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1. Standard clocks

– Formal definition

– Operational characterisation

2. Redshift

– General redshift formula

– Existence of a redshift potential

in general relativity (but also in Weyl geometry and in Finsler

geometry)

————————————————————————————–
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Standard clocks in general relativity

(M, g): Manifold with pseudo-Riemannian metric of Lorentzian

signature

For arbitrarily parametrised timelike curce γ(t) define proper time

τ =

∫ t

t0

√

−g
(

γ̇(t), γ̇(t)
)

dt

Parametrisation with t = τ is characterised by

g
(

γ̇(τ ), γ̇(τ )
)

= −1

Allow for another choice of (time) unit:

g
(

γ̇(τ ), γ̇(τ )
)

= const.

g
(

γ̇(τ ),∇γ̇(τ )γ̇(τ )
)

= 0



Rigid rulers and standard clocks are not appropriate as fundamen-

tal objects

Better use freely falling particles and light signals

Basis of the Ehlers-Pirani-Schild axiomatics

J. Ehlers, F. A. E. Pirani and A. Schild: “The geometry of free fall

and light propagation” in: General Relativity, papers in honour of J. L.

Synge. Edited by L. ORaifeartaigh. Clarendon Press, Oxford (1972)

Axiomatic foundation for the result: Light signals are lightlike

geodesics and freely falling particles are timelike geodesics of a

Lorentzian metric

This motivates the goal: To characterise standard clocks with

the help of light signals and freely falling particles



1st method:

R. F. Marzke and J. A. Wheeler: “Gravitation as geometry. I: The geometry

of space-time and the geometrodynamical standard meter” In “Gravitation

and relativity”. Edited by H. Y. Chiu and W. F. Hoffmann. Benjamin, New

York (1964)

Construct “infinitesimally

neighbouring parallel” world-

line

Let a light ray bounce back

and forth

Prove that it arrives with the

rhythm of a standard clock



2nd method:

W. Kundt and B. Hoffmann: “Determination of gravitational standard time”.

In “Recent developments in general relativity”. Edited by ???. Pergamon,

Oxford (1962)

Write metric as ds2 = e2U
(

γ̃κλdx
κdxλ − (dx0 + gµdx

µ)2
)

. Want to

determine e2U along a chosen x0-line.

Choose three neighbouring x0 lines and assume that all four ob-

servers can measure x0 along their worldlines.

Let the four observers exchange light rays and freely falling par-

ticles and measure emission and reception x0 time.

Get a system of 9 equations for 9 unknowns that determines e2U

and thus proper time along the chosen worldline.



3rd method:

VP: “Characterization of standard clocks by means of light rays and freely

falling particles”. Gen. Rel. Grav. 19, 1059 (1987)

Uses radar time T and radar distance R

p q

U
V

γ(t1)

γ(t2)

γ

R = constant

T = constant

T = 1
2

(

t2 + t1
)

, R = 1
2

(

t2 − t1
)



γ(t)

γ(t0)

R(t)

R(t)

Want to test γ for being a

standard clock

Emit two freely falling particles

in opposite directions at γ(t0)

Measure radar distances R(t)

and R(t) as functions of radar

time T (t) = T (t) = t

γ is a standard clock at γ(t0) if

and only if

lim
t→t0

R′′(t)
(

1 −R′(t)2
) = − lim

t→t0

R′′(t)
(

1 −R′(t)2
)

If γ is freely falling:

γ is a standard clock at γ(t0) if and only if

lim
t→t0

R′′(t) = 0



Standard clocks in Weyl geometry

(M, g,∇): Manifold with a conformal class of pseudo-Riemannian

metrics of Lorentzian signature and a compatible connection

Compatibility: For every g in g there is a covector field ϕ such

that ∇Xg = ϕ(X)g.

Gauge transformation: g 7→ ehg, φ 7→ ϕ+ dh

F = dϕ is gauge-invariant (“Streckenkrümmung” = length curva-

ture)

Light signals (g-lightlike ∇-geodesics) and freely falling particles

(g-timelike ∇-geodesics) are well defined

Standard clocks are well defined:

g
(

γ̇,∇γ̇γ̇
)

= 0 , g ∈ g

The third method of characterising standard clocks works.



Standard clocks in Finsler geometry

(M, g): Manifold with metric that depends on position and veloc-

ity, g(x, v) where (x, v) ∈ TM and

g(x, v) is of Lorentzian signature

g(x, kv) = g(x, v), k > 0

∂gab(x, v)

∂vc
is totally symmetric

Geodesics:

d

ds

∂L
(

x(s), ẋ(s)
)

∂ẋa(s)
=
∂L

(

x(s), ẋ(s)
)

∂xa(s)

L(x, v) = gab(x, v)v
avb

Light signals (geodesics with L = 0) and freely falling particles

(geodesics with L < 0) are well defined



Proper time is well defined

τ =

∫ t

t0

√

−L
(

γ(t), γ̇(t)
)

dt

Multiple light cones possible; under certain additional conditions

there is a unique light cone

E. Minguzzi: “Light cones in Finsler spacetime” Commun. Math. Phys. 334,

1529 (2015)

Radar method works, but synchroneous surfaces are not in gen-

eral smooth

C. Pfeifer: “Radar orthogonality and radar length in Finsler and metric space-

time geometry” Phys. Rev. D 90, 064052 (2014)

Characterising standard clocks with light signals and freely falling

particles .... (to be worked out)



Clock transport

First clock effect: τ1 6= τ2

Second clock effect: γ̇1(τ1) 6= γ̇2(τ2)

First clock effect occurs already in

Specal Relativity

Second clock effect occurs only in non-

reducible Weyl geometry and is propor-

tional to
∫

S
F =

∮

ϕ

γ1(τ0) = γ2(τ0)

γ̇1(τ0) = γ̇2(τ0)

γ1(τ1)

γ̇1(τ1)

γ2(τ2)

γ̇2(τ2)

S



Redshift

For comparing the tick-

ing of two standard

clocks γ and γ̃, we send

light rays from one to

the other

Introduce the frequency

ratio

dτ̃

dτ
= lim

∆τ→0

∆τ̃

∆τ
=

=
ωemitter

ωreceiver
= 1 + z

This defines the redshift

z =
ωemitter − ωreceiver

ωreceiver

γ(τ )

γ(τ + ∆τ )

γ̃(τ̃ )

γ̃(τ̃ + ∆τ̃ )

λ(s)



Universal redshift for-

mula for standard clocks

in general relativity:

1 + z =

gab
(

λ(s1)
) dλa

ds

∣

∣

∣

s=s1

dγb

dτ

gcd
(

λ(s2)
) dλc

ds

∣

∣

∣

s=s2

dγ̃d

dτ̃

W. O. Kermack, W. H.

McCrea and E. T. Whit-

tacker: “On properties of

null geodesics and their appli-

cation to the theory of radi-

ation”, Proc. Roy. Soc. Ed-

inburgh 53, 31 (1932)

γ(τ )

γ(τ + ∆τ )

γ̃(τ̃ )

γ̃(τ̃ + ∆τ̃ )

λ(s)



Universal redshift for-

mula for standard clocks

in Weyl spacetime:

(

1 + z
)

exp

(

−

∫ s2

s1
ϕ
(

λ(s)
)

ds

)

=

gµν
(

λ(s1)
) dλµ

ds

∣

∣

∣

s=s1

dγν

dτ

gρσ
(

λ(s2)
) dλρ

ds

∣

∣

∣

s=s2

dγ̃σ

dτ̃

VP: PhD Thesis (1989)

γ(τ )

γ(τ + ∆τ )

γ̃(τ̃ )

γ̃(τ̃ + ∆τ̃ )

λ(s)



Universal redshift for-

mula for standard clocks

in Finsler spacetime:

1 + z =

gµν
(

λ(s1), dλ/ds
) dλµ

ds

∣

∣

∣

s=s1

dγν

dτ

gρσ
(

λ(s2), dλ/ds
) dλρ

ds

∣

∣

∣

s=s2

dγ̃σ

dτ̃

W. Hasse and VP (in prepa-

ration)

γ(τ )

γ(τ + ∆τ )

γ̃(τ̃ )

γ̃(τ̃ + ∆τ̃ )

λ(s)



Existence of a redshift potential for

standard observer field V

ln
(

1 + z
)

= f
(

γ̃(τ )
)

− f
(

γ(τ )
)

in general relativity:

f is a redshift potential if and only

if efV is a conformal Killing vector

field.

In coordinates (x0 = t, x1, x2, x3)

with ∂t = efV the metric reads

gabdx
adxb =

e2f
(

−
(

dt+ ψµdx
µ)2 + hµνdx

µdxν
)

with ∂tψµ = ∂thµν = 0

W. Hasse and VP: “Geometrical and kine-

matical characterization of parallax-free

world models”, J. Math. Phys. 29, 2064

(1988)

γ(τ )

γ̃(τ̃ )

V



Existence of a time-independent

redshift potential for standard ob-

server field V

ln
(

1 + z
)

= f
(

γ̃(τ )
)

− f
(

γ(τ )
)

df(V ) = 0

in general relativity:

f is a time-independent redshift

potential if and only if efV is a

Killing vector field.

In coordinates (x0 = t, x1, x2, x3)

with ∂t = efV the metric reads

gabdx
adxb =

e2f
(

−
(

dt+ ψµdx
µ)2 + hµνdx

µdxν
)

with ∂tψµ = ∂thµν = ∂tf = 0

γ(τ )

γ̃(τ̃ )

V



A time-independent redshift potential foliates the 3-space into

surfaces f = const. (“isochronometric surfaces”)

gabdx
adxb =

e2f
(

−
(

dt+ ψµdx
µ)2 + hµνdx

µdxν
)

Coordinate travel time of sig-

nal with speed of light along

spatial path:

t2 − t1 =

∫

√

hµν
dxµ

ds

dxν

ds
ds

−

∫

ψµ
dxµ

ds
ds f = f1

f = f2

is independent of the emission time

=⇒ redshift potential gives correct redshift also for signals sent

through optical fibers



Schwarzschild:

gabdx
adxb = −

(

1 −
2m

r

)

dt2 +
dr2

1 −
2m

r

+ r2
(

dϑ2 + sin2ϑdϕ2
)

Killing vector field ∂t

Redshift potential e2f = −gtt = 1 −
2m

r



Coordinate transformation t̃ = t, ϕ̃ = ϕ+ Ωt, r̃ = r, ϑ̃ = ϑ

Killing vector field ∂t̃ = ∂t − Ω∂ϕ

Redshift potential e2f̃ = −gt̃t̃ = −gtt − Ω2gϕϕ = 1 −
2m

r
− Ω2r2sin2ϑ



Kerr:

gabdx
adxb = −

(

1 − 2mr
ρ2

)

dt2 + ρ2

∆dr
2 + ρ2dϑ2 − 4mrasin2ϑ

ρ2
dt dϕ

+sin2ϑ
(

r2 + a2 + 2mra2sin2ϑ
ρ2

)

dϕ2

ρ2 = r2 + a2cos2ϑ, ∆ = r2 + a2 − 2mr

Killing vector field ∂t

Redshift potential e2f = −gtt = 1 −
2mr

ρ2



Coordinate transformation t̃ = t, ϕ̃ = ϕ+ Ωt, r̃ = r, ϑ̃ = ϑ

Killing vector field ∂t̃ = ∂t − Ω∂ϕ

Redshift potential e2f̃ = −gt̃t̃ = −gtt + 2Ωgtϕ − Ω2gϕϕ

= 1 −
2mr

ρ2
+ 4Ω

mrasin2ϑ

ρ2
− Ω2sin2ϑ

(

r2 + a2 +
2ma2sin2ϑ

ρ2

)



A.Bjerhammer (1985): “The relativistic geoid is the surface where

precise clocks run with the same speed and the surface is nearest

to mean sea level.”

Interpretation:

“Precise clocks” means “standard clocks”.

“Running with the same speed” does NOT refer to being (Ein-

stein) synchroneous but rather to a surface of constant redshift

potential.

This makes sense as long as the spacetime geometry around the

Earth can be viewed as stationary.


