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1. Standard clocks

Standard clocks in general relativity

(M, g): Manifold with pseudo-Riemannian metric of Lorentzian

signature

For arbitrarily parametrised timelike curve γ(t) define proper time

τ =

∫ t

t0

√

−g
(

γ̇(t), γ̇(t)
)

dt

Parametrisation with t = τ is characterised by

g
(

γ̇(τ ), γ̇(τ )
)

= −1

Allow for another choice of (time) unit:

g
(

γ̇(τ ), γ̇(τ )
)

= const.

g
(

γ̇(τ ),∇γ̇(τ )γ̇(τ )
)

= 0



Rigid rulers and standard clocks are not appropriate as fundamen-

tal objects

Better use freely falling particles and light signals

Basis of the Ehlers-Pirani-Schild axiomatics

J. Ehlers, F. A. E. Pirani and A. Schild: “The geometry of free fall and light

propagation” in: General Relativity, papers in honour of J. L. Synge. Edited

by L. O’Raifeartaigh. Clarendon Press, Oxford (1972)

Axiomatic foundation for the result: Light signals are lightlike

geodesics and freely falling particles are timelike geodesics of a

Lorentzian metric

This motivates the goal: To characterise standard clocks with

the help of light signals and freely falling particles



1st method:

R. F. Marzke and J. A. Wheeler: “Gravitation as geometry. I: The geometry

of space-time and the geometrodynamical standard meter” In “Gravitation

and relativity”. Edited by H. Y. Chiu and W. F. Hoffmann. Benjamin, New

York (1964)

Construct “infinitesimally

neighbouring parallel” world-

line

Let a light ray bounce back

and forth

Prove that it arrives with the

rhythm of a standard clock



2nd method:

W. Kundt and B. Hoffmann: “Determination of gravitational standard time”.

In “Recent developments in general relativity”. Edited by ???. Pergamon,

Oxford (1962)

Write metric as ds2 = e2U
(

γ̃κλdx
κdxλ − (dx0 + gµdx

µ)2
)

. Want to

determine e2U along a chosen x0-line.

Choose three neighbouring x0 lines and assume that all four ob-

servers can measure x0 along their worldlines.

Let the four observers exchange light rays and freely falling par-

ticles and measure emission and reception x0 time.

Get a system of 9 equations for 9 unknowns that determines e2U

and thus proper time along the chosen worldline.



3rd method:

VP: “Characterization of standard clocks by means of light rays and freely

falling particles”. Gen. Rel. Grav. 19, 1059 (1987)

Uses radar time T and radar distance R

p q

U
V

γ(t1)

γ(t2)

γ

R = constant

T = constant

T = 1
2

(

t2 + t1
)

, R = 1
2

(

t2 − t1
)



γ(t)

γ(t0)

R(t)

R(t)

Want to test γ for being a

standard clock

Emit two freely falling particles

in opposite directions at γ(t0)

Measure radar distances R(t)

and R(t) as functions of radar

time T (t) = T (t) = t

γ is a standard clock at γ(t0) if

and only if

lim
t→t0

R′′(t)
(

1 −R′(t)2
) = − lim

t→t0

R′′(t)
(

1 −R′(t)2
)

If γ is freely falling:

γ is a standard clock at γ(t0) if and only if

lim
t→t0

R′′(t) = 0



Existence of special observer fields V , with g(V, V ) = −1, in gen-

eral relativity:

• All clocks (= integral curves of V ) are Einstein synchronous.

⇔ V is irrotational Killing vector field

• Any pair of clocks (= integral curves of V ) has temporally

constant radar distance

⇔ V is proportional to a Killing vector field

VP: “On the radar method in general-relativistic spacetimes” In “Lasers,

clocks, and drag-free control. Exploration of relativistic gravity in space”

Edited by H. Dittus, C. Laemmerzahl and S. G. Turyshev. Springer (2007)



Standard clocks in Weyl geometry

(M, g,∇): Manifold with a conformal class of pseudo-Riemannian

metrics of Lorentzian signature and a compatible connection

Compatibility: For every g in g there is a covector field ϕ such

that ∇Xg = ϕ(X)g.

Gauge transformation: g 7→ ehg, φ 7→ ϕ+ dh

F = dϕ is gauge-invariant (“Streckenkrümmung” = length curva-

ture)

Light signals (g-lightlike ∇-geodesics) and freely falling particles

(g-timelike ∇-geodesics) are well defined

Standard clocks are well defined:

g
(

γ̇,∇γ̇γ̇
)

= 0 , g ∈ g

The third method of characterising standard clocks works.



Standard clocks in Finsler geometry

(M, g): Manifold with metric that depends on position and veloc-

ity, g(x, v) where (x, v) ∈ TM and

g(x, v) is of Lorentzian signature

g(x, kv) = g(x, v), k > 0

∂gab(x, v)

∂vc
is totally symmetric

Geodesics:

d

ds

∂L
(

x(s), ẋ(s)
)

∂ẋa(s)
=
∂L

(

x(s), ẋ(s)
)

∂xa(s)

L(x, v) = gab(x, v)v
avb

Light signals (geodesics with L = 0) and freely falling particles

(geodesics with L < 0) are well defined



Proper time is well defined

τ =

∫ t

t0

√

−L
(

γ(t), γ̇(t)
)

dt

Multiple light cones possible; under certain additional conditions

there is a unique light cone

E. Minguzzi: “Light cones in Finsler spacetime” Commun. Math. Phys. 334,

1529 (2015)

Radar method works, but synchronous surfaces are not in general

smooth

C. Pfeifer: “Radar orthogonality and radar length in Finsler and metric space-

time geometry” Phys. Rev. D 90, 064052 (2014)

Characterising standard clocks with light signals and freely falling

particles .... (to be worked out)



Clock transport

First clock effect: τ1 6= τ2

Second clock effect: γ̇1(τ1) 6= γ̇2(τ2)

First clock effect occurs already in

Specal Relativity

Second clock effect occurs only in non-

reducible Weyl geometry and is propor-

tional to
∫

S
F =

∮

ϕ

γ1(τ0) = γ2(τ0)

γ̇1(τ0) = γ̇2(τ0)

γ1(τ1)

γ̇1(τ1)

γ2(τ2)

γ̇2(τ2)

S



2. Redshift

For comparing the tick-

ing of two standard

clocks γ and γ̃, we send

light rays from one to

the other

Introduce the frequency

ratio

dτ̃

dτ
= lim

∆τ→0

∆τ̃

∆τ
=

=
ωemitter

ωreceiver
= 1 + z

This defines the redshift

z =
ωemitter − ωreceiver

ωreceiver

γ(τ )

γ(τ + ∆τ )

γ̃(τ̃ )

γ̃(τ̃ + ∆τ̃ )

λ(s)



Universal redshift for-

mula for standard clocks

in general relativity:

1 + z =

gab
(

λ(s1)
) dλa

ds

∣

∣

∣

s=s1

dγb

dτ

gcd
(

λ(s2)
) dλc

ds

∣

∣

∣

s=s2

dγ̃d

dτ̃

W. O. Kermack, W. H.

McCrea and E. T. Whit-

tacker: “On properties of

null geodesics and their appli-

cation to the theory of radi-

ation”, Proc. Roy. Soc. Ed-

inburgh 53, 31 (1932)

γ(τ )

γ(τ + ∆τ )

γ̃(τ̃ )

γ̃(τ̃ + ∆τ̃ )

λ(s)



Universal redshift for-

mula for standard clocks

in Weyl spacetime:

(

1 + z
)

exp

(

−

∫ s2

s1
ϕa

dλa

ds
ds

)

=

gµν
(

λ(s1)
) dλµ

ds

∣

∣

∣

s=s1

dγν

dτ

gρσ
(

λ(s2)
) dλρ

ds

∣

∣

∣

s=s2

dγ̃σ

dτ̃

VP: PhD Thesis (1989)

γ(τ )

γ(τ + ∆τ )

γ̃(τ̃ )

γ̃(τ̃ + ∆τ̃ )

λ(s)



Universal redshift for-

mula for standard clocks

in Finsler spacetime:

1 + z =

gµν
(

λ(s1), dλ/ds
) dλµ

ds

∣

∣

∣

s=s1

dγν

dτ

gρσ
(

λ(s2), dλ/ds
) dλρ

ds

∣

∣

∣

s=s2

dγ̃σ

dτ̃

W. Hasse and VP (in prepa-

ration)

γ(τ )

γ(τ + ∆τ )

γ̃(τ̃ )

γ̃(τ̃ + ∆τ̃ )

λ(s)



Existence of a redshift potential for

standard observer field V

ln
(

1 + z
)

= f
(

γ̃(τ )
)

− f
(

γ(τ )
)

in general relativity:

f is a redshift potential if and only

if efV is a conformal Killing vector

field.

In coordinates (x0 = t, x1, x2, x3)

with ∂t = efV the metric reads

gabdx
adxb =

e2f
(

−
(

dt+ ψµdx
µ)2 + hµνdx

µdxν
)

with ∂tψµ = ∂thµν = 0

W. Hasse and VP: “Geometrical and kine-

matical characterization of parallax-free

world models”, J. Math. Phys. 29, 2064

(1988)

γ(τ )

γ̃(τ̃ )

V



Existence of a time-independent

redshift potential for standard ob-

server field V

ln
(

1 + z
)

= f
(

γ̃(τ )
)

− f
(

γ(τ )
)

df(V ) = 0

in general relativity:

f is a time-independent redshift

potential if and only if efV is a

Killing vector field.

In coordinates (x0 = t, x1, x2, x3)

with ∂t = efV the metric reads

gabdx
adxb =

e2f
(

−
(

dt+ ψµdx
µ)2 + hµνdx

µdxν
)

with ∂tψµ = ∂thµν = ∂tf = 0

γ(τ )

γ̃(τ̃ )

V



In stationary spacetime redshift can be split into

- gravitational (seen by stationary observers)

- Doppler (redshift from motion relative to stationary observer)

Experimental verifications:

• Pound and Rebka (1959), Pound and Snider (1965): In a

Laboratory on Earth

• Brault (1962): In the gravitational field of the Sun

• Gravity Probe A (1976): With a sounding rocket in the grav-

itational field of the Earth

• GRAVITY collaboration (2018): With the S2 star in the grav-

itational field of the supermassive object at the centre of our

galaxy

• Delva et al. and Herrmann et al. (2018): With Galileo satel-

lites in the gravitational field of the Earth



A time-independent redshift potential foliates the 3-space into

surfaces f = const. (“isochronometric surfaces”)

gabdx
adxb =

e2f
(

−
(

dt+ ψµdx
µ)2 + hµνdx

µdxν
)

Coordinate travel time of sig-

nal with speed of light along

spatial path:

t2 − t1 =

∫

√

hµν
dxµ

ds

dxν

ds
ds

−

∫

ψµ
dxµ

ds
ds f = f1

f = f2

is independent of the emission time

=⇒ redshift potential gives correct redshift also for signals sent

through optical fibers



Define the geoid as an isochronometric surface:

D. Philipp, VP, D. Puetzfeld, E. Hackmann, C. Laemmerzahl: “Definition of

the relativistic geoid in terms of isochronometric surfaces”, Phys. Rev. D 95,

104037 (2017)

Basic idea:

A.Bjerhammer (1985): “The relativistic geoid is the surface where precise

clocks run with the same speed and the surface is nearest to mean sea level.”

In PN formalism:
M. H. Soffel, H. Herold, H. Ruder and M. Schneider: “Relativistic theory of gra-
vimetric measurements and definition of the geoid” Manuscripta Geodaetica
13, 143 (1988)

S. M. Kopeikin, E. M. Mazurova and A. P. Karpik: “Towards an exact rela-

tivistic theory of Earth’s geoid undulation” Phys. Lett. A 379, 1555 (2015)

Alternative definition of a fully relativistic geoid:

M. Oltean, R. J. Epp, P. L. McGrath and R. B. Mann: “Geoids in general

relativity: geoid quasilocal frames” Class. Quantum Grav. 33, 105001 (2016)



Example:

Isochronometric surfaces in the Kerr spacetime:

gabdx
adxb = −

(

1 − 2mr
ρ2

)

dt2 + ρ2

∆dr
2 + ρ2dϑ2 − 4mrasin2ϑ

ρ2
dt dϕ

+sin2ϑ
(

r2 + a2 + 2mra2sin2ϑ
ρ2

)

dϕ2

ρ2 = r2 + a2cos2ϑ, ∆ = r2 + a2 − 2mr

Killing vector field ∂t

Redshift potential e2f = −gtt = 1 −
2mr

ρ2



Coordinate transformation t̃ = t, ϕ̃ = ϕ+ Ωt, r̃ = r, ϑ̃ = ϑ

Killing vector field ∂t̃ = ∂t − Ω∂ϕ

Redshift potential e2f̃ = −gt̃t̃ = −gtt + 2Ωgtϕ − Ω2gϕϕ

= 1 −
2mr

ρ2
+ 4Ω

mrasin2ϑ

ρ2
− Ω2sin2ϑ

(

r2 + a2 +
2ma2sin2ϑ

ρ2

)






