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1. Standard clocks

Standard clocks in general relativity

(M,g): Manifold with pseudo-Riemannian metric of Lorentzian
sighature

For arbitrarily parametrised timelike curve ~(t) define proper time

t
= [ V=a(3(0).5(t)) dt
0
Parametrisation with ¢t = 7 iIs characterised by

g(ﬁ’(T)v 'Y(T)) = —1
Allow for another choice of (time) unit:

g(¥(7),¥(7T)) = const.

9(¥(7), Vi n)¥(7)) = 0



Rigid rulers and standard clocks are not appropriate as fundamen-
tal objects

Better use freely falling particles and light signals

Basis of the Ehlers-Pirani-Schild axiomatics

J. Ehlers, F. A. E. Pirani and A. Schild: “The geometry of free fall and light
propagation’” in: General Relativity, papers in honour of J. L. Synge. Edited
by L. O’Raifeartaigh. Clarendon Press, Oxford (1972)

Axiomatic foundation for the result: Light signals are lightlike
geodesics and freely falling particles are timelike geodesics of a
Lorentzian metric

This motivates the goal: To characterise standard clocks with
the help of light signals and freely falling particles



1st method:

R. F. Marzke and J. A. Wheeler: “Gravitation as geometry. I: The geometry
of space-time and the geometrodynamical standard meter’ In “Gravitation
and relativity”. Edited by H. Y. Chiu and W. F. Hoffmann. Benjamin, New
York (1964)

Construct “infinitesimally
neighbouring parallel” world-
line

Let a light ray bounce back
and forth

Prove that it arrives with the
rhythm of a standard clock




2nd method:

W. Kundt and B. Hoffmann: “Determination of gravitational standard time’.
In “Recent developments in general relativity”. Edited by 777. Pergamon,
Oxford (1962)

Write metric as ds? = €2V (&RAda:"‘d:cA — (dx® + g“da:“)2>. Want to

determine ¢2V along a chosen z%-line.

Choose three neighbouring 2V lines and assume that all four ob-
servers can measure z° along their worldlines.

Let the four observers exchange light rays and freely falling par-
ticles and measure emission and reception 20 time.

Get a system of 9 equations for 9 unknowns that determines e2U

and thus proper time along the chosen worldline.



3rd method:

VP: “Characterization of standard clocks by means of light rays and freely
falling particles”. Gen. Rel. Grav. 19, 1059 (1987)

Uses radar time T and radar distance R

T' = constant

R = constant



Want to test ~ for being a
standard clock

Emit two freely falling particles
in opposite directions at ~(tg)

Measure radar distances R(t)
and R(t) as functions of radar
time T(t) =T(t) =t

~ Is a standard clock at ~(tg) if
and only if

o RO 0

tto (1 — R/(8)2) | imo (L — R/(£)2)

If v is freely falling:

~ is a standard clock at ~(tg) if and only if

lim R”(t) =0
t—1tg



Existence of special observer fields V, with g(V,V) = —1, in gen-
eral relativity:

e All clocks (= integral curves of V) are Einstein synchronous.

< V is irrotational Killing vector field

e Any pair of clocks (= integral curves of V) has temporally
constant radar distance

< V is proportional to a Killing vector field
VP: “On the radar method in dgeneral-relativistic spacetimes” In ‘“Lasers,

clocks, and drag-free control. EXxploration of relativistic gravity in space”
Edited by H. Dittus, C. Laemmerzahl and S. G. Turyshev. Springer (2007)



Standard clocks in Weyl geometry

(M, g,V): Manifold with a conformal class of pseudo-Riemannian
metrics of Lorentzian signature and a compatible connection

Compatibility: For every g in g there is a covector field ¢ such
that Vxg = ¢(X)g.

Gauge transformation: g — e’’g, ¢ — ¢ + dh

F = dy is gaugdge-invariant (“Streckenkrummung” = length curva-
ture)

Light signals (g-lightlike V-geodesics) and freely falling particles
(g-timelike V-geodesics) are well defined

Standard clocks are well defined:

9(¥:Vs¥) =0, g€g
The third method of characterising standard clocks works.



Standard clocks in Finsler geometry

(M, g): Manifold with metric that depends on position and veloc-
ity, g(x,v) where (xz,v) € TM and

g(x,v) is of Lorentzian signature
g(xz, kv) = g(z,v), k>0

6gab(wa ’U)

E: Is totally symmetric
(Y

Geodesics:
d 0L (x(s),&(s)) OL(x(s),x(s))

ds Oz(s) Ox?(s)

L(z,v) = ggp(x, v)v*0?

Light signals (geodesics with £ = 0) and freely falling particles
(geodesics with £ < 0) are well defined



Proper time is well defined

_— /tz L), 3 (1)) dt

Multiple light cones possible; under certain additional conditions
there is a unique light cone

E. Minguzzi: “Light cones in Finsler spacetime” Commun. Math. Phys. 334,
1529 (2015)

Radar method works, but synchronous surfaces are not in general

smooth
C. Pfeifer: “Radar orthogonality and radar length in Finsler and metric space-
time geometry” Phys. Rev. D 90, 064052 (2014)

Characterising standard clocks with light signals and freely falling
particles .... (to be worked out)



Clock transport . Y2(72)
Y1(7T1

Y1(71) § 72(72)

First clock effect: 71 # 7
Second clock effect: 1(71) # Y2(72)

First clock effect occurs already in
Specal Relativity

Second clock effect occurs only in non-
reducible Weyl geometry and is propor-

tional to
fir=1e
S

Y1(70) = Y2(70)

Y1(70) = Y2(70)



2. Redshift

For comparing the tick-
ing of two standard
clocks v and 7, we send
light rays from one to
the other

Introduce the frequency
ratio

dr ] AT

— = lim — =

dT AT—0AT

Wemitter

— :1—|—z

Wreceiver

This defines the redshift

Wemitter — “receiver

z =
Wreceiver

(7 + A7)




Universal redshift for-
mula for standard clocks
INn general relativity:

1 + 2z =

d\?
gab<>‘(31)) E
d\€

gcd<)‘(32)) g

d'yb
s=s1 dT
d4

s=s2 dT

wW. O. Kermack, W. H.
McCrea and E. T. Whit-
tacker: “On properties of
null geodesics and their appli-
cation to the theory of radi-
ation”, Proc. Roy. Soc. Ed-
inburgh 53, 31 (1932)

(7 + A7)




Universal redshift for-
mula for standard clocks
iIn Weyl spacetime:

(1 -+ z)exp (—/:chad_)\ads

1 ds

d)\M
guv(A(s1)) e
d)\P

9/)0()‘(32)) ds

d~Y
s=s1 dT
d~?

s=so dT

VP: PhD Thesis (1989)

(7 + A7)




Universal redshift for-
mula for standard clocks
iIn Finsler spacetime:

l+=2= 5(7 + AF)
d\H d~Y
A d\/d -
g,uu( (31)7 / 8) ds |s=s; dr
d\P d~y°
A d\/ds) —
W. Hasse and VP (in prepa- ~(T + AT)

ration)

v(T)



EXistence of a redshift potential for
standard observer field V

In(1+2z) = f(3(7)) — f(v(7))
INn general relativity:

f is a redshift potential if and only
if e/V is a conformal Killing vector
field.

In coordinates (20 =t,z!, 22, 23)
with 8; = e/ V the metric reads

Gapdr?dz? =

el (= (dt + ppdat)® + hyydatda” )

W. Hasse and VP: “Geometrical and Kkine-
matical characterization of parallax-free

world models”, J. Math. Phys. 29, 2064
(1988)



EXxistence of a time-independent
redshift potential for standard ob-
server field V

In(1+z) = f(7(1)) — F(v(7))
df (V) =0

INn general relativity:

f is a time-independent redshift
potential if and only if e/V is a
Killing vector field.

In coordinates (20 =t,z!, 22, 23)
with 8; = e/ V the metric reads

Gapdr?dz? =
el (= (dt + ppdat)® + hyydatda” )

v(7)



In stationary spacetime redshift can be split into
- gravitational (seen by stationary observers)
- Doppler (redshift from motion relative to stationary observer)

Experimental verifications:

e Pound and Rebka (1959), Pound and Snider (1965): In a
Laboratory on Earth

e Brault (1962): In the gravitational field of the Sun

e Gravity Probe A (1976): With a sounding rocket in the grav-
itational field of the Earth

e GRAVITY collaboration (2018): With the S2 star in the grav-
itational field of the supermassive object at the centre of our
galaxy

e Delva et al. and Herrmann et al. (2018): With Galileo satel-
lites in the gravitational field of the Earth



A time-independent redshift potential foliates the 3-space into
surfaces f = const. (“isochronometric surfaces”)

gopdrldz? =

el (= (dt + ppda)® + hyydatda”)

Coordinate travel time of sig-
nal with speed of light along
spatial path:

dw“’ dx¥
2=t = Y ds ds ds

_ Yy——ds f

fi

IS independent of the emission time

—> redshift potential gives correct redshift also for signals sent
through optical fibers



Define the geoid as an isochronometric surface:

D. Philipp, VP, D. Puetzfeld, E. Hackmann, C. Laemmerzahl: “Definition of
the relativistic geoid in terms of isochronometric surfaces’”, Phys. Rev. D 95,
104037 (2017)

Basic idea:

A.Bjerhammer (1985): “The relativistic geoid is the surface where precise
clocks run with the same speed and the surface is nearest to mean sea level.”

In PN formalism:

M. H. Soffel, H. Herold, H. Ruder and M. Schneider: “Relativistic theory of gra-
vimetric measurements and definition of the geoid” Manuscripta Geodaetica
13, 143 (1988)

S. M. Kopeikin, E. M. Mazurova and A. P. Karpik: “Towards an exact rela-
tivistic theory of Earth’s geoid undulation” Phys. Lett. A 379, 1555 (2015)

Alternative definition of a fully relativistic geoid:

M. Oltean, R. J. Epp, P. L. McGrath and R. B. Mann: “Geoids in general
relativity: geoid quasilocal frames” Class. Quantum Grav. 33, 105001 (2016)



Example:

Isochronometric surfaces in the Kerr spacetime:

2 . 2
g pdrtdeb = — (1 _ 2’;’5"“) dt? + Gedr? + p*dy? — dmragin 9 dt d

2032
—I—Sin219 (TZ 4+ a2 + 2mrc:,0281n 19) d802

p2 — p2 + azcoszﬁ, A = r? + a? — 2mr

Killing vector field 04

2mr

2

Redshift potential €2/ = —gy; = 1 —



A~

Coordinate transformation t =t, p =+ Qt, 7 =r, 9 =

Killing vector field 9; = 9y — Q20,

Redshift potential e?/ = —g;;z = —gy + 2Qgs, — Q3gypy

2 in2y
=1 — mr -+ 4eras2m — 02sin2v (frz -+ a? -+
P

2ma?sin?v
p? )



Om=0
a/m=0.80
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0Om=0.044
a/m=0.99




