)
sin2ϑTηη .

For µ 6= ν we have Tµν = 0.
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Einstein’s field equation

Rµν −
R

2
gµν + Λ gµν = κTµν

gives two independent component equations. The tt component yields

− 3

a(t)
a′′(t) +

3 c2

c2a(t)2

(
c2k + a′(t)2 + a(t)a′′(t)

)
− Λ c2 = κµ c4 ,

3c2k

a(t)2
+

3

a(t)2
a′(t)2 − Λ c2 = κµ c4 , (F1)

and the ηη component yields

1

(1− k η2)

(
2 k +

2

c2
a′(t)2 +

a(t)

c2
a′′(t)

)
− 3a(t)2

c2a(t)2(1− kη2)

(
c2k + a′(t)2 + a(t) a′′(t)

)
+

Λa(t)2

1− kη2
=
κ p a(t)2

1− k η2
,

− k − 1

c2
a′(t)2 − 2

a(t)

c2
a′′(t) + Λa(t)2 = κ p a(t)2 . (F2)

The ϕϕ and ϑϑ components give again (F2) and the µν components with µ 6= ν just give the
identity 0 = 0.

(F1) and (F2) are known as the (generalised) Friedmann equations. As the left-hand sides are
functions of t only, these equations require that µ and p be also functions of t only. Moreover,
we read from (F1) and (F2) that a(t), k and Λ can be chosen arbitrarily and then µ(t) and
p(t) are uniquely determined. In this sense, any Robertson-Walker spacetime solves Einstein’s
field equation with a perfect fluid source that is at rest with respect to the standard observers.
However, it is not guaranteed that pressure and density are non-negative and related by an
equation of state, i.e., by a relation of the form F (µ, p) = 0 that does not depend explicitly
on time. So what one has to discuss is the question of which Robertson-Walker spacetimes are
physically reasonable perfect fluid solutions.

(a) Vacuum solutions
Although our real universe is certainly not a vacuum spacetime, vacuum solutions to the
Friedmann equations are of some interest in cosmology as limiting cases. For vacuum,
µ = 0 and p = 0, the Friedmann equations reduce to

c2k + a′(t)2 − Λ

3
c2a(t)2 = 0 , (F1′)

−c2k − a′(t)2 − 2 a(t) a′′(t) + Λ c2 a(t)2 = 0 . (F2′)

We will first show that in the vacuum case the second Friedmann equation is redundant.
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Claim: (F2′) is a consequence of (F1′).

Proof: Differentiation of (F1′) yields

2 a′(t) a′′(t)− Λ

3
c22 a(t) a′(t) = 0 .

Multiplication with a(t)/a′(t) yields

2 a(t) a′′(t) =
Λ

3
c22 a(t)2 .

Using again (F1′), this can be rewritten as

2 a(t) a′′(t) + a′(t)2 =
Λ

3
c22 a(t)2 − c2k +

Λ

3
c2a(t)2

which is just equation (F2′).

Therefore, for the following discussion we have to consider only the first Friedmann equa-
tion (F1′). We solve this equation for all possible values of Λ and k.

(i) Λ = 0

• k = 1
In this case the Friedmann equation reads

c2 + a′(t)2 = 0

which cannot be satisfied by any real function a.

• k = 0
The Friedmann equation

a′(t)2 = 0

requires a to be a constant, a(t) = a0. In this case the metric reads

g = −c2 + a20

(
dχ2 + χ2

(
dϑ2 + sin2ϑ dϕ2

)
.

A coordinate transformation (t, χ, ϑ, ϕ) 7→ (t, r = aoχ, ϑ, ϕ) shows that this is
just the Minkowski metric,

g = −c2 + dr2 + r2
(
dϑ2 + sin2ϑ dϕ2

)
.

The time slices are the usual flat Euclidean spaces of an inertial system, repre-
sented in spherical polar coordinates.

• k = −1
Now we have to solve the differential equation

−c2 + a′(t)2 = 0

which yields
da

dt
= ±c , a(t) = ±c (t− t0) .
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As we are free to shift the zero point on the time axis, we may choose t0 = 0.
Moreover, we only consider the plus sign because the minus sign gives the same
spacetime just with the time reversed. The scale factor a(t) = c t is then defined
on the interval ] ti = 0 , tf =∞ [ . The metric reads

g = −c2dt2 + c2t2
(
dχ2 + sinh2χ

(
dϑ2 + sin2ϑ dϕ2

))
which is Milne’s universe that was already mentioned. Milne’s universe is just
part of Minkowski spacetime, with a slicing into hyperboloids, see the picture
on p.14. The transformation to standard Minkowski coordinates (x̃0, x̃1, x̃2, x̃3)
is given by

x̃0 = c t coshχ ,

x̃1 = c t sinhχ cosϕ sinϑ ,

x̃2 = c t sinhχ sinϕ sinϑ ,

x̃3 = c t sinhχ cosϑ .

(ii) Λ > 0

• k = 1
In this case the Friedmann equation reads

c2 + a′(t)2 − Λ

3
c2a(t)2 = 0 ,

da

dt
= ± c

√
Λ

3
a2 − 1 .

As Λ is positive, we may substitute√
Λ

3
a = coshu ,√

Λ

3
da = sinhu du ,

hence √
3

Λ

����sinhu du

�������√
cosh2u− 1

= ± c dt .

This results in

u = ±
√

Λ

3
c (t− t0) ,

a(t) =

√
3

Λ
cosh

(√
Λ

3
c (t− t0)

)
.

Without loss of generality we choose t0 = 0. The scale factor is defined for all
real values of t. It decreases from t = −∞ to a minimum value at t = 0 and
then increases again to +∞. The metric reads

g = −c2dt2 +
3

Λ
cosh2

(√Λ

3
c t
)(
dχ2 + sin2χ

(
dϑ2 + sin2ϑ dϕ2

))
.
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This spacetime is known as the deSitter universe. It was found by Durtch as-
tronomer Willem deSitter in 1917. The deSitter universe can be isometrically
embedded as the hyperboloid

X2 + Y 2 + Z2 +W 2 − V 2 =
3

Λ

into 5-dimensional Minkowski space,

g(5) = dX2 + dY 2 + dZ2 + dW 2 − dV 2 .

In terms of our coordinates (t, χ, ϑ, ϕ), the embedding is given by the map

X =

√
3

Λ
cosh

(√Λ

3
c t
)

sinχ cosϕ sinϑ ,

Y =

√
3

Λ
cosh

(√Λ

3
c t
)

sinχ sinϕ sinϑ ,

Z =

√
3

Λ
cosh

(√Λ

3
c t
)

sinχ cosϑ ,

W =

√
3

Λ
cosh

(√Λ

3
c t
)

cosχ ,

V =

√
3

Λ
sinh

(√Λ

3
c t
)
,

Our representation gives the deSitter universe with a slicing into hyperspaces
t = constant that are 3-spheres S3, so the topology of the spacetime is S3×R. In
the picture the 3-spheres are represented by circles which are given by intersecting
the hyperboloid with horizontal planes.
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We will briefly check if there are horizons in the deSitter universe with its sclicing
into 3-spheres. To that end we have to consider the conformal time T which is
defined by

c dT =
c dt

a(t)
= c

√
Λ

3

dt

cosh
(√Λ

3
c t
) .

Integration yields

c T = arcsin

(
tanh

(√Λ

3
c t
))
− π

2

where we have chosen the integration constant, in disagreement with the con-
vention introduced on p.19, as −π/2 because this is usual. The conformal time
T is then related to t by

cos
(
c T
)

= tanh
(√Λ

3
c t
)
.

If t runs over its domain from −∞ to ∞, the dimensionless conformal time
parameter cT runs from −π to 0. For every event in the spacetime, cT − cTi =
cT + π is smaller than χmax = π, so there are particle horizons. The part of the
3-sphere that is visible becomes bigger and bigger for t→∞ and the antipodal
point is the only point that comes never into view. Similarly, cTf − cT = |cT | is
smaller than χmax, so there are event horizons.

The deSitter universe is of great relevance for cosmology. An interesting class
of matter solutions asymptotically approach the deSitter universe. Moreover, it
made its appearance in the steady-state model (which now is usually considered
only of historic interest). We will come back to the deSitter universe when
discussing the theory of inflation and the idea of dark energy.

• k = 0
Now we have to solve the differential equation

a′(t)2 − Λ

3
c2a(t)2 = 0

with a positive Λ, hence

da

a
= ± c

√
Λ

3
dt ,

ln a− ln a0 = ± c
√

Λ

3
t

with a positive integration constant a0 which is usually chosen as a0 =
√

3/Λ.
We only consider the solution with the plus sign. The solution with the minus
sign gives the same universe with the time direction reversed. The scale factor

a(t) =

√
3

Λ
exp
(
c

√
Λ

3
t
)
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expands monotonically from t = −∞ to t = +∞. The metric reads

g = −c2dt2 +
3

Λ
exp
(√ Λ

3
2 c t

)(
dχ2 + χ2

(
dϑ2 + sin2ϑ dϕ2

))
.

This is again the deSitter universe, but this time only half of it and with a slicing
into flat 3-spaces. We see that a different choice of the integration constant a0
could be compensated for by a rescaling of χ.

Note that this particular scale factor gives a “Hubble constant” that is really a
constant, i.e., independent of time,

a′(t)

a(t)
= c

√
Λ

3
,

so the universe expands at a constant rate.

The embedding into the full deSitter universe is shown in the picture. The 3-
dimensional flat slices t = constant are represented as lines that come about as
the sections of the hyperboloid with planes under 45 degress. The boundary
of the region covered corresponds to t = −∞. The embedding is given by the
equations

X =

√
3

Λ
exp
(√Λ

3
ct
)
χ cosϕ sinϑ ,

Y =

√
3

Λ
exp
(√Λ

3
ct
)
χ cosϕ sinϑ ,

Z =

√
3

Λ
exp
(√Λ

3
ct
)
χ cosϑ ,

W =

√
3

Λ
cosh

(√Λ

3
ct
)
−
√

3

Λ

χ2

2
exp
(√Λ

3
ct
)
,

V =

√
3

Λ
sinh

(√Λ

3
ct
)

+

√
3

Λ

χ2

2
exp
(√Λ

3
ct
)
.
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• k = −1
In this case the Friedmann equation reads

−c2 + a′(t)2 − Λ

3
c2a(t)2 = 0 ,

da

dt
= ± c

√
Λ

3
a2 + 1 .

As Λ is positive, we may substitute√
Λ

3
a = sinhu ,√

Λ

3
da = coshu du ,

hence √
3

Λ

����coshu du

�������√
sinh2u+ 1

= ± c dt .

This results in

u = ±
√

Λ

3
c(t− t0) ,

a(t) = ±
√

3

Λ
sinh

(√Λ

3
c(t− t0)

)
.

We choose t0 = 0 and the plus sign. (Again, the minus sign gives a time-reversed
version of the same spacetime.) The scale factor is defined for 0 < t < ∞ and
increases monotonically. The metric reads

g = −c2dt2 +
3

Λ
sinh2

(√Λ

3
c t
)(
dχ2 + sinh2χ

(
dϑ2 + sin2ϑ dϕ2

))
.

This is again part of the deSitter universe, this time with a slicing into hyperbolic
spaces. The part covered by the slicing sits in the entire deSitter universe in a
similar fashion as the Milne universe sits in the entire Minkowski spacetime, see
the picture.
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The embedding into the hyperboloid is given by the equations

X =

√
3

Λ
sinh

(√Λ

3
ct
)

sinhχ cosϕ sinϑ ,

Y =

√
3

Λ
sinh

(√Λ

3
ct
)

sinhχ sinϕ sinϑ ,

Z =

√
3

Λ
sinh

(√Λ

3
ct
)

sinhχ cosϑ ,

W =

√
3

Λ
cosh

(√Λ

3
ct
)
,

V =

√
3

Λ
sinh

(√Λ

3
ct
)

coshχ ,

(iii) Λ < 0

• k = 1
In this case there is no solution because the differential equation

c2 + a′(t)2 − Λ

3
c2a(t)2 = 0 ,

with a negative Λ cannot be satisfied by a real function a.

• k = 0
Again, there is no solution because

a′(t)2 − Λ

3
c2a(t)2 = 0 ,

cannot hold for a real a if Λ is negative.

• k = −1
In this case the Friedmann equation

−c2 + a′(t)2 − Λ

3
c2a(t)2 = 0

requires

da

dt
= ± c

√
1 +

Λ

3
a2 .

As Λ is negative, we may substitute√
−Λ

3
a = sinu ,√

−Λ

3
da = cosu du

hence √
− 3

Λ

���cosu du

�������√
1− sin2u

= ± c dt .
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This results in

u− u0 = ±
√

Λ

3
c t

with an integration constant u0. If we choose u0 = 0 and the plus sign, the scale
factor

a(t) =

√
− 3

Λ
sin
(√−Λ

3
c t
)

is defined on the time interval 0 < t <
(
− 3/Λ

)−1/2
π/c. Here the other choice of

the sign (and another choice of the integration constant) gives the same behaviour
because the situation is time symmetric. The universe starts with a “big bang”
and ends in a “big crunch”. The metric reads

g = −c2dt2 − 3

Λ
sin2

(√
−Λ

3
c t
)(
dχ2 + sinh2χ

(
dϑ2 + sin2ϑ dϕ2

))
.

This spacetime is part of the socalled anti-deSitter universe. The full anti-
deSitter universe is the isometrically embedded hyperboloid

X2 + Y 2 + Z2 −W 2 − V 2 = − 3

Λ

in the 5-dimensional pseudo-Euclidean space with metric

g(5) = dX2 + dY 2 + dZ2 − dW 2 − dV 2 .

The full anti-deSitter universe has the topology of R3 × S1 where S1 is a 1-
dimensional sphere, i.e., a circle. The cyclic dimension is timelike, i.e., in the
anti-deSitter universe there are closed timelike curves through each point. One
can remove this unwanted feature by considering the universal covering space.

The slicing into hyperbolic spaces covers only part of the anti-deSitter universe,
see the picture on the next page. The embedding into the hyperboloid is given
by the equations

X =

√
3

Λ
sin
(√Λ

3
c t
)

sinhχ cosϕ sinϑ ,

Y =

√
3

Λ
sin
(√Λ

3
c t
)

sinhχ sinϕ sinϑ ,

Z =

√
3

Λ
sin
(√Λ

3
c t
)

sinhχ cosϑ ,

W =

√
3

Λ
cos
(√Λ

3
c t
)
,

V =

√
3

Λ
sin
(√Λ

3
c t
)

coshχ .
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Anti-deSitter spacetime is not considered as a realistic model of our universe,
not even in the sense of a limit. However, anti-deSitter (AdS) spaces of various
dimension play an important role in string theory, in particular as mathematical
tools for calculations in conformal field theories (CFT). This approach is known
as the AdS-CFT correspondence.

We summarise our results on vacuum solutions to the Friedmann equations. We have seen
that the only solutions are Minkowski spacetime (Λ = 0), deSitter spacetime (Λ > 0) and
anti-deSitter spacetime (Λ < 0). Minkowski spacetime can be viewed as a Robertson-
Walker spacetime in two different ways, with slices of curvature k = 0 or k = −1. For
the deSitter spacetime all three kinds of slicings, k = 1, k = 0 and k = −1, are possible,
whereas for the anti-deSitter spacetime it only works with k = −1. The slicings with
k = −1 have an initial singularity in the sense that the standard observers are compressed
into one point, but this is of course not a curvature singularity. To put this another way,
it is a singularity of the sclicing and not of the spacetime.

Minkowski, deSitter and anti-deSitter spacetime have constant curvature Λ/3, i.e., the
curvature tensor satisfies

Rµνστ =
Λ

3

(
gµσgντ − gµνgστ

)
as can be verified in any of the given coordinate representations. Also, they are the only
spacetimes with ten linearly independent Killing vector fields which is the maximal number
in a pseudo-Riemannian manifold of dimension 4. (Here “linearly independent” refers to
linear combinations with constant coefficients; of course, if we allow for coefficients that
depend on the foot-point there cannot be more than four linearly independent vector
fields.) In the Minkowski case, Λ = 0, these ten Killing vector fields generate the Poincaré
group, i.e., the 4 translations, the 3 spatial rotations and the 3 Lorentz boosts. The
corresponding symmetry groups for Λ > 0 and Λ < 0 are known as the deSitter group and
the anti-deSitter group, respectively.

We have seen that Minkowski spacetime with the flat slicing is the only vacuum solution
to the Friedmann equations with a constant scale factor. This does not mean that the
deSitter spacetime and the anti-deSitter spacetime are not static: Actually, they do admit
a timelike Killing vector field that is perpendicular to spacelike slices, but these sclices are
not spaces of constant curvature, so in this static representation the metric does not have
the Robertson-Walker form. We will discuss these static representations in Worksheet 5.
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(b) Dust solutions

We now consider dust solutions to the Friedmann equations, i.e., solutions with p = 0.
A dust is a good mathematical model for the ordinary (baryonic) matter in galaxies and
also for “cold” dark matter. (Quite generally, the terms “cold fluid” and “dust” are
synonymous, meaning a perfect fluid with vanishing pressure.)

We have to solve the equations

3c2k

a(t)2
+

3

a(t)2
a′(t)2 − Λ c2 = κ c4 µ(t) , (F1)

− k − 1

c2
a′(t)2 − 2

a(t)

c2
a′′(t) + Λa(t)2 = 0 . (F2′)

We require µ(t) > 0 throughout.

We first look for static solutions, a(t) = a0 = constant. Then (F1) and (F2′) require

3c2k

a20
− Λ c2 = κ c4 µ(t) ,

− k + Λa20 = 0 .

Of course, the density must be constant, µ(t) = µ0. Solving for Λ and µ0 yields

Λ =
k

a0
, µ0 =

2 k

κ c2a20
.

As we assume that the density is positive, the second equation implies k = 1, so the first
one requires Λ > 0. We summarise this important result in the following way:

If we consider Einstein’s field equation without a cosmological constant, there is
no static solution to the Friedmann equations for a dust of positive mass density.

It was this observation that led Einstein to introducing the cosmological constant in 1917.
With a positive cosmological constant, a static dust solution does exist. It has k = 1, so
the natural spatial topology is that of a 3-sphere. The metric reads

g = −c2dt2 + a20

(
dχ2 + sin2χ

(
dϑ2 + sin2ϑ dϕ2

))
.

This is Einstein’s static universe, also known as Einstein’s cylinder spacetime, refering to
the fact that the natural topology of this spacetime is S3 × R. Einstein advertised this
spacetime as a viable mathematical model of our universe in 1917. In the same year,
deSitter introduced the universe named after him. Until Friedmann’s work in 1922/23,
these two spacetimes were the only cosmological models that were discussed on the basis
of general relativity. We compare them on the next page, where we consider the “natural”
(global) slicing of the deSitter universe.
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Einstein’s static universe deSitter universe

topology S3 × R S3 × R
time dependence static contracting, then expanding

Lambda term Λ > 0 Λ > 0

matter µ > 0, p = 0 µ = 0, p = 0

Recall that a positive cosmological constant has a repellent effect. In Einstein’s static
universe this repellent effect is balanced by the gravitational attraction of the dust. In the
deSitter universe the cosmological constant delecerates the initial contraction and then
causes a re-expansion.

Having found all static solutions to the equations (F1) and (F2′), we assume a′(t) 6= 0
from now on.

Claim: (F1) and (F2’) imply the conservation law

µ(t)a(t)3 = constant .

Proof: We write (F1) in the form

κ

3
c2 µ(t) a(t)3 = k a(t) +

a(t)

c2
a′(t)2 − Λ

3
a(t)3

and differentiate with respect to t:

κ

3
c2
d
(
µ(t) a(t)3

)
dt

= k a′(t) +
a′(t)3

c2
+

2

c2
a(t) a′(t) a′′(t) − Λ a(t)2a′(t)

= a′(t)
(
k +

a′(t)2

c2
+

2

c2
a(t) a′′(t) − Λ a(t)2

)
.

By (F2′), this is indeed zero.

Of course, this result just establishes the conservation of mass. (For a dust, the only
form of rest energy is the rest mass of the dust particles.) As the equation ∇µTµν = 0
is a consequence of Einstein’s field equation, it should not come as a surprise that this
conservation law is implied by the Friedmann equations.
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Hence, the most convenient way of solving the Friedmann equations for dust is by deter-
mining a(t) from the differential equation

k a(t) +
a(t)

c2
a′(t)2 − Λ

3
a(t)3 = a0 , (F1′′)

with a positive constant a0. Once a solution a(t) has been found, the corresponding density
µ(t) is determined by the equation

κ

3
c2 µ(t) a(t)3 = a0 .

The above proof of the conservation law demonstrates that any solution of (F1′′) automat-
ically satisfies (F2′). Note, however, that this requires dividing by a′(t), so this method
excludes the static solutions.

We will now solve (F1′′) for all values of k with Λ = 0. Thereafter, we will discuss how a
non-vanishing Λ influences these solutions.

(i) Λ = 0
We have to solve

k a+
a

c2

(da

dt

)2

= a0 .

To that end, it is convenient to introduce the conformal time,

dT =
dt

a
,

hence
da

dt
=

da

dT

dT

dt
=

da

dT

1

a
.

Then the differential equation takes the form

k a +
✟✟a

c2
1

a✁2

( da

dT

)2

= a0 ,

( da

dT

)2

= c2
(
a0a− k a2

)
,

da√
a0 a− k a2

= ± c dT .

• k = 1
Then we have to integrate

2 da

a0

√

1−
(

1− 2 a

a0

)2
= ± c dT

which can be done with the substitution

1 − 2 a

a0
= cos u ,

2 da

a0
= sin u du .
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The resulting integral reads

∫
✘✘✘sin u du

✘✘✘✘✘✘✘√

1− sin2u
= ± c

∫

dT ,

u = ∓ c
(
T − Ti

)

with an integration constant Ti. Choosing Ti = 0, this yields

arccos
(

1 − 2a

a0

)

= ∓ c T ,

1 − 2a

a0
= cos

(
cT

)
,

a =
a0
2

(

1− cos
(
cT

))

.

With this result, the relation between t and T reads

c dt = c a dT =
c a0
2

(

1− cos
(
cT

))

dT ,

and, upon choosing the integration constant appropriately,

c t =
a0
2

(

c T − sin
(
cT

))

.

We have thus found the graph of the function t 7→ a in parametric form, with T
as the curve parameter. The resulting curve is a cycloid. (A cycloid is the curve
traced by a point on the rim of a wheel that is rolling on a horizontal surface
along a straight line.) The universe begins with a big bang at t = 0, reaches a
maximal extension at t = a0π/(2c) and ends in a big crunch at t = a0π/c.

t

a(t)

a0π

2c

a0π

c

a0
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• k = 0
In this case it is not actually necessary to consider the conformal time, but in
view of consistency with the other cases we proceed analogously. Integrating

1
√
a0

∫
da√
a
= ± c

∫

dT

yields
2√
a0

√
a = ± c

(
T − Ti

)
.

We choose again Ti = 0. Then

4 a

a0
= c2 T 2 .

The relation between t and T reads

dt = a dT =
a0
4
c2 T 2 dT ,

and upon integration

t =
a0
4
c2

T 3

3
;

here we have chosen the initial condition such that t = 0 corresponds to T = 0.
Hence

a(t) =
a0
4
c2 T 2 =

a0
4
c2
( 12 t

a0 c2

)2/3

=
(9

4
a0 c

2
)1/3

t2/3 .

t

a(t)

a0π

2c

a0π

c

a0
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The metric reads

g = −c2dt2 +
(9

4
a0 c

2
)2/3

t4/3
(

dχ2 + χ2
(
dϑ2 + sin2ϑ dϕ2

))

.

This is the Einstein-deSitter universe. It is a dust-filled, forever expanding space-
time model with flat spatial sections, so the natural topology of this spacetime is
R

4. After the expansion of our universe had been widely accepted around 1930,
Einstein and deSitter advertised this special solution to the Friedmann equations
as the most promising cosmological world model in a joint paper.

• k = −1
The mathematics is quite similar to the case k = 1. We have to integrate

2 da

a0

√
(2 a

a0
+ 1

)2

− 1

= ± c dT

which can be done with the substitution

2 a

a0
+ 1 = cosh u ,

2 da

a0
= − sinh u du .

Then the integral reads
∫

✘✘✘✘sinh u du

✘✘✘✘✘✘✘√

cosh2u− 1
= ± c

∫

dT ,

u = ∓ c
(
T − Ti

)

with an integration constant Ti. Choosing Ti = 0, this yields

arcosh
(2a

a0
+ 1

)

= ∓c T ,

2a

a0
+ 1 = cosh

(
cT

)
,

a =
a0
2

(

cosh
(
cT

)
− 1

)

.

With this result, the relation between t and T reads

c dt = c a dT =
c a0
2

(

cosh
(
cT

)
− 1

)

dT ,

and, upon choosing the integration constant appropriately,

c t =
a0
2

(

sinh
(
cT

)
− c T

)

.

Again, we have found the graph of the function t 7→ a in parametric form, with
T as the curve parameter. The resulting curve is the hyperbolic analogue of a
cycloid, sometimes called a “hyperbolic cycloid”. The universe begins with a big
bang at t = 0 and expands forever.
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t

a(t)

a0π

2c

a0π

c

a0

We see that, for k = 1, k = 0 and k = −1, the dust universe without a cosmo-
logical constant is always decelerating, i.e., q(to) > 0 for all to. For k = −1, the
initial “explosion” is strong enough to make the universe expand forever. For k = 1,
however, the self-gravitating dust is dense enough to make the universe re-collapse
into a big crunch. The case k = 0 is the critical case where “the turning point is at
infinity”, i.e., the universe just makes it to avoid re-collapse. This borderline case
can be characterised by a critical density in the following way. At any chosen time
to, the first Friedmann equation without a cosmological constant can be written as
an equality between densities,

3c2k

κc4a(to)2
= µ(to)−

3 a′(to)
2

κc4a(to)2
.

The sign of the left-hand side is determined by k. If we define a critical density
(which depends on to) by

µc(to) :=
3 a′(to)

2

κc4a(to)2
=

3H(to)
2

κc4
,

we see that
µ(to) > µc(to) if k = 1 ,

µ(to) = µc(to) if k = 0 ,

µ(to) < µc(to) if k = −1 .
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One often uses the density parameter

Ωm(to) =
µ(to)

µc(to)

where the index m (for “matter”) is meant as a reminder that we are considering a
dust universe here. The picture shows the behaviour of the scale factor for the three
cases in one diagram: Solid for overcritical density, dashed for critical density and
dotted for undercritical density.

t

a(t)

a0π

2c

a0π

c

a0

For the dust universes without a cosmological constant W. Mattig found in 1957
an exact distance-redshift relation. We will derive this Mattig formula now. As a
preparation, we first establish three auxiliary equations which we denote (E1), (E2)
and (E3).

For the following calculation we assume that a′(t) > 0. If k = −1 or k = 0, this
is true for all t; if k = 1, however, this assumption restricts the validity to times
0 < t < a0π/(2c). From the differential equation

k c2 + a′(t)2 =
c2a0
a(t)

we have

a′(t) = c

√
a0
a(t)

− k , (E1)

and, on the other hand, by differentiation

2 a′(t) a′′(t) = − c2a0
a(t)2

a′(t) .
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As we have excluded the static case, we have a′(t) 6= 0 for almost all t, so we may
divide by a′(t) and get

2 a′′(t) = − c2a0
a(t)2

.

Multiplication by a(t)/a′(t)2 yields

2 a(t) a′′(t)

a′(t)2
= − c2a0

a(t) a′(t)2

which, by (E1), can be rewritten as

2 a(t) a′′(t)

a′(t)2
= − a0

a(t)
( a0
a(t)

− k
) .

Evaluation at time to gives the deceleration parameter at this time,

2 q(t0) =
a0

a0 − k a(to)
,

hence

k
a(to)

a0
= 1 − 1

2 q(to)
. (E2)

The third auxiliary equation follows from inserting (E1) into the equation that defines
the Hubble constant,

H(to) =
a′(to)

a(to)
=

c

a(to)

√
a0

a(to)
− k =

c
√
k

a(to)

√
a0

k a(to)
− 1 .

For k = −1, both square roots are purely imaginary, so the right-hand side is real.
For k = 0, the right-hand side is to be understood in the sense of a limiting procedure.
With (E2), we find from the last equation

H(to) =
c
√
k

a(to)

√
√
√
√
√

1

1− 1

2q(to)

− 1 =
c
√
k

a(to)

√
√
√
√
√
√
√

✁1− ✁1 +
1

2q(to)

1− 1

2q(to)

=
c
√
k

a(to)
√

2q(to)− 1
,

hence

a(to) =
c
√
k

H(to)
√

2 q(to)− 1
. (E3)
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It is now our goal to determine the luminosity distance DL as a function of the
redshift z. Recall from p.25 that, for light from an emission event at time te to an
observation event at time to, the luminosity distance is given by the equation

DL = a(to) (1 + z) η(χ)

where

η(χ) =
sin

(√
k χ

)

√
k

=







sinχ if k = 1 ,

χ if k = 0 ,

sinhχ if k = −1 .

Keeping the observation event t0 fixed, we shall determine η(χ) as a function of z.
As we want to use (E1) and the equations derived from it, we have to assume that
to < a0π/(2c) if k = 1. From

χ =

∫ to

te

c dt

a
=

∫ a(to)

a(te)

c dt da

a da

we find, with (E1),

χ =

∫ a(to)

a(te)

✁c da

a ✁c

√
a0
a

− k

=

∫ a(to)

a(te)

da√
ao a− k a2

.

This is an elementary integral,

χ =
1√
k
arcsin

(2 k a

ao
− 1

)
∣
∣
∣
∣

a(to)

a(te)

,

√
k χ = arcsin

(2 k a(to)

ao
− 1

)

− arcsin
(2 k a(te)

ao
− 1

)

= arcsin
(2 k a(to)

ao
− 1

)

︸ ︷︷ ︸

=α

− arcsin
( 2 k a(to)

ao(1 + z)
− 1

)

︸ ︷︷ ︸

=β

.

Hence

DL = a(to)(1 + z)
sin

(√
k χ

)

√
k

= a(to)(1 + z)
sin

(
α− β

)

√
k

=
a(to)√

k
(1 + z)

(

sinα cos β − sin β cosα
)

=
a(to)√

k
(1 + z)

(

sinα

√

1− sin2β − sin β
√

1− sin2α
)

.
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Inserting the expressions for α and β yields

DL =
a(to)√

k
(1 + z)

{
(2 k a(to)

a0
− 1

)
√

1−
( 2 k a(to)

a0(1 + z)
− 1

)2

−
( 2 k a(to)

a0(1 + z)
− 1

)
√

1−
(2 k a(to)

a0
− 1

)2







=
a(to)√

k







(2 k a(to)

a0
− 1

)
√

(1 + z)2 −
(2 k a(to)

a0
− 1− z

)2

−
(2 k a(to)

a0
− 1− z

)
√

1−
(2 k a(to)

a0
− 1

)2






.

With (E2) this can be rewritten as

DL =
a(to)√

k

{
(

1− 1

q(to)

)
√

(1 + z)2 −
(

1− z − 1

q(to)

)2

−
(

1− z − 1

q(to)

)
√

1−
(

1− 1

q(to)

)2
}

=
a(to)√
k q(to)2

{
(

q(to)− 1
)
√

q(to)2(1 + z)2 −
(

q(to)(1− z)− 1
)2

−
(

q(to)− q(to)z − 1
)
√

q(to)2 −
(

q(to)− 1
)2

}

=
a(to)√
k q(to)2

{(

q(to)− 1
)√

q(to)24 z + 2 q(to)(1− z)− 1

−
(

q(to)− q(to)z − 1
)√

2 q(to)− 1
}

=
a(to)

√

2 q(to)− 1√
k q(to)2

{(

q(to)− 1
)√

2 q(to) z + 1 − q(to) + q(to)z + 1
}

.

Finally, with (E3), we get the Mattig formula

DL =
c

H(to) q(to)2

{

q(to) z +
(

q(to)− 1
)(√

2 q(to) z + 1 − 1
)}

.

This relation holds for all three cases, k = −1, k = 0 and k = 1. However, in the
case k = 1 our derivation is valid only for observation times 0 < to < a0π/(2c). For
later observation times the relation between z and DL is no longer one-to-one: In
can be shown that then there are two values of DL corresponding to the same value
of z and only one of them is given by the Mattig formula.
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(ii) Λ 6= 0

The Friedmann equation (F1′′) can be solved in the case Λ 6= 0 with the same method as
in the case Λ 6= 0, by introducing the conformal time. In this case one finds the parametric
relation between the scale factor and conformal time given by an elliptic integral. We will
not work this out here but restrict to a qualitative analysis.

To that end we write (F1′′) in the form

(da

dt

)2

− a0 c
2

a
− Λ

3
c2 a2 = − k c2 .

This equation has the form of the energy-conservation law of classical mechanics for a
particle moving in one spatial dimension,

(da

dt

)2

+ V (a) = E .

In this analogy, we have to identify a with the position coordinate of the particle, usually
denoted x, and

V (a) = − a0 c
2

a
− Λ

3
c2 a2 ,

E = − k c2 .

As the “kinetic energy” (da/dt)2 cannot be negative, we must have V (a) ≤ E. Hence, for
each value of E (i.e., for k = 1, k = 0 and k = −1) the accessible range of a is given by
that part of the line V (a) = E that lies above the graph of the potential. Points where
V (a) = E are turning points where da/dt is zero.

For Λ = 0 we can read from the
diagram the following behaviour.
If k = −1 (i.e., E = c2), the uni-
verse starts with a big bang at
a = 0 and extends forever up to
infinity. For k = 1 (i.e., E =
−c2) it starts with a big bang,
reaches a maximum value where
da/dt = 0 and then recollapses
towards a big crunch. k = 0
is the borderline case where the
turning point is at infinity, i.e.,
the universe just makes it to ex-
pand forever. These observations
reproduce, in a qualitative fash-
ion, what we have found with the
exact analytical solutions for the
case Λ = 0, see the diagram on
p.45.

a

V (a)

Λ = 0

c2

−c2
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If Λ < 0, the potential V (a) mono-
tonically increases from−∞ to∞.
As a consequence, the universe is
always recollapsing, for k = −1,
k = 0 and k = 1. The maximal
value amax of the scale factor is de-
termined by the equation

V (amax) = − k c2 .

This is a cubic equation,

Λ

3
c2 a3max − k c2 amax + a0 c

2 = 0 ,

which has, indeed, precisely one
real and positive solution amax if
Λ < 0.

a

V (a)

Λ < 0

c2

−c2

The case Λ > 0 is more subtle. Then the potential increases from −∞ to a maximum at
a certain value aM and decreases again to −∞. The behaviour of the universe with k = 1
depends on whether the maximum value V (aM) is smaller than, equal to or bigger than
−c2. The value aM is determined by

V ′(aM) =
a0 c

2

a2M
− 2Λ

3
c2 aM = 0 , aM =

(3 a0
2Λ

)1/3

.

At this maximum, the potential takes the value

V (aM) = − a0 c
2
( 2Λ

3 a0

)1/3

− Λ

3
c2
(3 a0
2Λ

)2/3

= − a
2/3
0 c2

(2Λ

3

)1/3(

1 +
1

2

)

= −
(3 a0

2

)2/3

c2 Λ1/3 .

We consider first the case that
V (aM) > −c2, i.e.

Λ <
4

9 a20
= Λcrit .

If k = −1 or k − 0, the uni-
verse begins with a big bang
and is expanding forever. In
the case k = 1 there are two
universes: One is starting with
a big bang, reaches a maxi-
mum scale factor, and is then
recollapsing. The other comes
in from infinity, reaches a min-
imum scale factor and is then
re-expanding to infinity.

a

V (a)

0 < Λ < Λcrit

c2

aM
V (aM)
−c2
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If V (aM) = −c2, i.e.

Λ =
4

9 a20
= Λcrit ,

for k = −1 or k = 0 the uni-
verse begins with a big bang
and is expanding forever. In
the case k = 1 there are
two universes: One is start-
ing with a big bang, then
the scale factor is increasing
and approaches the finite value
aM asymptotically from below.
The other comes in from infin-
ity, then the scale factor de-
creases monotonically and ap-
proaches the value aM asymp-
totically from above.

a

V (a)

0 < Λ = Λcrit

c2

−c2
aM

If V (aM) < −c2, i.e.

Λ >
4

9 a20
= Λcrit ,

for all three cases k =
−1, k = 0 and k = 1
the universe begins with a
big bang and is expand-
ing forever. From the dif-
ferential equation we read
that a non-zero cosmolog-
ical constant always dom-
inates the dynamical be-
haviour for big a. If Λ >
0, the spacetime is similar
to deSitter for big a.

a

V (a)

0 < Λcrit < Λ

c2

−c2
aM

V (aM)

This is one of the reasons why the deSitter universe is relevant: Dust solutions with a
positive cosmological constant asymptotically approach deSitter for a → ∞.

(c) Perfect fluid solutions with pressure

We will now consider the Friedmann equations in its generality, with a non-vanishing density
µ and a non-vanishing pressure p,

3c2k

a(t)2
+

3

a(t)2
a′(t)2 − Λ c2 = κ c4 µ , (F1)

− k − 1

c2
a′(t)2 − 2

a(t)

c2
a′′(t) + Λa(t)2 = κ p a(t)2 . (F2)
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As long as we do not make any assumptions about µ or p, there is no equation to be solved:
Given any k and any a(t), one is even free to choose Λ at will and then (F1) and (F2)
determine the density and the pressure. The equations are invariant under transformations

Λ 7→ Λ + Λ0 , µ(t) 7→ µ(t)− Λ0

κc2
, p(t) 7→ p(t) +

Λ0

κ
.

We can utilise this fact for re-interpreting a solution with a cosmological constant as a
solution without a cosmological constant, by choosing Λ0 = −Λ. E.g. we know that the
deSitter universe is a solution with Λ > 0, µ = 0 and p = 0. We may re-interpret it as a
solution with Λ = 0, a constant density µ > 0 and a constant pressure p = −c2µ < 0, see
Worksheet 5, Problem2.

If we make special assumptions on µ and p, e.g. if we assume that p is related to µ
by an equation of state, then (F1) and (F2) become a system of equations for a(t) and
µ(t). Before solving this system for special cases, we consider the static solutions, i.e., we
consider the Friedmann equations for the case that a(t) = a0 = constant:

3k

a20
− Λ = κ c2 µ ,

− k

a20
+ Λ = κ p .

We have seen before that, with µ ≥ 0 and p = 0, static solutions exist only for the cases
k = 1 and k = 0. Now, with a pressure, we also have solutions with k = −1; however, as

κ
(

µ c2 + p
)

=
2 k

a20
,

we see that in this case the pressure (or the density) has to be negative. We summarise
the static solutions:

• k = 1: This is Einstein’s static universe,

g = − c2 dt2 + a20

(

dχ2 + sin2χ dΩ2
)

.

It is a vacuum solution with a positive cosmological constant (Λ > 0, µ = 0 and
p = 0). Again, we are free to re-interpret it, e.g. as a solution without a cosmological
constant but with a positive density and a negative pressure.

• k = 0: This is Minkowski spacetime with the natural slicing associated with inertial
systems,

g = − c2 dt2 + a20

(

dχ2 + χ2dΩ2
)

.

It is a vacuum solution without a cosmological constant (Λ = 0, µ = 0 and p = 0).
Note, however, that we are free to re-interpret it as a solution with a cosmological
constant and a funny matter content.
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• k = −1: This spacetime is known as static hyperbolic spacetime,

g = − c2 dt2 + a20

(

dχ2 + sinh2χ dΩ2
)

.

We are free to choose the cosmological constant at will. Whatever choice we make,
the pressure comes out negative if we want to have the density non-negative.

Having the static solutions out of the way, we try to reduce the Friedmann equations to
one first-order equation, as we did for a dust, by utilising a conservation law. From (F1)
we find that

d

dt

(κ

3
µ c4 a3

)

=
d

dt

(

c2 k a +
(da

dt

)2

a − Λ

3
c2 a3

)

= c2 k
da

dt
+

(da

dt

)3

+ 2
da

dt

d2a

dt2
a − Λ c2 a2

da

dt

=
da

dt

(

c2 k +
(da

dt

)2

+ 2
d2a

dt2
a − Λ c2 a2

)

.

By (F2), this can be rewritten as

d

dt

(κ

3
µ c4 a3

)

= − c2 κ p a2
da

dt
,

hence
d

dt

(

µ c2 a3
)

= − p
d

dt
a3 . (C1)

This is the first law of thermodynamics for a volume element, dU = T dS − p dV , for
the case of an isentropic process, dS = 0. Isentropic means that there is no heat transfer
between the volume element and its neighbourhood; this assumption is implicitly included
by requiring that the energy-momentum tensor has the form of a perfect fluid. Although
we have energy conservation in the sense that no energy is produced, ∇µT

µν = 0, the
energy in a comoving volume is not preserved because the pressure is doing work.

As long as µ and p are unrelated, the energy balance law (C1) cannot be further specified.
In particular, we cannot rewrite (C1) in the form d(. . . )/dt = 0. However, if we assume
an equation of state, then this is possible. We consider here only the special kind of an
equation of state where the pressure is directly proportional to the energy density,

p(t) = w c2 µ(t) , w = constant .

The energy-momentum tensor is then of the form

Tρσ =
(

µ +
p

c2

)

Uρ Uσ + p gρσ = µ
(

(

1 + w
)

Uρ Uσ + w c2 gρσ

)

.

The energy balance law (C1) specifies to

d

dt

(

µ a3
)

= −w µ
d

dt
a3 ,
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dµ

dt
a3 + µ

da3

dt
= −w µ

da3

dt

dµ

µ
+

(

1 + w
) da3

a3
= 0,

ln
(

µ
)

+
(

1 + w
)

ln
(

a3
)

= C0

with an integration constant C0, hence

µ(t) a(t)3(1+w) = constant . (C2)

Three cases are of particular interest in view of applications:

(i) w = 0: This is the dust case we have already considered,

p = 0 ,

Tρσ = µUρUσ .

The conservation law (C2) reads

µ(t) a(t)3 = constant

which is just the statement that the mass in a comoving volume is constant.

(ii) w = −1: This is a perfect fluid mimicking a cosmological constant,

p = − c2 µ ,

Tρσ = − c2 µ gρσ .

The conservation law (C2) requires the density to be constant,

µ(t) = constant ,

so the energy-momentum tensor has, indeed, the form of a cosmological term if we
shift it to the left-hand side of the field equation.

(iii) w = 1/3: This is an important case we have not yet treated so far. It describes a
perfect fluid that models radiation in terms of a “photon gas”:

p =
1

3
c2 µ ,

Tρσ =
µ

3

(

4UρUσ + c2 gρσ

)

.

The trace of the energy-momentum tensor vanishes,

Tρ
ρ =

µ

3

(

4Uρ U
ρ + c2 δρρ

)

=
µ

3

(

− 4 c2 + 4 c2
)

= 0 .

The conservation law (C2) requires

µ(t) a(t)4 = constant .
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A rigourous justification of the statement that such a perfect fluid describes radiation
would require a derivation from kinetic theory. We cannot do this here, but we will
give two arguments indicating that the statement is true. The first argument builds
upon the fact that the trace of the energy-momentum tensor vanishes: The trace Tρ

ρ

of the energy-momentum tensor is a scalar, invariant under coordinate transforma-
tions. From the field equation we read that κTρ

ρ has the dimension 1/length2, so
an energy-momentum tensor with non-vanishing trace defines a length scale. For a
gas that consists of particles with a certain non-zero rest-mass m, this length scale
is determined by the Schwarzschild radius associated with m. If the rest mass of
the particles is zero, as it is for photons, such a length scale does not exist which
means that the energy-momentum tensor must be trace-free. The second argument
is based on the conservation law. For a dust that consists of massive particles, the
rest mass of each particle remains constant, so the energy density falls off with the
volume, µ ∼ a−3. For a photon, the energy changes according to the redshift law,
1+z = a(to)/a(te), so the energy density gets a fourth factor of 1/a such that µ ∼ a−4.

With the conservation law (C2) we may rewrite (F1) as

k a(t)1+3w +
1

c2
a′(t)2 a(t)1+3w − Λ

3
a(t)3(1+w) =

κ

3
c2 µ(t) a(t)3(1+w) =: a1+3w

0

where the constant a0 has the dimension of a length as can be read from comparing with
the left-hand side. As for the dust case, we do not have to consider eq. (F2) separately
because it is automatically satisfied as long as a′ 6= 0. We have now three parameters
at our disposal: The discrete parameter k which takes the value −1, 0 or 1, and the two
parameters Λ and w which may take any real values. Here we will consider only the special
case that

k = 0 , Λ = 0

to concentrate on the influence of the pressure. Then the Friedmann equation simplifies
to

1

c2
a′(t)2 a(t)1+3w = a1+3w

0 ,

a(1+3w)/2 da

dt
= ± c a

(1+3w)/2
0 .

We will solve this differential equation for the three cases which are of particular interest
in view of applications.

(i) w = 0: Just as a cross-check, we will re-examine the dust case. Then the differential
equation reads

a1/2 da = ± c a
1/2
0 dt ,

2

3
a3/2 = ± c a

1/2
0

(

t− ti
)

with an integration constant ti. If we want to have a universe with a big bang at
t = 0, we have to choose ti = 0 and the plus sign,

a(t) =
(9 a0 c

2

4

)1/3

t2/3 = b t2/3 .
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This gives the Einstein-deSitter universe, as we had known before,

g = − c2 dt2 + b2 t4/3
(

dχ2 + χ2 dΩ2
)

.

(ii) w = −1: This is a perfect fluid mimicking a cosmological constant. The differential
equation reads

a−1 da = ± c a−1
0 dt ,

ln(a) = ± c a−1
0 t − C .

If we choose C = ln(a0) and the plus sign we get

a(t) = a0 exp
(c t

a0

)

which is, indeed, the deSitter universe with a flat slicing,

g = − c2 dt2 + a20 exp
(2 c t

a0

)(

dχ2 + χ2 dΩ2
)

.

(iii) w = 1/3: For a universe filled with radiation, the differential equation reads

a da = ± c a0 dt ,

1

2
a2 = ± c a0 (t− ti) .

If we want to have a universe with a big bang at t = 0 we have to choose ti = 0 and
the plus sign,

a(t) =
√
2 a0 c t .

So in a radiation-filled universe the scale factor grows with t1/2, in comparison to a
dust-filled universe where it grows with t2/3, see the diagram.

t

a(t)

a0

radiation

dust
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Anticipating later discussions, we may assume as a rather realistic model of our universe
a total energy-momentum tensor that is composed of two perfect fluids, one for a dust
(modelling ordinary matter and also “cold” dark matter) Tm

ρσ, and one for a photon gas
(modelling the cosmic background radiation) T r

ρσ. If we also allow for the cosmological
constant (as the simplest way of modelling dark energy), the field equation reads

Rρσ − R

2
gρσ + Λ gρσ = Tm

ρσ + T r
ρσ .

We assume that the dust and the radiation are both at rest with respect to the standard
observers of our Robertson-Walker spacetime,

Tm
ρσ = µm Uρ Uσ , T r

ρσ =
µr

3

(

4UρUσ + c2gρσ

)

with Uρ = δρt . Then the first Friedmann equation reads

3 c2 k

a(t)2
+

3

a(t)2
a′(t)2 − Λ c2 = κ c4

(

µm(t) + µr(t)
)

,

hence

µm(t) + µr(t) +
Λ

κ c2
− 3 a′(t)2

κ c4 a(t)2
=

3 k

κ c2 a(t)2
.

Evaluating this equation at a time to (“now”) yields

µm(to) + µr(to) +
Λ

κ c2
− 3H(to)

2

κ c4
=

3 k

κ c2 a(to)2
.

If we introduce, again, the critical density

µc(to) =
3H(to)

2

κ c4
,

we can rewrite this equation as

µm(to)

µc(to)
+

µr(to)

µc(to)
+

Λ

κ c2 µc(to)
− 1 =

3 k

κ c2 a(to)2 µc(to)
.

With the density parameters for dust (matter), radiation and cosmological constant,

Ωm =
µm(to)

µc(to)
, Ωr =

µr(to)

µc(to)
, ΩΛ =

Λ

κ c2 µc(to)
,

we get the famous relation

Ωm + Ωr + ΩΛ







< 1 if k = −1 ,
= 1 if k = 0 ,
> 1 if k = 1 .

We have seen that in a universe filled with radiation alone the density falls off as a−4, while
in a universe filled with a dust alone it falls off as a−3. This indicates that in an expanding
universe the radiation is important for the early universe but that its contribution becomes
negligible for later times. We believe that at the present stage of our universe the radiation
can be neglected. We also have good indications that our universe is spatially flat, k = 0.
Then Ωr(to) is negligibly small if to means “now”, and Ωm(to) + ΩΛ(to) = 1 . We will
come back to this relation and its observational foundations later.
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(d) Solutions with a scalar field as source

We have seen that, whenever a Robertson-Walker metric is plugged into Einstein’s field
equation, the energy-momentum tensor on the right-hand side has the perfect-fluid form,

Tρσ =
(

µ +
p

c2

)

Uρ Uσ + p gρσ .

However, we may interpret this energy-momentum tensor in a different way. In this section
we discuss the question of whether it can be interpreted as the energy-momentum tensor
of a scalar field. This has important applications in cosmology. Several hypothetical scalar
fields (or hypothetical “particles” in the quantised version) are discussed which may have
a strong influence on the dynamics of the universe. The three most important of them
are:

The Higgs field: In the basic version of gauge theories, all fields are massless. The Higgs
field was invented to allow for massive fields. The mass terms come about by the
interaction with the Higgs field. In 2012 a particle was detected at the Large Hadron
Collider of CERN that is believed to be the Higgs particle. This won Peter Higgs
and François Englert the Nobel Prize in Physics 2013. The Higgs field is a complex-
valued scalar field that might have played an important role in cosmology at an early
stage.

The inflaton: The inflaton field is a scalar field, in most theories assumed to be real-
valued, that drives inflation. The idea is that it acted, for a period at a very early
stage of the universe (something like 10−36 to 10−33 seconds after the big bang) like
an enormously big cosmological constant, producing an exponential growth of the
scale factor. The mechanism must be tuned in a way that the action of the inflaton
field was then switched off so that it played no role for the later development of the
universe. This is often called the “graceful exit” of inflation. The motivation for
introducing an inflationary phase was that this would explain several things:

• The horizon problem: How could the universe become homogeneous at a time
when, because of the existence of particle horizons, its different parts had had
no time to interact?

• The monopole problem: Why is it that we do not observe a large number of mag-
netic monopoles although they are thought to have come into existence during
phase transitions in the early universe?

• The flatness problem: Is it not highly unlikely that we live in a universe with
spatial curvature K very close to zero if we think that our universe started with
a random initial condition?

If there was an inflationary phase, different parts of the universe would have come
into causal contact much earlier, the magnetic monopoles would have been diluted,
and the blowing-up of the universe would bring the curvature K to a very small
value whatever the initial conditions have been. Inflation was invented in 1980 in-
dependently by A. Guth and A. Starobinsky. It was further developed by A. Linde,
A. Albrecht, P. Steinhardt and many others. To date there exists a large variety of
inflationary scenarios. The basic idea of inflation will be explained below in terms of
the simplest of these scenarios (“slow-roll inflation”).
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The quintessence: Since the late 1990s we have strong evidence that the expansion of
our universe is accelerated. The agent which produces this acceleration is called
dark energy. The simplest way of modelling dark energy is by identifying it with a
positive cosmological constant. As we know, this may be re-interpreted as a perfect
fluid with the equation of state p = −c2µ. We will see below that another possibility
is to re-interpret the cosmological term as being produced by a (real-valued) scalar
field. If we adopt this interpretation of dark energy, we call it the quintessence field.
In contrast to the inflaton, the quintessence field produces an exponential growth
that is much smaller and becomes relevant at a much later time.

Several other hypothetical scalar fields (“phantom fields”, “chameleon fields”, “galileon
fields” . . . ) have been suggested, but it seems fair to say that their existence is highly
speculative. The three fields mentioned above provide the main motivation for us to
study scalar fields and their coupling to gravity on a Robertson-Walker spacetime.

To that end we begin with the simplest type of a scalar field equation. We only consider
real-valued fields φ. On Minkowski spacetime, the Klein-Gordon equation

�φ − m2 φ = 0 , �φ = ηµν∂µ∂νφ = ∆φ − 1

c2
∂2
t φ

is the unique Lorentz-invariant linear field equation of second order for a scalar field. Here
m is a constant that is related to the mass M associated with the field by m = M/(c~).
(To put this another way, 1/m is the Compton wave-length of the field.) By the rule of
minimal coupling, this generalises on a curved spacetime to the equation

�φ − m2 φ = 0 , �φ = gµν∇µ∇νφ = gµν
(

∂µ∂νφ − Γρ
µν ∂ρφ

)

.

In the following we consider a generalised Klein-Gordon equation,

gµν∇µ∇νφ − V ′(φ) = 0 , (KG)

with a potential V (φ). For
the time being, V is largely
arbitrary. We will only as-
sume that it is bounded be-
low, V (φ) ≥ Vmin, and that
there is a φv with V (φv) =
Vmin. This “ground state” or
“vacuum state” φv need not
be unique. As the differential
equation (KG) is unchanged if
we add a constant to V , we
may assume without loss of
generality that Vmin = 0.

φ

V (φ)

φv
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With the scalar field we associate the energy-momentum tensor

Tρσ = ∇ρφ∇σφ −
(
1

2
gµν ∇µφ∇νφ + V (φ)

)

gρσ .

We will derive this energy-momentum tensor from a variational principle below. Before
doing this, we evaluate the energy conservation law ∇ρTρσ = 0 for this energy-momentum
tensor:

∇ρTρσ = ∇ρ

(

∇ρφ∇σφ −
(
1

2
gµν ∇µφ∇νφ + V (φ)

)

gρσ

)

= ∇ρ∇ρφ∇σφ+∇ρφ∇ρ∇σφ−
(
1

2
gµν

{

∇ρ∇µφ∇νφ + ∇µφ∇ρ∇νφ
}

+ V ′(φ)∇ρφ

)

gρσ

= ∇ρ∇ρφ∇σφ + ∇ρφ∇ρ∇σφ − 1

2
gµν

{

∇σ∇µφ∇νφ + ∇µφ∇σ∇νφ
}

− V ′(φ)∇σφ

= ∇ρ∇ρφ∇σφ + ∇µφ∇µ∇σφ − ∇µφ∇σ∇µφ − V ′(φ)∇σφ .

As covariant derivatives commute if they are applied to a scalar (!) field, the middle terms
cancel, ∇µ∇σφ = ∇σ∇µφ, so

∇ρTρσ = ∇σφ
(

∇ρ∇ρφ − V ′(φ)
)

.

So we see that the generalised Klein-Gordon equation (KG) implies the conservation law,
∇ρTρσ = 0, and that the converse is also true if we assume that ∇σφ 6= 0.

We may derive the energy-momentum tensor of the scalar field and, thereby, the coupling
of the scalar field to gravity via Einstein’s field equation from a variational principle.
Quite generally, the action for Einstein’s field equation coupled to any matter source (the
so-called Einstein-Hilbert action) reads

W =

∫

Ω

(
R

2
− Λ + κLmat

) √
−γ d4x ,

where
γ = det

(
(gµν)

)
, d4x = dx0dx1dx2dx3 ,

and Ω is a compact spacetime region with boundary. The matter Lagrangian for the scalar
field is

Lmat = − 1

2
∇µφ∇µφ − V (φ) . (LS)
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Einstein’s field equation follows by varying the Einstein-Hilbert action with respect to the
metric. More precisely, Einstein’s field equation results if one requires that δW = 0 for
all variations that vanish on the boundary of Ω. To work this out, we need the variation
of the Ricci scalar and of the determinant of the metric. With some algebra one finds

√
−γ δR =

√
−γ δ

(
Rµνg

µν
)
=

√
−γ Rµνδg

µν + ∂σ

(√
−γ

(
gµν δΓσ

µν − gµσ δΓρ
ρµ

))

︸ ︷︷ ︸

boundary term

δγ =
∂γ

∂gµν
δgµν = − γ gµν δg

µν ,

where “boundary term” means that the term can be converted with the Stokes theorem
into an integral over the boundary of Ω which gives zero because the metric is kept fixed
on the boundary. With the help of these results we find for the variation of the Einstein-
Hilbert action:

δW =

∫

Ω

{

δ

(
R

2
− Λ

) √
−γ +

(
R

2
− Λ

)

δ
√
−γ + κ δ

(

Lmat

√
−γ

)}

d4x

=

∫

Ω







δR

2

√
−γ +

(
R

2
− Λ

)
γ gµν
2
√−γ

δgµν + κ
∂
(

Lmat

√−γ
)

∂gµν
δgµν






d4x

=

∫

Ω






Rµν −

(
R

2
− Λ

)

gµν + κ
2√−γ

∂
(

Lmat

√−γ
)

∂gµν







δgµν

2

√
−γ d4x

The variational principle requires δW to be zero for all δgµν that vanish on the boundary
of Ω. This is true if and only if the term inside the curly bracket vanishes,

Rµν − R

2
gµν + Λ gµν + κ

2√−γ

∂
(

Lmat

√−γ
)

∂gµν
= 0 .

This is Einstein’s field equation,

Rµν − R

2
gµν + Λ gµν = κTµν ,

where the energy-momentum tensor is given as

Tµν = − 2√−γ

∂
(

Lmat

√−γ
)

∂gµν
.

The energy-momentum tensor constructed in this way from a variational principle is known
as Hilbert’s energy-momentum tensor. Note that it is automatically symmetric.
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For the matter Lagrangian (LS) of the scalar field we find

Tρσ =
2√−γ

∂

∂gρσ

{(
1

2
gµν ∇µφ∇νφ + V (φ)

) √
−γ

}

=
✚✚2√−γ

{
1

✚✚2
∇ρφ∇σφ

√
−γ +

(
1

2
gµν ∇µφ∇νφ + V (φ)

)
1

✚✚2
√−γ

∂γ

∂gρσ

}

= ∇ρφ∇σφ −
(
1

2
gµν ∇µφ∇νφ + V (φ)

)

✚✚γ gρσ

✚✚γ

which is, indeed, the energy-momentum tensor given above.

We will now investigate if the energy-momentum tensor of a scalar field is of the same
form as that for a perfect fluid. As we know that for a Robertson-Walker spacetime the
energy-momentum tensor always has the form of a perfect fluid, this is a necessary step
if we want to consider scalar fields on a Robertson-Walker spacetime.

We have to identify the two expressions

Tρσ = ∇ρφ∇σφ −
(
1

2
gµν ∇µφ∇νφ + V (φ)

)

gρσ

and
Tρσ =

(

µ +
p

c2

)

UρUσ + p gρσ .

Obviously, this is possible only if the first terms on the right-hand sides coincide. This
requires

∇ρφ = s Uρ

with a scalar factor s. This factor is determined by the normalisation condition on the
four-velocity, UρUρ = −c2. We find

∇ρφ∇ρφ = −c2 s2 .

So the identification requires that either ∇ρφ is timelike (and s 6= 0) or ∇ρφ = 0 (and
s = 0).

We can now determine p and µ in terms of the scalar field by equating the two expressions
of the energy-momentum tensor. Comparing the coefficients in front of gρσ yields

p = −1

2
∇µφ∇µφ − V (φ) . (PS)

Equating the first terms requires

(

µ +
p

c2

)

Uρ Uσ = s2 Uρ Uσ , c2 µ + p = −∇µφ∇µφ ,

c2 µ = − 1

2
∇µφ∇µφ + V (φ) . (DS)
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We summarise our results in the following way: The energy-momentum tensor of a scalar
field is of the form of a perfect fluid whenever the gradient of the scalar field is timelike or
zero. The corresponding pressure and the corresponding density are then given by (PS)
and (DS).

Now we specify to the case that we are on a Robertson-Walker spacetime,

gµν dx
µ dxν = − c2 dt2 + a(t)2

(

dχ2 + η(χ)2
(
dϑ2 + sin2ϑ dϕ2

))

.

Because of the spatial homogeneity of the metric, the scalar field must be independent of
the spatial coordinates for consistency,

φ = φ(t) .

This guarantees that ∇ρφ = δtρ dφ/dt is indeed timelike or zero. Then the equations for
pressure and density, (PS) and (DS), simplify to

p = − 1

2
gtt

(dφ

dt

)2

− V (φ) , c2 µ = − 1

2
gtt

(dφ

dt

)2

+ V (φ) .

With gtt = 1/gtt = −1/c2 this results in

p =
1

2 c2

(dφ

dt

)2

− V (φ) , c2 µ =
1

2 c2

(dφ

dt

)2

+ V (φ) .

Clearly, p and µ are not in general related by an equation of state. An equation of state
results only in two very special cases:

If V (φ) = 0 we have p = w c2 µ with w = 1.

If dφ/dt = 0 we have p = w c2 µ with w = − 1.

Recall that w = −1 is the case of a perfect fluid mimicking a cosmological constant. As
V (φ) ≥ 0, we have in any case

− 1 ≤ p

c2 µ
=

1

2 c2

(dφ

dt

)2

− V (φ)

1

2 c2

(dφ

dt

)2

+ V (φ)

≤ 1 .

With µ and p expressed in terms of the scalar field, the Friedmann equations read

3c2k

a2
+

3

a2

(da

dt

)2

− Λ c2 = κ c2
(

1

2 c2

(dφ

dt

)2

+ V (φ)

)

, (F1s)

− k − 1

c2

(da

dt

)2

− 2 a

c2
d2a

dt2
+ Λ a2 = κ a2

(
1

2 c2

(dφ

dt

)2

− V (φ)

)

. (F2s)
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We know that Einstein’s field equation implies ∇ρTρσ = 0 and that for a Robertson-
Walker spacetime this equation takes the form of the energy balance equation (C1). As
in the case of a scalar field the equation ∇ρTρσ = 0 is equivalent to the generalised Klein-
Gordon equation (KG), provided that ∇ρφ 6= 0, we can derive the special form of the
equation (KG) for a Robertson-Walker spacetime by evaluating the energy balance (C1).
This spares us the trouble of calculating the Christoffel symbols for the Robertson-Walker
spacetime.

Recall that the energy balance law, which is just a version of the First Law of Thermody-
namics, reads

d

dt

(

c2 µ a3
)

= − p
d

dt
a3 ,

hence
d(c2 µ)

dt
a3 + c2 µ 3 a2

da

dt
= − p 3 a2

da

dt
,

d(c2 µ)

dt
= − 3

a

(

c2 µ + p
)da

dt
.

Inserting the expressions for µ and p in terms of the scalar field yields

d

dt

( 1

2 c2

(dφ

dt

)2

+ V (φ)
)

= − 3

a c2

(dφ

dt

)2 da

dt
,

1

c2
dφ

dt

d2φ

dt2
+ V ′(φ)

dφ

dt
= − 3

a c2

(dφ

dt

)2 da

dt
.

If we divide by dφ/dt, assuming that this expression is non-zero, we get the generalised
Klein-Gordon equation on a Robertson-Walker spacetime,

1

c2
d2φ

dt2
+

3

c2
1

a

da

dt

dφ

dt
+ V ′(φ) = 0 . (KGs)

This equation is of the same form as the equation of motion for a particle in the one-
dimensional potential V , with a damping term. The damping is proportional to the
Hubble function H(t) = a(t)−1da(t)/dt. (Strictly speaking, it is a damping only in the
case that H(t) is positive.) So we may visualise the dynamics of the scalar field as the
dynamics of a particle in the potential V with friction. This analogy is habitually used
for scalar fields in cosmology, where one says that “the field is rolling down a slope of the
potential” and so on.

From our consideration in the preceding section we know that (F2) is a consequence of (F1)
and the conservation law except for static Robertson-Walker spacetimes where da/dt = 0.
We will exclude the static case in the following. So in the case at hand we only need to
consider (F1s) and (KGs); the other Friedmann equation is then automatically satisfied.
These two equations give us a system of coupled ordinary differential equations for the
two unkown functions a(t) and φ(t).
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We will first demonstrate how a scalar field can act as a cosmological constant; we will then
briefly discuss the “slow-roll inflation” scenario. For imitating a cosmological constant it is, of
course, reasonable to consider the equations with Λ = 0. In addition, we restrict to the spatially
flat case, so we assume

k = 0 , Λ = 0 .

It is our goal to mimic the cosmological constant with a constant scalar field,

φ(t) = φ0 = constant .

Then (KGs) requires
V ′

(
φ0

)
= 0 ,

i.e., the scalar field must sit in an extremum of the potential. This may be a minimum, a
maximum or a saddle. If we want the solution to be stable with respect to small perturbations,
we have to choose a local minimum.

(F1s) reduces to

1

a2

(da
dt

)2

=
κ

3
c2 V

(
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)
,

da

a
= ± c

√
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V
(
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)
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ln
(
a
)
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(
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)
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√
κ

3
V
(
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t ,

a(t) = a0 exp
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3
V
(
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)
c t

)

If we have chosen the vacuum state,
φ0 = φv, we have V

(
φ0

)
= 0 and the

φ

V
(
φ
)

φv φ0

V
(
φ0

)

scale factor is constant, a(t) = a0. As we are considering the case k = 0, this gives us Minkowski
spacetime. If, however,

V
(
φ0

)
> 0 ,

we may choose the solution with the plus sign and the integration constant as

a0 =

√
3

κV
(
φ0

) .

Then we get deSitter spacetime with the flat slicing (i.e., half of the hyperboloid, see the picture
on p. 33),

a(t) =

√
3

κV
(
φ0

) exp
(√

κ

3
V
(
φ0

)
c t

)
. (∗)

The exponential growth of the scale factor is now driven by the scalar field. It has the same
effect as a positive cosmological constant,

Λ =̂κV
(
φ0

)
.
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To explain the accelerated expansion of the universe now as indicated by observations of Su-
pernovae Ia (see next chapter), we need a cosmological constant

√
Λ ≈ 10−26m−1. We have

already seen that this can be re-interpreted as the effect of a perfect fluid (“dark energy”) with
the exotic equation of state p = −c2µ. We have now another possible interpretation: We may
say that what seems to be a positive cosmological constant is actually a constant scalar field.
This scalar field is called “quintessence”. This makes the cosmological constant dynamical in
the sense that it is not necessarily exactly a constant: The quintessence field may change in the
course of time. If this is true, the future of our universe is not predictable; if there is a cosmo-
logical constant in the strict sense, it will dominate all other sources (radiation and matter) in
the course of time so that the universe asymptotically approaches the deSitter spacetime.

The quintessence field is a possible re-interpretation of the cosmological constant but there is
no compelling reason for introducing it. You may leave the cosmological term on the left-hand
side of the field equation, or you may write it on the right-hand side and interpret it as a perfect
fluid. As long as all observations can be explained with a cosmological constant that is really
a constant, this is largely a matter of taste. The situation is different with the inflaton: Just
as the quintessence field, the inflaton field is supposed to create exponential growth, but at a
much, much earlier stage of the universe and by a much, much bigger factor. Most importantly,
the inflaton field should switch itself off at the end of the inflationary period. So here we are
not re-interpreting a cosmological constant, we are rather considering a scalar field that acts
approximately as a cosmological term only over a certain period of time. So we need a potential
that is almost constant (i.e., very flat) over a certain φ interval. While the scalar field is “slowly
rolling” down this potential, our calculation for a constant scalar field φ0 holds approximately,
i.e., the scale factor grows approximately exponentially according to (∗). If the scalar field rolls
into the vacuum state φv, the exponential growth stops, because after a few oscillations the
“damping term” in the generalised Klein-Gordon equation forces the scalar field to settle at
φv which, as demonstrated above, leads to a constant scale factor. In this way, the inflaton
switches itself off and plays no role in the later development of the universe. This is what one
calls the “graceful exit” of inflation. By choosing V

(
φ0

)
sufficiently big, the exponential growth

rate during the inflationary period can be as large as we wish, see (∗). We will discuss in the
next chapter how big this growth rate should be in order to explain the observations.

φ

V
(
φ
)

φv

V
(
φ0

)
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This so-called “slow-roll” inflationary scenario is the simplest way in which an inflationary
stage can be produced. It was suggested by A. Linde and independently by A. Albrecht and
P. Steinhardt in 1982. Already earlier, other inflationary scenarios had been introduced by A.
Guth and by A. Starobinsky. Guth wanted to identify the field that drives inflation with the
Higgs field and he suggested a certain tunnelling process for the transition into the vacuum
state. Starobinsky used a different aproach, based not on Einstein’s field equation coupled to a
scalar field but rather on a modified field equation which contained a curvature coupling that
was motivated by ideas from quantum gravity. In the mean-time there is a big number of
different inflationary scenarios. By now, none of them is unanimously accepted. It should also
be mentioned that inflation is still a hypothetical concept, not directly verified by observations.
It is believed by a majority of cosmologists that an inflationary period took place at an early
stage of the universe, but there are also outspoken critics, e.g. Roger Penrose.

We have now discussed the dynamics of Robertson-Walker universes for various matter sources.
According to the model that is favourised by the majority of cosmologists (“concordance model”),
different matter sources were dominating at different stages. In the following we list these differ-
ent stages; we will discuss in the next chapter on what observational evidence the concordance
model is based and at what times the different periods took place.

• Big bang: We believe that the universe began with a hot bing bang, a state of extreme
density. The time immediately after the big bang is not yet theoretically understood. A
(not yet existing) quantum theory of gravity is probably needed.

• Inflationary period: We conjecture that there was a very short period during which the
scale factor grew exponentially by an enormous factor (1030 at least). This conjecture
solves the horizon problem, the monopole problem and the flatness problem. Inflation
was driven by a hypothetical scalar field called the inflaton.

• Radiation-dominated period: After the graceful exit from inflation radiation gives the
dominating contribution to the density. The density parameters of matter and of the
cosmological constant are negligibly small in comparison to that of radiation. The universe
expands ∼ t1/2, i.e., decelerating.

• ΛCDM period: At present, the universe is matter-dominated and the effect of a positive
cosmological constant has to be taken into account. The matter content can be modelled as
a dust, i.e., as “cold matter”. It comprises the usual (“baryonic”) matter and a mysterious
“dark matter” whose nature is unknown as of now. (CDM stands for “cold dark matter”.)
The density parameter of radiation is now negligible; recall that the density of radiation
falls off with a−4 while the density of matter (dust) falls off with a−3. The cosmological
constant may be re-interpreted as a perfect fluid with equation of state p = −c2µ (“dark
energy”) or as a scalar field (“quintessence”). Because of the cosmological constant, the
expansion of the universe is accelerating.

• Asymptotic deSitter period: If the cosmological constant is really a constant, it will dom-
inate the dynamics at late times. Our universe will then asymptotically approach the
deSitter spacetime. If the cosmological constant is actually a scalar field, it may change
with time and the future of the universe cannot be predicted.
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4. Observations

In this chapter we will summarize the observational facts on which the concordance model
is based. The most important information comes from the cosmic background radiation and
from the distance-redshift relation, but lensing and some other observational facts also provide
important restrictions on the model.

4.1 Evidence for dark matter

There are several observational facts indicating that a large part of matter in the universe
is dark and therefore detectable only by way of its gravitational field. As long as Einstein’s
general relativity theory (and, where applicable, the Newtonian approximation) is considered
as the theoretical basis, these observational facts are compelling. We list them in chronological
order.

• Velocity distribution in galaxy clusters: In 1933 and 1937 F. Zwicky wrote two papers
in which he gave the first evidence for the existence of dark matter. He analysed the
dynamics inside the Coma cluster, a galaxy cluster with more than 1000 galaxies. He
found that the galaxies are too fast for the cluster to form a gravitationally bound system
if one assumes that the total mass of the cluster is given by the luminous matter we are
observing. He conjectured that more than 99.8 % of the matter is dark. (In the 1933
article, which is written in German, he speaks of “dunkle (kalte) Materie”.) We believe
today that this number is too big. The reason is that at this time the distance ladder
was wrongly calibrated: Zwicky assumed that the Coma cluster is about 15 Mpc away;
actually it is more than 100 Mpc. If one re-analyses his calculation with a corrected
distance scale, one finds that about 95 % of the matter in galaxy clusters must be dark.
Zwickys prediction of the existence of dark matter was largely ignored at the time.

• Rotation curves of galaxies: In the 1970s V. Rubin analysed rotation curves in a large
sample of spiral galaxies, partly in collaboration with K. Ford. She looked at galaxies
which are seen almost edge-on. Then, because of the rotation of the stars about the
centre of the galaxy, the spectral lines are red-shifted on one side and blue-shifted on the
other. Measuring these shifts in different parts of the galaxy gives the so-called rotation
curve, i.e., the orbital velocity as a function of the radius. If all the mass of the galaxy were
in the centre, the stars would move in a potential ∼ r−1 according to Newtonian gravity
(which is a valid approximation here). This would give an orbital velocity ∼ 1/

√
r. If

one takes the actual distribution of the matter in the bulge and in the disc into account,
according to the visible masses, one gets a curve that increases in the inner part, but
then falls off like 1/

√
r in the outer part. This fall-off was not what V. Rubin observed:

Actually, the rotation curves remained almost flat. This could be explained, on the basis
of Einstein’s general relativity and its Newtonian approximation, only by the assumption
that the galaxy is embedded in a “dark matter halo”. V. Rubin estimated, that it should
make up about 50 % of the galaxy’s mass. Later observations indicated that it should be
at least 85 %. The picture on the next page shows the example of the galaxy NGC 3198.
(The rotation curves of all galaxies show the same tendency.) The graph labelled “disk” is
what one would see if there were only the visible matter. The graph labelled “halo” shows
the difference between this graph and the observed rotation curve which is interpreted as
the effect of the dark matter halo.
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picture from T. S. van Albada,

J. N. Bahcall, K. Begeman,

R. Sancisi: Astrophys. J. 295,

305 (1985)

The dark matter halo is usually modelled as spherically symmetric and several density
profiles have been suggested, e.g.

Non-singular isothermal sphere: µ(r) =
µ0r

2

0

r2
0
+ r2

,

Navarro-Frenk-White profile: µ(r) =
µ0r

4

0

r2
(
r2
0
+ r2

) ,

Einasto profile: µ(r) = µ0 exp
(
− Arα

)
,

where µ0, r0, A and α are parameters that can be fitted to observations. The Navarro-
Frenk-White profile is the most commonly used for the density of dark matter, not only
in galaxies but also in galaxy clusters. It was found not just by guess-work but rather by
numerical N-body simulations.

• Microlensing: The first candidates for dark matter in the halo of our galaxy that come to
mind are “Massive Compact Halo Objects” (MaCHOS) such as black holes, brown dwarfs
and planets. They cannot be seen directly, because they do not emit light, but they can
be observed by the influence of their gravitational field on light:

If a star passes behind such
a compact object, the light
is focussed towards the ob-
server, i.e., one sees a light
curve that goes up and then
down again. The closer the
star comes to the line of
sight, the bigger is the effect.

This is called microlensing. More precisely, the word microlensing is used for lensing situ-
ations where multiple images are created but cannot be resolved; so what one sees is just a
change of brightness of the compound image. Microlensing events are routinely observed
since the early 1990s. They are very common (several hundreds per year), and in the
majority of cases the observations are made towards the halo of our galaxy. (Observations
are also made towards the bulge of our galaxy, towards the Magellanic clouds and towards
the Andromeda galaxy.) These observations give an upper bound on the total mass of
the MaCHOs in our galaxy. The microlensing surveys came to the conclusion that not
more than 20 % of the dark matter that is needed for explaining the rotation curves can
be MaCHOs.
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• Weak lensing: While microlensing is the most important tool for detecting dark matter in
our galaxy or nearby, weak lensing is the most important tool for detencting dark matter
in distant galaxy clusters. What one observes is the deformation of background galaxies
by the lensing effect of the cluster. For understanding the basic idea, let us assume for a
moment that the background galaxies were perfectly spherical. Then we would see each
galaxy distorted into an ellipse on the sky, and the orientations and the eccentricities of
the ellipses would tell us where the deflecting mass is located in the sky and how big its
surface mass density (mass density projected onto the plane perpendicular to the view-
line) is. Unfortunately, galaxies are not spherical. For most of them the shape can be
approximated reasonably well by an ellipsoid. So when we see an ellipse in the sky we have
to distinguish the intrinsic shape from the distortion effect produced by lensing. This can
be done statistically, based on the assumption that the intrinsic shapes are distributed
randomly. A sophisticated numerical method has been established to deduce from the
observed shapes of background galaxies the surface mass density of a galaxy cluster. This
has been worked out since the 1980s for a large number of galaxy clusters. If Einstein’s
theory describes the effect of gravitational fields on light correctly, all these observations
confirm Zwicky’s prediction that the majority of matter in galaxy clusters is dark.

The most famous example is the
bullet cluster. These are two col-
liding galaxy clusters. The picture
consists of three different contribu-
tions which are overlayed: An or-
dinary photograph in the optical
made with the Hubble space tele-
scope (all the white or yellowish
spots which are actually galaxies),
an X-ray picture taken by the X-
ray satellite Chandra (the two red
clouds) and the surface mass den-
sity calculated from weak lensing
observations (the two blue clouds).

picture from apod.nasa.gov

It is the shape of the red cloud on the right that gave the name to the bullet cluster,
because it looks like a bullet rushing into a target. The interpretation is as follows: We
see two colliding galaxy clusters. The stars in the galaxies move through each other largely
without any effect, because collisions are rare. The hot gases, however, strongly decelerate
each other when colliding, so they stay behind; this is what the red clouds are showing.
As the majority of visible masses in a galaxy cluster is in the form of hot gases, one would
expect the blue clouds to coincide with the red clouds. However, this is not what we
see: The blue clouds have not been decelerated by the collision, so the majority of the
gravitating mass must consist of a kind of dark matter that is more or less frictionless. The
bullet cluster gives compelling evidence for the existence of dark matter in galaxy clusters,
provided one accepts Einstein’s general relativity theory, and it gives strong restrictions
on the way this dark matter can interact with itself and with other matter. Since the
discovery of the bullet cluster a few other pairs of colliding clusters with similar properties
have been found.
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Taking the evidence from the velocity distributions in galaxy clusters, from the rotation curves
in galaxies and from weak lensing together, we are more or less forced to assume that about
90 % of the matter is dark. As the bullet cluster shows most clearly, the mysterious dark matter
can interact only very weakly with other things and with itself. Several hypothetical particles
have been suggested as dark matter candidates, e.g.

• weakly interacting massive particles (WIMPs)

• axions,

• new types of neutrinos,

. . .

In spite of intensive searches, none of them has been detected so far. So the present status is:
We do not know what this dark matter is, but we have to assume that it is there in order to
explain the observations.

The only alternative to accepting the existence of dark matter seems to be a modification of
the gravitational theory. As the observations that led us to postulating dark matter are mainly
done at a level where the Newtonian approximation is valid, it would be necessary to modify
already the Newtonian theory (and then Einstein’s theory in a way that it gives the modified
Newtonian theory in the appropriate limit). Several modified theories of this kind have been
brought forward:

• Modified Newtonian Dynamics (MoND)

This theory was suggested by M. Milgrom in 1983. It modifies the Newtonian equation of
motion (Newton’s Lex Secunda) from ~F = m~a to

~F = mµ
( a

a0

)

~a .

Here a0 is a hypothetical constant of Nature with the dimension of an acceleration and µ
is a function that is to be chosen in a way that the old version of the Lex Secunda is still
valid if the acceleration a is much bigger than a0, i.e.,

µ(x) ≈ 1 for x ≫ 1 .

Milgrom has demonstrated that the rotation curves of galaxies can be explained in a quite
satisfactory manner if

a0 ≈ 10−10m/s2

and

µ(x) =
1

1 −
1

x
or

µ(x) =
1

√

1 −
1

x2

.

Of course, MoND cannot be considered as anything else but a Newtonian-like limit of a
“true theory” which generalises Einstein’s theory.
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• Tensor-Vector-Scalar (TeVeS) theory

It took about 20 years to find a generalisation of general relativity that reduces to MoND
in the appropriate limit. It was found by J. Bekenstein in 2004. In this theory the
gravitational field is not just described by a tensor field, as in Einstein’s theory, but in
addition by vector and scalar fields. The field equations are extremely complicated and
the geometrical appeal of Einstein’s theory is largely destroyed. TeVeS (and, thus, MoND)
has problems to explain the observations of binary pulsars and of the cosmic background
radiation. However, the greatest challange for this theory is the bullet cluster. Milgrom
admitted that he was not able to fully explain the observations of the bullet cluster within
TeVeS/MoND.

• Conformal gravity

In 1989 P. Mannheim suggested that the rotation curves of galaxies can be explained
in a theory where the gravitational field is still given by a metric tensor, as in general
relativity, but the field equation is modified. Instead of Einstein’s field equation, which
derives from an action given by the Ricci scalar, this field equation derives from an action
given by the square of the conformal curvature tensor (also known as the Weyl tensor). As
a result, the left-hand side of the field equation is conformally invariant, i.e., it does not
change if the metric is multiplied with a positive function. The same field equation was
suggested already in 1920 by R. Bach. The theory suffers from severe conceptual problems.
In particular, the conformal symmetry has to be broken by some mechanism in order
to alllow for non-zero masses because an energy-momentum tensor can be conformally
invariant only in the case that it describes matter made up of massless particles (such as
a photon gas).

4.2 The distance-redshift relation

Recall that we have found various versions of a “Hubble law” in Robertson-Walker spacetimes.
Without using the field equation, we could demonstrate the following.

• There is an exact linear relation between proper distance Dp and proper velocity dDp/dt,
see p. 22. This, however, is of no relevance in view of observations because Dp cannot be
measured.

• The expression for each of the distance measures DT , Dp, DA and DL can be expanded as
a power series in z and we calculated the two leading-order terms for each of them which
are determined by H(to) and q(to) . In particular, we did this for the luminosity distance
DL as a function of z, see p.26. This can be linked to observations if standard candles are
available.

When using the field equation, we could establish stronger results:

• For dust solutions without a cosmological constant, we gave the relation between scale
factor and time analytically in parametric form. We derived an exact relation between
luminosity distance and redshift which is known as the Mattig relation, see p.48. Just
as the approximate second-order formula for an arbitrary Robertson-Walker universe, the
Mattig formula is determined by H(to) and q(to). Recall from Worksheet 6 that in a dust
universe Ωm(to) = 2q(to), so q(to) can be replaced with the density parameter Ωm(to).
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• For dust solutions with a cosmological constant, we did not give the relation between
scale factor and time in analytical form, although this is possible in terms of elliptic
integrals. We just qualitatively discussed the influence of Λ on the scale factor. With the
exact analytical solution one can derive generalised Mattig relations, see M. Da̧browski
and J. Stelmach, Astron. J. 92, 1272 (1986). However, we did not (and will not) work
them out because they are very complicated. The distance-redshift relation in a dust
universe with a cosmological constant is usually evaluated numerically. Keep in mind that
in involves Ωm(to) and ΩΛ(to) and that the case k = 0 is characterised by the equation
Ωm(to) + ΩΛ(to) = 1.

We will now link these mathematical results to observations, following the historic development.

In 1929 E. Hubble claimed that there is a linear relation between luminosity distance and
redshift. This claim was based on a sample of about 25 galaxies whose redshifts had been
measured before. He used Cepheids (variable stars whose period is related to their luminosity)
as standard candles in combination with some rather rough estimates. He announced that the
“K factor” (that’s what we now call the Hubble constant) had a value of about 500 (km/s)/Mpc.

In the 1950s it was realised that the distance ladder, based on observations of Cepheids, had
to be recalibrated. This reduced the Hubble constant H(t0), which up to this time had be
generally assumed to be bigger than 200 (km/s)/Mpc, by a factor of 2. Until the 1990s, there
was a controversy between two groups of cosmologists, one advocating a Hubble constant of
about 50 (km/s)/Mpc and the other advocating a Hubble constant of about 100 (km/s)/Mpc.
The deceleration parameter q(t0) was generally believed to be positive (corresponding to a
decelerating expansion of the universe), but actually the observations were to inaccurate for
determining q(to). On theoretical grounds, many cosmologists were in favour of the Einstein-
deSitter universe where the deceleration parameter is independent of time and equal to 1/2.

In 1998/1999 the results from two groups were published which both used supernovae of type
Ia as standard candles. These supernovae are believed to be white dwarfs in a binary system.
If so much mass from the companion has been accreted onto the white dwarf that its mass
exceeds the Chandrasekhar limit of 1.44 M⊙, the white dwarf becomes unstable and explodes as
a supernova. As this instabiliy occurs at a fixed value of the mass, there is a universal relation
between the shape of the light curve and the luminosity. This is why these supernovae are good
standard candles. (Actually, the situation is a bit more complicated. Supernovae of type Ia are
characterised by the fact that their spectra show no hydrogen lines but a silicon line. Not all
supernovae of this type can be used as standard candles; one has to exclude some subclasses for
which the relation between the light curve and the luminosity is different.) From observations of
about 45 supernovae of type Ia in galaxies at redshifts up to z ≈ 0.9 both groups independently
found that the data cannot be matched to the distance-redshift relation of a universe with
q(t0) > 0, in particular not to a dust universe without a cosmological constant. For a dust
universe with a positive cosmological constant, however, it worked, see the diagram on the next
page. If one assumes a spatially flat universe (k = 0), as suggested by inflation and supported
by the cosmic background radiation (see below), the best fit to the supernovae Ia data suggests
that the density parameters should be Ωm = 0.3 for matter (90 % of which is assumed to be
dark matter) and ΩΛ = 0.7 for the cosmological constant (which may be re-interpreted as dark
energy or quintessence). The Hubble constant came out as H(t0) ≈ 65(km/s)/Mpc; the present
data, also including observations of the cosmic background radiation, are in favour of a slightly
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bigger value of about H(t0) ≈ 70(km/s)/Mpc. The precise value of the deceleration parameter
q(t0) is still unclear, but the supernovae Ia observations showed that it must be negative with
a confidence of 7 σ. For the observation that our universe is accelerating S. Perlmutter, A.
Riess and B. Schmidt won the Nobel Prize in Physics 2011. The determination of the distance-
redshift relation with the help of supernovae of type Ia has been extended to redshifts bigger
than 1 in the years after 2000. In addition to ground-based observations, a satellite project
SNAP (SuperNova Acceleration Probe) had been proposed which later became a sub-project
of WFIRST (Wide Field Infrared Survey Telescope). This NASA satellite could be launched
around 2020.

Ωm(t0)

ΩΛ(t0)

0.3 1

0.7

1

SNe q(t0) = 0

k = 0

4.3 The cosmic background radiation

We have already mentioned the chequered history of the cosmic background radiation. Recall
that the officially recognised detection was made in the year 1964 by A. Penzias and R. Wilson
who won the Nobel Prize in 1978. In the following years, the properties of the cosmic background
radiation have been carefully investigated, in particular by several satellite missions. Note that
the maximum of the cosmic background radiation is in the frequency range of microwaves where
the radiation is largely blocked by the water vapour in our atmosphere. Therefore, observations
of the cosmic background radiation are made with satellites, with balloons, or with ground-
based telescopes at high altitude, in particular near the South Pole where because of the cold
temperature the amount of water vapour in the atmosphere is low. The most important projects
have been the following:

• COBE (Cosmic Background Explorer)

This was a satellite that was launched in 1989. Data were released in 1992 and made a
great impact. In particular, COBE found that the cosmic background radiation shows a
perfect Planck spectrum and that it is isotropic to an extremely high degree, but it also
found the first tiny deviations from isotropy. J. Mather and G. Smoot were awarded the
Nobel Prize for these discoveries in 2006.
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• Boomerang (Balloon Observations Of Millimetric Extragalactic Radiation and Geomag-
netics)

As the name suggests, this was a balloon experiment. It flew two times, in 1998 and in
2003 and its most important result was that it detected the first acoustic peak in the
power spectrum (see below) at precisely the postition where it should be in a universe
with k = 0.

• WMAP (Wilkinson Microwave Anisotropy Probe)

This was a NASA satellite that took data over the unusually long period from 2001 to
2010. It mapped the anisotropies over the whole sky, confirmed the first acoustic peak in
the power spectrum and found the next ones.

• Planck

This European satellite was in operation from 2009 to 2013. The data analysis is still
ongoing. Both the sensitivity and the resolution of the Planck satellite was even higher
than that of WMAP, so Planck was able to determine the power spectrum to ever higher
values of ℓ (see below).

Another project that made big headlines was BICEP2, a telescope at the South Pole. In March
2014 the BICEP2 team announced that their investigation of the polarisation of the cosmic
background radiation showed distinctive signatures from primordial gravitational waves. In
the following months it was found that the measurements were correct but the interpretation
was wrong. The so-called B-modes that have been observed in the polarisation had not been
produced by primordial gravitational waves (at a very early stage of the universe) but rather
by the influence of dust on the propagation of the photons in the cosmic background radiation
(at a much later time).

We now discuss the most important observed features of the cosmic background radiation.

(a) Planck spectrum

From elementary physics text-books we know that the Planck spectrumc is
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ν

c2dµr

dν

νmax

The maximum of the spectral energy density is at a frequency νmax which is determined by the
temperature T .

Integrating over all frequencies gives the Stefan-Boltzmann law,
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where σ is the Stefan-Boltzmann constant. Inserting the numerical values for h, k and c results
in the equation

c2 µr ≈ 7.6× 10−16
J

m3

T 4

K4

which allows to calculate the energy density c2µr from the temperature T .

In an expanding universe the volume at a time te is related to the volume at a time to according
to

V (to)

V (te)
=

a(to)
3

a(te)3
.

With the redshift law for Robertson-Walker spacetimes,

ν(te)

ν(to)
= 1 + z =

a(to)

a(te)
,

this can be rewritten as
V (to)

V (te)
=

ν(te)
3

ν(to)3
,

hence
V (to) ν(to)

3 = V (te) ν(te)
3 .
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Differentiation with respect to the frequency, keeping te and to fixed, yields

V (to) ν(to)
2 dν(to) = V (te) ν(te)

2 dν(te) ,

i.e., the numerator in the Planck law (P) is time-independent. If the photon number is conserved,
this implies that also the denominator must be time-independent,

ν(to)

T (to)
=

ν(te)

T (te)
.

Invoking again the redshift law in Robertson-Walker spacetimes, this implies

T (te)

T (to)
=

a(to)

a(te)
,

i.e., if the universe expands by a certain factor, the temperature drops by the same factor, which
is quite intuitive. Note that the Stefan-Boltzmann law is in agreement with the fact that in a
universe filled with radiation the density is inverse proportional to the fourth power of the scale
factor, as we have seen before.

We observe that the cosmic background radiation reaches us now (at time to) with a perfect
Planck spectrum whose temperature is T (to) = 2.73K. The maximum of the radiation is at
a frequency νmax ≈ 160GHz which corresponds to a wavelength of λmax ≈ 1.1mm. By the
Stefan-Boltzmann law, the temperature gives us the energy density c2 µr(to) of the radiation,

µr(to) ≈ 4.6× 10−31
kg

m3
.

From the spectral distribution we can calculate that this corresponds to approximately 500
photons per cm3. On the other hand, the critical density is determined by the Hubble constant
which we know rather well,

µc(to) =
3H(to)

2

κ c4
= 1.9× 10−26 h2

kg

m3

where

H(to) = 100× h
km/s

Mpc
.

With h ≈ 0.7 we find that the density parameter of the radiation is

Ωr(to) =
µr(to)

µc(to)
< 10−4

which can be ignored in comparison to the density parameters of the cosmologicall constant and
of matter, ΩΛ ≈ 0.7 and Ωm ≈ 0.3.

The above analysis shows that a Planck spectrum remains a Planck spectrum if photons freely
propagate in an expanding universe, with the temperature being proportional to the inverse
of the scale factor. The obvious idea is that the cosmic background radiation has come into
existence at some time te, when the scale factor was smaller and the temperature was higher,
and from that time onwards the photons of the cosmic background radiation have propagated
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more or less freely until we observe them today at time to. What can we say about the time te?
Certainly, photons cannot propagate freely if the universe is densely filled with free electrons so
that the photons undergo frequent scattering. As a rough approximation, the time te coincides
with the time when electrons and ions formed neutral atoms, so T (te) can be estimated from the
condition that this temperature should approximately correspond to the energy where atoms
are ionised,

k T (te) ≈ Eionisation .

A typical ionisation energy is in the order of some eV. (For hydrogen, e.g., it is 13.6 eV.) So for
our rough estimate we may assume that

k T (te) ≈ 1 eV .

As the Boltzmann constant is

k = 0.86× 10−4
eV

K
,

this gives
T (te) ≈ 104K .

A more detailed analysis shows that the universe became transparent at a temperature of 3000
– 4000 K. This corresponds to a redshift of z ≈ 1100. We refer to the hypersurface t = te
with this temperature T (te) as to the hypersurface of last scattering. The intersection of this
hypersurface with the past light-cone of an observer here and now is called the surface of last

scattering.

t = to

t = te

surface of last scattering

It is usual to refer to the time when electrons and ions formed neutral atoms as to the time of
recombination. Actually, this is a misnomer because it is for the first time in the universe that
electrons and ions combine. Of course, the time of recombination was not one precise moment
but rather a time interval. Similarly, the hypersurface of last scattering t = te is an idealised
model for a spacetime region with a certain temporal extension.
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We have said that in the time before recombination photons underwent frequent scattering
processes with free electrons. In the rest system of the electron, the photon has a certain initial
energy Eγi and a certain final energy Eγf . One speaks of

− Compton scattering if Eγi > Eγf ,

− Thomson scattering if Eγi = Eγf ,

− inverse Compton scattering if Eγi < Eγf .

In the time after recombination, the photons of the cosmic background radiation are scattered
only very rarely. When they pass through the hot gas (plasma) in a galaxy cluster, these rare
scattering processes can lead to a tiny distortion of the Planck spectrum. This is known as the
Sunyaev-Zel’dovich effect

(b) Anisotropy

The cosmic background radiation shows a Planck spectrum, so we can associate to it a tempera-
ture T . This temperature is isotropic, i.e., independent of the direction from which the radiation
comes, to an extremely high degree (if we subtract the dipole term, see below). However, it is
not perfectly isotropic, there are tiny anisotropies in the order of ∆T/T / 10−5. These tiny
anisotropies give important information on the universe. They are usually modelled with the
help of an expansion into spherical harmonics

Y m
ℓ (ϑ, ϕ) =

√

(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cosϑ) eimϕ ,

where the Pm
ℓ are the associated Legendre polynomials,

Pm
ℓ (x) =

(−1)m

2ℓℓ!

(

1− x2
)m/2 dm

dxm
Pℓ(x)

and the Pℓ(x) are the Legendre polynomials,

Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ

(

(

x2 − 1
)ℓ
)

.

The temperature is a function on the sky, i.e. T : S2 → R
+. The points on the sphere are

in one-to-one correspondence with unit vectors ~e which can be represented with the help of
standard spherical coordinates as

~e =





sinϑ cosϕ
sin ϑ sinϕ

cosϑ



 .

The spherical harmonics form an orthonormal basis for square-integrable functions on the sphere,
so we may write the temperature T

(

~e
)

as

T
(

~e
)

T0

=

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

amℓ Y m
ℓ (ϑ, ϕ)

where T0 is the averaged temeperature,

T0 =
1

4π

∫ 2π

0

∫ π

0

T
(

~e
)

sinϑ dϑ dϕ .
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For each ℓ,

aℓ(ϑ, ϕ) =
ℓ

∑

m=−ℓ

amℓ Y m
ℓ (ϑ, ϕ)

is the multipole moment of degree ℓ of the temperature anisotropy. The monopole moment is

a0 = 1

because we have divided by T0. The dipole moment

a1(ϑ, ϕ) =

1
∑

m=−1

am1 Y m
1 (ϑ, ϕ)

was measured around 1970. It was found to be in the order of
∣

∣a1(ϑ, ϕ)
∣

∣ / 10−3. It is un-
derstood as a result of the motion of the Earth with respect to the rest system of the cosmic
background radiation: If the cosmic background radiation were perfectly isotropic with respect
to the standard observers in a Robertson-Walker observer, any other observer would see a dipole
anisotropy that can be explained as a Doppler effect resulting from the motion of this observer
relative to the standard observers. In the forward direction the Doppler effect causes a blueshift
of the photons which results in a Planck spectrum with a higher temeperature, in the backward
direction the Doppler effect causes a redshift of the photons which results in a Planck spectrum
with a lower temperature. When we talk about anisotropies in the cosmic background radiation
we always subtract the dipole term, i.e., we consider the quantity

δT
(

~e
)

=
T
(

~e
)

T0

− 1 −

1
∑

m=−1

am1 Y
m
1 (ϑ, ϕ) =

∞
∑

ℓ=2

ℓ
∑

m=−ℓ

amℓ Y m
ℓ (ϑ, ϕ) .

It is this quantity for which observations give a bound of
∣

∣δT
(

~e
)∣

∣ / 10−5. It is natural to assume
that δT is Gaussian (i.e., that values of δT measured over the sky show a Gauss distribution
about the mean-value of zero) and statistically isotropic (i.e., that the values for all higher-order
multipole moments vary randomly over the sky without distinguishing a particular direction).
However, the recent satellite missions WMAP and Planck, which have measured the anisotropies
in the cosmic background radiation with a high accuracy, have found some indications for non-
Gaussianities and also for a distinguished axis in the sky (sometimes called the “axis of evil”)
with which the quadrupole moment and the octupole moment seem to be aligned. These
observations have to be confirmed, so at the moment it is not yet clear if the assumptions of
Gaussianity and of statistical isotropy really have to be dropped.

If we take a conservative view and assume that Gaussianity holds, the two-point autocorrelation
function

CT = 〈δT
(

~e
)

δT
(

~e ′
)

〉

of the temperature anisotropy δT determines the correlation completely because for a Gaussian
distribution all higher-order correlation functions are determined by the two-point correlation
function. Moreover, if statistical isotropy holds, for any two points ~e and ~e ′ in the sky the
correlation depends only on the angle between ~e and ~e ′,

CT (ϑ) = 〈δT
(

~e
)

δT
(

~e ′
)

〉~e·~e ′=cosϑ .
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Because of statistical isotropy the ensemble average 〈 · 〉 can be evaluated with ~e ′ kept fixed
at the North Pole of the coordinate system; then the angle ϑ is just the polar coordinate ϑ of
the point ~e. As CT depends only on ϑ, expansion of this function with respect to spherical
harmonics involves only terms which are independent of ϕ, i.e., terms with m = 0. As Y 0

ℓ is a
multiple of Pℓ, this results in an expansion in terms of the Legendre polynomials,

CT (ϑ) =
∞
∑

ℓ=0

2ℓ+ 1

4π
CT

ℓ Pℓ(cosϑ) .

The coefficients CT
ℓ give the angular power spectrum of the temperature anisotropy. (This is not

the general definition of the angular power spectrum, but in the case at hand it is an equivalent
definition.) High values of ℓ correspond to correlations on a small angular scale. Note that
because the Legendre polynomials satisfy an orthogonality condition with respect to the L2

scalar product, the expansion equation of CT (ϑ) can be solved for the coefficients CT
ℓ ,

CT
ℓ = 2 π

∫ π

0

CT (ϑ)Pℓ(cosϑ) sin ϑ dϑ .

The measurement of the CT
ℓ for many values of ℓ was one of the main goals of the satellite

missions WMAP and Planck. Although ℓ is a discrete variable, taking only non-negative integer
values, CT

ℓ is usually plotted against ℓ as if ℓ could take all non-negative real values. The
diagram shows the 2013 results of the Planck mission. The Dl plotted on the vertical axis has
the dimension of temperature squared, while our CT

ℓ are dimensionless. The difference lies in the
fact that we didn’t consider the temperature anisotropy but rather the temperature anisotropy
divided by T0.
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Already the balloon mission Boomerang had observed a local maximum of CT
ℓ near ℓ = 200.

WMAP and Planck found additional local maxima at higher values of ℓ, see the diagram. These
local maxima are known as “acoustic peaks”. Before they were observed, they had actually been
predicted on the basis of the following theoretical consideration: In the era before recombination,
ions, electrons and photons formed a kind of soup where with a certain statistical probability
overdensities formed. Each overdensity grew over a certain time, because it gravitationally
attracted neighbouring matter, until the pressure became so big that a (roughly spherical) wave
expanded from the overdensity. This is quite similar to the formation of a sound wave in a gas,
therefore one calls these waves “acoustic”. The distance the photons, which are part of the soup,
could travel before they decoupled from the matter at about the time of recombination, depends
on the speed of sound. The latter can be theoretically calculated with the help of perturbation
theory, see the next chapter. After the time of recombination, the photons decouple from the
matter and just freely follow the expansion of the universe. This process results in the formation
of roughly spherical shells of photons with a radius that can be theoretically predicted. Clearly,
the existence of such shells results in a certain correlation of the anisotropy of the cosmic
background radiation at a certain angular scale, with a maximum at a particular value of ℓ.
On the basis of a universe with k = 0, as suggested by inflation, the first acoustic peak was
predicted to occur near ℓ = 200. This was precisely what the observations have shown. Also
the discovery of the other peaks is in agreement with the assumption that k = 0. As these
calculations are quite sensitive to the value of k, the location of the acoustic peaks give strong
support to the idea that we live in a universe with k = 0.

Recall that the observations of the supernovae of type Ia could be explained by assuming a
universe with a cosmological constant and a dust, i.e., with two density parameters ΩΛ(to) and
Ωm(to). The data located the values for these density parameters within an elliptical area, see
the picture on p. 74. If we combine this result with the evidence for k = 0, as it comes from the
anisotropy of the cosmic background radiation, we have to intersect this elliptical area with the
straight line where ΩΛ(to) + Ωm(to) = 1 which corresponds to k = 0. This gives the values of
approximately ΩΛ = 0.7 and Ωm = 0.3.

(c) Polarisation

The cosmic background radiation is unpolarised to a very high degree. Relative deviations are
of the order / 10−6 which is even one order of magnitude smaller than that for the temperature
anisotropy. Nonetheless, a slight degree of polarisation has been detected.

For a theoretical description, one uses again an expansion into spherical harmonics. However,
this is now much more involved than for the temperature because the degree of polarisation
cannot be described by a scalar variable: One usually uses the so-called Stokes parameters which
can be combined to form a second-rank tensor field on the celestial sphere. Therefore, one cannot
expand the polarisation measure in terms of the usual scalar spherical harmonics, one rather
has to use tensorial spherical harmonics. There are two families of such tensorial spherical
harmonics, one of them for the expansion of curl-free anisotropies and one for divergence-
free anisotropies. Because of the analogy with electrodynamics, the curl-free anisotropies are
called E-modes and the divergence-free anisotropies are called B-modes. (Note that this has
nothing to do with the real electric or magnetic fields of which the cosmic background radiation
consists!) Theoretically the slight degree of polarisation of the cosmic background radiation
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can be explained by the influence of matter on the photons on their way from the surface of
last scattering to us, i.e., as scattering or deflection (lensing) effects. E-modes that could be
explained in this way have been observed for the first time in 2003 and B-modes that could be
explained in this way have been observed in 2013. In 2014, it was announced that the telescope
BICEP2 at the South Pole has observed a kind of B-modes that could be explained only as the
result of primordial gravitational waves; this would have been a kind of anisotropy imprinted
on the cosmic background radiation already when it left the surface of last scattering. If true,
this would have given strong suppport for the idea of inflation because otherwise it would have
been impossible to explain how the effect of primordial gravitational waves could have grown
to a measurable size. Unfortunately, it was found out that the BICEP2 observations could very
well be explained as the effect of dust (“foreground”) on the cosmic background radiation. The
BICEP2 team withdraw the announcement that they have detected primordial gravitational
waves after a few months. Note that it is generally accepted that the observations of the
BICEP2 team were correct; it is the interpretation of these observations that was wrong.

4.4 Other observations

Without going into details, we very briefly indicate that our cosmological models are also re-
stricted by some other kind of observations.

• Number counts

Let us assume we count all galaxies in the sky up to a certain magnitude, i.e., all galaxies
whose flux is bigger than a certain chosen limit value F . How does the number N of these
galaxies depend on the flux F ? In a Euclidean static universe, N would grow with R3

where R is the radius of the volume in which we count the galaxies. On the other hand,
the flux falls off with R−2, so we have N ∼ F 3/2. As the log of F gives the magnitude,
one usually writes this as

logN =
3

2
logF + constant .

For an expanding (and possibly non-Euclidean) universe, we get a different relation. In
this way number counts give us a means for testing a chosen cosmological model.

Unfortunately, this method is not very reliable. The reason is that galaxies develop over
time. On average, a distant galaxy is seen at a younger stage of its life than a galaxy closer
by. We do not know enough about the development of galaxies for accurately estimating
the effect of age on the intrinsic luminosity.

• Baryonic Acoustic Oscillations (BAO)

We have briefly mentioned the formation of acoustic peaks in the cosmic background
radiation from spherical acoustic waves that formed at a time before recombination. Not
only the photons take part in these acoustic waves, but also the baryons. So they should
also form a spherical shell about each centre where an overdensity had formed. This should
be visible in the two-point correlation function for the matter density. The Sloan Digital
Sky Survey has revealed indications for these socalled Baryonic Acoustic Oscillations.
They are in agreement with the ΛCDM model with ΩΛ(to) = 0.7 and Ωm(to) = 0.3.
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• Gravitational lensing

Microlensing plays an important role for estimating the dark matter that can exist in the
form of Massive Compact Halo Objects and weak lensing is crucial for estimating the dark
matter in galaxy clusters. This was outlined already in Section 4.1. In addition, lensing
is also relevant for determining the matter in the universe at very large scales. The same
kind of weak lensing observations that has been made in the direction of galaxy clusters
has also been made in directions where no galaxy clusters are visible. Any deviation from
a random distribution of the shapes of background galaxies would indicate a deforming
influence of the matter distribution in the universe on the cross-sections of light bundles
at very large scales. This so-called “cosmic shear” was detected around the year 2000.
It restricts the possible ways in which we can model our universe as a Robertson-Walker
universe with certain perturbations. As the weak-lensing observations can only determine
the surface mass density (i.e., mass per area of a surface perpendicular to the line of sight)
it cannot determine a 3D distribution of matter in the universe. However, if weak lensing
is combined with other observations, it is possible to produce 3D maps of the distribution
of matter. These maps show a strong tendency of the matter to form filaments at very
large scales.

5. Perturbation theory

If we want to theoretically describe the anisotropies in the cosmic background radiation, and
other anisotropies, we have to go beyond the homogeneous and isotropic cosmological mod-
els, i.e., beyond Robertson-Walker spacetimes. Cosmological perturbation theory is the usual
mathematical setting for this kind of investigations.

General relativistic perturbation theory is based on an ansatz for the metric of the form

gµν = gµν + hµν

where gµν is a given (“background”) metric. One assumes that the perturbation is so small that
it is justified to linearise all equations with respect to hµν and its derivatives. In this way, the
nonlinear Einstein equation for the metric gµν is reduced to a linear differential equation for the
perturbation hµν . This linearised formalism is best known for the case that gµν is the Minkowski
metric. In an appropriate gauge (i.e., if the freedom of making coordinate transformations is
used in an intelligent way), the resulting vacuum equation for hµν reduces to the ordinary
wave equation and thus to the Laplace equation for the static case. In this setting Einstein
derived the perihelion precession of Mercury, the light deflection at the Sun and the existence
of gravitational waves. The linearised formalism is also well developped for the case that gµν
is the Schwarzschild metric. After decomposing the perturbation into two parts that transform
differently under spatial inversion (parity), this leads to the Regge-Wheeler equation for one
part and to the Zerilli equation for the other.

In cosmological perturbation theory, it is natural to choose gµν to be a Robertson-Walker metric.
This formalism dates back to a pioneering paper by Y. Lifshits (1946), but it developped into
a powerful tool only after J. Bardeen (1980) wrote the perturbation functions in a way that is
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invariant under coordinate transformations. As in perturbation theory a change of coordinates is
somewhat similar to a gauge transformation in electrodynamics, it is usual to refer to Bardeen’s
formalism as to gauge-invariant perturbation theory. We will now explain the basic features of
this formalism.

For the sake of simplicity, we restrict to the case that the background metric is a spatially flat

Robertson-Walker universe, i.e., to the case k = 0. Then

gµνdx
µdxν = − c2 dt2 + a2

(

dχ2 + χ2
(

dϑ2 + sin2ϑ dϕ2
)

)

where the scale factor a is a function of t. If we use the conformal time T , this metric can be
rewritten as

gµνdx
µdxν = a2

(

− c2 dT 2 + dχ2 + χ2
(

dϑ2 + sin2ϑ dϕ2

)

where now a has to be viewed as a function of T . What we have in the bracket is just the
Minkowski metric in spherical polars, so we may rewrite it in the form

gµνdx
µdxν = a2

(

− c2 dT 2 + δijdx
idxj

)

.

As usual, latin indices i, j, . . . take values 1,2,3 and, for this section, we agree to lower and
to raise latin indices with δij and δij , respectively. The metric is now, up to the conformal
factor a2, the Minkowski metric in usual inertial coordinates. Note, however, that cT and χ are
dimensionless while usually, when writing the Minkowski metric in spherical polars, we use ct
and r which have the dimension of a length. So we have to keep in mind that the “Minkowski-
like” coordinates cT , x1, x2 and x3 are dimensionless and that the correct dimension of gµν is
provided by the conformal factor a2 which has the dimension of a length.

We now switch on the perturbation. If we label the components of hµν appropriately, this can
be written as

gTT = gTT + hTT = − c2 a2dT 2 + hTT = − c2 a2
(

1 + 2A
)

,

gT i = gT i + hT i = 0 + hT i = a2 Bi ,

gij = gij + hij = a2 δij + hT i = a2
(

δij +
hij

a2

)

.

Then the perturbed metric reads

gµνdx
µdxν = a2

(

−c2
(

1 + 2A) + 2Bi dx
idT +

(

δij +
hij

a2

)

dxidxj

)

.

Here it is convenient to further decompose the vectorial part, Bi, and the tensorial part, hij, of
the perturbation. As we are on a spatially flat background, we can use ordinary vector calculus.
It is well known that any vector field on Euclidean 3-space can be decomposed into a curl-free
and a divergence-free vector field. This is known as the Helmholtz decomposition theorem, so
we may write in the case at hand

Bi = ∂iB + B̂i

where B is a scalar field and B̂i is divergence-free, ∂iB̂
i = 0.
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Sketch of proof of the Helmholtz decomposition theorem:

We want to write a given vector field ~B in the form

~B = ~∇B +
~̂
B

where ~∇ ·
~̂
B = 0. If this equation holds, we must have

~∇ · ~B = ∆B .

For any smooth ~B, this equation has a solution which is, of course, not unique. A
particular solution may be written as

B
(

~x
)

= −
1

4π

∫

R3

(

~∇ ′ · ~B
)(

~x ′
)

∣

∣~x− ~x ′

∣

∣

d3~x ′ ,

as is well known from electrodynamics, provided that ~B falls off sufficiently strongly
so that the integral exists. In any case, with a chosen solution B we may define
~̂
B := ~B − ~∇B. Then ~∇ ·

~̂
B = 0 and we are done.

Similarly to the Helmholtz decomposition of vector fields, one may also decompose tensor fields
of second rank. We just give the result here, for details we refer to J. Ehlers’ notes in General
Relativity and Gravitation 39, 1929 (2007). One finds that the symmetric second-rank tensor
field hij can be written as

hij

a2
= 2C δij +

(

∂i∂j −
1

3
δij ∆

)

E + ∂iÊj + ∂jÊi + 2 Êij

where C and E are scalar fields, Êi is a vector field with ∂iÊ
i = 0 and Êij is a second-rank

tensor field with ∂iÊ
ij = 0 and Êi

i = 0. Following a general convention, we denote tensor fields
that are divergence-free by a hat. This puts the perturbed metric into the following form:

gµνdx
µdxν = a2

{

− c2
(

1 + 2A
)

dT 2 +
(

∂iB + B̂i

)

dxidT

+

(

(1 + 2C)δij +
(

∂i∂j −
1

3
δij∆

)

E + 2 ∂iÊj + 2 Êij

)

dxidxj

}

.

We have just relabelled the perturbation: In the beginning we had the hµν which form a sym-
metric 4 × 4 matrix, i.e., there are 10 independent scalar perturbation functions. After the
relabelling we have

• 4 scalar fields A,B,C,E,

• two (co)vector fields B̂i and Êi,

• one symmetric second-rank tensor field Êij

which have 4 + 6 + 6 = 16 scalar components.
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They are restricted by the constraints

• ∂iÊ
i = 0 , ∂iB̂

i = 0

• ∂iÊ
ij = 0,

• Êi
i = 0

which are 2 + 3 + 1 = 6 conditions. So altogether we have 16 − 6 = 10 independent scalar
perturbation variables which is indeed the same number as before.

The perturbations ∂iB and ∂iE are often called longitudinal, while the perturbations B̂i, Êi

and Êij are called transverse. This terminology refers to Fourier transformations: If we expand

all terms with respect to the spatial variables as integrals
∫

. . . exp(kix
i)d3~k, there are terms

proportional to ~k and terms perpendicular to ~k. For obvious reasons, the former are called
“longitudinal” while the latter are called “transverse”. Note that Forier expansion requires
square integrability of the perturbations which is usually assumed in cosmological perturbation
theory.

You may ask what is the advantage of relabelling the perturbation in such a rather complicated
form. The answer is that in terms of the new variables A,B,C,E, Êi, B̂i, Êij it is easier to
find out which perturbations are gauge invariant and to decompose a general perturbation into
scalar, vector and second-rank tensor parts.

To make this clear, we have to investigate how the perturbations transform under coordinate
changes. As we are interested in perturbations only to within the linear approximation, it
suffices to consider coordinate transformations

(

T, x1, x2, x3
)

7→
(

T̃ , x̃1, x̃2, x̃3
)

where

T̃ = T + τ , x̃i = xi + ξi = xi + ∂iξ + ξ̂i

where, according to the Helmholtz theorem, ξ is a scalar field and ∂iξ̂
i = 0. We have now to

calculate how the metric coefficients transform under such a coordinate transformation. We
work this out in detail for the time-time component:

g
( ∂

∂T
,
∂

∂T

)

=
(∂T̃

∂T

)2

g
( ∂

∂T̃
,
∂

∂T̃

)

+ 2
∂T̃

∂T

∂x̃i

∂T
g
( ∂

∂T̃
,
∂

∂x̃i

)

+
∂x̃i

∂T

∂x̃j

∂T
g
( ∂

∂x̃i

,
∂

∂x̃j

)

.

The second and the third term on the right-hand side are of second order and thus negligible.
Hence

− c2 a(T )2
(

1 + 2A
)

= −
(

1 +
∂τ

∂T

)2

c2 a(T + τ)2
(

1 + 2 Ã
)

,

a(T )2
(

1 + 2A
)

=
(

1 + 2
∂τ

∂T
+ . . .

)(

a(T ) +
da(T )

dT
τ + . . .

)2
(

1 + 2 Ã
)

=
(

1 + 2
∂τ

∂T
+ . . .

)

a(T )2
(

1 +
2

a(T )

da(T )

dT
τ + . . .

)

(

1 + 2 Ã
)

= a(T )2
(

1 + 2
∂τ

∂T
+

2

a(T )

da(T )

dT
τ + 2 Ã + . . .

)

,
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hence

1 + 2A = 1 + 2
∂τ

∂T
+

2

a(T )

da(T )

dT
τ + 2 Ã + . . .

)

,

A =
∂τ

∂T
+ H τ + Ã ,

where

H(T ) =
1

a(T )

da(T )

dT

is the Hubble “constant” with respect to conformal time.

Similarly, the transformation of all the other metric coefficients can be calculated. We find

Ã = A −
∂τ

∂T
− H τ ,

B̃ = B + τ −
∂ξ

∂T
,

C̃ = C − H τ −
1

3
∆ξ ,

Ẽ = E − ξ ,

˜̂
Bi = B̂i −

dξ̂i
dT

,

˜̂
Ei = Êi − ξi ,

˜̂
Eij = Êij .

We see that by choosing the coordinate transformation (i.e., the scalar functions τ and ξ and
the vector field ξ̂i) appropriately, we can achieve that

B = 0 , E = 0 , Êi = 0 ,

or, alternatively,

B = 0 , E = 0 , B̂i = 0 .

The latter choice has the advantage that the hypersurfaces T = constant are then perpendicular
to the T -lines, even in the perturbed spacetime. This is known as the synchroneous gauge.
Mixed spatial-temporal components (i.e., components gT i in our setting) are usually called
gravitomagnetic terms. This refers to an analogy to electromagnetism: Whereas rotating charges
produce magnetic fields, rotating masses produce gT i terms. Our observation that B and B̂i

can be transformed to zero by a coordinate transformation implies that, within cosmological
perturbation theory, gravitomagnetic terms are pure gauge terms.
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Out of the perturbation variables A,B,C,E, Êi, B̂i and Êij we can form the following gauge-

invariant variables which were introduced by J. Bardeen in 1980:

Ψ = A − H
(

B −
∂E

∂T

)

+
∂

∂T

(

B −
∂E

∂T

)

,

Φ = −C − H
(

B −
∂E

∂T

)

+
1

3
∆E ,

Φ̂i =
∂Êi

∂T
− B̂i ,

Êij .

It is easy to verify that these quantities are indeed unchanged, to within linear approximation,
under a coordinate transformation. We may work in coordinates where B = 0, E = 0 and
Êi = 0 and express the metric perturbations in terms of the Bardeen variables Ψ = A, Φ = −C,
Φ̂i = −B̂i and Êij , i.e.

gµνdx
µdxν = a2

(

−
(

1 + 2Ψ) c2dT 2 − 2 Φ̂i dx
i dT +

(

(1− 2Φ)δij + 2 Êij

)

dxi dxj
)

.

In this way we work in a particular coordinate system, but the perturbation variables have a
gauge-invariant meaning. Keep in mind that a depends only on T whereas the perturbation
variables depend on all four coordinates T , x1, x2 and x3.

Note that in the linearised formalism scalar, vector and tensor perturbations may be consid-
ered separately. A fairly large part of perturbation theory restricts to scalar perturbations,
i.e., to the case that only the two scalar Bardeen potentials Ψ and Φ are non-zero. In this
restricted formalism we cannot, of course, describe gravitational waves, because this requires
tensor perturbations Êij 6= 0, but we may describe e.g. density perturbations.

We will now work out the linearised field equation for the case of scalar perturbations,

gµνdx
µdxν = a2

(

−
(

1 + 2Ψ) c2dT 2 + (1− 2Φ)δij dx
i dxj

)

.

With the help of Mathematica (or some other computer programme) we calculate the Einstein
tensor Gµν = Rµν −Rgµν/2 to within linear order with respect to Ψ, Φ and its derivatives. We
find

GTT = 3H2 + 2∆Φ − 6H
∂Φ

∂T
,

GT i = 2 ∂i

( ∂Φ

∂T
+ HΨ

)

,

Gij =

(

− 2
dH

dT
− H2 + ∆

(

Ψ− Φ
)

+ 2
∂2Φ

∂T 2
+ 2

(

2
dH

dT
+ H2

)

(

Φ+Ψ
)

+2H
∂Ψ

∂T
+ 4H

∂Φ

∂T

)

δij + ∂i ∂j
(

Φ−Ψ
)

.
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We are interested in perfect-fluid solutions, so we have to find out on what conditions the field
equation holds with an energy-momentum tensor of the form

Tρσ =
(

µ +
p

c2

)

Uρ Uσ + p gρσ .

According to the rules of linear perturbation theory, we assume that

Uρ = Uρ + δUρ = N δTρ + δUρ ,

µ = µ + δµ ,

p = p + δp ,

where the overlined quantities refer to the perfect fluid associated with the unperturbed Robertson-
Walker spacetime. The normalisation condition of the four-velocity requires

− c2 = gρσUρUσ = gTT
(

UT

)2
+ gijUiUj =

1

− c2 a2 (1 + 2Ψ)

(

N2 + 2N δUT

)

+ . . .

=

(

1− 2Ψ + . . .
)

− c2 a2
(

N2 + 2N δUT

)

+ . . . = −
N2

c2 a2
+

2ΨN2

c2 a2
−

2N δUT

c2 a2
.

Comparing zeroth order terms and first order terms yields

N = c2 a , δUT = c2 aΨ ,

i.e.,
Uρ = c2 a δTρ

(

1 + Ψ
)

+ δUi δ
ρ
i .

We linearise the energy-momentum tensor with respect to the perturbations,

Tρσ = T ρσ + δTρσ =
(

µ +
p

c2

)

Uρ Uσ + p gρσ

+
(

δµ +
δp

c2

)

Uρ Uσ + δp gρσ +
(

µ +
p

c2

)(

Uρ δUσ + Uσ δUρ

)

+ p hρσ .

Decomposition into temporal and spatial components yields

TTT =
(

µ + δµ + 2Ψµ
)

c4 a2 ,

TT i =
(

µ +
p

c2

)

c2 a δUi ,

Tij =
(

p + δp − 2 pΦ
)

a2 δij .

90



We write Einstein’s field equation,

Gµν + Λ gµν = κTµν

and consider, in particular, the ij−components,

Gij + Λ a2
(

1− 2Φ
)

δij = κTij .

With Gij and Tij inserted from above, we see that we get an equation of the form

α δij + ∂i ∂j
(

Φ−Ψ
)

= β δij

with some scalar functions α and β, hence

∂i ∂j
(

Φ−Ψ
)

= 0 for i 6= j .

Solving this differential equation for all index combinations i, j = 1, 2, 3 demonstrates that Φ−Ψ
must be of the form

(

Φ − Ψ
)

(T, x1, x2, x3) = f1(T, x
1) + f2(T, x

2) + f3(T, x
3) .

If we require the perturbations to be square-integrable over R
3, to allow for spatial Fourier

expansion, this implies that
Φ − Ψ = 0 ,

so we have only one Bardeen potential Φ = Ψ for perfect-fluid solutions.

We want to consider Einstein’s field equation with Λ = 0 for the special case that the un-
perturbed and the perturbed spacetime is a dust solution, i.e., p = 0 and δp = 0. Then the
background spacetime, being a solution to the Friedmann equation for a dust with k = 0 and
Λ = 0, must be the Einstein-deSitter universe (recall p. 42),

a(T ) =
c2 a2

0

4
T 2 ,

H(T ) =
1

a(T )

da(T )

dT
=

2

T
,

dH

dT
= −

2

T 2
,

By comparing first-order terms on both sides, we find for the TT , T i and ij components of
Einstein’s field equation

2∆Φ −
12

T

∂Φ

∂T
= κ c4 a2

(

δµ + 2µΦ
)

,

2 ∂i

( ∂Φ

∂T
+

2Φ

T

)

= κ c2 a µ δUi ,

2
∂2Φ

∂T 2
+

12

T

∂Φ

∂T
= 0 ,

respectively.
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The last equation can be integrated: With

u =
∂Φ

∂T

we have to solve
∂u

∂T
= −

6

T
u .

As this equation involves only differentiation with respect to T , we can solve it by separation
of variables, keeping parametric dependence on x1, x2 and x3 in mind.

du

u
= −

6 dT

T
,

ln u = − 6 lnT + constant

where the integration “constant” depends on ~x = (x1, x2, x3), hence

u
(

T , ~x
)

=
− 5C1

(

~x
)

T 6
,

Φ
(

T , ~x
)

=
C1

(

~x
)

T 5
+ C2

(

~x
)

.

The first term falls off very strongly in the course of time. If we wait sufficiently long, the
perturbation is given, to within a good approximation, by the second term which is time-
independent, i.e., the perturbation is “frozen”. We summarise these observations in the following
way: In a dust universe, scalar perturbations become time-independent for late times. This was
considered to be crucial at a time when people believed that we live in a dust universe without
a cosmological constant. Now we believe that there is a cosmological constant that will become
dominating for late times. Then the statement that scalar perturbations become “frozen” is no
longer true.

As an application, we calculate the influence of scalar perturbations on the redshift formula and,
thereby, on the cosmic background radiation. As a prerequisite, we need the redshift formula
in an arbitrary general-relativistic spacetime.

Consider an emitter whose worldline is parametrised by proper time τe and an observer whose
worldline is parametrised by proper time τo, see the diagram on the next page. Denote the
four-velocities ( i.e., the tangent vector fields to the worldlines) by Ue and Uo, respectively. If
two light rays are emitted at times τe and τe +∆τe, they are received at time τo and τo +∆τo,
where the frequency ratio

1 + z = lim
∆τe→0

∆τo
∆τe

=
dτo
dτe

.

The general redshift formula says that

1 + z =
gµν ẋ

ν(se)U
µ
e

gρσ ẋσ(so)U
ρ
o

.

Here xµ(s) is the light ray that starts at parameter value s = se at the emitter and arrives at
the parameter value s = so at the observer.
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Uµ
e

Uµ
o

ẋν(se)

ẋν(so)

∆τe

∆τo

Proof of the general redshift formula:

The following proof is borrowed from D. Brill. It can be found, e.g., in N. Strau-
mann’s book [ N. Straumann: “General Relativity and Relativistic Astrophysics”
Springer (1984) ]. We consider the two-surface (possibly with self-intersections)
spanned by the light rays from the emitter to the receiver. This two-surface can
be labelled by two parameters, s and τ . We choose s as the affine parameter along
each light ray, and τ in such a way that it coincides with proper time τe on the
emitter worldline. Because of the redshift, τ will then not coincide with proper time
τo on the observer wordline. We calculate

∂s

(

g
(

∂s, ∂τ
)

)

= g
(

∇∂s∂s, ∂τ

)

+ g
(

∂s,∇∂s∂τ

)

.

The first term vanishes, because the light rays are geodesics

∇∂s∂s = 0 .

The second term can be rewritten with the help of the fact that the Levi-Civita
connection ∇ is torsion-free, ∇∂s∂τ = ∇∂τ∂s. This results in

∂s

(

g
(

∂s, ∂τ
)

)

= g
(

∂s,∇∂τ∂s

)

=
1

2
∂τ

(

g
(

∂s, ∂s
)

)

= 0

because the light rays are lightlike, g(∂s, ∂s) = 0. We have thus found that

g
(

∂s, ∂τ
)
∣

∣

se
= g

(

∂s, ∂τ
)
∣

∣

so
.
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∂τ

∂s

Switching to coordinate notation, this equation reads

gµν ẋ
µ(se)U

ν
e = gρσ ẋ

ρ(so)U
σ
o

dτo
dτe

which gives the redshift formula.

We want to evaluate this formula for a Robertson-Walker spacetime with a scalar perturbation
of the form

gµνdx
µdxν = a2

(

− (1 + 2Φ) c2 dT 2 + (1− 2Φ) δij dx
i dxj

)

.

The wordlines of observer and emitter are supposed to be integral curves of the four-velocity
vector field

Uρ = gρµ Uµ
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where
Uµ = c2 a δTµ

(

1 + Φ
)

+ δUi δ
µ
i ,

see above. Hence
Uρ = gρµ

(

c2 a δTµ
(

1 + Φ
)

+ δUi δ
µ
i

)

= δρT gTT c2 a
(

1 + Φ
)

+ δρj g
ij δUi

= − δρT
c2 a

c2 a2
(

1 + 2Φ
)

(

1 + Φ
)

+ δρj
δij

a2
δUi

= − δρT
1

a

(

1− Φ
)

+ δρj
δij

a2
δUi

The lightlike geodesic we have to consider may be written in the form

T (s) = T (s) + δT (s) , xi(s) = xi(s) + δxi(s)

where the overlined quantities are the coordinates of a lightlike geodesic in the unperturbed
background spacetime and s is an affine parameter. The Lagrangian for the geodesics is

L
(

x , ẋ
)

=
1

2
gµν ẋ

µ ẋν

=
a2

2

(

− (1 + 2Φ) c2 Ṫ 2 + (1− 2Φ) δij ẋ
i ẋj

)

.

For lightlike geodesics we must have L = 0, hence

δij ẋ
i ẋj =

1 + 2Φ

1− 2Φ
c2 Ṫ 2 =

(

1 + 4Φ
)

c2 Ṫ 2 + . . .

The Euler-Lagrange equation
d

ds

( ∂L

∂ẋρ

)

=
∂L

∂xρ

reads
d

ds

(

gρσẋ
σ
)

= 0 −
∂Φ

dxρ
a2

(

c2 Ṫ 2 + δij ẋ
i ẋi

)

= − 2
∂Φ

∂xρ
a2 c2 Ṫ 2

where we have used that L = 0. To zeroth order, this gives the equation for lightlike geodesics
in the background spacetime: For xρ = T and xρ = k we find

d

ds

(

a2 c2 Ṫ
)

= 0

and
d

ds

(

a2 δkj ẋ
j
)

= 0 ,

respectively.

For determining the redshift we calculate how gµν ẋ
µ Uν changes along the light ray:

d

ds

(

gρσ ẋ
σ Uρ

)

=
d

ds

(

gρσ ẋ
σ
)

Uρ + gρσ ẋ
σ dUρ

ds
.
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We find:
d

ds

(

agρσẋ
ρUσ

)

=

(
d

ds
gρσẋ

ρ

)

aUσ + gρσẋ
ρ d

ds

(

aUσ
)

= 2
∂Φ

dxσ
a2 c2 Ṫ 2 δσT + gρσẋ

ρ d

ds

(

−
(
1− Φ

)
δσT +

1

a
δU iδσi

)

= 2
∂Φ

∂T
a2 c2 Ṫ 2 + gTT Ṫ

dΦ

ds
+ gij ẋ

j d

ds

(1

a
δU i
)

=✚✚2
∂Φ

∂T
a2 c2 Ṫ 2 − c2 a2 Ṫ

(

�
�
��∂Φ

∂T
Ṫ +

∂Φ

∂xi
ẋi

)

+ a2δij ẋ
j d

ds

(1

a
δU i
)

= a2 c2 Ṫ

{
∂Φ

∂T
Ṫ − ∂Φ

∂xi
ẋi + kj

d

ds

(1

a
δU i
)}

︸ ︷︷ ︸

=:Q(s)

.

Integration from an observation event (index o) to an emission event (index e) yields

a gρσ ẋ
ρ Uσ

∣
∣
∣
e
= a gρσ ẋ

ρUσ
∣
∣
∣
o
+ a2 c2 Ṫ

∣
∣
∣
o

∫ se

so

Q(s) ds

where we have used our result that a2 c2 Ṫ is constant. Hence

a(Te)gρσẋ
ρUσ

∣
∣
∣
e

a(To)gρσẋρUσ

∣
∣
∣
o

= 1 +
a2 c2 Ṫ

∣
∣
∣
o

a(To)gρσẋρUσ

∣
∣
∣
o

∫ se

so

Q(s) ds .

As the integral on the right-hand side is of first order, we may truncate the factor in front of it
after the zeroth order,

gρσẋ
ρUσ

∣
∣
∣
e

gρσẋρUσ

∣
∣
∣
o

=
a(To)

a(Te)



 1 +
a2 c2 Ṫ

∣
∣
∣
o

a(To)gρσẋρUσ

∣
∣
∣
o

∫ se

so

Q(s) ds



 .

Now we insert on the left-hand side the general redshift formula from p. 92 and on the right-hand

side we use that Uσ = δσT , hence gρσẋ
ρUσ = −a2c2Ṫ ,

1 + z =
a(To)

a(Te)

(

1 −
∫ se

so

Q(s) ds

)

.

To zeroth order we recover, of course, the familiar redshift law in an unperturbed Robertson-
Walker universe. We see that the first-order correction is given by an integral over the unper-
turbed light ray

(
T (s), xi(s)

)
. This first-order correction is known as the integrated Sachs-Wolfe

effect. We have restricted our calculation here to the case of scalar perturbations with Bardeen
potential Φ = Ψ. Sachs and Wolfe calculated this effect in 1967 for arbitrary (i.e. scalar, vector
and tensor) perturbations; they didn’t use the Bardeen variables (which didn’t exist at this
time) and rather worked in a gauge where δU i = 0.
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The integrated Sachs-Wolfe effect is the major influence of a perturbation on anisotropies in
the cosmic background radiation for large ℓ, i.e., on large angular scales. There is also an effect
(sometimes called the “non-integrated” Sachs-Wolfe effect) resulting from the fact that, because
of the perturbation, the temperature of the cosmic background radiation is non-uniform already
when it comes into existence at the hypersurface of last scattering.

6. Bianchi models

If we want to go beyond the assumptions of homogeneity and isotropy which are inherent to
the Robertson-Walker models, we have two possibilities. The first is to use perturbation theory,
which in general yields models without any symmetries, but it has the disadvantage that lin-
earising with respect to the perturbations destroys essential features of Einstein’s field equation
which is non-linear. The other is to work with exact solutions that have less symmetries than
the Robertson-Walker models. In particular, models that are homogeneous but not isotropic
have been extensively studied.

For studying homogeneous cosmological models we need the notion of Killing vector fields.
Recall that a vector field Kµ∂µ is called a Killing vector field if it satisfies the Killing equation

∇µKν +∇νKµ = 0 .

(In coordinate-free notation the Killing equation can be rewritten as LKg = 0 where LKg is
the Lie derivative of the metric with respect to the Killing vector field K.) Killing vector fields
describe symmetries of the spacetime: In Worksheet 2 we have shown that, near every point
where a Killing field Kµ∂µ is non-zero, we may find a coordinate system such that Kµ = δµ1 and
the gρσ are independent of x1.

It is obvious that a linear combination c1K1 + c2K2 of two Killing vector fields with constant

coefficients is again a Killing vector field, and it is not difficult to verify that the Lie bracket
[K1, K2] of two Killing vector fields is again a Killing vector field. (The Lie bracket of two
vector fields is their commutator, where we have to view the vector fields as derivative operators
acting on a scalar function, [K1, K2]f = K1K2f −K2K1f .) The set of all Killing vector fields
on a pseudo-Riemannian manifold is, thus, a Lie algebra. On an n-dimensional manifold, the
maximal dimension of this Lie algebra is n(n + 1)/2.

By definition, a spacetime (i.e., a 4-dimensional Lorentzian manifold) is spatially homogeneous
if it admits an algebra of Killing vector fields with 3-dimensional spacelike orbits. (The orbit of a
point is the union of all integral curves of Killing vector fields through this point.) The dimension
of this Lie algebra cannot be smaller than 3 and it cannot be bigger than 3(3 + 1)/2 = 6. We
will consider the case that the dimension is equal to 3. The resulting spacetime models are
known as Bianchi models. The name refers to the fact that L. Bianchi had classified in the
1890s all 3-dimensional Lie algebras. If the dimension is 4, the spacetime is called Locally

Rotationally Symmetric (LRS). The case that the dimension is 5 is impossible, and if it is 6 we
have a Robertson-Walker model; the latter are special cases of Bianchi models because their
6-dimensional Lie algebra always admits a 3-dimensional subalgebra of Killing vector fields that
generate the 3-dimensional orbits.
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We briefly review Bianchi’s classification of 3-dimensional Lie algebras. Given a 3-dimensional
Lie algebra, we may choose a basis (K1, K2, K3). The Lie bracket of two basis vectors must
then be a linear combination of the basis vectors,

[Ki, Kj] = Cℓ
ijKℓ ,

where the socalled structure constants Cℓ
ij are real numbers. (As always, we use the summa-

tion convention for latin indices i, j, . . . = 1, 2, 3). As the commutator of two operators is
antisymmetric,

[Ki, Kj ] = −[Kj , Ki] ,

and satisfies the Jacobi identity

[ [Ki, Kj ], Kℓ ] + [ [Kj , Kℓ], Ki ] + [ [Kℓ, Ki], Kj ] = 0 ,

the structure constants must satisfy
Cij = −Cji

and
εijkCm

ij C
ℓ
km = 0

where εijk is a totally antisymmetric non-zero tensor. We may fix εijk by requiring that in
the chosen basis ε123 = 1. Then any other totally antisymmetric non-zero tensor is given by
multiplying εijk with a non-zero factor. The antisymmetry of the structure constants with
repect to the lower indices implies that the same information as in the Cℓ

ij is in the second-rank
tensor

tij = εimnCj
mn .

We decompose tij into symmetric and antisymmetric parts,

tij = nij + εijkak , nij = nji .

With a bit of algebra one verifies that then the Jacobi identity is satisfied if and only if

nijaj = 0 .

One says that a 3-dimensional Lie algebra is of

• Bianchi Class A if (a1, a2, a3) = (0, 0, 0) ,

• Bianchi Class B if (a1, a2, a3) 6= (0, 0, 0) .

A change of the basis,
K̃i = Li

jKj ,

preserves the condition ε123 = 1 if det
(
Li

j
)
= 1. Under such a transformation,

ñij =
(

L−1
)i

k

(

L−1
)j

ℓ n
kℓ , ãi = Li

jaj . (T1)

We may also change to another totally antisymmetyric tensor, ε̂ijk = λ εijk. Then

n̂ij = λnij , âj = aj . (T2)
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In the case of Bianchi Class A, a transformation (T1) with an orthogonal matrix
(
Li

j
)
may be

used to diagonalise the matrix
(
nij
)
,

(nij) =





n1 0 0
0 n2 0
0 0 n3



 .

This may be followed by a transformation (T1) with a diagonal matrix
(
Li

j
)
to set all non-zero

diagonal elements of
(
nij
)
equal in magnitude. Finally, a transformation (T2) may be used to

set all the non-zero diagonal elements equal to 1 or −1. We may choose the sign of λ such that
the number of negative diagonal elements is smaller than or equal to the number of positive
ones. We are then left with the following Bianchi types within Class A:

n1 n2 n3 Bianchi type
0 0 0 I
1 0 0 II
0 1 -1 VI0
0 1 1 VII0
1 1 -1 VIII
1 1 1 IX

For Lie algebras of Bianchi Class B we may choose a transformation (T1) with
(
Li

j
)
orthogonal

such that we achieve the form

(nij) =





0 0 0
0 n2 0
0 0 n3



 , (ai) =





a
0
0



 .

Here we have used that nij is symmetric and that nijaj = 0. This form is preserved under
transformations (T1) with

(
Li

j
)
=







1

b2b3
0 0

0 b2 0

0 0 b3







.

If n2 = n3 = 0, we can use such a transformation for setting a equal to 1. If n2 = 0 and
n3 6= 0, we do the same thing and simultaneously transform n3 to 1 or −1. We may then use a
transformation (T2) for setting n3 equal to 1. The situation is more difficult if n2n3 6= 0. Then
we see that the remaining transformations (T1) leave

h :=
a2

n2n3

invariant. We may choose such a tranformation (T1) for setting n2 and n3 equal to 1 or −1,
and we may use a transformation (T2) for transforming the case that both are negative to the
case that both are positive. Then, however, there is no further freedom for normalising a; the
resulting Bianchi class will depend on the parameter h that may take all real values (non-zero
for Bianchi Class B). This gives us the following Bianchi types for Class B.
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a n1 n2 n3 Bianchi type
1 0 0 0 V
1 0 0 1 IV√
−h 0 1 -1 VIh (h < 0)√
h 0 1 1 VIIh (h > 0)

Bianchi type III is missing in the table because it is the same as VI−1.

It is our goal to study Bianchi models of type I in some detail, first for vacuum and then for
dust. Bianchi I is the simplest type; all the structure constants are zero, i.e., if we choose a
basis (K1, K2, K3) of Killing vector fields that generate the Bianchi symmetry, we have

[Ki, Kj] = 0 .

Note that K1, K2 and K3 must be linearly independent at each point because they are assumed
to generate 3-dimensional spacelike hypersurfaces. Then the condition that the Lie bracket
vanishes implies that we can choose, on each of these 3-dimensional hypersurfaces, coordinates
(x, y, z) such that

K1 = ∂x , K2 = ∂y , K3 = ∂z .

As the fourth coordinate, we
choose proper time t along
the timelike curves perpen-
dicular to the homogeneous
slices. As ∂x, ∂y and ∂z are
Killing vector fields, the met-
ric coefficients are functions
of t only. For one time t, we
may choose the spatial coor-
dinate axes such that gij = 0
for i 6= j. We try to find so-
lutions to the field equations,
first for vacuum and then for
dust, such that the metric re-
mains diagonal for all times,
i.e., we assume that the met-
ric is of the form

∂x

∂y

∂t

t = constant

g = −c2 dt2 + X(t)2 dx2 + Y (t)2 dy2 + Z(t)2 dz2 .

In a Robertson-Walker universe we had one scale factor a(t), now we have three scale factors
X(t), Y (t), Z(t). Correspondingly, there are three Hubble parameters which we denote

A(t) =
X ′(t)

X(t)
, B(t) =

Y ′(t)

Y (t)
, Z(t) =

Z ′(t)

Z(t)
.

We also use the abbreviation

θ(t) = A(t) + B(t) + C(t) .
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For the Ricci tensor of our Bianchi I metric we find

Rtt = − θ′ − A2 − B2 − C2 ,

Rxx =
X2

c2
(
A′ + θ A

)
,

Ryy =
Y 2

c2
(
B′ + θ B

)
,

Rzz =
Z2

c2
(
C ′ + θ C

)
.

The off-diagonal elements vanish. The Ricci scalar reads

R =
2

c2

(
θ′ + A2 + B2 + C2 + AB + B C + C A

)
.

We first determine the general solution to the vacuum field equation without a cosmological
constant,

Rµν = 0 .

Then we must have

0 = Rtt +
c2

2
R = AB + B C + C A .

This implies that

θ2 = (A+B + C)2 = A2 + B2 + C2 . (C1)

Inserting this result into the equation Rtt = 0 yields a differential equation for θ,

θ′ + θ2 = 0 .

For solving this differential equation we have to distinguish two cases:

If θ = 0, equation (C1) implies that A = B = C = 0, i.e., X, Y and Z are constants. This gives
Minkowski spacetime.

If θ 6= 0, the differential equation can be solved by separation of variables,

dθ

θ2
= − dt , − 1

θ
= −

(
t − ti

)
.

As we are free to choose the origin of the t coordinate where we like, we choose the integration
constant ti equal to 0, i.e.,

θ(t) =
1

t
. (C2)

With this result at hand, we can evaluate the equation Rxx = 0 which yields

A′ +
A

t
= 0 .
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Again, this can be solved by separation of variables,

dA

A
= − dt

t
, lnA = − ln t + ln p

with an integration constant p, hence

A(t) =
p

t
.

As A = X ′/X, this may be rewritten as

dX

X
= p

dt

t
, lnX = p ln t − p ln t0

with an integration constant t0, hence

X(t) =
( t
t0

)p
.

Similarly, evaluation of the equations Ryy = 0 and Rzz = 0 yields

Y (t) =
( t
t0

)q
, Z(t) =

( t
t0

)r
,

with integration constants q and r. Note that we could choose the same integration constant t0
for all three components because we are free to shift the origin of the spatial coordinate system.

The constants p, q and r are not
independent of each other: Con-
dition (C2) requires

p + q + r = 1 , (K1)

and condition (C1) requires

p2 + q2 + r2 = 1 . (K2)

In (p, q, r) space, (K1) determines
a plane and (K2) determines a
sphere, so the values of (p, q, r)
are restricted to a circle, see the
picture. The vacuum solution

p

q

r

g = − c2 dt2 +
( t
t0

)2p

dx2 +
( t
t0

)2q

dy2 +
( t
t0

)2r

dz2

is known as the Kasner solution. It was found by the US American mathematician E. Kasner in
1921, without referring to the Bianchi classification. Depending on the signs of the coefficients
p, q and r, the Kasner universe may be expanding in some spatial directions and contracting in
others. The Kasner relations (K1) and (K2) restrict the possible cases. As the case p = q = r = 0
is in obvious contradiction with the Kasner relations, we have to distinguish the cases that one,
two or all three Kasner coefficients are non-zero.
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• p 6= 0, q = r = 0: Then the Kasner relations require p = 1. The metric reads

g = − c2 dt2 +
( t
t0

)2

dx2 + dy2 + dz2 .

A coordinate transformation

t̃ = t cosh
x

c t0
, x̃ = c t sinh

x

c t0
, ỹ = y , z̃ = z ,

reveals that this is Minkowski spacetime,

g = − c2 dt̃ 2 + dx̃2 + dỹ2 + dz̃2 .

The original coordinates are known as Rindler coordinates. They cover the “wedge” x̃ >
c
∣∣ t̃ ∣∣ and the t-lines are the worldlines of observers with constant acceleration (“Rindler

observers”). An analogous result holds, of course, for (p, q, r) = (0, 1, 0) and (p, q, r) =
(0, 0, 1).

• p q 6= 0, r = 0: Then the Kasner relations require p+ q = 1 and p2 + q2 = 1. Squaring the
first condition and subtracting the second yields p q = 0 which is in contradiction to the
assumption. So this case is impossible.

• p q r 6= 0: Squaring the Kasner relation (K1) and subtracting (K2) yields

p q + q r + r p = 0 .

This equation demonstrates that the three coefficients cannot be all positive or all negative.
Two of them must have the same sign, say p q > 0, and the third one must have the
opposite sign, p r < 0 and q r < 0. Then

r2 = 1 − p2 − q2 =
(
1 − p − q

)2
,

1 − p2 − q2 = 1 + p2 + q2 − 2 p − 2 q + 2 p q ,

0 = 2 p2 + 2 q2 − 2 p − 2 q + 2 p q ,

p + q = p2 + q2 + p q .

As the right-hand side is positive, p and q must be positive and r must be negative,

p ≥ q > 0 > r .

We summarise the features of the Kasner solutions in the following way: Each point of the
Kasner circle corresponds to a particular Kasner solution. The intersections of the Kasner circle
with the coordinate axes are special. (These are the corners of the triangle in the picture on
the previous page.) There the Kasner metric is the Minkowski metric in Rindler coordinates.
At all other points of the Kasner circle, two of the Kasner coefficients are positive and one is
negative. This gives a universe with a singularity. If we consider the time interval 0 < t <∞, it
is an initial singularity. This may be called a “big bang”, but in contrast to the singularity in a
Robertson-Walker universe the Kasner singularity is anisotropic. If it is approached backwards
in time only two of the dimensions shrink to zero while the third one blows up. This is called a
cigar singularity.
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We will now discuss the Bianchi I universes with a dust source. It is our main goal to study the
effect of the anisotropy on the initial singularity. As the cosmological constant is relevant only
for the late universe, we may restrict ourselves to the case Λ = 0, i.e., to the field equation

Rρσ −
R

2
gρσ = κTρσ

where
Tρσ = µUρUσ .

We will assume that the four-velocity of the dust is perpendicular to the homogeneous slices,
i.e.,

Uρ = δρt , Uσ = gσρ U
ρ = gσt = − c2 δtσ .

With the components of the Ricci tensor and the Ricci scalar given on p. 101, the (tt), (xx),
(yy) and (zz) components of the field equation read

AB + B C + C A = κ c4 µ , (E1)

A′ + θ A − θ′ − θ2 + AB + BC + C A = 0 , (E2)

B′ + θ B − θ′ − θ2 + AB + BC + C A = 0 , (E3)

C ′ + θ C − θ′ − θ2 + AB + BC + C A = 0 . (E3)

The off-diagonal components of the field equation reduce to the triviality 0 = 0. Following the
same strategy as in the vacuum case, we first derive a differential equation for θ alone, then we
solve for the other unknown quantities.

Adding (E2), (E3) and (E4) together yields

θ′ + θ2 − 3 θ′ − 3 θ2 + 3
(

AB + BC + C A
)

= 0 ,

2 θ′ + 2 θ2 = 3
(

AB + B C + C A
)

. (F1)

Differentiating with respect to t results in

(

θ′ + θ2
)

′

=
3

2

(

A′ B + AB′ + B′ C + B C ′ + C ′ A + C A′

)

=
3

2

(

(B + C)A′ + (C + A)B′ + (A+B)C ′

)

.

With the help of (E2), (E3) and (E4) this can be rewritten as

(

θ′ + θ2
)

′

=
3

2

(

(B + C)
(

− θ A + θ′ + θ2 − AB − BC − C A
)

+ (C + A)
(

− θ B + θ′ + θ2 − AB − BC − C A
)

+ (A+B)
(

− θ C + θ′ + θ2 − AB − BC − C A
)
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=
3

2

(

− 2 θ
(

AB + B C + C A
)

+ 2
(

θ′ + θ2 − AB − B C − C A
)(

A + B + C
)

)

= − 3 θ
(

AB + B C + C A
)

+ 3
(

θ′ + θ2 − AB − B − C A
)

θ

= − 6 θ
(

AB + BC + C A
)

+ 3
(

θ′ + θ2
)

θ

Inserting (E1) yields

(

θ′ + θ2
)

′

= − 6 θ κ c4 µ + 3
(

θ′ + θ2
)

θ

and, with (F1),

(

θ′ + θ2
)

′

= − 4 θ
(

θ′ + θ2
)

+ 3
(

θ′ + θ2
)

θ ,

θ′′ + 2 θ θ′ = − θ θ′ − θ3 ,

θ′′ + 3 θ θ′ + θ3 = 0 .

We have thus achieved our goal of deriving a differential equation for θ alone. With the ansatz

θ =
v′

v
, θ′ =

v′′

v
−

v′ 2

v2
, θ′′ =

v′′′

v
−

3v′′v′

v2
+

2v′ 3

v3

the differential equation reads

v′′′

v
−

�
�
��3v′′v′

v2
+

�
�
�2v′ 3

v3
+

3v′

v

(

✓
✓
✓v′′

v
−

✓
✓
✓v′ 2

v2

)

+
✓
✓
✓v′3

v3
= 0 ,

i.e.,

v′′′ = 0 .

The solution is

v(t) = α t2 + β t + γ

with constants α, β and γ, hence

θ(t) =
2α t + β

α t2 + β t + γ

and

3

2
κ c4 µ = θ′ + θ2 =

v′′

v
−

v′ 2

v2
+

v′ 2

v2
=

2α

v
.
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We see that α = 0 gives the vacuum case µ = 0 which was already covered, so we are only
interested in the case that α 6= 0. From the expression for θ(t) we see that then we may assume,
without loss of generality, that α = 1. Moreover, as we are free to choose the origin of the time
coordinate as we like, we may set β equal to zero, hence

θ(t) =
2 t

t2 + γ

and

3

2
κ c4 µ(t) =

2

t2 + γ
.

What remains to be done is to determine A, B and C from (E2), E(3) and (E4), respectively.
With (F1), equation (E2) can be rewritten as

0 = A′(t) + θ(t)A(t) −
1

2
κ c4 µ(t)

= A′(t) +
2 t A(t)

t2 + γ
−

2

3
(

t2 + γ
) ,

(

t2 + γ
)

A′(t) + 2 t A(t) −
2

3
= 0 ,

d

dt

(

(

t2 + γ
)

A(t)
)

=
2

3
,

(

t2 + γ
)

A(t) =
2

3

(

t + p̃
)

,

A(t) =
2
(

t + p̃
)

3
(

t2 + γ
) .

Analogously we find from (E3) and (E4) that

B(t) =
2
(

t + q̃
)

3
(

t2 + γ
) ,

C(t) =
2
(

t + r̃
)

3
(

t2 + γ
) .

The integration constants p̃, q̃ and r̃ are not independent. As A(t) + B(t) + C(t) = θ(t), we
must have

✚✚2
(

3 t + p̃ + q̃ + r̃
)

3✘✘✘✘✘(

t2 + γ
) =

✚✚2 t

✘✘✘✘t2 + γ
,

hence
p̃ + q̃ + r̃ = 0 . (T1)
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Moreover, by (E1) we must have

✚✚4
(

3 t2 + 2
(

p̃ + q̃ + r̃
)

+ p̃ q̃ + q̃ r̃ + r̃ p̃
)

3✁2
(

t2 + γ
)✁2

=
✚✚4

✚✚3 ✘✘✘✘✘(

t2 + γ
) ,

3 t2 + 0 + p̃ q̃ + q̃ r̃ + r̃ p̃ = 3
(

t2 + γ
)

,

3 γ = p̃ q̃ + q̃ r̃ + r̃ p̃ ,

hence
0 =

(

p̃ + q̃ + r̃
)2

= p̃2 + q̃2 + r̃2 + 2
(

p̃ q̃ + q̃ r̃ + r̃ p̃
)

,

p̃2 + q̃2 + r̃2 = − 6 γ . (T2)

This equation demonstrates that γ cannot be negative. If γ = 0, we have A(t) = B(t) = C(t) =
2/(3t) which gives the spatially flat Robertson-Walker dust universe without a cosmological
constant, i.e., the Einstein-deSitter universe. As we know this case already sufficiently well, we
assume in the following that γ > 0. We may then set

γ = − t2
0
, t0 > 0 .

The scale factor X(t) is then given by integrating the equation

X ′(t)

X(t)
= A(t) =

2
(

t + p̃
)

3
(

t2 − t2
0

) ,

dX

X
=

2
(

t + p̃
)

dt

3
(

t2 − t2
0

) ,

which gives an elementary integral that can be looked up in an integral table,

X(t) =
(

t − t0
)p (

t + t0
)

2

3
−p

, p =
1

3

(

1 +
p̃

t0

)

.

Analogously,

Y (t) =
(

t − t0
)q (

t + t0
)

2

3
−q

, q =
1

3

(

1 +
q̃

t0

)

,

Z(t) =
(

t − t0
)r (

t + t0
)

2

3
−r

, r =
1

3

(

1 +
r̃

t0

)

.

The relations (T1) and (T2) of the coefficients p̃, q̃ and r̃ imply that p, q and r satisfy the
Kasner relations (K1) and (K2) from p. 102,

p + q + r =
1

3

(

3 +
p̃+ q̃ + r̃

t0

)

= 1 + 0 ,

p2 + q2 + r2 =
1

9

(

3 +
2
(

p̃+ q̃ + r̃
)

t0
+

p̃2 + q̃2 + r̃2
)

t2
0

)

=
1

9

(

3 + 0 +
6 t2

0

t2
0

)

= 1 .
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The metric reads

g = − c2 dt2 +
(

t− t0)
2p
(

t+ t0
)

4

3
−2p

dx2 +
(

t− t0)
2q
(

t+ t0
)

4

3
−2q

dy2 +
(

t− t0)
2r
(

t+ t0
)

4

3
−2r

dz2 .

The metric is regular on the interval −∞ < t < −t0, on the interval −t0 < t < t0 and on the
interval t0 < t < ∞. We consider the latter case which is a universe with an initial singularity
but no final singularity. The signs of p, q and r determine the behaviour of the scale factors
if the singularity is approached. We have already discussed that the Kasner relations can be
satisfied only in the following two cases:

(i) One Kasner coefficient is equal to 1 and the other two are zero. This is true at the corners of
the triangle in the figure on p. 102. In the vacuum case the metric was then given by Minkowski
spacetime in Rindler coordinates. In the dust case, we read from the expression of the metric
that it is a universe in which, if the initial singularity is approached from the future, the scale
factor shrinks to zero in one dimension and it stays finite in the other two dimensions. This is
called a pancake singularity.

(ii) Two Kasner coefficients are positive and the third one is negative. This is the generic case,
i.e., it is true at all points on the Kasner circle except at the corners of the triangle. As in
the vacuum case, we read from the metric that then, if the singularity is approached from the
future, the scale factor shrinks to zero in two spatial dimensions and it blows up in the third
one. We have already mentioned that this is called a cigar singularity.

One might have thought that the initial singularity of Robertson-Walker universes is an artifact
of the assumed isotropy. Now we see that this is not true. At least for a Bianchi I dust universe,
we have demonstrated that dropping the assumption of isotropy does not avoid the formation of
a singularity. The only difference in comparison to the Robertson-Walker case is in the fact that
the singularity is approached in an anisotropic fashion. Generically, Bianchi I dust universes
feature a cigar singularity, just as Bianchi I vacuum universes. We may thus say that, although
in a Bianchi I dust universe the density µ(t) goes to infinity if the singularity is approached,
generically the dust has no influence on the character of the singularity.

7. Singularity theorems
When studying Robertson-Walker unverses it seems likely that the occurrence of a singularity
is an artifact of the high symmetry. This is analogous to the investigation of gravitational
collapse where Oppenheimer and Snyder had shown in 1939 that a spherically symmetric ball
of dust ends up in a singularity; also in this case, it seemed likely that there is no longer a
singularity if spherical symmetry is broken. Our discussion of Bianchi I dust models has given a
first indication that singularities might not be an artifact of high symmetries; Bianchi I models
are still homogeneous but not isotropic, so one might have expected that they would avoid a
singularity. However, we have seen that in the Bianchi I case only the character of the singularity
is changed (from a point singularity generically to a cigar singularity), but not the fact that
there is a singularity.

During the 1960s it became evident that the occurrence of singularities is a general feature of
Einstein’s field equation which has nothing to do with symmetries. There were two lines of
research to this effect.
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• In the Soviet Union, members of the Landau school, in particular V. Belinsky, I. Kha-
latnikov and E. Lifshitz (BKL), investigated the set of all initial conditions for Einstein’s
field equation that lead to a singularity. It was a characteristic feature of their work
to concentrate on features that are independent of the matter model. (BKL considered
cosmological solutions where the singularity is in the past of the initial hypersurface; for
gravitational collapse it is in the future.) In an early paper, Lifshitz and Khalatnikov
had claimed that almost all initial conditions lead to singularity-free solutions. Later the
Russian scientists realised that this was an error and they found heuristic evidence that,
on the contrary, singularities are the rule rather than the exception. However, they did
not succeed in rigourously proving a theorem to this effect. Nonetheless, their work is
very important because it gave some insight on how a singularity is approached.

• In the United Kingdom R. Penrose and S. Hawking proved a series of theorems demon-
strating that singularities occur under rather generic conditions. There are four such
theorems: The first one by Penrose (1965) is relevant for gravitational collapse, the sec-
ond and third by Hawking (1967) are relevant for cosmology and the fourth one by Penrose
and Hawking together (1970) is relevant for both situations.

In what follows we briefly summarise the content of Hawking’s singularity theorems. The proofs
are so involved that we will not even touch upon them. Details can be found in the book by S.
Hawking and G. Ellis [“The large-scale structure of space-time”, Cambridge University Press
(1973)].

It is important to realise that the Penrose-Hawking singularity theorems do not prove the
existence of a singularity in the sense that the energy density or a curvature invariant becomes
infinite. What is proven is that there are timelike or lightlike geodesics that are incomplete (in
the past for cosmological solutions and in the future for gravitational collapse). For timelike
geodesics, this means that for a freely falling observer the world ends at a finite proper time which
clearly indicates a pathological situation. For lightlike geodesics the affine parameter cannot be
interpreted as the reading of a clock, but also incompleteness of a lightlike geodesic seems to
be something pathological because a lightlike geodesic is the history of a photon. An example
why it is not sufficient to study timelike incompleteness is given by the Reissner-Nordström
metric which features a curvature singularity at r = 0 where no timelike but lightlike geodesics
terminate. Of course, geodesics become incomplete in a trivial way if we remove points from a
perfectly regular spacetime. Therefore, we say that a spacetime is singular if it is inextendible
and contains an incomplete timelike or lightlike geodesic.

Having agreed on the definition of singularities, the task is to formulate hypotheses that are
physically reasonable and predict the existence of a singularity. The Penrose-Hawking theorems
use three types of hypotheses:

• First one needs a condition on the Ricci tensor which makes sure that gravity is attractive
in the sense that it makes the worldlines of freely falling objects converge. In conjunc-
tion with Einstein’s field equation, such a condition can be re-interpreted as an energy

condition. For the Hawking singularity theorems the condition

RµνK
µKν ≥ 0 if gµνK

µKν ≤ 0

is used. In view of the Jacobi equation (also known as the equation of geodesic deviation),
this condition means that on averaging over directions gravity is attractive for freely falling
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particles and photons. If Einstein’s field equation for a perfect fluid without a cosmological
constant is assumed, it can be rewritten as

µ +
p

c2
≥ 0 , µ +

3 p

c2
≥ 0

and is known as the strong energy condition. It is obviously satisfied for a perfect fluid with
positive energy density and positive pressure. It is violated, however, for “dark energy”,
i.e., for a perfect fluid mimicking a positive cosmological constant where p = −c2µ is
negative, recall Problem 2 of Worksheet 5.

• Then one needs a condition either on the topology or on the causal structure of spacetime.
In one of the two Hawking theorems one considers a “closed universe”, i.e., one assumes
a compact spatial topology. In the other Hawking theorem one assumes that there are
no closed timelike curves. It is widely accepted that closed timelike curves should be
forbidden because they lead to the paradox that one could travel into one’s own past
and kill one’s parents before one is borne. Actually, in the Hawking theorem a slightly
stronger assumption is needed which is known as the “strong causality condition”: Every
neighbourhood of a point p contains a neighbourhood of p that no timelike or lightlike
curve through p intersects more than once. This is a way of saying that it is not only
forbidden for a timelike or lightlike curve to come back exactly to p but also to come back
arbitrarily close to p.

• Finally, a third assumption is needed that makes sure that, at one time, the spacetime has
the tendency to “contract” (towards the past for cosmology and towards the future for
gravitational collapse). Such an initial condition is formulated with the help of a vector
field V = V µ∂µ that satisfies g(V, V ) = −c2 and ∇V V = 0, i.e., its worldlines are timelike
geodesics parametrised by proper time. For such a vector field, the scalar field θ = ∇µV

µ

is called the expansion. It measures if neighbouring worldlines approach each other (θ < 0)
or move away from each other (θ > 0). The idea is to prove that, if a contracting initial
condition is prescribed, and if the other assumptions of the theorem are satisfied, then the
collapse cannot be stopped and will lead to a singularity.

We now give the precise formulation of the two Hawking theorems.

Theorem 1 (Hawking, 1967): Spacetime cannot be timelike and lightlike geodesically com-
plete in the past if the following three assumptions hold:

(a) The strong energy condition is satisfied,

RµνK
µKν ≥ 0 if gµνK

µKν ≤ 0 .

(b) There is a spacelike compact 3-dimension-
al submanifold S without boundary.

(c) Let V = V µ∂µ be the past oriented vector
field with g(V, V ) = −c2 whose integral
curves are the timelike geodesics orthogo-
nal to S. Then the expansion θ = ∇µV

µ

satisfies θ
∣

∣

S
< 0.

S

V
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Note that in the theorem it is not assumed that the spacetime be inextendible. However, if
we start with a spacetime where the assumptions (a), (b) and (c) hold, the theorem says that
this spacetime cannot be extended to a timelike and lightlike geodesically complete spacetime
without violating one of these three assumptions.

We have good observational evidence that we live in a universe that is expanding. If our universe
is spatially compact and if the strong energy condition holds, then the theorem says that there
must be a singularity in the sense that the world began for some freely falling particle at a finite
time or for some photon at a finite affine parameter. It does not say that this is necessarily a
curvature singularity or a state of infinite energy density. The strong energy condition might be
considered now as more questionable than in 1967. Firstly, we now believe that there is “dark
energy” which violates the strong energy condition. Secondly, and much more importantly for
the early universe, most inflationary scenarios violate the strong energy condition. However, the
(hypothetical) idea of inflation applies to the very early universe where it is questionable if our
classical (i.e., non-quantum) spacetime model is still valid. So even if one accepts the idea of
inflation, one might argue that Theorem 1 predicts a singularity in the regime where the model
of a classical spacetime is applicable.

As we don’t know if our universe is spatially compact, we would like to have another theorem
which includes non-compact spatial topologies. This requires a more sophisticated formulation
of the third condition, because then we do not have a spacelike compact submanifold from which
the integral curves of our vector field V could start. Hawking’s second theorem reads as follows.

Theorem 2 (Hawking, 1967): Spacetime cannot be timelike and lightlike geodesically com-
plete in the past if the following three assumtpions hold:

(a) The strong energy condition is satisfied,

RµνK
µKν ≥ 0 if gµνK

µKν ≤ 0 .

(b) The strong causality condition is satisfied, i.e., every
neighbourhood of a point p contains a neighbourhood
that no timelike or lightlike curve through p intersects
more than once.

(c) Let V be the past-oriented vector field whose integral
curves are the timelike geodesics issuing from a point
p and let θ = ∇µV

µ. Then there is a past-oriented
timelike vector wµ∂µ

∣

∣

p
at p and a positive constant b

such that on each past-oriented timelike geodesic from
p the inequality θ < −3k/b holds within a proper time
distance b from p, where the positive number k is defined
by k = −V µ

∣

∣

p
wµ.

V

p

In contrast to Theorem 1, in Theorem 2 condition (c) is now not quite so easily connected with
observations. In essence, however, it just says that the expansion in the past of some event must
be negative and bounded away from zero by a certain amount.

The fact that solutions to Einstein’s field equation with a reasonable matter content have a
strong tendency to form singularities is viewed by many as the most serious problem of general
relativity as a classical theory. It is widely believed that we will really understand what is going
on near a singularity only if we have some quantum version of general relativity.
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