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Maxwell equations: dF = 0 , dH = 0 outside of sources.

Constitutive equation in vacuo:

(a) Standard Maxwell: H = ∗F .

(b) Born-Infeld theory: H =

∗F −
∗(F ∧ F )

8b2
F

√

1 +
∗(F ∧ ∗F )

8b2
+

∗(F ∧ F )

8b4
.

M. Born, L. Infeld:“Foundations of the new field theory” Proc. Roy. Soc.

London A 144, 425–451 (1934)

(c) Bopp-Podolsky theory: H =
(

1 − ℓ2�
)

∗F .

F. Bopp:“Eine lineare Theorie des Elektrons” Annalen der Physik 430,

345–384 (1940)

B. Podolsky:“A generalized electrodynamics. Part I: Non-quantum” Phys.

Rev. 62, 68–71 (1942)



Field of a static point charge:

(a) Standard Maxwell:

∇ × ~E = ~0 , ∇ · ~D = 0 for r 6= 0 .

Constitutive equation:

~D = ~E .

Solution is the standard Coulomb field:

~E =
q

4πr2
~er , ~D =

q

4π r2
~er .

The field energy in a ball KR of radius R around the origin

W =

∫

KR

1

2
~D · ~E r2 sinϑdr dϑ dϕ =

q2

8π

∫ R

0

�
��r2 dr

�
��r2 r2

is infinite.



(b) Born-Infeld theory:

∇ × ~E = ~0 , ∇ · ~D = 0 for r 6= 0 .

Constitutive equation:

~D =
~E

√

1 −
1

b2

∣

∣~E
∣

∣

2
.

Solution is (Born and Infeld, 1934):

~E =
q

4π
√

r0
4 + r4

~er , ~D =
q

4π r2
~er , r0

2 =
q

4π b

Hence |~E| → b for r → 0. The field energy in a ball KR of

radius R around the origin

W =

∫

KR

1

2
~D · ~E r2 sinϑdr dϑ dϕ =

q2

8π

∫ R

0

�
��r2 dr

�
��r2
√

r0
4 + r4

is finite.



Plot of
∣

∣φ(r)
∣

∣, where ~E = φ′(r)~er :

From

M. Born, L. Infeld:“Foundations of the new field theory” Proc. Roy. Soc.

London A 144, 425–451 (1934)



(c) Bopp-Podolsky theory:

∇ × ~E = ~0 , ∇ · ~D = 0 for r 6= 0 .

Constitutive equation:

~D =
(

1 − ℓ2∆
)

~E .

Solution is (Bopp, 1940, Podolsky, 1942):

~E =
q

4π r2

{

1 − Aℓ (r + ℓ) e−r/ℓ + B ℓ (r − ℓ) er/ℓ
}

~er , ~D =
q

4π r2
~er .

~E vanishing at infinity: B = 0.

~E finite everywhere: A = ℓ−2, hence
∣

∣~E
∣

∣ → q/(4πℓ2) for r → 0.

Then the field energy in a ball KR of radius R around the

origin

W =

∫

KR

1

2
~D · ~E r2 sinϑdr dϑ dϕ =

q2

8π

∫ R

0

{ 1

r2
−

e−r/ℓ

r2
−

e−r/ℓ

rℓ

}

dr =
q2

8π

{1

ℓ
+

e−R/ℓ − 1

R

}

is finite.



Field of an accelerating point charge:

Consider Minkowski space,

g = ηabdx
adxb.

Fix a timelike curve ξa(τ ) with

ηabξ̇
aξ̇b = −1

Choose a tetrad
(

e0(τ ), e1(τ ), e2(τ ), e3(τ )
)

along the worldline of the charged

particle such that

ea0(τ ) = ξ̇a(τ ),

a(τ )eb3(τ ) = ξ̈b(τ ).

ξa(τ )

e0(τ )

e3(τ )



Retarded light-cone coordinates (τ, r, ϑ, ϕ):

E. T. Newman and T. W. J.

Unti:“A class of null flat-space

coordinate systems” J. Math.

Phys. 4, 1467 (1963).

xa = ξa(τ ) + r
(

ξ̇a(τ ) + na(τ, ϑ, ϕ)
)

na(τ, ϑ, ϕ) = cosϕ sinϑ ea1(τ )

+ sinϕ sinϑ ea2(τ ) + cosϑ ea3(τ )

x

ξa(τ)

e0(τ)

e3(τ)

(Advanced) light cone coordinates where first introduced in General Relativity

by G. Temple: “New system of normal co-ordinates for relativistic optics”

Proc. R. Soc. London, Ser. A 168, 122–148 (1938)



Domain U of coordinate system (τ, r, ϑ, ϕ):

U = causal future of

the worldline, with the

worldline itself omitted

x

ξa(τ)



Associate orthonormal coframe θ0, θ1, θ2, θ3 with the light-cone

coordinates (τ, r, ϑ, ϕ):

θ0 = dτ + dr + r a(τ )cosϑdτ

θ1 = dr + r a(τ )cosϑdτ

θ2 = r dϑ − r a(τ ) sinϑdτ

θ3 = r sinϑdϕ

xa

ξa(τ)

e0(τ)

eµ(τ)

θ0

θµ



Want to solve Maxwell’s equations dF = 0, dH = 0 on U

and calculate the field energy in a ball around the charge.

(a) Standard Maxwell:

Solution is F = dA, H = ∗F , where

A = −
q θ0

4π r
= −

− q

4π

( dτ + dr

r
+ a(τ )cosϑdτ

)

is the (retarded) Liénard-Wiechert potential.



A = −
q θ0

4π r

Write F = dA as

F = Eµθ
µ ∧ θ0 +

1

2
Bρερµνθ

µ ∧ θν,

then

Eµθ
µ =

q

4π

{θ1

r2
+ a(τ ) sinϑ

θ2

r

}

,

Bµθ
µ =

q

4π
a(τ ) sinϑ

θ3

r

xa

ξa(τ)

e0(τ)

eµ(τ)

θ0

θµ

hence the field energy in a ball (r ≤ R, τ = τ0) is infinite.



(b) Born-Infeld theory:

Want to solve Maxwell’s equations, dF = 0, dH = 0 on U
with the Born-Infeld constitutive law

H =

∗F −
∗(F ∧ F )

8b2
F

√

1 +
∗(F ∧ ∗F )

8b2
+

∗(F ∧ F )

8b4
.

Can the analogue of the Liénard-Wiechert potential be calcu-

lated?

Does the problem admit a solution that is regular everywhere

away from the worldline of the charge?

Does it behave near the worldline in the same way as in the

static case?



There are no regularity results on Born-Infeld field with time-

dependent sources.

For time-independent regular sources ρ and ~j, regularity of the

solution has been proven only recently:

M. Kiessling:“Convergent perturbative power series solu-

tion of the stationary Born-Infeld field equations with reg-

ular sources” J. Math. Phys. 52, 022902 (2011)

The proof uses series expansions in 1/b.

The hard part is in the proof of convergence.



Behaviour of the fields near the worldline was discussed in

D. Chruściński: “Point charge in the Born-Infeld electrodynamics”

Phys. Lett. A 240, 8–14 (1998)

based on ideas taken from

J. Kijowski:“Electrodynamics of moving particles” Gen. Rel. Grav.

26, 167–201 (1994)

But no proof of boundedness of the electric field strength is given.



Write F = dA as a power series w.r.t. 1/b2:

F =
∞
∑

N=0

FN

b2N
= F0 +

F1

b2
+ . . . , FN = dAN

Insert into constitutive law:

H =
∞
∑

N=0

1

b2N

( ∗FN + WN
(

F0, . . . , FN−1
) )

=

The FN = dAN are determined by dH = 0.

Solve this order by order:



Solution to zeroth order is known:

A0 is the Liénard-Wiechert potential:

A0 = −
q θ0

4π r
=

− q

4π

( dτ + dr

r
+ a(τ )cosϑdτ

)

Higher order solutions can be determined iteratively:

d
(∗dAN + WN

(

dA0, . . . , dAN−1
) )

= 0

In the Lorenz gauge: AN can be written in terms of retarded

potentials.

This gives the solution F = dA as a formal power series.

Does this series converge? Don’t know.

We do know that in the case of vanishing acceleration, a(τ ) = 0,

it does converge.

One might conjecture that the same is true for small acceleration.

However, it is not unlikely that for large acceleration singularities

(e.g. “shock waves”) may form, or the field may diverge too

strongly towards the worldline.



(c) Bopp-Podolsky theory:

Want to solve Maxwell’s equations, dF = 0, dH = 0 on U

with the Bopp-Podolsky constitutive law

H =
(

1 − ℓ2�
)

∗F .

Can the analogue of the Liénard-Wiechert potential be calcu-

lated?

Is it regular everywhere away from the worldline of the charge?

Does it behave near the worldline in the same way as in the

static case?



With F = dA and choosing the Lorenz gauge, d∗A = 0, the field

equation reads
(

1 − ℓ2�
)

�A = − 4π j .

The Green function of
(

1 − ℓ2�
)

� is known, see

A.Landé, L.Thomas: “Finite self-energies in radiation theory. II” Phys. Rev.

60, 514–523 (1941)

Retarded solution for charge on world-

line ξa(τ ) is

Aa(x) = q

∫ τ

−∞

J1
(

z/ℓ
)

ℓ z
ξ̇a(τ

′) dτ ′

where

z2 = −
(

xa − ξa(τ ′)
) (

xa − ξa(τ
′)
)

.

x

ξa(τ)

ξa(τ ′)

e0(τ)

e1(τ)



Fab(x) =
∂Ab(x)

∂xa
−

∂Aa(x)

∂xb
=

q

2ℓ2

(

ξ̇a(τ )nb(τ, ϑ, ϕ) − ξ̇b(τ )na(τ, ϑ, ϕ)
)

− q

∫ τ

−∞

J2
(z
ℓ

)

z2ℓ2

(

(

xb − ξb(τ
′)
)

ξ̇a(τ
′) −

(

xa − ξa(τ
′)
)

ξ̇b(τ
′)
)

dτ ′ ,

F stays finite for r → 0, for a large class of worldlines.

The energy in a sphere around the charge is finite.



Lorentz force on charge q̃

at x with 4-velocity U :

fa(x) = q̃ Fab(x)U
b

Self-force: x → ξ(τ ) with

q = q̃ and Ub = ξ̇b(τ )

fs
a(τ ) =

x

ξa(τ)

ξa(τ ′)

e0(τ)

e1(τ)

− q2
∫ τ

−∞

J2
(ζ
ℓ

)

ζ2 ℓ2
ξ̇b(τ )

(

(

ξb(τ ) − ξb(τ
′)
)

ξ̇a(τ
′) −

(

ξa(τ ) − ξa(τ
′)
)

ξ̇b(τ
′)
)

dτ ′

where

ζ2 = −
(

ξa(τ ) − ξa(τ ′)
)(

ξa(τ ) − ξa(τ
′)
)

.



The self-force is finite for a large class of timelike curve ξ.

There is no need (and no justification) for mass renormalisation.

The equation of motion is

m0 ξ̈a(τ ) = fs
a(τ ) + fe

a(τ )

with a (bare) mass m0.

This is an integro-differential equation for ξ(τ ).

For ℓ → 0 and after mass renormalisation one gets the Lorentz-

Dirac equation.



Example: Rindler motion (hyperbolic motion)

ξ(τ ) =
1

a









sinh(aτ )
cosh(aτ )

0
0









fs
a(τ ) = −

q2

aℓ2
I1

(

(aℓ)−1)K1
(

(aℓ)−1) ξ̈a(τ ) .

m0 ξ̈a(τ ) = fs
a(τ ) + fe

a(τ )

Cf. A. E. Zayats: “Self-interaction in the

Bopp-Podolsky electrodynamics: Can the ob-

servable mass of a charged particle depend on

its acceleration?” arXiv:1306.3966

ξ̇(τ )

ξ̈(τ )


