
Experimental characterisation
of standard clocks

Volker Perlick
ZARM (Center of Applied Space Technology and Microgravity)

University of Bremen, Germany

“Zeitfeld” (Volksgarten Düsseldorf, Germany)

—————————————————————————————-
781stHeraeus Seminar“Time and clocks”, Bad Honnef, 2March 2023



1. Standard clocks in a general-relativistic spacetime

– Characterising standard clocks with light rays and freely falling particles

– Clock transport

– Redshift

2. Standard clocks in a Weyl spacetime

– Characterising standard clocks with light rays and freely falling particles

– Clock transport

– Redshift

3. Standard clocks in a Finsler spacetime

– Characterising standard clocks with light rays and freely falling particles

– Clock transport

– Redshift



Standard clocks in a general-relativistic spacetime

Definition: (M, g) is a general-relativistic spacetime if M is a 4-dimensional

manifold and g is a pseudo-Riemannian metric of signature (−+++).

Definition of proper time along a timelike curve γ : I ⊂ R → M :

τ =

∫ t

t0

√
−g
(
γ̇(t), γ̇(t)

)
dt

Parametrisation with t = τ is characterised by

g
(
γ̇(τ ), γ̇(τ )

)
= −1

A standard clock is a curve γ : I ⊂ R → M with g
(
γ̇(τ ), γ̇(τ )

)
= −1.

If we allow for another choice of (time) unit:

g
(
γ̇(τ ), γ̇(τ )

)
= const.

g
(
γ̇(τ ),∇γ̇(τ )γ̇(τ )

)
= 0



Standard clocks (and rigid rulers) are not appropriate as fundamental objects

in view of applications to astrophysics.

Better use light signals (lightlike geodesics) and freely falling particles (timelike

geodesics).

Knowing the lightlike and timelike geodesics (as unparametrised curves) deter-

mines the metric up to a constant factor.

H. Weyl: “Raum. Zeit. Materie.” 2nd edition, Springer, Berlin (1919)

Light rays and freely falling particles are used as the primitive concepts in the

Ehlers-Pirani-Schild axiomatics

J. Ehlers, F. A. E. Pirani and A. Schild: “The geometry of free fall and light propagation” in
L. O’Raifeartaigh (ed.): “General Relativity”, papers in honour of J. L. Synge.
Clarendon Press, Oxford (1972)

This motivates the goal: To characterise standard clocks with the help of light

signals and freely falling particles.



1st method:

R. F. Marzke and J. A. Wheeler: “Gravitation as geometry. I: The geometry
of space-time and the geometrodynamical standard meter” in H. Y. Chiu and
W.F.Hoffmann (eds.): “Gravitation and relativity”Benjamin,New York (1964)

Construct “infinitesimally neighbour-

ing parallel” worldline of a straight

worldline in Minkowski spacetime.

Generalise to an “infinitesimally

neighbouring parallel” worldline of a

geodesic worldline in curved space-

time.

Let a light ray bounce back and forth

between the two worldlines and prove

that it arrives with the rhythm of a

standard clock.



2nd method:

W. Kundt and B. Hoffmann: “Determination of gravitational standard time”
in ??? (ed.): “Recent developments in general relativity”,
Pergamon, Oxford (1962)

Write metric as

ds2 = e2U
(
− (dx0 + gµdx

µ)2 + γ̃κλdx
κdxλ

)
.

Want to determine e2U along a chosen x0-line.

Choose three neighbouring x0 lines and assume that all four observers can mea-

sure x0 along their worldlines.

Let the four observers exchange light rays and freely falling particles and mea-

sure emission and reception x0 time.

Get a system of 9 equations for 9 unknowns that determines e2U and thus

proper time along the chosen worldline.



3rd method:

VP: “Characterization of standard clocks by means of light rays and freely falling particles”,
Gen. Rel. Grav. 19, 1059 (1987)

Uses radar time T and radar distance R



Want to test γ for being a standard clock

Emit two freely falling particles in opposite

directions at γ(t0)

Measure radar distances R(t) and R(t) as

functions of radar time T (t) = T (t) = t

γ is a standard clock at γ(t0) if and only if

lim
t→t0

R′′(t)(
1 −R′(t)2

) = −lim
t→t0

R′′(t)(
1 −R′(t)2

)

If γ is freely falling:

γ is a standard clock at γ(t0) if and only if

lim
t→t0

R′′(t) = 0



Properties of standard clocks in a general-relativistic spacetime:

(a) Clock transport

Let γ1 : R → M and γ2 : R → M be

two standard clocks with

γ1(τ0) = γ2(τ0), γ̇1(τ0) = γ̇2(τ0)

γ1(τ1) = γ2(τ2), γ̇1(τ1)||γ̇2(τ2)

First clock effect:

τ1 ̸= τ2

occurs already in Special Relativity

(“twin paradox”)

No second clock effect:

γ̇1(τ1) = γ̇2(τ2)



(b) Redshift

For comparing the ticking of

two standard clocks γ and γ̃,

we send light rays from one

to the other.

Introduce the frequency ratio

dτ̃

dτ
= lim

∆τ→0

∆τ̃

∆τ
=

=
ωemitter

ωreceiver

= 1 + z

This defines the redshift

z =
ωemitter − ωreceiver

ωreceiver



Universal redshift formula for standard

clocks in general relativity:

1 + z =

gab
(
λ(s1)

) dλa
ds

∣∣∣
s=s1

dγb

dτ

gcd
(
λ(s2)

) dλc
ds

∣∣∣
s=s2

dγ̃d

dτ̃

W.O.Kermack, W.H.McCrea, E.T.Whittacker: “On
properties of null geodesics and their application to
the theory of radiation”, Proc. Roy. Soc. Edinburgh
53, 31 (1932)



Let V be a standard observer field (=vector field

with g(V, V ) = −1):

Definition: f : M → R is called a redshift potential

for V if for any two integral curves γ and γ̃:

ln
(
1 + z

)
= f

(
γ̃(τ )

)
− f

(
γ(τ )

)

Theorem: (i)f is a redshift potential for V if and

only if efV is a conformal Killing vector field.

(ii)f is a time-independent redshift potential for V

if and only if efV is a Killing vector field.

W. Hasse and VP: “Geometrical and kinematical characterization
of parallax-free world models”, J. Math. Phys. 29, 2064 (1988)



A time-independent redshift potential foliates the 3-space into surfaces f = const.

(“isochronometric surfaces”)

gabdx
adxb =

e2f
(
−
(
dt+ ψµdx

µ
)2

+ hµνdx
µdxν

)
Coordinate travel time of signal with speed

of light along spatial path:

t2 − t1 =

∫ √
hµν

dxµ

ds

dxν

ds
ds

−

∫
ψµ
dxµ

ds
ds

is independent of the emission time

=⇒ redshift potential gives correct redshift also for signals sent through optical

fibers



Example: Kerr metric

gabdx
adxb = −

(
1 −

2mr

ρ2

)
dt2 +

ρ2

∆
dr2

+ρ2dϑ2 −
4mrasin2ϑ

ρ2
dt dφ

+sin2ϑ

(
r2 + a2 +

2mra2sin2ϑ

ρ2

)
dφ2

where

ρ2 = r2 + a2cos2ϑ, ∆ = r2 + a2 − 2mr

∂t is a Killing vector field.

V = (−gtt)−1/2∂t is a standard ob-

server field.

f is a redshift potential for V , where

e2f = −gtt = 1 −
2mr

ρ2

Isochronometric surfaces

f = const.



Define the geoid (and the generalisation to other celestial bodies) with the help

of isochronometric surfaces.

A.Bjerhammer (1985): “The relativistic geoid is the surface where precise

clocks run with the same speed and the surface is nearest to mean sea level.”

Interpretation:

“Precise clocks” means “standard clocks”.

“Running with the same speed” does NOT refer to being (Einstein) syn-

chronous but rather to a surface of constant redshift potential.

This makes sense as long as the spacetime geometry around the Earth can be

viewed as stationary.

D. Philipp, VP, D. Puetzfeld, E. Hackmann, C. Lämmerzahl: “Definition of the relativistic geoid
in terms of isochronometric surfaces” Phys. Rev. D 95, 104037 (2017)



Standard clocks in a Weyl spacetime

Definition: (M, g,∇) is a Weyl spacetime if M is a 4-dimensional manifold, g

is a conformal equivalence class of metrics of signature (− + ++) and ∇ is a

compatible torsion-free connection.

Compatibility: For every g in g there is a covector field φ such that ∇Xg = φ(X)g.

Gauge transformations: g 7→ ehg, ϕ 7→ φ+ dh

F = dφ is gauge-invariant (“Streckenkrümmung” = length curvature)

Definition of standard clocks: g
(
γ̇,∇γ̇γ̇

)
= 0 for all g ∈ g.Unit cannot be fixed.

Light signals (g-lightlike ∇-geodesics) and freely falling particles (g-timelike ∇-

geodesics) determine g and ∇ uniquely.

Characterisation of standard clocks with light rays and freely falling particles

carries over into Weyl geometry.

VP: “Characterization of standard clocks by means of light rays and freely falling particles” Gen.
Rel. Grav. 19, 1059 (1987)



Properties of standard clocks in a Weyl spacetime:

(a) Clock transport

Let γ1 : R → M and γ2 : R → M be

two standard clocks with

γ1(τ0) = γ2(τ0), γ̇1(τ0) = γ̇2(τ0)

γ1(τ1) = γ2(τ2), γ̇1(τ1)||γ̇2(τ2)

First clock effect:

τ1 ̸= τ2

Second clock effect:

γ̇1(τ1) ̸= γ̇2(τ2)

unless
∫
S F =

∮
∂S φ = 0 .



(b) Redshift

Definition of redshift carries over into Weyl geometry without changes.

Universal redshift formula for stan-

dard clocks in Weyl spacetime:

(
1 + z

)
exp

(
−
∫ s2

s1

φ
(
λ(s)

)
ds

)
=

gab
(
λ(s1)

) dλa
ds

∣∣∣
s=s1

dγb

dτ

gcd
(
λ(s2)

) dλc
ds

∣∣∣
s=s2

dγ̃d

dτ̃

VP: PhD Thesis (1989)



Standard clocks in a Finsler spacetime

Definition: (M,L) is a Finsler spacetime if M is a 4-dimensional manifold and

L :
o

TM → R is a function that satisfies

(i) L(x, kv) = k2L(x, v) for all (x, v) ∈
o

TM and k > 0.

(ii) gab(x, v) =
1

2

∂L(x, v)

∂va∂vb
has signature (− + ++) for all (x, v) ∈

o

TM .

Then L(x, v) = gab(x, v).

A curve x(s) is timelike if L(x(s), ẋ(s) < 0 and lightlike if L(x(s), ẋ(s) = 0.

Geodesics are solutions of the Euler-Lagrange equations

d

ds

∂L
(
x(s), ẋ(s)

)
∂ẋa(s)

=
∂L
(
x(s), ẋ(s)

)
∂xa(s)

Light signals (geodesics with L = 0) and freely falling particles (geodesics with

L < 0) are well defined.

Definition of proper time: τ =

∫t
t0

√
−L

(
γ(t), γ̇(t)

)
dt



Problems for characterising standard clocks with light rays and freely falling

particles:

Problem 1: Multiple light cones are possible.

E. Minguzzi: “Light cones in Finsler spacetime” Commun. Math. Phys. 334, 1529
(2015)

Problem 2: Radar method works if light cones are unique, but even

then synchronous surfaces are not in general smooth.

C. Pfeifer: “Radar orthogonality and radar length in Finsler and metric spacetime
geometry” Phys. Rev. D 90, 064052 (2014)

Problem 3: Timelike and lightlike geodesics do not in general char-

acterise a Finsler spacetime uniquely.

R. K. Tavakol, N. Van den Bergh: “Viability criteria for the theories of gravity and
Finsler spaces” Gen. Rel. Grav. 18, 849 (1986)



Properties of standard clocks in a Finsler

spacetime:

(a) Clock transport

Let γ1 : R → M and γ2 : R → M be two stan-

dard clocks with

γ1(τ0) = γ2(τ0), γ̇1(τ0) = γ̇2(τ0)

γ1(τ1) = γ2(τ2), γ̇1(τ1)||γ̇2(τ2)

First clock effect: τ1 ̸= τ2

No second clock effect: γ̇1(τ1) = γ̇2(τ2)



(b) Redshift

Definition of redshift carries over

into Finsler spacetimes without

modification.

Universal redshift formula for stan-

dard clocks in Finsler spacetime:

1 + z =

gab
(
λ(s1), dλ/ds

) dλa
ds

∣∣∣
s=s1

dγb

dτ

gcd
(
λ(s2), dλ/ds

) dλc
ds

∣∣∣
s=s2

dγ̃d

dτ̃

W.Hasse and VP:“Redshift in Finsler spacetimes”
Phys. Rev. D 100, 024033 (2019)


