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— Formal definition
— Operational characterisation

2. Redshift
— General redshift formula
— EXistence of a redshift potential
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geometry)
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Standard clocks in general relativity

(M,g): Manifold with pseudo-Riemannian metric of Lorentzian
sighature

For arbitrarily parametrised timelike curce ~(t) define proper time

- = /tt =90, 3(2) dt

Parametrisation with ¢t = 7 iIs characterised by

g(ﬁ’(T)v '7(7-)) = —1
Allow for another choice of (time) unit:

g(¥(7),¥(7)) = const.

9(¥(7), Vi (n)¥(r)) = 0



Rigid rulers and standard clocks are not appropriate as fundamen-
tal objects

Better use freely falling particles and light signals

Basis of the Ehlers-Pirani-Schild axiomatics

J. Ehlers, F. A. E. Pirani and A. Schild: “The geometry of free fall
and light propagation” in: General Relativity, papers in honour of J. L.
Synge. Edited by L. ORaifeartaigh. Clarendon Press, Oxford (1972)

Axiomatic foundation for the result: Light signals are lightlike
geodesics and freely falling particles are timelike geodesics of a
Lorentzian metric

This motivates the goal: To characterise standard clocks with
the help of light signals and freely falling particles



1st method:

R. F. Marzke and J. A. Wheeler: “Gravitation as geometry. I: The geometry
of space-time and the geometrodynamical standard meter’ In “Gravitation
and relativity”. Edited by H. Y. Chiu and W. F. Hoffmann. Benjamin, New
York (1964)

Construct “infinitesimally
neighbouring parallel” world-
line

Let a light ray bounce back
and forth

Prove that it arrives with the
rhythm of a standard clock




2nd method:

W. Kundt and B. Hoffmann: “Determination of gravitational standard time”.
In “Recent developments in general relativity”. Edited by 777. Pergamon,
Oxford (1962)

Write metric as ds? = e2U (&Mda:”"da:)‘ — (dz9 + g“da:“)2>. Want to

determine 2V along a chosen z°-line.

Choose three neighbouring 29 lines and assume that all four ob-
servers can measure z° along their worldlines.

Let the four observers exchange light rays and freely falling par-
ticles and measure emission and reception 2V time.

Get a system of 9 equations for 9 unknowns that determines e2U

and thus proper time along the chosen worldline.



3rd method:

VP: “Characterization of standard clocks by means of light rays and freely
falling particles”. Gen. Rel. Grav. 19, 1059 (1987)

Uses radar time 7T and radar distance R

T' = constant

R = constant



Want to test ~ for being a
standard clock

Emit two freely falling particles
in opposite directions at ~(tg)

Measure radar distances R(t)
and R(t) as functions of radar
time T(t) =T(t) =t

~ Is a standard clock at ~(tg) if
and only if

o RO 0

tto (1 — R/(8)2) | imo (L — R/(£)2)

If v is freely falling:

~ is a standard clock at ~(tg) if and only if

lim R”(t) =0
t—1o



Standard clocks in Weyl geometry

(M, g,V): Manifold with a conformal class of pseudo-Riemannian
metrics of Lorentzian signature and a compatible connection

Compatibility: For every g in g there is a covector field ¢ such
that Vxg = ¢(X)g.

Gauge transformation: g — e’g, ¢ — ¢ + dh

F = dy is gauge-invariant ( “Streckenkrummung” = length curva-
ture)

Light signals (g-lightlike V-geodesics) and freely falling particles
(g-timelike V-geodesics) are well defined

Standard clocks are well defined:

g(%,Vs¥) =0, g€g
The third method of characterising standard clocks works.



Standard clocks in Finsler geometry

(M, g): Manifold with metric that depends on position and veloc-
ity, g(x,v) where (xz,v) € TM and

g(x,v) is of Lorentzian signature
g(xz, kv) = g(z,v), k>0

6gab(wa ’U)

E: Is totally symmetric
(Y

Geodesics:
d 0L (x(s),&(s)) OL(x(s),x(s))

ds Oz(s) Ox?(s)

L(z,v) = ggp(x, v)v*0?

Light signals (geodesics with £ = 0) and freely falling particles
(geodesics with £ < 0) are well defined



Proper time is well defined

_— /t: JL((®), (1)) dt

Multiple light cones possible; under certain additional conditions
there iIs a unique light cone

E. Minguzzi: “Light cones in Finsler spacetime” Commun. Math. Phys. 334,
1529 (2015)

Radar method works, but synchroneous surfaces are not in gen-

eral smooth
C. Pfeifer: “Radar orthogonality and radar length in Finsler and metric space-
time geometry” Phys. Rev. D 90, 064052 (2014)

Characterising standard clocks with light signals and freely falling
particles .... (to be worked out)



Clock transport . Y2(72)
Y1(7T1

Y1(71) § 72(72)

First clock effect: 71 # 7
Second clock effect: 1(71) # Y2(72)

First clock effect occurs already in
Specal Relativity

Second clock effect occurs only in non-
reducible Weyl geometry and is propor-

tional to
fir=1e
S

Y1(70) = Y2(70)

Y1(70) = Y2(70)



Redshift

For comparing the tick-
ing of two standard
clocks v and 7, we send
light rays from one to
the other

Introduce the frequency

ratio
d+ AT
— = lim — =
dr AT—0AT
w .
_ emitter — 1 4 2

Wreceiver

This defines the redshift

Wemitter — “receiver

z =
Wreceiver

(7 + A7)




Universal redshift for-
mula for standard clocks
INn general relativity:

1 + 2z =

d\?
gab(A(s1)) .
d)\¢

gcd<)‘(32)) g

d'yb
s=s1 dT
d~4

s=s2 dT

wW. O. Kermack, W. H.
McCrea and E. T. Whit-
tacker: “On properties of
null geodesics and their appli-
cation to the theory of radi-
ation”, Proc. Roy. Soc. Ed-
inburgh 53, 31 (1932)

(7 + A7)




Universal redshift for-
mula for standard clocks
iIn Weyl spacetime:

(14 =)exp (- [

d\M
guv(A(s1)) e
d)\P

gpa(A(Sz)) ds

S2

1
d~Y

s=s1 dT
d~?

s=so dT

VP: PhD Thesis (1989)

w(A(S))dS) =

~¥(T + AT)

v(T)

(7 + A7)



Universal redshift for-
mula for standard clocks
in Finsler spacetime:

L+ 2= 5(7 + AF)
d\H d~Y
A d\/ds) —— —_—
g/ﬂ/( (31)9 / 3) ds |s=si dr
d\P d~°
A d\/ds) —
gp0‘< (32)9 / S) ds |s=sy dF 5 (7)
W. Hasse and VP (in prepa- ~(T + AT)

ration)

v(T)



EXistence of a redshift potential for
standard observer field V

In(1+ z) = f(3(7)) — f(v(7))
INn general relativity:

f is a redshift potential if and only
if e/V is a conformal Killing vector
field.

In coordinates (20 =t,z!, 22, 23)
with 8; = e/ V the metric reads

Gopdx®dz? =
el (= (dt + ppdat)® + hyydatda” )

W. Hasse and VP: “Geometrical and kine-
matical characterization of parallax-free
world models”, J. Math. Phys. 29, 2064
(1988)



EXxistence of a time-independent
redshift potential for standard ob-
server field V

In(1+z) = f(3(7)) — F(v(7))
df (V) = 0

INn general relativity:

f is a time-independent redshift
potential if and only if efV is a

Killing vector field.

In coordinates (20 =t,z!, 22, 23)

with 8; = e/ V the metric reads
Gapdx®dz? =
el (= (dt + ppdat)® + hyydatda” )

v(7)



A time-independent redshift potential foliates the 3-space into
surfaces f = const. (“isochronometric surfaces”)

Gapdrldz? =

el (= (dt + puda)® + hyydatda”)

Coordinate travel time of sig-
nal with speed of light along
spatial path:

dw“ dx?
2=t = Y'ds ds ds

dxH
_ d f=nh
Vi ds y

IS independent of the emission time

— redshift potential gives correct redshift also for signals sent
through optical fibers



Schwarzschild:

2 dr?
gapda®dz’ = — (1 — —m> dt* + rzm + r2(d¥? 4 sin*9dyp?)

Tr

Killing vector field 0%

2m
Redshift potential e?/ = —gy =1 — -



—~

Coordinate transformation t=t, p =+ Qt, 7 =r, 9 =0
Killing vector field 9; = 9; — Q0,

= 2m
Redshift potential €2/ = —gz = —gyit — Q2g,p, = 1 — — — Q2r2sin?y

—
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Kerr:
2 s 2
Japdada® = — (1 — 2BL) dt? + Ledr? + p2d9? — Amragind gy g,

2.:..2
_I_Sinzﬂ (r2 4+ a2 + 2mrc:)2sm 19) dsoz

p2 — p2 4 azcoszﬁ, A =724 a2—2mr

Killing vector field 04

2mr

p2

Redshift potential €2/ = —g;y = 1 —




Coordinate transformation t =¢, =+ Qt, 7 =7, 9 = ¢

Killing vector field 9; = 0; — 20,

Redshift potential e2f = —9i7 = —9gtt T+ 2ng - 9299090

2 in2yY
=1 — mr + 4ﬂmrasm — O2sin?Y9 (r2 + a? +

.y
[

2ma?sin?y9
p? )




A.Bjerhammer (1985): “The relativistic geoid is the surface where
precise clocks run with the same speed and the surface is nearest
to mean sea level.”

Interpretation:

‘“Precise clocks” means ‘“standard clocks’”.

“Running with the same speed” does NOT refer to being (Ein-
stein) synchroneous but rather to a surface of constant redshift
potential.

T his makes sense as long as the spacetime geometry around the
Earth can be viewed as stationary.



