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1 Historic introduction

1783 J. Michell speculates in a letter to H. Cavendish if there might exist “dark bodies” that
are so dense that light cannot escape from their surface (see Worksheet 1).

1796 P. S. Laplace calculates, independently of J. Michell, on what condition the escape ve-
locity from the surface of a body is bigger than the velocity of light. (Laplace’s calculation
can be found in an Appendix of the book by Hawking and Ellis.)

1915 A. Einstein publishes the field equation of general relativity.

1916 K. Schwarzschild finds the spherically symmetric (and static) solution to Einstein’s
vacuum field equation. The same solution is also found, independently and only a little
later, by J. Droste. It features a “singularity” at the Schwarzschild radius rS = 2GM/c2

which is not understood for decades.

1916 H. Reissner and two years later G. Nordström find the spherically symmetric (and static)
solution to the Einstein-Maxwell equations. The same solution is found independently by
H. Weyl. It is usually called the Reissner-Nordström solution.

1918 F. Kottler finds the unique spherically symmetric (and static) solution to Einstein’s
vacuum field equation with a cosmological constant.

1939 R. Oppenheimer and H. Snyder calculate the gravitational collapse of a spherically
symmetric ball of dust. They find that a curvature singularity is formed within a finite
time.

1958 D. Finkelstein explains the character of the sphere r = rS in the Schwarzschild solution
as a “one-way membrane”, nowadays called an “event horizon”. Related articles appear
in the years 1958 to 1960 by G. Szekeres, M. Kruskal and C. Frønsdal. The notion of
an (event) horizon had been introduced already in 1955 by W. Rindler in the context of
cosmology.

1963 R. Kerr finds a solution to Einstein’s vacuum field equation that describes, in modern
terminology, a rotating black hole.

1965 E. Newman and collaborators find the solution to the Einstein-Maxwell equations that
describes rotating charged black holes, known as the Kerr-Newman solution.

1963-1969 R. Penrose and S. Hawking prove a series of theorems to the effect that the
formation of a singularity is inevitable once a collapse process has started in a spacetime
that solves Einstein’s field equation with an energy-momentum tensor that satisfies certain
“energy conditions”. In 2020 R. Penrose receives 50 % of the Nobel Prize in Physics for
this work.

1967 J. Wheeler uses the word “black hole”, supposedly for the first time, in a talk in New
York. The first page of the written version of this talk, with Wheeler’s annotations, can
be found in the book by Frolov and Novikov.
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1967-1984 For black holes with mass, angular momentum and electric charge, uniqueness
theorems (“no-hair theorems”) are proven.

1969 R. Penrose formulates the “cosmic censorship hypothesis”, saying that under certain
physically reasonable assumptions gravitational collapse will never result in a naked sin-
gularity, i.e., a singularity without a horizon.

1973-1974 J. Bekenstein and S. Hawking formulate the thermodynamical laws of black holes.
S. Hawking predicts that black holes decay by emitting black-body radiation (“Hawking
radiation”).

Observational evidence for the existence of black holes:

• Supermasive black holes (106− 1010M⊙): There is very good evidence for their existence,
as we will discuss later. The best known candidates are the object at the centre of our
Galaxy, associated with the radio source Sgr A∗, with 4 × 106M⊙ and the object at the
centre of the galaxy M87, associated with the radio source M87∗, with 6 × 109M⊙. It is
widely believed that most, if not all, galaxies host black holes at their centres. For the
observation with infrared telescopes of stars in the neighbourhood of Sgr A∗ R. Genzel
and A. Ghez won 50 % of the Nobel Prize in Physics 2020. In 2017 the Event Horizon
Telescope Collaboration produced a picture of the “shadow” of the object at the centre
of M87, which was released with a lot of media covering in 2019.

• Intermediate black holes (102 − 103M⊙): They are much more hypothetical than super-
massive black holes. They may exist at the centres of some globular clusters, possibly
also near the centres of galaxies.

• Stellar black holes (3− 100M⊙): For this class of black holes the observational evidence
for their existence is also very good. The oldest candidate for a stellar black hole is
associated with the X-ray source Cyg X-1, believed to be a black hole of about 12M⊙ in
a binary system. Moreover, since 2015 the gravitational wave detectors LIGO and Virgo
have observed about hundred events (as of spring 2022) most of which are assumed to
have been produced by the merger of two stellar black holes. Some of them are thought
to result from the merger of a stellar black hole with a neutron star, some others from the
merger of two neutron stars. For the observation of gravitational waves with the LIGO
detectors R. Weiss, K. Thorne and B. Barrish won the Nobel Prize in Physics 2017.

• Mini black holes (less than 1M⊙, possibly down to the Planck mass of approx. 10−8 kg):
They are hypothetical. They may have been produced at a very early stage of the universe,
in which case they are called “primordial black holes”. Even more speculative is the idea
that they may be produced from cosmic rays in our atmosphere or in accelerators. If they
exist, they are expected to decay quickly by emitting Hawking radiation.
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2 Brief review of general relativity

A general-relativistic spacetime is a pair (M, g) where:

• M is a four-dimensional manifold; local coordinates will be denoted (x0, x1, x2, x3) and
Einstein’s summation convention will be used for greek indices µ, ν, σ, . . . = 0, 1, 2, 3 and
for latin indices i, j, k, . . . = 1, 2, 3.

• g is a Lorentzian metric onM , i.e. a covariant second-rank tensor field, g = gµνdx
µ⊗dxν ,

that is

(a) symmetric, gµν = gνµ, and

(b) non-degenerate with Lorentzian signature, i.e., for any p ∈M there are coordinates
defined near p such that g|p = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

As the metric is non-degenerate, we may introduce contravariant metric components by

gµνgνσ = δµσ . (1)

We use gµν and gστ for raising and lowering indices, e.g.

gρτA
τ = Aρ , Bµνg

ντ = Bµ
τ . (2)

The metric contains all information about the spacetime geometry and thus about the gravi-
tational field. In particular, the metric determines the following.

• The causal structure of spacetime:

A curve s 7→ x(s) =
(
x0(s), x1(s), x2(s), x3(s)

)
is

called

spacelike

lightlike

timelike







⇐⇒ gµν
(
x(s)

)
ẋµ(s)ẋν(s)







> 0

= 0

< 0

Timelike curves describe motion at subluminal
speed and lightlike curves describe motion at the
speed of light. Spacelike curves describe motion at
superluminal speed which is forbidden for signals.

timelike
lightlike

spacelike

For timelike curves we can choose the parametrisation such that gµν
(
x(τ)

)
ẋµ(τ)ẋµ(τ) =

−c2. The parameter τ is then called proper time.

The motion of a material continuum, e.g. of a fluid, can be described by a vector field
U = Uµ∂µ with gµνU

µUν = −c2. The integral curves of U are to be interpreted as the
worldlines of the fluid elements.

• The geodesics:

By definition, the geodesics are the solutions to the Euler-Lagrange equations

d

ds

∂L(x, ẋ)
∂ẋµ

− ∂L(x, ẋ)
∂xµ

= 0 (3)
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of the Lagrangian

L
(
x, ẋ
)
=

1

2
gµν(x)ẋ

µẋν . (4)

These Euler-Lagrange equations take the form

ẍµ + Γµ
νσ(x)ẋ

ν ẋσ = 0 (5)

where

Γµ
νσ =

1

2
gµτ
(
∂νgτσ + ∂σgτν − ∂τgνσ

)
(6)

are the socalled Christoffel symbols.

The Lagrangian L(x, ẋ) is constant along a geodesic (see Worksheet 1), so we can speak
of timelike, lightlike and spacelike geodesics. Timelike geodesics (L < 0) are to be inter-
preted as the worldlines of freely falling particles, and lightlike geodesics (L = 0) are to
be interpreted as light rays.

The Christoffel symbols define a covariant derivative that takes tensor fields into tensor
fields, e.g.

∇νU
µ = ∂νU

µ + Γµ
ντU

τ , (7)

∇νAµ = ∂νAµ − Γρ
νµAρ . (8)

• The curvature.

The Riemannian curvature tensor is defined, in coordinate notation, by

Rµνσ
τ = ∂µΓ

τ
νσ − ∂νΓ

τ
µσ + Γτ

µρΓ
ρ
νσ − Γτ

νρΓ
ρ
µσ . (9)

The curvature tensor determines the rela-
tive motion of neighbouring geodesics: If
X = Xµ∂µ is a vector field whose integral
curves are geodesics, and if J = Jν∂ν con-
nects neighbouring integral curves of X (i.e.,
if the Lie bracket between X and J vanishes),
then the equation of geodesic deviation or Ja-
cobi equation holds:

(
Xµ∇µ

)(
Xν∇ν

)
Jσ = Rµνρ

σXµJνXρ .
(10)

If the integral curves of X are timelike, they
can be interpreted as worldlines of freely
falling particles. In this case the curvature
term in the Jacobi equation gives the tidal
force produced by the gravitational field.

X

J

From the Riemannian curvature tensor one forms the Ricci tensor

Rνσ = Rµνσ
µ (11)

and the scalar curvature
R = Rµνg

µν . (12)
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The spacetime metric is determined, in terms of its sources, by Einstein’s field equation

Rµν − R

2
gµν + Λ gµν = κTµν . (13)

The curvature quantity

Gµν = Rµν − R

2
gµν (14)

is called the Einstein tensor field, Λ is called the cosmological constant, and κ is called Einstein’s
gravitational constant.

Based on cosmological observations we believe that we live in a universe with a positive cos-
mological constant that is of the order of Λ ≈ 10−52m−2 so that it can be neglected on non-
cosmological scales.

Einstein’s gravitational constant is related to Newton’s gravitational constant G according to
κ = 8πG/c4 as follows from the Newtonian limit of Einstein’s theory.

Transvecting Einstein’s field equation with gµν yields

−R + 4Λ gµν = κTµνg
µν . (15)

Re-inserting this expression into Einstein’s field equation demonstrates that the latter can be
equivalently rewritten as

Rµν = Λ gµν + κ
(

Tµν −
1

2
Tρσg

ρσgµν

)

. (16)

The energy-momentum tensor Tµν depends on the matter model that is used for the source of
the gravitational field. The most important cases are the following.

• Vacuum: Tµν = 0
Then the field equation simplifies to Rµν = Λgµν . The cosmological constant is relevant
only on cosmological scales, otherwise the vacuum field equation can be simplified to
Rµν = 0. The vacuum field equation looks simple but it is a system of ten scalar second-
order coupled non-linear partial differential equations for the ten independent metric
coefficients gµν . In this course we will discuss the Schwarzschild metric (the unique spher-
ically symmetric solution of the equation Rµν = 0), the Kottler metric (generalisation of
the Schwarzschild metric to the case Λ 6= 0) and the Kerr metric (solution of Rµν = 0
that describes a rotating black hole).

• Perfect fluid: Tµν =
(

ε + p
)UµUν

c2
+ p gµν

Here Uµ is the four-velocity field of the fluid, normalised according to gµνU
µUν = −c2,

which means that the integral curves of Uµ are parametrised by proper time; ε is the
energy density in the rest system of the fluid and p is the pressure. For solving Einstein’s
field equation with a perfect-fluid source, one has to specify an equation of state linking
the pressure p to the density ε. The simplest equation of state is that for a “dust”,
p = 0. In this case ε/c2 is just the rest-mass density. Once an equation of state has been
specified, Einstein’s equation together with the Euler equation gives a system of partial
differential equations for the gµν , the four-velocity Uρ and the density ε. In this course
we will consider, among other things, a spherically symmetric collapsing ball of dust.
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• Electrovacuum: Tµν = FµαFν
α − 1

4
gµνFαβF

αβ

Here Fµν is the electromagnetic field strength, Fµν = −Fνµ. In this case Einstein’s field
equation together with Maxwell’s equations gives a system of partial differential equations
for the gµν and the Fµν . The best-known electrovacuum solution without a cosmologi-
cal constant is the Reissner-Nordström solution (field outside of a charged spherically
symmetric static object) which will be treated later in this course.

3 Schwarzschild black holes

3.1 The Schwarzschild metric in Schwarzschild coordinates
The Schwarzschild metric, found by Karl Schwarzschild and independently by J. Droste in
1916, is the unique spherically symmetric solution to Einstein’s vacuum field equation without
a cosmological constant, Rµν = 0. The derivation is a subject for a first course on General
Relativity and will not be repeated here. The metric reads

gµνdx
µdxν = −

(

1 − rS
r

)

c2 dt2 +
dr2

(

1 − rS
r

) + r2
(
dϑ2 + sin2ϑ dϕ2

)
. (17)

It depends on a parameter rS, called the Schwarzschild radius, with the dimension of a length.
For a celestial body of radius r⋆(t) the metric is valid in the exterior region where we have
vacuum, i.e., the range of the coordinates is

t ∈ R , r ∈ ] r∗(t),∞ [ , (ϑ, ϕ) ∈ S2 . (18)

The meaning of the parameter rS follows from comparison with the Newtonian limit:

rS =
2GM

c2
(19)

where G is Newton’s gravitational constant, c is the vacuum speed of light and M is the mass
of the central body. On often uses the mass parameter

m = GM/c2 (20)

which has the dimension of a length. Then rS = 2m.

For M = M⊙ we have rS ≈ 3 km. As a consequence, for all stars and all planets we have
rS < r∗(t) so that in these cases there is no problem with the zero in the denominator of grr at
r = rS. The idea of a body with radius smaller than rS leads to the notion of a Schwarzschild
black hole as will be discussed in detail below.

We list some properties of the Schwarzschild metric.

• The Schwarzschild metric is asymptotically flat, i.e., it approaches the Minkowski metric
for r → ∞. Indeed, if rS/r is negligibly small in comparison to 1, the Schwarzschild
metric is

gµνdx
µdxν ≈ − c2 dt2 + dr2 + r2

(
dϑ2 + sin2ϑ dϕ2

)
. (21)

which is the Minkowski metric in spherical polar coordinates.
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• The Schwarzschild metric is static (in the domain r > rS), i.e., it admits a timelike
Killing vector field that is hypersurface-orthogonal. Indeed, the vector field ∂t (which is
timelike in the domain r > rS) is (i) a Killing vector field, ∂tgµν = 0, and (ii) orthogonal
to the hypersurfaces t = constant, gtr = gtϑ = gtϕ = 0. The fact that a spherically
symmetric solution to Einstein’s vacuum field equation is necessarily static was proven
by J. T. Jebsen in 1921 and independently by G. Birkhoff in 1923; we refer to it as to
the Jebsen-Birkhoff theorem. (Schwarzschild and Droste had assumed staticity in their
derivations.)

• The r coordinate has the following geometric meaning. For a circle C in the equatorial
plane

t = t0 , r = r0 , ϑ = π/2 , 0 < ϕ < 2π (22)

the circumference can be read from the metric,

ℓr0 =

∫

C

√

gµν
dxµ

ds

dxν

ds
ds =

∫

C

√

gϕϕ

(dϕ

ds

)2

ds

=

∫

C

√

r20

(dϕ

ds

)2

ds =

∫ 2π

0

r0 dϕ = 2 π r0 . (23)

Hence, the length of a rope laid out along this circle is given by the formula for the
circumference of a circle that is familiar from Euclidean geometry. Similarly, one finds
that the area of a sphere t = t0, r = r0 equals 4πr20 which is again the usual Euclidean
formula. For this reason, r is sometimes called the area coordinate. – By contrast, for a
radial line segment S

t = t0 , r1 < r < r2 , ϑ = ϑ0 , ϕ = ϕ0 (24)

the length is

ℓr1r2 =

∫

S

√

gµν
dxµ

ds

dxν

ds
ds =

∫

S

√

grr

(dr

ds

)2

ds

=

∫ r2

r1

√
grr dr =

∫ r2

r1

dr
√

1− rs
r

6= r2 − r1 . (25)

This demonstrates that r cannot be interpreted as a distance from a centre.

For a hypothetical star with a radius smaller than rS, the metric in the exterior has a “singular-
ity” at r = rS. The correct interpretation of this singularity was an unsolved problem until the
late 1950s. It is the metric coefficient grr = g(∂r, ∂r) that diverges to infinity at r = rS. This
does not necessarily indicate a pathology of the metric; it could very well be that the metric
is perfectly regular at r = rS, and that it is the coordinate basis vector field ∂r that causes
the divergence. Then we would only have a “coordinate singularity” at r = rS that could be
removed by a coordinate transformation.

As the Schwarzschild metric is a vacuum solution, Rµν = 0, the curvature invariants R =
Rµνg

µν and RµνR
µν vanish identically and give no information. So the simplest curvature
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invariant that does give some information is the socalled Kretschmann scalar RµνρσR
µνρσ. For

the Schwarzschild metric one finds

RµνρσR
µνρσ =

4 r2S
r6

. (26)

This demonstrates that there is a curvature singularity at r = 0 (if we extend the vacuum
Schwarzschild solution that far), but it gives us some hope that at r = rS we might have
only a coordinate singularity. This is indeed true. We will discuss below four coordinate
systems (Eddington-Finkelstein, Kruskal-Szekeres, Painlevé-Gullstrand and Lemâıtre) in which
the metric is regular at r = rS. We will then see that a spherically symmetric star with radius
r∗(t) < rS necessarily forms a black hole.

3.2 The Schwarzschild metric in other coordinates

(a) Isotropic coordinates

Starting from Schwarzschild coordinates, we define a coordinate transformation that changes
only the radial coordinate, (t, r, ϑ, ϕ) 7→ (t, r̃, ϑ, ϕ), where

r̃ =
1

2

(√

r2 − rSr + r − rS
2

)

. (27)

Solving (27) for r yields

r =

(

r̃ +
rS
4

)2

r̃
, (28)

hence

dr =
(

r̃ +
rS
4

)(

r̃ − rS
4

) dr̃

r̃2
(29)

and substituting for r and dr in the Schwarzschild metric yields

gµνdx
µdxν = −

(

1 − rS r̃
(
r̃ +

rS
4

)2

)

c2dt2 +

(

r̃ +
rS
4

)2(

r̃ − rS
4

)2

dr̃2

(

1− rS r̃
(

r̃ +
rS
4

)2

)

r̃4

+

(

r̃ +
rS
4

)4

r̃2

(

dϑ2 + sin2ϑ dϕ2
)

= −

(

r̃ − rS
4

)2

(

r̃ +
rS
4

)2 c
2dt2 +

(

r̃ +
rS
4

)4

r̃4

(

dr̃2 + r̃2
(
dϑ2 + sin2ϑ dϕ2

))

. (30)

The interesting property of isotropic coordinates is that now the spatial part of the metric is
conformal to the 3-dimensional Euclidean metric dr̃2+r̃2

(
dϑ2+sin2ϑ dϕ2

)
. As a conformal factor
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does not change angles, the angles between spatial curves represented in isotropic coordinates
correspond to the physical angles (i.e., to the ones as measured with the physically correct
metric).

Isotropic coordinates are often used for practical caluclations, e.g. in the parametrized post-
Newtonian (pPN) approximation formalism.

The pathological value r = rS corresponds to r̃ = rS/4. At this point, there is no zero in the
denominator but the metric coefficient gtt vanishes, so the matrix

(
gµν
)
becomes degenerate

which means that the inverse metric coefficients gµν don’t exist. Thus, in isotropic coordinates
the pathological value of the radius coordinate is just shifted to another coordinate position
but nothing is gained in view of extending the metric.

(b) Tortoise coordinates

Again we start from Schwarzschild coordinates and transform only the radial coordinate into a
new radial coordinate, (t, r, ϑ, ϕ) 7→ (t, r̂, ϑ, ϕ), where

r̂ = r + rS ln
∣
∣
∣
r

rS
− 1

∣
∣
∣ , (31)

dr̂ =
r dr

r − rS
. (32)

This gives a transcendental equation for r as a function of r̂, i.e., the inverse transformation
cannot be written in terms of elementary functions, but it is well defined: There is a bijective
relation between r running from rS to ∞ and r̂ running from −∞ to ∞.

r̂ was called the “tortoise coordinate” by John Wheeler, alluding to Zeno’s paradox of Achilles’
race against the tortoise. Just as (according to Zeno’s argument) Achilles never reaches the
tortoise, the coordinate r̂ never reaches the point where r = rS (because it is shifted to −∞).

The tortoise coordinate is important, among other things, for solving wave equations on the
Schwarzschild background. Just as the isotropic radius coordinate, it does not help extending
the metric beyond r = rS.

(c) Eddington-Finkelstein coordinates

As before, we start out from Schwarzschild coordinates, but this time we transform the time
coordinate, (t, r, ϑ, ϕ) 7→ (t′, r, ϑ, ϕ) where t′ depends on t and r. We will do this in such a way
that ingoing radial lightlike geodesics are mapped onto straight lines in the new coordinates.
We will see that in these new coordinates the metric coefficients are regular in the whole domain
0 < r <∞.

A radial lightlike curve has to satisfy the equations

gµν
dxµ

ds

dxν

ds
= 0 ,

dϑ

ds
=

dϕ

ds
= 0 . (33)

Owing to the symmetry, any such curve must be a geodesic (if the parameter s is chosen
appropriately), i.e., the worldline of a classical photon. If we insert the gµν of the Schwarzschild
metric, we get
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0 = − c2
(

1 − rS
r

)( dt

ds

)2

+
1

(

1 − rS
r

)

(dr

ds

)2

,

(dr

ds

ds

dt

)2

= c2
(

1 − rS
r

)2

,

dr

dt
= ± c

(

1 − rS
r

)

, (34)

Here the upper sign holds for outgoing photons and the lower sign holds for ingoing photons.

Integrating (34) results in

± c

∫

dt =

∫
dr

(

1 − rS
r

) =

∫ (
r − rS + rS

)
dr

r − rS

=

∫

dr + rS

∫
dr

r − rS
, (35)

hence

± c t = r + rS ln
∣
∣r − rS

∣
∣ + C . (36)

It is convenient to write the integration constant in the form

C = − rS ln(rS) + c t0 . (37)

Then the equations for radial lightlike geodesics read

± c t = r + rS ln
∣
∣
∣
r

rS
− 1

∣
∣
∣ + c t0 (38)

where we recognise the tortoise coordinate on the right-hand side. The equations for radial
lightlike geodesics hold on the domain rS < r < ∞ and on the domain 0 < r < rS (if we
assume that there is vacuum). If we approach rS from above, we have t→ −∞ along outgoing
and t→ ∞ along ingoing lightlike geodesics.

The diagram shows ingoing and outgoing
radial lightlike geodesics in the exterior re-
gion rS < r < ∞ and in the interior re-
gion 0 < r < rS. In either region the
Schwarzschild metric is regular. However,
the two regions are separated by the sur-
face r = rS which shows a singular be-
haviour in the Schwarzschild coordinates.
None of our lightlike geodesics reaches this
surface at a finite coordinate time. As the
angular coordinates are not shown, any
point in this diagram represents a sphere.
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In the interior region r and t have interchanged their
causal character: r is a time coordinate, grr < 0,
and t is a space coordinate, gtt > 0. While in the
exterior region t cannot stand still along an observer’s
worldline, in the interior region r cannot stand still
along an observer’s worldline. As the Killing vector
field ∂t is not timelike in the interior, in this region
the Schwarzschild metric is not static.

0 < r < rS rS < r <∞

∂r timelike spacelike

∂t spacelike timelike

We now transform from Schwarz-
schild coordinates (t, r, ϑ, ϕ) to in-
going Eddington-Finkelstein coor-
dinates (t′, r, ϑ, ϕ),

c t′ = c t + rS ln
∣
∣
∣
r

rS
− 1

∣
∣
∣ , (39)

c dt′ = c dt +
rS dr

r − rS
. (40)

This transformation maps ingo-
ing radial lightlike geodesics onto
straight lines,

− c t′ = r + c t0 . (41)

By contrast, the outgoing radial lightlike geodesics are now given by the equation

c t′ = r + 2 rS ln
∣
∣
∣
r

rS
− 1

∣
∣
∣ + c t0 . (42)

We will demonstrate now that in the ingoing Eddington-Finkelstein coordinates the metric
coefficients are regular for all values 0 < r < ∞. We have thus found an analytical extension
of the Schwarzschild spacetime across the surface r = rS. The spacetime diagram above shows
the radial lightlike geodesics in this extended spacetime.

We calculate the Schwarzschild metric in the new coordinates (t′, r, ϑ, ϕ) .

gµνdx
µdxν = −

(

1 − rS
r

)

c2dt2 +
dr2

1 − rS
r

+ r2
(

dϑ2 + sin2ϑ dϕ2
)

= − r − rS
r

(

c dt′ − rS dr

r − rS

)2

+
dr2

1 − rS
r

+ r2
(

dϑ2 + sin2ϑ dϕ2
)

= − r − rS
r

c2 dt′2+
2 c rS✘✘✘✘✘✘(

r − rS
)
dt′ dr

r✘✘✘✘✘✘(
r − rS

)
− r2S ✘✘✘✘✘✘(

r − rS
)
dr2

r
(
r − rS

)✚2
+

r dr2

r − rS
+ r2

(

dϑ2+sin2ϑ dϕ2
)
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= −
(

1− rS
r

)

c2 dt′2 + 2
c rS
r

dt′ dr +

(

1 +
rS
r

)

✘✘✘✘✘✘
(

1 − rS
r

)

dr2

✘✘✘✘✘✘
(

1 − rS
r

) + r2
(

dϑ2+sin2ϑ dϕ2
)

. (43)

In the new coordinates the Schwarzschild metric is, indeed, regular on the whole domain 0 <
r <∞. Also the inverse metric exists on this whole domain, as

det
(
gµν
)
= det











−
(

1 − rS
r

) rS
r

0 0

rS
r

(

1 +
rS
r

)

0 0

0 0 r2 0

0 0 0 r2sin2ϑ











=

{

−
(

1 − rS
r

)(

1 +
rS
r

)

− r2S
r2

}

r4sin2ϑ = − r4 sin2ϑ (44)

is non-zero for all r > 0, apart from the familiar coordinate singularity on the axis, where
sin ϑ = 0.

Eddington-Finkelstein coordinates were introduced by Arthur Eddington already in 1924. How-
ever, he did not use them for investigating the behaviour of the Schwarzschild metric at r = rS
but rather for comparing Einstein’s general relativity to an alternative gravity theory of White-
head. The same coordinates were independently rediscovered by David Finkelstein in 1958 who
clarified, with their help, the nature of the surface r = rS.

We discuss now the properties of the extended Schwarzschild spacetime that is covered by the
ingoing Eddington-Finkelstein coordinates.

• The metric is regular on the whole domain 0 < r < ∞. It is clear that the spacetime
cannot be extended into the domain of negative r-values, as r = 0 is a curvature singu-
larity. We have already noticed that the curvature invariant RµνστR

µνστ goes to infinity
for r → 0. As the curvature tensor determines the relative acceleration of neighbouring
geodesics (recall the geodesic deviation equation), this means that near r = 0 any mate-
rial body will be torn apart by infinitely strong tidal forces. It is widely believed that a
true understanding of what is going on near r = 0 requires a (not yet existing) quantum
theory of gravity.

• At r = rS the spacetime is perfectly regular. The tidal forces are finite there. By local
experiments near r = rS, an observer would not notice anything unusual. However, the
hypersurface r = rS plays a particular role in view of the global structure of the spacetime:
From the r − ct′−diagram one can read that it is an event horizon for all observers in
the domain r > rS, i.e., that no signal from the domain r < rS can reach an observer
at r > rS. In particular, photons cannot travel from the domain r < rS to the domain
r > rS. For this reason, the region r < rS is called a black hole whereas the region r > rS
is called the domain of outer communication.
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• As the angular coordinates ϑ and ϕ are suppressed, each point in our spacetime diagram
on p.12 represents a sphere. Correspondingly, in the diagram each light signal represents
an ingoing or outgoing spherical wave front. In the domain r > rS the radius coordinate
is increasing for outgoing spheres and decreasing for ingoing spheres, as it should be in
accordance with our geometric intuition. In the domain 0 < r < rS, however, we read
from the diagram that r is decreasing for ingoing and for outgoing spheres. As 4πr2 gives
the area of a sphere, as measured with the metric, this means that both the ingoing and
the outgoing spherical wave fronts have decreasing area. In a terminology introduced by
Roger Penrose, they are called closed trapped surfaces. The existence of closed trapped
surfaces is an important indicator for a black hole and plays a major role in the Hawking-
Penrose singularity theorems. Quite generally, the boundary of the region where closed
trapped surfaces exist is called the apparent horizon. In the Schwarzschild spacetime, the
apparent horizon coincides with the event horizon. In more general spacetimes this is not
the case.

• Along any future-oriented timelike curve in the domain r < rS, the r-coordinate decreases
monotonically, as can be read from the r − ct′−diagram. If an observer was foolhardy
enough to enter into the region 0 < r < rS, he will end up in the singularity at r = 0.
In the next section we will calculate the proper time that elapses between crossing the
horizon and arriving at the singularity. We will see that this time is maximal for a freely
falling observer that is dropped from rest at the horizon; in any case, it is finite.

• We have emphasised several times that the
Schwarzschild metric applies only to the ex-
terior region of a spherically symmetric ce-
lestial body, r > r∗(t), because only there
is the vacuum field equation satisfied. We
may consider a star whose radius r∗(t) is
bigger than rS at the beginning and then
shrinks beyond rS. As soon as the radius
is smaller than rS, the star is doomed. It
will collapse to a point in a finite time.
The diagram shows this phenomenon, which
is known as gravitational collapse, in ingo-
ing Eddington-Finkelstein coordinates. The
dashed line marks the surface of the star.

We will discuss later in detail the gravitational collapse of a star that is modelled as a ball
of dust. In particular, we will discuss how a distant observer sees the surface of the star
approaching the horizon, becoming more and more redshifted.

Instead of ingoing Eddington-Finkelstein coordinates, we could introduce the outgoing Eddington-
Finkelstein coordinates (t′′, r, ϑ, ϕ), where

c t′′ = c t − rS ln

∣
∣
∣
∣
∣

r

rS
− 1

∣
∣
∣
∣
∣
, c dt′′ = c dt − rS dr

r − rS
. (45)
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In these coordinates the outgoing radial lightlike geodesics are mapped onto straight lines. In
complete analogy to the ingoing Eddington-Finkelstein coordinates, also in these coordinates
the metric becomes regular on the whole domain 0 < r < rS. In this way we get another ana-
lytic extension of the Schwarzschild met-
ric from the domain rS < r < ∞ to
the domain 0 < r < ∞. By construc-
tion, it is obvious that it is just the im-
age under time-reflection of the exten-
sion we got from the ingoing Eddington-
Finkelstein coordinates. Now the hyper-
surface r = rS is an event horizon for ob-
servers in the region r < rS: Signals can
cross this hypersurface only from the in-
side to the outside, but not from the out-
side to the inside. For this reason one calls
the region r < rS a white hole whereas the
region r > rS is again called the domain
of outer communication. Up to now, there
is no indication for the existence of white
holes in Nature.

(d) Kruskal-Szekeres coordinates

The maximal analytic extension of the Schwarzschild metric was found independently by Mar-
tin Kruskal and by György Szekeres in the late 1950s (and also, with different mathematical
techniques, by Christian Frønsdal). This maximal analytic extension, which is probably only of
mathematical interest, can be found if one transforms on the domain rS < r <∞, −∞ < t <∞
from Schwarzschild coordinates (t, r, ϑ, ϕ) to Kruskal-Szekeres coordinates (u, v, ϑ, ϕ) via

u =

√
r

rS
− 1 er/(2rS) cosh

c t

2 rS
, v =

√
r

rS
− 1 er/(2rS ) sinh

c t

2 rS
. (46)

These equations cannot be solved for r in terms of elementary functions, but they implicitly
determine r and t as functions of u and v.

Differentiating (46) yields

du = er/(2rS)







(

cosh
c t

2 rS

) r dr

2 r2S

√
r

rS
− 1

+
(

sinh
c t

2 rS

)√ r

rS
− 1

c dt

2 rS






, (47)

dv = er/(2rS)







(

sinh
c t

2 rS

) r dr

2 r2S

√
r

rS
− 1

+
(

cosh
c t

2 rS

)√ r

rS
− 1

c dt

2 rS






. (48)
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Hence

du2 − dv2 = er/rS
(

r2 dr2

4 r3S (r − rS)
− (r − rS) c

2dt2

4 r3S

)

= er/rS
r

4 r3S




dr2

1− rS
r

−
(

1− rS
r

)

c2dt2





(49)
This puts the Schwarzschild metric into the following form:

g =
4 r3S
r

e−r/rS
(
du2 − dv2

)
+ r2

(

dϑ2 + sin2ϑ dϕ2
)

, (50)

where r is to be viewed as a function of u and v, implicitly given by (46).

The metric (50) is singular only at r = 0. As the transformation (46) implies

u2 − v2 =
( r

rS
− 1
)

er/rS , (51)

this singularity is located at v2−u2 = 1 which is the equation of two hyperbolae, v = ±
√
u2 + 1.

The metric is regular on the entire domain bounded by these hyperbolae, i.e., on the entire
domain where v2 − u2 < 1. With the help of the coordinate transformation (46), which was
originally considered only on the exterior region rS < r <∞, −∞ < t <∞, we have now found
an analytical extension which is well-defined on a bigger domain. It is actually the maximal
analytical extension of the Schwarzschild spacetime. It covers two copies I und I ′ of the exterior
region rS < r <∞, a black hole interior region II and a white hole interior region II ′, see the
diagram below. In the lettering it is m = GM/c2, hence rS = 2m .

The two exterior regions I and I ′ meet at the point at the centre of the diagram (which
is actually a sphere). In Worksheet 3 we will investigate the geometry of the surfaces (t =
constant, ϑ = π/2) in the domain rS < r < ∞ which are known as the Flamm paraboloids. At
the centre of the diagram the Flamm paraboloids of region I are glued together with the Flamm
paraboloids of the region I ′ to form the socalled Einstein-Rosen bridge. This is a wormhole,
but it is non-traversible in the sense that an observer cannot travel at subluminal velocity from
region I into region I ′ or vice versa, as can be read from the diagram.
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Whereas in the Eddington-Finkelstein coordinates either the ingoing or the outgoing radial
light signals were mapped onto straight lines under 45o, in the u−v−diagram (Kruskal-Szekeres
diagram) this is true for both: Indeed, both ∂v + ∂u and ∂v − ∂u are lightlike as can be read
from (50). If a light signal enters into the black-hole interior region II by crossing one of the
horizons, it will end up in the singularity at r = 0. In the white-hole interior region II ′ all light
signals start at the singularity. They leave this region over one of the horizons.

The Kruskal-Szekeres diagram can be modified by mapping the entire maximally extended
spacetime into a compact domain. This can be achieved in such a way that light rays are still
under 45o with respect to the vertical direction. To that end we have to transform each of the
two lightlike coordinates u + v and u − v with the help of a funtion that maps the entire real
line onto a finite interval. Usually one chooses the arctan function, i.e.

U = arctan(v + u) , V = arctan(v − u) . (52)

The resulting diagram is known as a Carter-Penrose diagram of the maximally extended
Schwarzschild spacetime.

I

II

I ′

II ′

r = rS

r = rS

r = rS

r = rSI − I −

r = 0

r = 0i+ i+

I + I +

i− i−

i0 i0

UV

In this diagram we identify the same four regions I, II, I ′ and II ′ as in the Kruskal-Szekeres
diagram, now each mapped onto a finite domain. The boundary of the spacetime consists of (i)
the white-hole singularity at the bottom of the figure, (ii) the black-hole singularity at the top of
the figure, (iii) future lightlike infinity I + (pronounced “scri plus”) where future-oriented light-
like geodesics terminate, (iv) past lightlike infinity I − where past-oriented lightlike geodesics
terminate, (v) spacelike infinity i0 where spacelike geodesics terminate, (vi) future timelike in-
finity i+ where future-oriented timelike geodesics terminate and (vii) past timelike infinity i−

where past-oriented timelike geodesics terminate.
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(e) Painlevé-Gullstrand coordinates

Recall that in isotropic coordinates the spatial part of the metric becomes conformally flat. We
will now discuss a coordinate transformation from standard Schwarzschild coordinates to new
coordinates, (t, r, ϑ, ϕ) 7→ (t, r, ϑ, ϕ) with t depending on t and r, such that the hypersurfaces
t = constant become not only conformally flat but even flat.

We try the ansatz
t = t + f(r) , dt = dt+ f ′(r) dr . (53)

Then the Schwarzschild metric reads

gµνdx
µdxν = −

(

1− rS
r

)

c2dt2 +
dr2

1− rS
r

+ r2
(

dϑ2 + sin2ϑ dϕ2
)

= −
(

1− rS
r

)

c2
(
dt− f ′(r)dr

)2
+

dr2

1− rS
r

+ r2
(

dϑ2 + sin2ϑ dϕ2
)

= −
(

1− rS
r

)

c2dt 2 + 2f ′(r)
(

1− rS
r

)

c2dt dr

+

{

1

1− rS
r

−
(

1− rS
r

)

c2f ′(r)2

}

dr2 + r2
(

dϑ2 + sin2ϑ dϕ2
)

. (54)

We have achieved our goal if we choose f(r) such that the curly bracket equals unity,

1

1− rS
r

−
(

1− rS
r

)

c2f ′(r)2 = 1 , ✚✚1 −
(

1− rS
r

)2

c2f ′(r)2 = ✚✚1 − rS
r
, (55)

f ′(r) =
± 1

c
(

1− rS
r

)

√
rS
r
. (56)

We choose the upper sign. Then

dt = dt +

√
rS
r

dr

c
(

1− rS
r

) (57)

and, upon integration,

t = t +
2

c

√
rSr − rS

c
ln

∣
∣
∣
∣
∣

√
r +

√
rS√

r − √
rS

∣
∣
∣
∣
∣
. (58)

In the new coordinates the metric reads

gµνdx
µdxν = −

(

1− rS
r

)

c2dt 2 + 2 c

√
rS
r
dt dr + dr2 + r2

(
dϑ2 + sin2ϑ dϕ2

)
. (59)

This solution to the vacuum field equation was found independently by Paul Painlevé (1921)
and Allvar Gullstrand (1922). Neither of them realised that it was just the Schwarzschild metric
in new coordinates.
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In Painlevé-Gullstrand coordinates the Schwarzschild metric is regular on the whole domain
where r > 0. Indeed, it is obvious that the gµν are finite at r = rS, and the following calculation
shows that also the inverse metric exists everywhere on the domain where r > 0:

det
(
gµν
)
= det











−
(

1− rS
r

) √
rS
r

0 0
√
rS
r

1 0 0

0 0 r2 0
0 0 0 r2sin2ϑ











= r4sin2ϑ
(

− 1 +
rS
r

− rS
r

)

= − r4sin2ϑ .

(60)
The Painlevé-Gullstrand coordinates cover the same black-hole spacetime as the ingoing Edding-
ton-Finkelstein coordinates. By construction, the 3-dimensional hypersurfaces t = constant are
flat. We will now discuss the family of observers for whom these hypersurfaces are the rest
spaces. We will demonstrate that they are ingoing freely falling particles. (Had we chosen the
lower sign for f ′(r) above, the dt dr term in the metric would have a minus sign. Then we
would have a white-hole metric, as with the outgoing Eddington-Finkelstein coordinates, and
the associated observers would be outgoing.)

To that end we recall that the worldlines of freely falling particles are timelike geodesics x(τ)
parametrised by proper time τ . Such curves satisfy

gµν(x)ẋ
µẋν = − c2 (61)

where the overdot means derivative with respect to τ , and

0 =
d

dτ

∂L(x, ẋ)
∂ẋµ

− ∂L(x, ẋ)
∂xµ

(62)

where

L(x, ẋ) =
1

2
gµν(x)ẋ

µẋν . (63)

We consider radial motion (i.e., ϑ̇ = ϕ̇ = 0) in the Schwarzschild spacetime in Painlevé-
Gullstrand coordinates. Then we get the two equations

−
(

1− rS
r

)

c2 ṫ 2 + 2 c

√
rS
r
ṫ ṙ + ṙ2 = −c2 (64)

and

0 =
d

dτ

∂L(x, ẋ)
∂ṫ

− ∂L(x, ẋ)
∂t

=
d

dτ

{

−
(

1− rS
r

)

c2 ṫ + c

√
rS
r
ṙ

}

(65)

where we have written only the t-component of the Euler-Lagrange equation (62). We divide
(64) by −c2, and we denote by E the constant of motion which is given by (65):

(

1− rS
r

)

ṫ 2 − 2

√
rS
r
ṫ
ṙ

c
− ṙ2

c2
= 1 (66)

E =
(

1− rS
r

)

c2 ṫ − c

√
rS
r
ṙ . (67)
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We want to consider particles that “are dropped from rest at infinity”, i.e., with

ṙ
∣
∣
r=∞

= 0 . (68)

Then from (66) we find that

ṫ
∣
∣
r=∞

= ± 1 (69)

where we choose the upper sign to have τ and t both running in the future direction, and with
that we find from (67) that

E = c2 ṫ
∣
∣
r=∞

= c2 . (70)

With E determined this way, (66) and (67) can be rewritten as

1 = ṫ 2 −
(√

rS
r
ṫ +

ṙ

c

)2

, (71)

1 = ṫ −
√
rS
r

(√
rS
r
ṫ +

ṙ

c

)

. (72)

Equation (71) is equivalent to

(√
rS
r
ṫ +

ṙ

c

)2

=
(

ṫ− 1
)(

ṫ+ 1
)

. (73)

With (72) inserted on the right-hand side, we get

(√
rS
r
ṫ +

ṙ

c

)2

=

√
rS
r

(√
rS
r
ṫ +

ṙ

c

)
(

ṫ+ 1
)

(74)

and, after rearringing terms,
(√

rS
r
ṫ +

ṙ

c

){

�
�
��

√
rS
r
ṫ +

ṙ

c
−

�
�
��

√
rS
r
ṫ −

√
rS
r

}

= 0 . (75)

As our particles come in from infinity, ṙ is negative, so the curly bracket cannot be zero. Hence,
the round bracket must be zero, i.e.

√
rS
r
ṫ = − ṙ

c
. (76)

If we reinsert this result into (72) we find that our freely falling particles must satisfy

ṫ = 1 ,
ṙ

c
= −

√
rS
r
. (77)

The first equation says that along the worldlines of our freely falling particles the coordinate t
coincides with proper time. The equation for ṙ can be integrated:

dr

dt
= − c

√
rS
r
, c dt =

−√
r dr√
rS

, c t = − 2

3

√

r3

rS
+ constant . (78)
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These curves, which are called the worldlines of the Painlevé-Gullstrand observers, are plotted
in the figure below.

The 4-velocity of the Painlevé-Gullstrand observers is

U = ṫ ∂t + ṙ ∂r = ∂t − c

√
rS
r
∂r , (79)

hence

g
(
U, ∂r

)
= g

(

∂t − c

√
rS
r
∂r, ∂r

)

= gtr − c

√
rS
r
grr = c

√
rS
r

− c

√
rS
r

= 0 . (80)

This demonstrates that the hyper-
surfaces t = constant are indeed
orthogonal to the worldlines of
the Painlevé-Gullstrand observers,
i.e., that they are what these ob-
servers consider as simultaneous.
The figure on the right shows
the hypersurfaces t = constant
and the worldlines of the Painlevé-
Gullstrand observers which be-
come vertical for r → ∞ and hor-
izontal for r → 0. Nothing partic-
ular happens with these worldlines
at r = rS. rS

r

c t

(f) Lemâıtre coordinates

Starting from the Painlevé-Gullstrand coordinates we perform a transformation (t, r, ϑ, ϕ) 7→
(t, r, ϑ, ϕ) with r being a function of t and r. We want to choose this function such that r is
constant along the worldline of each Painlevé-Gullstrand observer. With the equation for these
worldlines as given in (78), we see that this is achieved by

r = c t +
2

3

√

r3

rS
. (81)

Then the Schwarzschild metric reads

g = − c2 dt 2 +
rS
r
dr 2 + r2

(

dϑ2 + sin2ϑ dϕ2
)

(82)

where r is to be viewed as a function of t and r,

r =

(

3

2

√
rS
(
r − c t

)

)2/3

. (83)

This form of the Schwarzschild metric was found by George Lemâıtre in 1933. He clearly
saw that, as in these coordinates the metric is regular at r = rS, the “singularity” in the
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Schwarzschild coordinates at r = rS is a mere coordinate singularity. However, he did not
understand the character of r = rS as a horizon.

In Lemâıtre coordinates the singularity at r = 0 is represented as a diagonal line, ct = r. The
horizon at r = rS is represented as a parallel diagonal line, ct = r − 2rS/3.

The disadvantage of the Lemâıtre coordinates is in the fact that now the metric is no longer
manifestly static. The hypersurfaces t = constant now carry the 3-metric

g(3) =
rS
r
dr 2 + r2

(
dϑ2 + sin2ϑ dϕ2

)

which is time-dependent because r
depends not only on r but also on t.

The figure on the right shows the
singularity at r = 0 (thick line) and
the horizon at r = rS (dashed line)
in Lemâıtre coordinates. The ver-
tical lines are the worldlines of the
Painlevé-Gullstrand observers. The
horizontal lines are the hypersur-
faces t = constant (with the angle
coordinates not shown).

r

c t

3.3 Timelike geodesics in the Schwarzschild spacetime

Recall that timelike geodesics, if parametrised by proper time, satisfy the equations

0 =
d

dτ

(∂L(x, ẋ
∂ẋµ

)

− ∂L
(
x, ẋ

∂xµ
)
, (84)

where L(x, ẋ) =
1

2
gµν(x) ẋ

µ ẋν , and

gµν(x) ẋ
µ ẋν = − c2 . (85)

For the Schwarzschild metric, which is spherically symmetric, we can specify without loss of
generality to the case that the motion is in the equatorial plane, ϑ = π/2, ϑ̇ = 0. Then

L(x, ẋ) =
1

2

(

−
(

1− rS
r

)

c2ṫ2 +
ṙ2

1− rs
r

+ r2ϕ̇2

)

. (86)

The t and ϕ components of the Euler-Lagrange equation give us two constants of motion,

d

dτ

(
(

1− rs
r

)

c2ṫ

)

− 0 = 0 , E =
(

1− rs
r

)

c2ṫ = constant , (87)

d

dτ

(

r2 ϕ̇
)

− 0 = 0 , L = r2 ϕ̇ = constant , (88)
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and the definition of proper time requires

−
(

1− rS
r

)

c2ṫ2 +
ṙ2

1− rS
r

+ r2ϕ̇2 = − c2 . (89)

The three equations (87), (88) and (89) determine the trajectories of freely falling particles
completely, because one can check that the r component of the Euler-Lagrange equation is a
consequence of these three equations. We solve the three equations for the velocities,

ṫ =
E

c2
(

1− rS
r

) , (90)

ϕ̇ =
L

r2
, (91)

ṙ2 =
(

1− rS
r

)






(

1− rS
r

)

c2E2

c4
(

1− rS
r

)2 − r2L2

r4
− c2




 =

E2

c2
−
(

1− rS
r

)(L2

r2
+ c2

)

. (92)

(a) Radial motion

For radial motion we must have ϕ̇ = 0, hence L = 0. Then we only have to deal with the
equations (90) and (92),

ṫ =
E

c2

(

1− rS
r

) , (93)

ṙ2 =
E2

c2
−
(

1− rS
r

)

c2 . (94)

E is determined if we fix an initial condition. We want to assume that the particle is dropped
from rest at a radius r0, i.e.

ṙ
∣
∣
∣
r=r0

= 0 , (95)

Then (94) requires

0 =
E2

c2
−
(

1− rS
r0

)

c2 , hence E2 = c4
(

1− rS
r0

)

. (96)

Clearly, this equation can hold only if r0 > rS. This is in agreement with our earlier observation
that beyond the horizon the t coordinate is spacelike, so motion at subluminal speed cannot
have ṙ = 0 there. With E determined this way, (94) reads

ṙ2 =

(

1− rS
r0

)

c2 −
(

1− rS
r

)

c2 = c2

(

rS
r

− rS
r0

)

. (97)
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In Worksheet 5 we will integrate this equation for the limiting case that the particle is dropped
from the horizon, r0 → rS. We will calculate the lifetime of such a particle, before it ends up
in the singularity at r = 0, in terms of its proper time. We will find that this is the maximal
time a particle, or an observer, can spend in the region 0 < r < rS, i.e., using a rocket engine,
firing in any direction, makes the lifetime shorter.

(b) Non-radial motion

Non-radial orbits have ϕ̇ 6= 0 everywhere, because L is a constant of motion. We can thus
divide (92) by ϕ̇2 and insert (90) and (91) on the right-hand side,

( dr

dϕ

)2

=
ṙ2

ϕ̇2
=

r4

L2

(

E2

c2
− L2

r2
+
rSL

2

r3
− c2 +

c2rS
r

)

=
(E2 − c4)

c2L2
r4 +

c2rS
L2

r3 − r2 + rSr =: − 2 VE,L(r) (98)

which gives us an expression for dr/dϕ, i.e., for the shape of the orbit. For most applications
this is what we are interested in; the parametrisation by t or τ is also interesting for some
applications, but often we are just satisfied with knowing the shape of the orbit. In (98) we
have introduced the effective potential VE,L in such a way that a kind of “energy conservation
law” holds,

1

2

( dr

dϕ

)2

+ VE,L(r) = 0 . (99)

An orbit with constants of motion E and L must be confined to the region where VE,L(r) ≤ 0;
the boundary points, where VE,L(r) = 0, are turning points of the orbit where dr/dϕ = 0.
So, with the help of the effective potential we can determine for which values of (E,L) bound
orbits exist. Similarly, we can determine for which values of (E,L) there are stable or unstable
circular orbits.

VE,L(r)

rrp ra

bound orbit

VE,L(r)

r

stable circular orbit

VE,L(r)

r

unstable circular orbit

It is our goal to characterise the totality of bound orbits in the Schwarzschild spacetime. As an
important step for achieving this goal, we first discuss circular orbits which are also of interest
by themselves.
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From (99) we find, by differentiating with respect to ϕ,

d2r

dϕ2
+ V ′

E,L(r) = 0 . (100)

Here we have divided by dr/dϕ but note that, by continuity, (100) is valid also in the case that
dr/dϕ = 0. For circular orbits we must have

dr/dϕ = 0 and d2r/dϕ2 = 0 . (101)

These two equations require VE,L(r) = 0 and V ′
E,L(r) = 0, i. e.

0 = VE,L(r) =
(c4 −E2)

2c2L2
r4 − c2rS

2L2
r3 +

1

2
r2 − rS

2
r , (102)

0 = V ′
E,L(r) =

2(c4 −E2)

c2L2
r3 − 3c2rS

2L2
r2 + r − rS

2
. (103)

Multiplying (102) with 4/r and subtracting (103) results in

0 = − c2rS
2L2

r3 + r2 − 3 rS
2

r . (104)

Solving for L2 yields

L2 =
c2rSr

2

2r − 3rS
. (105)

Upon inserting this result into the equation (103) we find

E2 =
2 c4(r − rS)

2

r (2r − 3rS)
. (106)

As L2 and E2 cannot be negative, circular orbits exist only for those r-values that satisfy the
inequality

r >
3

2
rS . (107)

We will see in the next subsection that at the limiting radius r = 3rs/2 there is a circular
lightlike geodesic. For r < 3rS/2 the circular orbital velocity is bigger than the velocity of
light which means that a circular orbit cannot be realised at such a radius, neither by a freely
falling massive particle nor by a photon. Note, however, that such circular orbits can be very
well realised by timelike curves that are non-geodesic, i.e., by observers with a rocket engine.
Non-geodesic timelike circular motion is possible down to r = rS where, however, the necessary
acceleration (i.e., the necessary amount of petrol) goes to infinity for r → rS.

We now check stability of the circular geodesic orbits at r > 3rS/2. For stability we must have

V ′′
E,L(r) > 0 . (108)
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From differentiating the effective potential we find

c2L2V ′′
E,L(r) = 6(c4 −E2) r2 − 3c4rS r + c2L2

= 3c4r(2r − rS) +
c4
(
rSr

2 − 12r(r − rS)
2
)

2r − 3rS

=
c4r
(
3(2r − rS)(2r − 3rS) + rSr − 12(r − rS)

2
)

2r − 3rS

=
c4r
(

3
(
✟✟4r2 −✟✟✟8rSr + 3r2S

)
+ rSr − 12

(

��r2 −✟✟✟2rSr + r2S
))

2r − 3rS

=
c4rSr

(
r − 3rS

)

2r − 3rS
. (109)

The stability condition V ′′
E,L(r) > 0 is, thus, satisfied for r > 3rS. In the radius interval 3rS/2 <

r < 3rS circular orbits do exist; however, they are unstable which means that practically they
cannot be realised, as any small deviation from the initial condition would lead either to an
escape orbit (towards infinity) or to a plunge orbit (towards the singularity). The limiting case
r = 3rS is known as the Innermost Stable Circular Orbit (ISCO). A massive particle cannot
be on a stable orbit around a Schwarzschild black hole at a radius value smaller than 3rS.
Keep in mind that we are talking about geodesic motion. With a rocket engine one can orbit
a Schwarzschild black hole at any radius bigger than rS, see Worksheet 3.

We summarise our results on circular timelike geodesics in the following table:

rS < r < 3rS/2 circular timelike geodesics do not exist

3rS/2 < r < 3rS circular timelike geodesics do exist, but they are unstable

3rS < r <∞ circular timelike geodesics do exist and are stable

Recall that in the Newtonian theory, i.e., for a particle moving in the Kepler potential, circular
stable orbits exist at all radius values 0 < r <∞.

We now turn to (non-circular) bound orbits. It is clear that bound orbits can exist only in the
domain rS < r <∞, because in the domain 0 < r < rS of a Schwarzschild black-hole spacetime
the radius coordinate is monotonically decreasing along any particle worldline.
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For a bound orbit it is necessary
that the potential VE,L(r) has in
the interval rS < r < ∞ two suc-
cessive zeros with a local mini-
mum in between, see the figure on
p. 24. As VE,L(r) is a fourth order
polynomial with the properties
that VE,L(0) = 0 and V ′

E,L(0) =
−rs/2 < 0, this is possible only if
VE,L(r) has exactly three positive
zeros, 0 < r0 < rp < ra, see the
figure on the right. The bound
motion takes place between the
pericentre at rp and the apocentre

VE,L(r)

r
ra rpr0

at ra. (The general words are pericentre and apocentre or periapsis and apapsis. If the central
body is the Sun, one speaks of perihelion and aphelion; if it is the Earth one says perigee and
apogee. For a black hole the names peribothron and apobothron have been suggested, but they
have not really caught on. In greek “bothros” literally means “pit”; in a mythological context
the word has been used for a pit with a fire in it people were dancing around.) For the same
values of E and L there is also a “plunge orbit” of a particle that reaches its maximum radius
at r0 and falls into the black hole. For the particle on the bound orbit, r0 has no geometric
meaning.

For any values of E and L where the potential VE,L has exactly three positive zeros, 0 < r0 <
rp < ra, there is a bound orbit. The limiting cases are reached if rp coincides with ra or with
r0. We will discuss these limiting cases in a minute.

We will first demonstrate that, instead of E and L, we can use rp and ra for labeling the
potential. This is useful because rp and ra have a direct geometric meaning associated with
the (bound) orbit we want to characterise. It is even more convenient to use, instead of the
pericentral radius rp and the apocentral radius ra, the socalled semi-latus rectum p and the
eccentricity e which are defined by

rp =
p

1 + e
, ra =

p

1− e
. (110)

These quantities are familiar from the case of an elliptical orbit but note that they are well-
defined for any bound orbit. We will now demonstrate that r0, E and L can be expressed in
terms of p and e. To that end we compare the equation by which the effective potential was
introduced,

VE,L(r) =
(c4 − E2)

2c2L2
r4 − c2rS

2L2
r3 +

1

2
r2 − rS

2
r , (111)

with the representation in terms of its zeros,

VE,L(r) =
(c4 − E2)

2c2L2
r
(

r − p

1− e

)(

r − p

1 + e

)(
r − r0

)
. (112)
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Comparing coefficients of r3, r2 and r yields three equations,

c2rS

✚✚2 ✚✚L2
=

(c4 −E2)

✚✚2 c2✚✚L2

(
r0(1− e2) + 2p

)

(1− e2)
, (113)

1

✚✚2
=

(c4 − E2)

✚✚2 c2 L2

(
p2 + 2pr0

)

(1− e2)
, (114)

rS

✚✚2
=

(c4 − E2)

✚✚2 c2L2

r0p
2

(1− e2)
, (115)

which can be solved for r0, E and L. From (114) and (115) we find

r0 =
rSp

p− 2rs
(116)

which manifestly implies that rS < r0. Inserting (116) into (114) and (115) yields

E2 =
c4
(

2r2S(1− e2) + 2p(p− 2rS)
)

p
(
2p− 3rS − rSe2

) , L2 =
c2rSp

2

2p− 3rS − rSe2
. (117)

With (116) and (117) we can reexpress our potential (112) in terms of p and e,

VE,L(r) = Ṽ p,e(r) =
(p− 2rS)

2p3
(1− e2) r

(

r − p

1− e

)(

r − p

1 + e

)(

r − rSp

p− 2rS

)

=
1

2p3
r
(

r
(
1− e

)
− p
)(

r
(
1 + e

)
− p
)(

r
(
p− 2rS

)
− rSp

)

. (118)

It is preferable to use p and e for characterising the orbit rather than E and L because the
former directly give us some information about the geometry of the orbit.

We will now discuss for which values of p and e bound orbits do exist. For the sake of com-
parison, note that in the Newtonian case (i.e., for Kepler ellipses) all values 0 < p < ∞ and
0 ≤ e < 1 are possible. For finding the allowed values in the case of Schwarzschild geodesics,
we recall that for a bound orbit we need three positive zeros of the potential VE,L(r) = Ṽ p,e(r),
see the plot on p. 28. Clearly, the limiting values of p and e correspond to the limiting cases
where two of these three zeros coincide, i.e., if either ra = rp or rp = r0.

The first case is easily understood.
If rp = ra we have a stable circular
orbit at this radius value, see figure
on the right. For the same values
of E and L we also have a plunge
orbit between r0 and the singular-
ity at r = 0, but this is irrelevant
for the discussion of bound orbits.
From the calculation above we know
that a stable circular orbit, and thus
the situation depicted in the plot, is
possible for all values rp = ra > 3rS.

VE,L(r)

r
ra = rpr0
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The second limiting case
of bound orbits is more
intriguing. If r0 = rp,
there is an unstable circu-
lar orbit at this radius co-
ordinate, see figure on the
right. For the same values
of E and L, there are two
additional orbits that ap-
proach r0 = rp asymptot-
ically. One is an orbit that
spirals away from r0 = rp
in the direction of decreas-
ing r and ends up in the
singularity. This has no-
thing to do with bound or-

VE,L(r)

r
rar0 = rp

bits. The other one is an orbit that spirals away from r0 = rp in the direction of increasing
r, reaches a maximum radius at ra and then spirals back towards r0 = rp. Such an orbit is
called homoclinic. (Quite generally, in the theory of dynamical systems an orbit that asymp-
totically starts and ends at the same equilibrium point is called homoclinic, while it is called
heteroclinic if it connects two different equilibrium points. In the Schwarzschild spacetime there
are no heteroclinic orbits. Heteroclinic orbits occur, e.g., in the Kottler spacetime, i.e., in the
Schwarzschild spacetime with a cosmological constant, as we will briefly discuss later.) A ho-
moclinic orbit makes infinitely many turns around the centre while asymptotically approaching
the limiting circle at r0 = rp.

The homoclinic orbits give us a boundary line in the (p, e)-plane for bound orbits. The equation
for this boundary line is given by

r0 = rp ,
rS p

p− 2rS
=

p

1 + e
, rS✚✚p (1 + e) = ✚✚p (p− 2rS) , (119)

p− 3rS − rSe = 0 . (120)

This gives us the region of bound orbits in the (p, e)-plane which is shown in the figure on the
next page. It is bounded from above by the line e = 1 and bounded from below by the stable
circular orbits, e = 0 and 3rS < p < ∞. It is bounded on the left by the homoclinic orbits,
p−3rS −rSe = 0. This boundary line is often called the separatrix. The separatrix is a straight
line connecting the points (p, e) = (3rs, 0) and (p, e) = (4rS, 1). The former is the ISCO, the
latter is an orbit which asymptotically spirals from rp = 2rS to ra = ∞. Along the separatrix,
the radius coordinate r0 = rp of the unstable limit curve varies monotonically from 3rS to 2rS.
We see that only the unstable circular orbits in this radius interval can serve as limit curves
for homoclinic orbits; the ones between r = 3rS/2 and r = 2rS are limit curves for orbits that
spiral out to infinity. Every homoclinic orbit has the same constants of motion E and L as
the unstable circular orbit which it approaches asymptotically. The circular orbit at r = 2rS is
(somewhat misleadingly) called the “marginally bound” orbit.
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p
rS
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2
rS 2rS 3rS 4rS

1

bound orbitsseparatrix

Bound orbits near the separatrix are known as zoom-whirl orbits. Such an orbit periodically
“zooms” out to its apocentre, which can be arbitrarily far away because e can be arbitrarily
close to 1. In between, it makes a large number of “whirls” near its pericentre rp which lies
close to a limit curve of a homoclinic orbit, i.e., between 2rS and 3rS.

The picture on the right shows
the potential VE,L(r) for a choice
of E and L where such a zoom-
whirl orbit occurs between rp and
ra. For the same values of E and
L there is also a plunge orbit with
many whirls near r0. If a body
orbits a black hole, it follows ap-
proximately a geodesic as long as
its mass is much smaller than the
mass of the black hole. If such a
body would be on a zoom-whirl
orbit, it would produce a charac-
teristic gravitational-wave signal.

VE,L(r)

r
r0 rarp

From the equations we have derived so far we can easily find an exact expression for the
precession of the pericentre of a bound orbit. Recall that in the Newtonian theory, for motion
in the Kepler potential, the bound orbits are ellipses, i.e., they come back to the same point in
space after one revolution. This is different for bound orbits in the Schwarzschild spacetime.
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If we write the orbit equation (99) in the form

dϕ =
± dr

√

−2VE,L(r)
, (121)

integration over one revolution, from one passage through the pericentre to the next, results in

2π +∆ =

(∫ ra

rp

−
∫ rp

ra

)

dr
√

−2VE,L(r)
. (122)

Here we have chosen the signs according to the fact that on the leg from rp to ra the radius
coordinate is increasing whereas on the leg from ra to rp it is decreasing. ∆ gives the precession
of the pericentre during one revolution. Using p and e for characterising the orbit, (122) can
be rewritten as

∆ = 2

∫ p/(1−e)

p/(1+e)

dr
√

−2Ṽ p,e(r)
− 2π (123)

where Ṽ p,e(r) is given by (118). One usually gives the quantity ∆/T where T is the coordinate
time that has elapsed between the two successive passages through the pericentre. For the
planets in our Solar system, ∆/T is tiny: For Mercury it is 43 ”/cy (arcseconds per century),
for Venus 8.6 ”/cy, for Earth 3.8 ”/cy, for Mars 1.4 ”/cy and for the other planets practically
unmeasurable. The perihelion precession of Mercury is long known: In 1859 LeVerrier realised
that the observed precession cannot be fully explained by the perturbation of the other planets.
He even suggested the existence of an additional planet, called Vulcan, that was supposed to
be closer to the Sun as Mercury. Now we know that Vulcan does not exist and that the
anomalous perihelion precession is precisely explained by general relativity. Einstein gave this
explanation before Schwarzschild (and Droste) found the exact spherical vacuum solution for
the field equation. He used the linearised theory which is applicable if rp (and thus also ra and
p) are big in comparison to rS. From the exact expression (123) we can reproduce Einstein’s
result: After a bit of algebra, Taylor expansion yields

∆ =
3πrS
p

+O
((
rS/p

)2
)

. (124)

If one introduces the semi-major axis a,

a =
1

2

(
rp + ra

)
=

1

2

( p

1 + e
+

p

1− e

)

=
p

1− e2
, (125)

one finds the familiar expression,

∆ =
3πrS

a(1− e2)
+O

((
rS/a

)2
)

=
6πG2M

c2a(1− e2)
+O

((
rS/a

)2
)

. (126)

If a (or equivalently p) is big in comparison to rS, the O
(

(rs/a)
2
)

term can be neglected and

one gets the linearised approximation formula for the precession of the pericentre. If an orbit
comes close to the centre, which is possible in particular for black holes, the linearised formula
is of course not applicable and the precession of the pericentre may be quite big. Note that
both the exact and the linearised formula give a non-zero ∆ even in the limit e→ 0. Of course,
an exactly circular orbit does not have a pericentre, so one cannot see the precession in this
limit.
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3.4 Lightlike geodesics in the Schwarzschild spacetime

For a discussion of the lightlike geodesics in the Schwarzschild spacetime we proceed in a similar
fashion as for the timelike ones. Again, we restrict to the equatorial plane and consider the
Euler-Lagrange equation

0 =
d

ds

(∂L(x, ẋ
∂ẋµ

)

− ∂L(x, ẋ)
∂xµ

(127)

with the Lagrangian

L(x, ẋ) =
1

2

(

−
(

1− rS
r

)

c2ṫ2 +
ṙ2

1− rs
r

+ r2ϕ̇2

)

, (128)

but now the dot denotes derivative with respect to an affine parameter s and L(x, ẋ) = 0.

The t and ϕ components of the Euler-Lagrange equation are the same as before,

d

dτ

(
(

1− rs
r

)

c2ṫ

)

− 0 = 0 , E =
(

1− rs
r

)

c2ṫ = constant , (129)

d

dτ

(

r2 ϕ̇
)

− 0 = 0 , L = r2 ϕ̇ = constant , (130)

while the third equation now reads

−
(

1− rS
r

)

c2ṫ2 +
ṙ2

1− rS
r

+ r2ϕ̇2 = 0 . (131)

The three equations (129), (130) and (131) completely determine the lightlike geodesics, because
one can check that the r component of the Euler-Lagrange equation is a consequence of these
three equations. We solve these three equations for the velocities,

ṫ =
E

c2
(

1− rS
r

) , (132)

ϕ̇ =
L

r2
, (133)

ṙ2 =
(

1− rS
r

)






(

1− rS
r

)

c2E2

c4
(

1− rS
r

)2 − r2L2

r4




 =

E2

c2
−
(

1− rS
r

) L2

r2
. (134)

As we have discussed the radial light rays already above, when introducing Eddington-Finkelstein
coordinates, we consider now only non-radial ones. Then we can use ϕ as the curve parameter.

From (132), (133) and (134) we find the orbit equation for light rays

( dr

dϕ

)2

=
ṙ2

ϕ̇2
=

r4

L2

(

E2

c2
− L2

r2
+
rSL

2

r3

)

=
E2

c2L2
r4 − r2 + rSr . (135)
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(a) Circular light rays

We will first inquire if there are circular lightlike geodesics. To that end we consider the orbit
equation (135) and its derivative with respect to ϕ,

2
✓
✓
✓dr

dϕ

d2r

dϕ
=
( 4E2r3

c2L2
− 2 r + rS

)

✓
✓
✓dr

dϕ
. (136)

As in the timelike case, dividing by dr/dϕ is legitimate, by continuity, even if dr/dϕ = 0. For

a circular lightlike geodesic we must have
dr

dϕ
= 0 and

d2r

dϕ2
= 0, which gives us the following

two equations:

0 =
E2r4

c2L2
− r2 + rS r , (137)

0 =
4E2r3

c2L2
− 2 r + rS . (138)

To eliminate E2/L2, we multiply the first equation with 4/r and subtract the second equation.
This results in

0 = − 2 r + 3 rS ⇐⇒ r =
3

2
rS =

3GM

c2
. (139)

We have thus shown that there is a circular lightlike geodesic (or photon circle) at the radius
value 3GM/c2. For the sake of illustration, one may assume that there is a tunnel built around
such a circular lightlike geodesic; then by looking into this tunnel one would have the visual
impression that the tunnel is perfectly straight and at the end of the tunnel one would see the
back of one’s own head.

As we can choose any plane through the origin as our equatorial plane ϑ = π/2, there is
actually a photon sphere at this radius value in the sense that every great circle on this sphere
is a lightlike geodesic. The photon sphere at r = 3rS/2 does, of course, not exist for stars whose
physical radius r∗ is bigger than 3rS/2. It is relevant only for black holes and for (hypothetical)
ultracompact stars where rS < r∗ < 3rS/2.

We will show in the 4th worksheet that the photon circles at r = 3rS/2 are unstable in the
following sense: A lightlike geodesic in the equatorial plane with an initial condition that
deviates slightly from that of a photon circle at r = 3rS/2 will spiral away from r = 3rS/2 and
either go to infinity or to the horizon.

For later convenience, we also calculate the value of the constant of motion L2/E2 that corre-
sponds to a photon circle: If we insert the value r = 3rS/2 into the equation

0 =
E2r3

c2L2
− r + rS (140)

we find

E2

c2L2
=

3

2
rS − rS

27

8
r3S

=
4

27 r2S
. (141)
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(b) Exact deflection angle

From the orbit equation of light rays we can derive an exact formula for the deflection angle.
We want to consider a light ray that comes in from infinity, goes through a minimum radius
value at r = rm and then escapes back to infinity. We want to express the deflection angle δ in
terms of rm and the mass of the central body.

rm

δ

We start out from the orbit equation (135). E2/L2 is determined by the condition that

0 =
( dr

dϕ

)2∣∣
∣
r=rm

=
E2

c2L2
r4m − r2m + rS rm

=⇒ E2

c2L2
=

1

r2m
− rS
r3m

. (142)

We can, thus, rewrite the orbit equation (135) as

dϕ =
±dr

√( 1

r2m
− rS
r3m

)

r4 − r2 + rS r

. (143)

Integration over the light ray results in

∫
ϕ0+π+δ

ϕ0

dϕ =

(

−

∫
rm

∞

+

∫
∞

rm

)

dr
√( 1

r2m
− rS
r3m

)

r4 − r2 + rS r

(144)

where the signs of the two integrals on the right-hand side had to be chosen in agreement with
the fact that ϕ is always increasing. We have thus found an exact formula,

π + δ = 2

∫
∞

rm

rm dr
√(

1 − rS
rm

)

r4 − r2m r
2 + r2m rS r

, (145)

for the deflection angle δ in terms of an elliptic integral. rm labels the light ray. It is clear that
only values rm > rS are possible because a light ray cannot come back if it has crossed the
horizon. We will soon see that, actually, rm cannot be arbitrarily close to rS.
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From the derivation it is clear that the integrand has a singularity at the lower bound r = rm,
so the evaluation of the integral needs some care. A more detailed analysis shows that the
integral is finite for all values of rm that are bigger than 3rS/2. If we consider a sequence of
light rays with rm approaching 3rS/2 from above, the deflection angle δ becomes bigger and
bigger which means that the light rays make more and more turns around the centre. In the
limit rm → 3rS/2 the integral goes to infinity and the limiting light ray spirals asymptotically
towards a circle at r = 3rS/2. This is a general feature of lightlike geodesics in spherically
symmetric and static spacetimes: If an unstable photon circle is approached, the deflection
angle goes to infinity.

3rS/2

2π

4π

6π

rm

δ

Plot of the bending angle δ against the minimum radius rm.

(c) Shadow of a Schwarzschild black hole

We fix an observer at radius rO and consider all light rays that go from the position of this
observer into the past. (To put this another way, we consider all light rays that arrive at the
position of the observer.) They fall into two categories: Category I consists of light rays that go
out to infinity, category II consists of light rays that go to the horizon at r = rS. The borderline
case that separates the two categories is given by light rays that asymptotically spiral towards
the light sphere at r = 3rS/2.
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rO

θ0

Now assume that there are light sources distributed everywhere in the spacetime but not be-
tween the observer and the black hole. Then the initial directions of light rays of category I
correspond to points at the observer’s sky that are bright, and the initial directions of light rays
of category II correspond to points at the observer’s sky that are dark, known as the shadow
of the black hole. The boundary of the shadow corresponds to light rays that spiral towards
r = 3rS/2. It is our goal to calculate the angular radius θ0 of the shadow, in dependence of rS
and rO.

For any light ray, the initial direction makes an angle θ with respect to the axis that is given,
according to the picture, by

tan θ = lim
∆ x→0

∆ y

∆ x
.

∆ x

∆y

rO

θ

From the Schwarzschild metric in the equatorial plane,

g = −
(

1− rS
r

)

c2dt2 +
dr2

1− rS
r

+ r2dϕ2 , (146)

we can read the length ∆x and ∆y in the desired limit,

tan θ =
r dϕ

(

1− rS
r

)−1/2

dr

∣
∣
∣
∣
∣
∣
∣
r=rO

. (147)

dr/dϕ can be expressed with the help of the orbit equation (135), hence

tan2θ =
r2O

(

1− rS
rO

)

E2r4O
c2L2

− r2O + rSrO

=
rO − rS

E2r3O
c2L2

− rO + rS

. (148)
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By elementary trigonometry,

1

tan2θ
=

E2r3O
c2L2

(
rO − rS

) − 1 ,

sin2θ

sin2θ
+

cos2θ

sin2θ
=

E2r3O
c2L2

(
rO − rS

) ,

sin2θ =
c2L2

(
rO − rS

)

E2r3O
. (149)

The angular radius θ0 of the shadow is given by the angle θ for a light ray that spirals towards
r = 3rS/2. This light ray must have the same constants of motion E and L as a circular light
ray at r = 3rS/2 (because the tangent vectors of these two light rays come arbitrarily close to
each other),

c2L2

E2
=

27

4
r2S (150)

as we have calculated in (141).

This gives us θ0 in dependence of rS = 2GM/c2 and rO,

sin2θ0 =
27 r2S(rO − rS)

4 r3O
. (151)

This formula was found by J. Synge [Mon. Not. Roy. Astron. Soc. 131, 463 (1966)] and
independently by Y. Zeldovich and I. Novikov [Sov. Phys. Usp. 8, 522 (1966)]. Neither of
them used the word “shadow” which was introduced only in 2000 by Heino Falcke. If the
observer is far away from the black hole, rO − rS ≈ rO, (151) can be approximated by

tan θ0 ≈ sin θ0 ≈
√
3× 3 rS

2 rO
.

Up to a factor of
√
3 , θ0 is then the angular radius under which a sphere of radius 3rS/2 is

seen from a distance rO according to Euclidean geometry. This means that a naive Euclidean
estimate correctly gives the order of magnitude of the diameter of the shadow if the observer
is far away.

Note that

rO → ∞ : θ0 → 0 (i.e., the shadow vanishes).

rO = 3rS/2 : θ0 = π/2 (i.e., the shadow covers half of the sky).

rO → rS : θ0 → π (i.e., the shadow covers the whole sky).
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The following picture shows, for various observer positions, in red the part of the sky that is
bright. Note that our calculation applies to a static observer at the corresponding position.
For a moving observer the aberration formula has to be applied. As the aberration formula
maps circles onto circles, the shadow of a Schwarzschild black hole is always seen circular,
independent of the state of motion of the observer. For an observer moving towards the black
hole the shadow is smaller than for a static observer, for an obsever moving away from the
black hole it is bigger.

rO = 1.05 rS rO = 1.3 rS rO = 3 rS/2 rO = 2.5 rS rO = 6 rS

We have good evidence that there is a supermassive black hole at the centre of our Galaxy,
associated with the radio source Sgr A∗. For the shadow of this black hole (M ≈ 4× 106M⊙,
rO ≈ 8.5 kpc) Synge’s formula gives an angular diameter of 2θ0 ≈ 54µas. This corresponds
to the angle under which a grapefruit on the Moon is seen from Earth. Another promising
candidate is the black hole at the centre of the galaxy M87 in the constellation Virgo. In this
case (M ≈ 6 × 109M⊙, rO ≈ 16Mpc) one finds 2θ0 ≈ 38µas. For all other known black-hole
candidates the predicted angular diameter of the shadow is considerably smaller. A picture of
the shadow of the object at the centre of M87 was actually made public in April 2019, and of
the object of the centre of our Galaxy in May 2022, see below.

Note that the shadow would exist not only for a black hole, but in exactly the same way also
for an ultracompact star (rS < r∗ < 3rS/2), provided the star is dark. It is the light sphere at
r = 3rS/2 and not the horizon at r = rS that is relevant for the formation of the shadow. The
existence of ultracompact stars is highly speculative. Also, a wormhole would cast a shadow if
there is no light coming out of its mouth. However, again, the existence of wormholes is highly
speculative.

Our calculation was based on the Schwarzschild metric, so it does not apply to a rotating black
hole. The latter is to be described by the Kerr metric; we will show later that then the shadow
turns out to be non-circular. In any case, our calculation with the Schwarzschild metric gives
the correct order of magnitude for the size of the shadow.

For observing the shadow we need light sources which provide a bright backdrop against which
the shadow can be seen. We need to know how many images each light source produces. To
that end we fix a static observer at radius rO and a static light source at radius rL. We exclude
the case that observer and light source are exactly aligned (i.e., that they are on a straight line
through the origin of the coordinate system) which would give rise to Einstein rings instead of
point images. If one thinks of each lightlike geodesic as being surrounded by a thin bundle that
is focussed onto the observer’s retina (or onto a photographic plate) with a lens, every lightlike
geodesic from the light source to the observer gives rise to an image.
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rO

rL

rO

rL

The qualitative imaging features follow from the fact that the bending angle grows monotoni-
cally to infinity for light rays that approach the photon sphere at r = 3rS/2. As a consequence,
for any integer n = 0, 1, 2, 3, . . . there is a light ray from the light source to the observer that
makes n full turns in the clockwise sense, and another light ray from the light source to the
observer that makes n full turns in the counter-clockwise sense. Hence, there are two infinite
sequences of light rays from the light source to the observer, one in the clockwise sense (left
picture) and one in the counter-clockwise sense (right picture). Either sequence has as its limit
curve a light ray that spirals asymptotically towards r = 3rS/2. The pictures are not just
qualitatively correct; they show numerically integrated lightlike geodesics in the Schwarzschild
spacetime. One sees that for each sequence the light rays with n = 1, 2, 3, . . . lie practically on
top of each other. Correspondingly, the observer sees infinitely many images on either side of
the centre. Each sequence rapidly approaches the boundary of the shadow.

In the picture on the right, which is again the
result of a calculation, the shadow is shown as
a black disc. On either side only the outermost
image (n = 0) can be isolated, all the other
ones clump together and they are very close to
the boundary of the shadow. If there are many
light sources, their higher-order images form a
bright ring around the shadow.

It can be shown that the outermost images are brighter than all the other ones combined. Of
the two outermost images, the brighter one is called the primary image and the other one is
called the secondary image. All the remaining ones, which correspond to light rays that make
at least one full turn around the centre, are known as higher-order images.

The first computer simulation of the visual appearance of a Schwarzschild black hole was
produced by J.-P. Luminet in 1979. Here it is assumed that the light comes from a rotating
accretion disc. Part of the disc is in front of the black hole, so it covers part of the shadow. The
rear part of the disc appears bent upwards because of the light bending. One side of the disc
is approaching the observer; because of time-reversed aberration, it appears brighter than the
receding side. Time-reversed aberration is sometimes called beaming. The higher-order images
form a thin bright ring around the shadow.
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From J.-P. Luminet, Astron. Astrophys. 75, 228 (1979)

A similar simulation was shown in the movie “Interstellar”. Here the viewing angle is smaller,
i.e., the accretion disc is seen almost exactly edge-on. For this reason one sees both the upper
side and the lower side of the rear part of the disc.

From the movie “Interstellar”

Finally, on 10 April 2019 the first “real picture” of a black hole was presented to the public.
The data were taken in April 2017, so the evaluation took two years. The picture was produced
by a collaboration of approximately 350 scientists with the so-called Event Horizon Telescope.
In contrast to what the name suggests, this is not one telescope but it consists of many (radio)
telescopes distributed over one hemisphere of the Earth. Each of these telescopes measures
the intensity and the phase of the incoming radiation. From these data the Fourier transform
of the image can be calculated, from which then a real image is produced. This method is
known as aperture synthesis. It was invented in the 1950s by Martin Ryle which earned him
the physics Nobel Prize in 1974. When used with telescopes on different continents one speaks
of Very Long Baseline Interferometry (VLBI).
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ALMA

In 2017, when the successful observations took place, the Event Horizon Telescope included the
Atacama Large Millimeter Array (ALMA) and the ALMA Pathfinder Experiment (APEX) in
Chile, the South Pole Telescope (SPT), the Large Millimeter Telescope (LMT) in Mexico, the
James Clerk Maxwell Telescope (JCMT) and the Submillimeter Array (SMA) on Hawaii, the
Submillimeter Telescope Observatory (SMT) in Arizona, USA, and the Pico Veleta Telescope
(PV) in Spain. As scattering would wash out the image at larger wave lengths, the observations
were made at a wave length of 1.3 mm which corresponds to a frequency of 230 GHz. At such a
small wave length, VLBI is possible only since a few years. As radiation at 1.3 mm is partially
blocked by the water vapour in our atmosphere, only telescopes at a high altitude can be used.
Although our Sun is not very bright at 1.3 mm, the observations were done during the night
time because then the atmosphere is more stable. At four nights in April 2017, the weather
conditions were excellent so that observations were possible at all stations. Both Sgr A∗ and
M87 were observed. However, the environment of Sgr A∗ turned out to change so rapidly that
it took approximately five years to produce a picture. In the case of M87 the central black
hole is a thousand times heavier, so the orbital periods of particles revolving around the black
hole are of the order of days, rather than minutes as for Sgr A∗. This is the reason why a
surprisingly good picture of this object could be produced, see next page

Event Horizon Telescope
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One clearly sees a black disc in the cen-
tre and a bright ring around it. The
bright ring is interpreted as radiation com-
ing from an accretion disc. The fact that
one side of the ring is considerably brighter
than the other indicates that this side is
moving towards us. Comparison with sim-
ulations indicate that the spin vector of the
accretion disc points into the page and a
bit to the left. (In the pictures North is up
and West is right.) All observations are in
agreement with the assumption that the
spin of the black hole is aligned with the
spin of the accretion disc. The fact that
the shadow is practically circular does not
mean that the black hole is non-rotating:
As we look onto the system almost from
the bottom, even for a fast rotating black
hole the shadow would be seen as almost
circular. The thin ring of higher-order
images around the shadow is not visible;
this is in agreement with simulations which
show that it is too faint.

M87∗ – From The Event Horizon
Telescope Collaboration,

Astrophys. J. Lett. 875, L1 (2019)

In the case of the centre of our Galaxy pictures were released only in May 2022, more than five
years after the data were taken. Somewhat surprisingly, also in this case the pictures suggest
that we look approximately from the top or from the bottom onto the black hole. Many
scientists had expected that the view would be more edge-on, such as in the Luminet and the
Interstellar pictures. If we are really looking from the top or from the bottom on the black
hole, this would mean that the spin axis is approximately tangent to the galactic disc and, very
coincidentally, pointing approximately towards us (or away from us).

SgrA∗ – From The Event Horizon Telescope Collaboration,
Astrophys. J. Lett. 930, L12 (2022)
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4 4. Spherically symmetric gravitational collapse

Stars are stable as long as the pressure balances the gravitational attraction. If the nuclear
fuel at the core of a star is used up, the star becomes unstable, possibly blows away some of
its mass in a nova or supernova explosion and then collapses. According to present knowledge,
there are three possible end states of a star.

• A star could end up as a white dwarf, where the electrons form a degenerate Fermi gas.
The electron degeneracy pressure can balance the gravitational attraction. White dwarfs
have a radius of about 5000 km, i.e., they are similar in size to the Earth. It was shown by
S. Chandrasekhar in the early 1930s that a white dwarf must have a mass M / 1.4M⊙.
This work won him the physics Nobel prize in 1983.

• Another possible end state is a neutron star. Neutron stars are much more difficult
to understand than white dwarfs. Roughly speaking, they consist of extremely densely
packed neutrons. It is the neutron degeneracy pressure that balances gravity so that
a stable object results. Typically, a neutron star has a radius between 10 and 20 km.
Similarly to the Chandrasekhar limit for white dwarfs, there is an upper limit for the
mass of a neutron star, but it is not yet precisely known. The most massive neutron star
that has been found so far has a little bit more than 2 Solar masses. Most experts believe
that the maximal mass of a neutron star is less than 3 Solar masses.

• A star that is so massive that it cannot end up as a white dwarf or a neutron star is believed
to undergo gravitational collapse and to form a black hole at the end of its life. If the star
is spherically symmetric (i.e., in particular non-rotating), then the domain outside of the
star is always given by the Schwarzschild metric, owing to the Jebsen-Birkhoff theorem.
If the star that has fallen through its Schwarzschild radius, it is doomed. Then the entire
interior of the star must end up in a singularity at r = 0 in a finite time. This follows
from the consideration in the preceding section, because a mass element on the surface of
the star must move on a timelike curve in the ambient vacuum Schwarzschild spacetime.

In this chapter we want to discuss the dynamical process of the collapse. In analytical terms,
this is possible only for the simple case of a spherically symmetric ball of dust. In a sense,
this is a trivial situation, because it is clear that in the case of perfect spherical symmetry the
entire star must collapse into a singularity under the influence of its own gravity if there is
no pressure. However, it is remarkable that the metric inside the star can be determined fully
analytically as an exact solution to Einstein’s field equation (with a dust source), and that an
exact analytical formula can be given for the radius of the star as a function of time.

The following calculation follows J. R. Oppenheimer and H. Snyder [Phys. Rev. 56, 455 (1939)].
It is based on the exact solution of Einstein’s field equation for a spherically symmetric dust
which had been found by R. Tolman [Proc. Nat. Acad. Sci. 20, 169 (1934)] already a few
years earlier.

It is shown in a first course on general relativity that any spherically symmetric metric can be
written, in spherical polar coordinates (t, ρ, ϑ, ϕ), as

g = − c2eν(t,ρ)dt2 + eλ(t,ρ)dρ2 + Y (t, ρ)2
(
dϑ2 + sin2ϑ dϕ2

)
. (152)
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We want to solve Einstein’s field equation

Rβγ −
R

2
gβγ = κTβγ (153)

with the energy-momentum tensor of a dust,

T βγ = µUβUγ (154)

where µ is the mass density, depending on t and ρ, and

U = Uβ ∂

∂xβ
(155)

is the four-velocity field of the dust. We will choose the coordinates such that the dust particles
move on t-lines,

Uβ = α δβt . (156)

The factor α is determined by the normalisation condition

− c2 = gβγU
βUγ = − c2α2eν(t,ρ) , (157)

α = e−ν(t,ρ)/2 , (158)

hence

U = e−ν(t,ρ)/2 ∂

∂t
. (159)

From the field equation it follows that ∇βT
βγ = 0 which implies that the dust particles move

on geodesics,
∇UU = 0 . (160)

Again, we assume that this result is known from a first course in general relativity.

Claim: ∇UU = 0 implies that the metric function ν is independent of ρ.

Proof: From ∇UU = 0 we have

0 = g
(
∇UU, ∂/∂ρ

)
= U g

(
U, ∂/∂ρ

)
− g
(
U,∇U∂/∂ρ

)

= e−ν/2 ∂

∂t

(

e−ν/2g
(
∂/∂t, ∂/∂ρ

)

︸ ︷︷ ︸

=gtρ=0

)

− e−νg
(
∂/∂t,∇∂/∂t∂/∂ρ

)

= − e−ν g
(
∂/∂t,∇∂/∂ρ∂/∂t

)
= − e−ν 1

2

∂

∂ρ
g
(
∂/∂t, ∂/∂t

)
= − e−ν 1

2

∂

∂ρ
gtt

= e−ν c
2

2

∂

∂ρ
eν = e−ν c

2

2
eν
∂ν

∂ρ
=

c2

2

∂ν

∂ρ
, (161)

hence ∂ν/∂ρ = 0. �
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We can thus introduce a new time coordinate τ by

dτ = eν(t)/2dt , τ =

∫ t

t0

eν(t̃)/2dt̃ . (162)

In the coordinates (τ, ρ, ϑ, ϕ), the metric reads

g = −c2dτ 2 + eλ̃(τ,ρ)dρ2 + Ỹ (τ, ρ)2
(
dϑ2 + sin2ϑ dϕ2

)
(163)

with transformed functions λ̃ and Ỹ . In the following we will drop the tildes.

As the metric is not regular (in the chosen coordinates) at any point where Y = 0, we may
assume that Y > 0 without loss of generality.

The four-velocity of the dust is

U = c
∂

∂τ
(164)

and the energy-momentum tensor is

Tβγ = µδτβδ
τ
γ . (165)

From these expressions we read that τ is proper time of the dust particles. This form of the
metric is known as a spherically symmetric dust in comoving coordinates.

We will now evaluate the field equation

Rβγ −
R

2
gβγ = κTβγ . (166)

This requires calculating the Christoffel symbols and, thereupon, the components of the Ricci
tensor of the metric (163) which can be quickly done, e.g., with Mathematica. One finds that
there are four non-trivial equations.

The ττ−component:

−c
2e−λ

Y

(

2
∂2Y

∂ρ2
− ∂λ

∂ρ

∂Y

∂ρ

)

− c2e−λ

Y 2

(∂Y

∂ρ

)2

+
c2

Y 2
+

1

Y 2

(∂Y

∂τ

)2

+
1

Y

∂λ

∂τ

∂Y

∂τ
= κ c4µ . (167)

The ρρ−component:

✁
✁
✁eλ

Y 2

{

e−λ
(∂Y

∂ρ

)2

− 2Y

c2
∂2Y

∂τ 2
− 1

c2

(∂Y

∂τ

)2

− 1

}

= 0 . (168)

The ϑϑ−component:

✁
✁
✁Y

2

{

e−λ

(

2
∂2Y

∂ρ2
− ∂λ

∂ρ

∂Y

∂ρ

)

− 1

c2
∂Y

∂τ

∂λ

∂τ
− 2

c2
∂2Y

∂τ 2
− Y

2 c2

(∂λ

∂τ

)2

− Y

c2
∂2λ

∂τ 2

}

= 0 . (169)

The τρ−component:

✁
✁
✁1

Y

{

∂Y

∂ρ

∂λ

∂τ
− 2

∂2Y

∂τ∂ρ

}

= 0 . (170)

The ϕϕ−components gives the same equation as the ϑϑ−components and all other components
reduce to the identity 0 = 0.
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To solve this system of differential equations, we begin with (170).

∂λ

∂τ
=

2
∂2Y

∂τ∂ρ

∂Y

∂ρ
(∂Y

∂ρ

)2
=

∂

∂τ

(∂Y

∂ρ

)2

(∂Y

∂ρ

)2
=

∂

∂τ
ln
(∂Y

∂ρ

)2

. (171)

Hence
∂

∂τ

(

− λ+ ln
(∂Y

∂ρ

)2
)

= 0 ,

which gives, upon integration,

−λ+ ln
(∂Y

∂ρ

)2

= H(ρ) (172)

with some function H(ρ). Exponentiating (172) yields

e−λ
(∂Y

∂ρ

)2

= eH(ρ) . (173)

With the help of this expression, its ρ derivative

e−λ

(

2
∂Y

∂ρ

∂2Y

∂ρ2
− ∂λ

∂ρ

(∂Y

∂ρ

)2
)

= eH(ρ)H ′(ρ) (174)

and (170) we can eliminate λ and its derivatives from the remaining three components of the
field equation (167), (168) and (167).

The ττ−component:

−c
2

Y

(∂Y

∂ρ

)−1

eH(ρ)H ′(ρ)− c2

Y 2
eH(ρ) +

c2

Y 2
+

1

Y 2

(∂Y

∂τ

)2

+
2

Y

∂Y

∂τ

(∂Y

∂ρ

)−1 ∂2Y

∂τ∂ρ
= κ c4µ . (175)

The ρρ−component:

eH(ρ) − 2Y

c2
∂2Y

∂τ 2
− 1

c2

(∂Y

∂τ

)2

− 1 = 0 . (176)

The ϑϑ−component:

(∂Y

∂ρ

)−1
{

eH(ρ)H ′(ρ)− 2

c2
∂Y

∂τ

∂2Y

∂ρ∂τ
− 2

c2
∂Y

∂ρ

∂2Y

∂τ 2
− 2 Y

c2
∂3Y

∂τ 2∂ρ

}

= 0 . (177)

We see that we only have to solve (176). Then (175) determines the mass density µ and (177)
is also satisfied because the curly bracket in (177) is just the ρ derivative of the left-hand side
of (176).

As (176) involves no ρ derivatives, we may fix an arbitrary value of ρ and then view (176) as
an ordinary differential equation for Y as a function of τ .

2Y

c2
d2Y

dτ 2
+

1

c2

(dY

dτ

)2

= G (178)
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where
G = eH(ρ) − 1 (179)

with the chosen value of ρ. We substitute

u =
1

c2

(dY

dτ

)2

. (180)

This implies

d

dY

(
uY
)
= u + Y

du

dY
=

1

c2

(dY

dτ

)2

+
2Y

c2 ✓
✓
✓dY

dτ

d2Y

dτ 2 ✓
✓
✓dτ

dY
= G ,

uY = GY + F (181)

with another integration constant F (which depends on the chosen value of ρ, just as G does).
Upon resubstituting for u we find

1

c2

(dY

dτ

)2

= G +
F

Y
. (182)

This ordinary differential equation for Y as a function of τ can be integrated. We have to do
the integration separately for the cases that G is positive, negative or zero. To that end we
write

G = − ε f 2 (183)

where ε takes the value +1, −1 or 0, and f is a postive constant (dependent on the chosen
value of ρ). Then (182) reads

1

c2

(dYε
dτ

)2

= −ε f 2 +
F

Yε
. (184)

We first solve this for the case ε = 0,

1

c2

(dY0
dτ

)2

=
F

Y0
. (185)

As Y0 is positive, this equation requires F to be non-negative,

√

Y0 dY0 = ± c
√
F dτ , (186)

2

3
Y

3/2
0 = ± c

√
F
(
τ − τ0

)
(187)

with another integration constant τ0 (which may depend on ρ), hence

Y0 =
(9c2

4
F
(
τ − τ0

)2
)1/3

. (188)

We next solve (184) for ε = ±1. To that end we transform the time coordinate, τ 7→ ηε, by

dηε =
f

Yε
c dτ . (189)
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Then
1

c2

(dYε
dηε

dηε
dτ

)2

= − ε f 2 +
F

Yε
,

1

��c2

(dYε
dηε

)2f 2
��c2

Y 2
ε

= − ε f 2 +
F

Yε
,

(dYε
dηε

)2

= − ε Y 2
ε +

FYε
f 2

,

dYε
√
FYε
f 2

− ε Y 2
ε

= ± dηε . (190)

This is an elementary integral that can be found in an integration table. The result is

2 arctan

( √
Y1

√
F
f2 − Y1

)

= ±
(
η1 − η1,0

)
(191)

for ε = 1 and

2 arctanh

( √
Y−1

√
F
f2 + Y−1

)

= ±
(
η−1 − η−1,0

)
(192)

for ε = −1. As (189) determines ηε only up to an additive constant, we may choose the
integration constants η1,0 = 0 and η−1,0 = 0 without loss of generality. Then we find for ε = 1

√
Y1

√
F
f2 − Y1

= ± tan
(η1
2

)

,

Y1

(

1 + tan2
(η1
2

)
)

=
F

f 2
tan2

(η1
2

)

,

Y1 =
F

f 2
sin2

(η1
2

)

=
F

2 f 2

(
1− cos η1

)
. (193)

Resubstituting this result into (189) gives the relation between η1 and τ ,

(
1− cos η1

)
dη1 =

2 f 3c dτ

F
,

η1 − sin η1 =
2 f 3c

F

(
τ − τ0

)
, (194)

again with an integration constant τ0 (that may depend on ρ). Inserting (194), which determines
η as a transcendental function of τ , into (193) gives us Y1 as a function of τ . By a completely
analogous calculation we find for ε = −1:

Y−1 =
F

f 2
sinh2

(η−1

2

)

=
F

2 f 2

(
cosh η−1 − 1

)
, (195)
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sinh η−1 − η−1 =
2 f 3c

F

(
τ − τ0

)
. (196)

Now making the dependence of ρ explicit again, we summarise our findings in the following
way. By (182) and (183), the three solutions Y = Yε satisfy

1

c2

(∂Yε(τ, ρ)

∂τ

)2

= −εf(ρ)2 +
F (ρ)

Yε(τ, ρ)
. (197)

They are explicitly given as

Y0(τ, ρ) =
(9c2

4
F (ρ)

(
τ − τ0(ρ)

)2
)1/3

(198)

Y1(τ, ρ) =
F (ρ)

2 f(ρ)2
(
1− cos η1

)
, η1 − sin η1 =

2 f(ρ)3c

F (ρ)

(
τ − τ0(ρ)

)
, (199)

Y−1(τ, ρ) =
F (ρ)

2 f(ρ)2
(
cosh η−1 − 1

)
, sinh η−1 − η−1 =

2 f(ρ)3c

F (ρ)

(
τ − τ0(ρ)

)
. (200)

Here f(ρ), F (ρ) and τ0(ρ) are arbitrary functions. For each of the three cases, the corresponding
function λ is determined by (173) with eH(ρ) = 1 +G(ρ) = 1− ε f(ρ)2, i.e.

e−λε(τ,ρ)
(∂Yε(τ, ρ)

∂ρ

)2

= 1− ε f(ρ)2 . (201)

Inserting (197) into (175) gives the mass density,

3F ′(ρ)

∂Yε(τ, ρ)
3

∂ρ

= κ c2 µε(τ, ρ) . (202)

By (201), the metric reads

g = −c2dτ 2 +
(∂Yε(τ, ρ)

∂ρ

)2 dρ2
(
1− εf(ρ)2

) + Yε(τ, ρ)
2
(

dϑ2 + sin2ϑ dϕ2
)

. (203)

This is the general spherically symmetric solution to Einstein’s field equation with a dust source.
It was found by Lemâıtre in 1933 and independently by Tolman in 1934. As it was further
discussed by Bondi in 1947, it is known as the Lemâıtre-Tolman-Bondi (LTB) solution. It
involves a parameter ε that can take the values 0, +1 or −1, and three arbitrary functions
f(ρ), F (ρ) and τ0(ρ). As the metric (203) preserves its form under a transformation of the ρ
coordinate, there are actually only two arbitrary functions with a physical meaning involved.
They can be chosen, e.g., to be the initial density and the initial radial velocity.

If we choose F (ρ) to be a constant, the mass density vanishes by (202), so in this case the LTB
solution gives a spherically symmetric vacuum solution. By the Jebsen-Birkhoff theorem, this
must be equal to the Schwarzschild solution, for any choice of ε, f(ρ) and τ0(ρ). This gives
another family of coordinate representations of the Schwarzschild metric.

Oppenheimer and Snyder took the LTB solution from the Tolman paper. They matched this
solution at a certain radius ρ0 to the exterior vacuum Schwarzschild solution, thereby getting
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a general-relativistic model for a collapsing ball of dust. Here we will not do this for a general
LTB solution. We will rather specialise to the case that the mass density is independent of ρ,
i.e., to the case of a homogeneous ball of dust. For this case we will then explicitly determine
the surface of the star and the event horizon inside the star as functions of the time coordinate
τ . To that end we now specialise the LTB solution to the case of a spatially constant density,
∂µε/∂ρ = 0, and then do the matching afterwards.

Claim: If µε > 0 and ∂µε/∂ρ = 0, the coordinates can be chosen such that the metric reads

g = −c2dτ 2 +Kε(τ)
2
{ dρ2

1− ερ2
+ ρ2

(
dϑ2 + sin2ϑ dϕ2

)}

(204)

with ε = 0, 1,−1. Here

K0(τ) =
(9

4
c2A
)1/3

τ 2/3 , (205)

K1(τ) =
A

2

(
1− cos η1

)
, η1 − sin η1 =

2

A
c τ , (206)

K−1(τ) =
A

2

(
cosh η−1 − 1

)
, sin η−1 − η−1 =

2

A
c τ , (207)

with a constant A > 0. The mass density is

µε(τ) =
3A

κ c2Kε(τ)3
. (208)

Proof: If the mass density is strictly positive, (202) requires that F ′(ρ) > 0. It is, thus, possible
to make a coordinate transformation

(
τ, ρ, ϑ, ϕ

)
7→
(
τ, ρ̃, ϑ, ϕ

)
such that

F (ρ) = A ρ̃3 ,
dρ̃

dρ
=
F (ρ)−2/3F ′(ρ)

3A1/3
(209)

with a constant A > 0. We perform such a coordinate trransformation and then drop the
tilde. This fixes the radial coordinate up to a multiplicative constant (as long as we leave A
unspecified). We define

Kε(τ, ρ) :=
1

ρ
Yε(τ, ρ) . (210)

It is our goal to show that, actually, Kε depends only on τ and not on ρ. With (210) the
differential equation (202) reads

κ c2µε(τ)
∂

∂ρ

(

ρ3Kε(τ, ρ)
3
)

= 3
d

dρ

(

Aρ3
)

.

Based on our assumption that µε is independent of ρ, integration results in

κ c2µε(τ) ρ
3Kε(τ, ρ)

3 − 3Aρ3 = S̃(τ)

with some function S̃(τ), hence

Kε(τ, ρ)
3 = Q(τ) +

S(τ)

ρ3
(211)
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with

Q(τ) =
3A

κ c2µε(τ)
, S(τ) =

S̃(τ)

κ c2µε(τ)
. (212)

On the other hand, (197) requires

ρ2

c2

(∂Kε(τ, ρ)

∂τ

)2

= −ε f(ρ)2 + Aρ2

Kε(τ, ρ)
,

ρ2

c2

(

∂

∂τ

(

Q(τ) +
S(τ)

ρ3

)1/3
)2

= −ε f(ρ)2 + Aρ2
(

Q(τ) +
S(τ)

ρ3

)−1/3

,

ρ2

c2

(

1

3

(

Q(τ) +
S(τ)

ρ3

)−2/3(

Q̇(τ) +
Ṡ(τ)

ρ3

)
)2

= −ε f(ρ)2 + Aρ2
(

Q(τ) +
S(τ)

ρ3

)−1/3

,

(

Q(τ) +
S(τ)

ρ3

)−4/3(

Q̇(τ) +
Ṡ(τ)

ρ3

)2

= −9 c2
ε f(ρ)2

ρ2
+ 9Ac2

(

Q(τ) +
S(τ)

ρ3

)−1/3

. (213)

Differentiation with respect to τ yields

(

Q(τ) +
S(τ)

ρ3

)−4/3

2
(

Q̇(τ) +
Ṡ(τ)

ρ3

)(

Q̈(τ) +
S̈(τ)

ρ3

)

− 4

3

(

Q(τ) +
S(τ)

ρ3

)−7/3(

Q̇(τ) +
Ṡ(τ)

ρ3

)3

= −3Ac2
(

Q(τ) +
S(τ)

ρ3

)−4/3(

Q̇(τ) +
Ṡ(τ)

ρ3

)

. (214)

Note that
(

Q(τ)+S(τ)/ρ3
)

6= 0 because otherwise the metric would be degenerate. Moreover,
(

Q̇(τ)+ Ṡ(τ)/ρ3
)

must be non-zero as well: If this expression were zero, this would mean that

Kε and thus Yε are independent of τ . In the cases ε = 1 and ε = −1 this can be true, by (199)
and (200), respectively, only if f(ρ) = 0. But then (197) implies for all three cases that F (ρ)
is zero, in contradiction to our assumption that F (ρ) = Aρ3. So we can multiply both sides of

(214) with
(

Q(τ) + S(τ)/ρ3
)7/3(

Q̇(τ) + Ṡ(τ)/ρ3
)−1

which results in

2
(

Q̈(τ) +
S̈(τ)

ρ3

)(

Q(τ) +
S(τ)

ρ3

)

− 4

3

(

Q̇(τ) +
Ṡ(τ)

ρ3

)2

= −3Ac2
(

Q(τ) +
S(τ)

ρ3

)

. (215)

Comparing coefficients of ρ−3 gives us three equations:

2QQ̈− 4

3
Q̇2 = −3Ac2Q , (216)

2QS̈ + 2Q̈S − 8

3
Q̇ Ṡ = −3Ac2S , (217)

2SS̈ − 4

3
Ṡ2 = 0 . (218)
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(218) can be integrated: As

3
(
S1/3

)· ·
=
(
S−2/3Ṡ

)·
= −2

3
S−5/3Ṡ2 + S−2/3S̈ = S−5/3

(

− 2

3
Ṡ2 + SS̈

)

, (219)

(218) says that S1/3 is a linear function of τ ,

S(τ) =
(
α τ + β

)3
. (220)

On the other hand, if we multiply (216) with −3S2/4, (217) with 3QS/4 and (218) with −3Q2/4
and add the resulting three equations together, we get

Q̇2S2 − 2Q̇ṠQS + Ṡ2Q2 = 0 . (221)

Q is different from zero by (212). If also S is different from zero, we may divide by S2Q2 and
get

(Q̇

Q
− Ṡ

S

)2

= 0 . (222)

We will demonstrate that this leads to a contradiction, i.e., that S must be equal to zero. To
that end we rewrite (222) as

(

ln
Q

S

)·

= 0 (223)

which implies

ln
Q(τ)

S(τ)
= k , Q(τ) = ek S(τ) (224)

with a constant k. By (220),

Q(τ) = ek
(
α τ + β

)3
. (225)

But then the left-hand side of (216) is zero whereas, by (212), the right-hand side is not. This
is the desired contradiction. We have therefore proven that S(τ) must be equal to zero. Hence,
Kε is a function of τ only,

Yε(τ, ρ) = ρKε(τ) , (226)

and (213) simplifies to

Q(τ)−4/3Q̇(τ)2 − 9Ac2Q(τ)−1/3 = − 9 c2ε
f(ρ)2

ρ2
. (227)

As the left-hand side is independent of ρ and the right-hand side is independent of τ , the
expression on either side must be a constant. This is, of course, a non-trivial result only in
the case ε 6= 0 where it implies that f(ρ2) = q ρ2 with a constant q > 0. We now insert the
expressions F (ρ) = Aρ3 and f(ρ)2 = q ρ2 into (198), (199) and (200) and absorb the constant
q into the constant A. Then comparing with (226) shows that in each of the three cases τ0(ρ)
must be a constant. By a coordinate transformation (τ, ρ, ϑ, ϕ) 7→ (τ + const., ρ, ϑ, ϕ) we can
make this constant equal to zero. With (198), (199) and (200) specified in this way, the metric
(203) takes, indeed the form of (204) with Kε given by (205, (206) and (207). The formula
(208) for the mass density follows from (211) and (212) with S(τ) = 0. �
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Note that in (204) the expression in the curly brackets is the metric of a three-dimensional
Riemannian space with constant curvature, i.e. is flat space for ε = 0, the 3-sphere for ε = 1
and hyperbolic 3-space for ε = −1. Also note that the transformed radius coordinate ρ is
dimensionless. If ρ ranges over its maximal domain, (204) gives a cosmological dust solution of
the field equation known as Friedmann solution. Here, however, we are interested in the case
that this metric is valid only for 0 < ρ < ρ0, where ρ0 is the radius coordinate of the surface of
a ball of dust, and that the metric is joined at ρ = ρ0 to an exterior Schwarzschild vacuum.

A particle on the surface of the star must have as its worldline a radial timelike geodesic of the
ambient Schwarzschild metric. We know that then along this worldline the Schwarzschild area
coordinate r has to satisfy equation (94),

1

c2

(dr

dτ

)2

= const. +
rS
r
. (228)

Inside the star, the area radius coordinate is given by

r = ρKε(τ) , (229)

as we read from (204). This implies that the area radius coordinate at the surface of the star is

r0(τ) = ρ0Kε(τ) . (230)

for all τ . The function Kε was determined by solving the differential equation

1

c2

(
∂

∂τ

(

ρKε(τ)
))2

= −ε ρ2 + Aρ2

Kε(τ)
. (231)

With (229), comparison of (228) and (231) at the surface of the star yields

Aρ30 = rS . (232)

The density (208) is thus given by

κ c2µε(τ) =
3 rS

ρ30Kε(τ)3
. (233)

With κ = 8πG/c4 and rS = 2GM/c2 this can be rewritten as

µε(τ) =
6M

ρ30Kε(τ)38π
=

M
4

3
πr0(τ)3

. (234)

So µε(τ) is given by the usual Euclidean formula for the density of a mass M distributed
homogeneously over a sphere of radius r0(τ) = ρ0Kε(τ). As M was defined asymptotically by
comparison with the Newtonian theory, and as the spatial geometry is non-flat (unless ε = 0),
this result was not to be expected and can be considered only as a concidence.

We plot the surface of the star in an r − cτ−diagram. The surface is given by (230) with Kε

from (205), (206) and (207). The plots are shown in the picture on the next page for the three
cases ε = 0, 1 and −1.
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r

cτ

rS

cτm

ε = +1

ε = 0

ε = −1

In all three cases the star collapses in a finite time. We have chosen the τ coordinate such that
the collapse is finished at τ = 0. For τ < 0, the centre r = 0 is regular (i.e., the singularity
in spherical polar coordinates at r = 0 is a mere coordinate singularity, just as in Minkowski
spacetime). For τ > 0 the centre at r = 0 features the curvature singularity we know from the
vacuum Schwarzschild spacetime. From the diagram above one might be tempted to interpret it
now as the worldline of a point particle, with the entire mass of the collapsed star concentrated
on this worldline. This interpretation, however, is utterly wrong: From the Carter-Penrose
diagram on p.17 we read that the singularity is spacelike. It may be associated with an infinite
mass density, but it is not a (timelike) worldline.

In the final stage of the collapse, near τ = 0, the three cases ε = 0, 1 and −1 are similar. They
differ by their initial conditions. For ε = 0 the surface of the star coincides with worldlines of
Painlevé-Gullstrand observers, i.e., it describes free fall from rest at infinity. For ε = −1 the
star falls from infinity with an inwards directed asymptotic initial velocity. The physically most
relevant case is the case ε = +1. This describes free fall from rest with a finite initial radius if
we choose the initial hypersurface at τ = τm. As indicated in the diagram, τm is the time where
K1(τ) reaches its maximum which corresponds to η1 = −π/2. We may match this solution
at τ = τm to a star which for −∞ < τ < τm has constant radius r∗ = ρ0K1(τm) = rS/(2ρ

2
0).

The combined solution then describes a star that is static up to some time and then suddenly
collapses like a ball of dust. We concentrate on this case in the following and determine the
radial lightlike geodesics inside the star, to see how the horizon is formed. If we want to
identify the lightlike geodesics with real light rays we have, of course, to assume that the star
is transparent.
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From the metric (204) we read that the radial lightlike geodesics inside the star are given by

0 = − c2dτ 2 +K1(τ)
2 dρ2

1− ρ2
, (235)

± c
dτ

dη1
dη1 = K1(τ)

dρ
√

1− ρ2
(236)

where the upper sign is for outgoing and the lower sign for ingoing light rays. With dτ/dη1 and
K1(τ) from (206):

± c
A

2

(
1− cos η1

)
dη1 = c

A

2

(
1− cos η1

) dρ
√

1− ρ2
,

± dη1 =
dρ

√

1− ρ2

± dη1 = d
(
arcsin ρ

)
,

η1,i ± η1 = arcsin ρ ,

ρ = sin
(
η1,i ± η1

)
(237)

with an integration constant η1,i that labels the geodesics. The area radius coordinate is

r = ρK1(τ) =
A

2

(
1− cos η1

)
ρ

=
rS
2ρ30

(1− cos η1) sin
(
η1,i ± η1

)
. (238)

Together with the equation

τ =
rS
2cρ30

(
η1 − sin η1

)

this gives the radial lightlike geodesics in parametrised form,
(
r(η1), τ(η1)

)
.

The diagram on the next page shows outgoing radial lightlike geodesics (i.e., with the + sign)
for three different values of η1,i as dashed curves. As the angle coordinates are not shown, each
of these curves represents a sphere’s worth of lightlike geodesics. A radial lightlike geodesic
starting at the centre of the star can do one of two things after crossing the surface of the star:
Either it goes to infinity (lower dashed curve) or it goes to the singularity at r = 0 (upper
dashed curve). The borderline case is formed by geodesics that continue on the surface r = rS
after leaving the star (middle dashed curve). It can be read from the picture that this middle
dashed curve gives the event horizon for the total spacetime, consisting of the collapsing star
and the vacuum exterior: It is impossible to send a signal at subluminal speed from inside the
horizon to an observer outside. The horizon comes into existence at the centre of the star,
expands until it reaches the (collapsing) surface at r = rS and then continues in the vacuum
region at this fixed r value.
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r

cτ

rS

cτm

Recall that the apparent horizon is defined as the boundary of the region where closed trapped
surfaces exist, i.e., where both the ingoing and the outgoing radial lightlike geodesics go into the
direction of decreasing area coordinate r. From the picture we read that, also in the interior of
the star, closed trapped surfaces exist only inside the event horizon. This is a general feature:
The apparent horizon is never outside of the event horizon. In the vacuum Schwarzschild
spacetime it coincides with the event horizon. This is not the case within the collapsing star:
As the upper dashed curve in the diagram goes for the most part into the direction of increasing
r coordinate, although lying beyond the event horizon, the apparent horizon does not coincide
with the event horizon.
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5 Other spherically symmetric and static black holes

In this chapter we will briefly discuss a few spherically symmetric and static black-hole metrics
other than Schwarzschild, i.e., metrics that do not solve the vacuum field equation without a
cosmological constant. We will summarise only a few main features without going too much
into detail because these metrics are usually thought to be of less astrophysical relevance.

5.1 Kottler black holes

The Kottler metric is the unique spherically symmetric solution to Einstein’s vacuum field
equation with a cosmological constant, Rµν = Λ gµν. The derivation is completely analogous
to the Schwarzschild metric and will not be given here. In particular, the Jebsen-Birkhoff
theorem is valid also in the case with a non-vanishing cosmological constant, i.e., the solution
is necessarily static. It depends, of course, on the value of the cosmological constant and, just
as the Schwarzschild metric, on an integration constant with the dimension of a length which
we denote again rS. The metric reads

g = − f(r) c2dt2 +
dr2

f(r)
+ r2

(
dϑ2 + sin2ϑdϕ2

)
(239)

where

f(r) = 1− rS
r

− Λ

3
r2 . (240)

This solution was found by F. Kottler in 1918 (and almost simultaneously by H. Weyl). For
Λ = 0, it reduces of course to the Schwarzschild metric. For rS = 0, it reduces to the de Sitter
solution if Λ > 0 and to the anti-de Sitter solution if Λ < 0. For this reason, the Kottler metric
is also known as the Schwarzschild-de Sitter metric in the case Λ > 0 and as the Schwarzschild-
anti-de Sitter metric in the case Λ < 0. The name “Schwarzschild metric with a cosmological
constant” is also used occasionally.

The most important difference in comparison to the Schwarzschild solution is in the fact that
the metric is not asymptotically flat, i.e., it does not approach the Minkowski metric for r → ∞.
Therefore, rS cannot be determined by considering the region r ≫ rS and comparing with the
Newtonian approximation. However, if |Λ| is small, there is a region where r ≫ rS and still
r2 ≪ |Λ|−1. In this domain, the comparison with the Newtonian theory is possible and the
identification rS = 2GM/c2 is justified.

The physical relevance of the Kottler metric has to be discussed with care. It is true that we
believe to live in a universe with a small but non-zero positive cosmological constant, Λ ≈
10−55 km−2. However, for this value of Λ, the term Λr2/3 is negligibly small in comparison to
rS/r unless r

3 & rS×3×1055 km2. For planets, stars and stellar or supermassive black holes this
means that the Λ term becomes relevant only at very large distances where the approximation
of the gravitational field as being spherically symmetric is not really valid because of the
presence of neighbouring masses. Only if these neighbouring masses are thought of as being
homogeneously smeared out can this approximation be maintained. For this reason the Kottler
spacetime is not of very high astrophysical relevance, but it has several features which are
interesting from a conceptual point of view.
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As the contribution from the cosmological constant vanishes for r → 0, the Kottler metric has
a curvature singularity at r = 0, just as the Schwarzschild metric. This implies that the metric
cannot be extended from the domain r > 0 into the domain r < 0. One may consider the
domain r < 0 as a spacetime in its own right. The Kottler metric with a constant rS > 0 on
the domain r < 0 is the same as the Kottler metric with a constant rS < 0 on the domain
r > 0, as is obvious from a coordinate transformation r → −r. We will not consider this
possibility here and rather restrict to the domain r > 0 assuming that rS > 0, as suggested by
our identification rS = 2GM/c2.

Keeping a positive value for rS fixed, we want to investigate the structure of the spacetime in
dependence of Λ which is allowed to take any value between −∞ and ∞. The metric has a zero
in the denominator where f(r) = 0. Based on our experience with the Schwarzschild metric
we expect that such a zero indicates a horizon and that by transforming to coordinates of the
Eddington-Finkelstein type the metric becomes regular there. We first investigate how these
zeros change in dependence of Λ. On the domain 0 < r <∞ the function f has the same zeros
as the third-order polynomial

P (r) = − r f(r) =
Λ

3
r3 − r + rS (241)

whose derivative is
P ′(r) = Λ r2 − 1 . (242)

For any value of Λ, the function P (r) starts at r = 0 with a positive value, P (0) = rS, and a
negative derivative, P ′(0) = −1, see the plot below.

r

P (r)

rS

rh rS rh1
3
2rS rh2

Λ < 0
Λ = 0

0 < Λ < Λc

Λ = Λc

Λc < Λ < ∞
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For Λ < 0 we have P ′(r) < 0, so P (r) has precisely one real positive zero, P (rh) = 0. Hence,
there is precisely one horizon. rh is situated between 0 and rS. We have rh → 0 for Λ → −∞
and, of course, rh → rS for Λ → 0

For Λ > 0, we have P (r) → ∞ for r → ∞. Together with the fact that P ′(0) < 0 this
implies that P (r) must have a minimum at some radius value between 0 and ∞. As P (r) is a
third-order polynomial, it can have only one minimum. At this minimum value, P (r) may be
positive, zero or negative. In the first case P (r) has no positive real zeros, in the second case
it has a double zero, and in the third case it has two different positive real zeros. The critical
value Λc where a double zero occurs is found by setting P (r) and P ′(r) equal to zero,

0 =
Λc

3
r3 − r + rS , 0 = Λc r

2 − 1 .

Solving for Λc yields

Λc =
4

9r2S
(243)

and reinserting this result into P ′(r) = 0 shows that the double zero occurs at r = 3rS/2. For
0 < Λ < Λc there are two positive real zeros rh1 and rh2 where rS < rh1 < rh2; for Λ = Λc there
is a double zero at r = 3rS/2 which indicates a degenerate horizon; for Λc < Λ < ∞ there is
no zero and, thus, no horizon, see the plots on the previous page.

To demonstrate that the zeros of f(r) can be removed by a coordinate transformation and have,
indeed, the character of a horizon, we proceed as for the Schwarzschild metric. Radial lightlike
geodesics in the Kottler spacetime are given by

0 = − f(r) c2dt2 +
dr2

f(r)
, ± c dt =

dr

f(r)
(244)

where the upper sign is for outgoing and the lower sign for ingoing radial lightlike geodesics.
We transform to (generalised) ingoing Eddington-Finkelstein coordinates

(
r, t′
)
where

c t′ = c t − r +

∫
dr

f(r)
= c t − r −

∫
r dr

P (r)
. (245)

In this expression the indefinite integral can be written in terms of the zeros of the third-order
polynomial P (r) (and an integration constant that can be chosen at will) but we do not write
this out because the solution formulas for cubic equations are rather awkward. In any case, the
integral can be easily evaluated numerically, for any value of Λ.

In analogy to the Schwarzschild spacetime, one can check that the Kottler metric becomes
regular on the entire domain 0 < r < ∞ in ingoing Eddington-Finkelstein coordinates. By
construction, the ingoing radial light rays are given as straight lines under 45o in an r −
ct′−diagram,

c t′ = − r + constant , (246)

whereas the outgoing ones are given as

c t′ = − r + 2

∫
dr

f(r)
. (247)
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For Λ < 0, the spacetime covered by the ingoing Eddington-Finkelstein coordinates describes
a black hole with an event horizon at a radius rh ∈ ] 0, rS [ . The qualitative features are
quite similar to the Schwarzschild case Λ = 0. The plots below show the radial light rays
in Schwarzschild coordinates (r, t) and in ingoing Eddington-Finkelstein coordinates (r, t′),
where the little ellipses indicate the future light-cones. If we use outgoing rather than in-
going Eddington-Finkelstein coordinates, we get of course a white-hole spacetime which is just
the time reversed version of the black-hole spacetime.

r

c t

rh
r

c t′

rh

We can construct the maximal analytical extension of the Kottler spacetime with Λ < 0 in
the same way as for the Schwarzschild spacetime by introducing (generalised) Kruskal-Szekeres
coordinates

u = h(r) cosh
c t

2 rS
, v = h(r) sinh

c t

2 rS
, (248)

where now

h(r) = exp

(

1

2rS

∫ r

0

dr̃

f(r̃)

)

. (249)

Just as in the Schwarzschild case, this transformation, applied to the region rh < r < ∞,
−∞ < t < ∞ maps both the ingoing and the outgoing radial light rays onto straight lines
under 45o. The expression u2 − v2 = h(r)2 approaches zero for r → rh and becomes negative
if analytically extended beyond the horizon. Mapping the maximal analytical extension into a
compact domain by introducing the lightlike coordinates

U = arctan(v + u) , V = arctan(v − u) (250)

gives us the Carter-Penrose diagram of the maximally extended Kottler spacetime with Λ < 0,
see next page.
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I

II

I ′

II ′
r = rh

r = rh

r = rh

r = rh

I + = I −

I + = I −

r = 0

r = 0

UV

The region I is the region outside of the horizon, where the transformation was originally
applied. The ingoing Eddington-Finkelstein coordinates cover regions I and II, whereas the
outgoing Eddington-Finkelstein coordinates cover regions I and II ′. The only difference to the
Carter-Penrose diagram of the Schwarzschild spacetime is in the fact that I + (defined as the
set of all points at r = ∞ where future-oriented lightlike geodesics terminate) and I

− (the
same for past-oriented lightlike geodesics) now have a different structure: In the Schwarzschild
case I + and I − were disjoint and lightlike, now I + coincides with I − and is timelike.

We now turn to the case 0 < Λ < Λc. Again, the plots below show the radial light rays in
Schwarzschild and in ingoing Eddington-Finkelstein coordinates with the little ellipses indicat-
ing the future light-cones.

r

c t

rh1 rh2
r

c t′

rh1 rh2
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In this case we have two horizons. The inner one at r = rh1 is known as the black-hole horizon
while the outer one at r = rh2 is known as the cosmological horizon. It is rS < rh1 < rh2. The
vector field ∂/∂t is timelike between the two horizons, i.e., in this region the spacetime is static
and an observer is free to move in the direction of increasing or decreasing r. In the other two
regions ∂/∂t is spacelike. An observer is forced to move in the direction of decreasing r. From
the static region, an observer can send signals to the interior non-static region 0 < r < rh1
but he cannot receive signals from there. By contrast, he can receive signals from the exterior
non-static region rh2 < r < ∞ but he cannot send signals to this region. Again, an analogous
construction with outgoing Eddington-Finkelstein coordinates gives a white hole.

For constructing the Carter-Penrose diagram we introduce again the (generalised) Kruskal-
Szekeres coordinates (248), this time on the domain rh1 < r < rh2, −∞ < t < ∞, extend
analytically and then compactify with the help of the transformation (250).

I

II

I ′

II ′

III ′

III

r = rh1

r = rh1 r = rh1

r = rh1

r = rh2

r = rh2

r = rh2

r = rh2

I + I +

I − I −r = 0

r = 0

UV

The ingoing Eddington-Finkelstein coordinates cover the regions II, I and III whereas the
outgoing Eddington-Finkelstein coordinates cover the regions III ′, I and II ′. In this case I +

and I − are spacelike. The diagram is infinitely extended to the right and to the left.

Finally, we consider the case Λc < Λ < ∞. Then there is no horizon. ∂/∂t is everywhere
spacelike, i.e., the spacetime is non-static. The metric is regular on the entire domain 0 < r <∞
in Schwarzschild coordinates; so there is no particular advantage in introducing Eddington-
Finkelstein coordinates. If the timelike vector field ∂/∂r is interpreted as future-pointing, the
curvature singularity at r = 0 sucks in all signals and material bodies, but it is not a black
hole because there is no horizon. A singularity that is not hidden behind a horizon is called
“naked”. Note, however that in the case at hand the singularity is not visible to any observer
until he really arrives there. If the timelike vector field ∂/∂r is interpreted as past-pointing, all
signals and material bodies move away from the singularity, so the singularity is visible to an
observer anywhere in the spacetime.
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The plot on the right shows the radial
light rays in Schwarzschild coordinates. If
the little ellipses indicate the future light
cones, the singularity is attractive and
not visible until one arrives there. If one
changes the time-orientation (i.e., if one
interprets the little ellipses as indicating
the past light cones), the singularity is re-
pellent and can be seen from anywhere in
the spacetime.

As there are no horizons, the spacetime
cannot be analytically extended. The
Carter-Penrose diagram, which is con-
structed again with the transformations
(248) and (250), is shown below for the
case that the vector field ∂/∂r is inter-
preted as future-pointing. In this case
I + is the empty set because all future-
pointing lightlike (or timelike) curves ter-
minate at the singularity.

r

c t

I

I −

r = 0

UV

We will now discuss the lightlike and timelike geodesics in the Kottler spacetime. Just as in the
Schwarzschild case we may restrict, without loss of generality, to the equatorial plane. Then
the geodesics are to be derived from the Lagrangian

L(x, ẋ) =
1

2

(

− f(r) c2ṫ2 +
ṙ2

f(r)
+ r2ϕ̇2

)

. (251)

The t and ϕ components of the Euler-Lagrange equation give us two constants of motion,

E = f(r) c2ṫ , L = r2 ϕ̇ . (252)

Moreover, we must have

− f(r) c2ṫ2 +
ṙ2

f(r)
+ r2ϕ̇2 = − ε c2 (253)

where ε = 1 for timelike and ε = 0 for lightlike geodesics.
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We will discuss the lightlike geodesics in Worksheet 8. We will demonstrate that they satisfy
the second-order differential equation

d2r

dϕ2
− 2

r

( dr

dϕ

)2

= r − 3

2
rS . (254)

which determines, for given initial values r(0) and dr/dϕ(0), a unique solution. We see that
the cosmological constant has completely dropped out. Hence, the lightlike geodesics in the
Kottler spacetime are given by precisely the same curves in the coordinate picture as without
Λ term. From (254) we read, in particular, that circular light rays can exist only at r = 3rS/2
which is again independent of Λ. It was pointed out by M. Ishak and W. Rindler [Phys. Rev.
D 76, 043006 (2007)] that, nonetheless, lensing observations are influenced by Λ. In particular,
the angular radius θ0 of the shadow of a Kottler black hole does depend on Λ,

sin2θ0 =
1− rS

rO
− Λ

3
r2O

( 4

27r2S
− Λ

3

)

r2O

=
1− rS

rO
− Λ

3
r2O

(Λc

3
− Λ

3

)

r2O

(255)

as we will demonstrate in Worksheet 8. Here it is assumed that the observer is static at radius
coordinate rO (which is possible only if rO is in the domain where f(r) > 0.

Now we turn to timelike geodesics. To that end we have to consider equations (252) and (253)
with ε = 1. These imply

ṙ2 = f(r)
(

f(r) c2ṫ2 − r2ϕ̇2 − c2
)

,

ṙ2 = f(r)2 c2
E2

f(r)2 c4
− f(r)

(

r2
L2

r4
+ c2

)

,

ṙ2 =
E2

c2
− f(r)

(L2

r2
+ c2

)

. (256)

By writing the function f(r) explicitly,

ṙ2 =
E2

c2
− L2

( 1

r2
− rS
r3

− Λ

3

)

− c2
(

1− rS
r

− Λ

3
r2
)

,

and differentiating with respect to the proper time parameter τ we find

2 ṙ r̈ =

(

− L2
(

− 2

r3
+

3 rS
r4

)

− c2
(rS
r2

− 2Λ

3
r
)
)

ṙ ,

r̈ = L2
( 1

r3
− 3 rS

2 r4

)

− c2
( rS
2 r2

− Λ

3
r
)

. (257)

Although we have divided by ṙ, (257 ) is true also at points where ṙ = 0, because of continuity.

We first investigate if there are equilibrium points. If we choose initial conditions ṙ(τ0) = 0 and
ϕ̇(τ0) = 0, (256) and (257) require, respectively,

0 =
E2

c2
− f

(
r(τ0)

)
c2 , (258)
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r̈(τ0) = −c2
( rS
2 r(τ0)2

− Λ

3
r(τ0)

)

. (259)

The first equation (258) says that our initial conditions can be realised only if f
(
r(τ0)

)
> 0.

This is clear from what was said before, because the t-lines are timelike only in the domain
where f(r) > 0. As such a domain doesn’t exist for Λc < Λ, we have to consider only the two
cases Λ < 0 and 0 < Λ < Λc. (The case Λ = 0 is the Schwarzschild case which is already known
to us, and the case Λ = Λc can be treated by a limit procedure.)

For Λ < 0, (259) says that r̈(τ0) is always negative. If we place a particle with initial velocity
zero anywhere in the domain where f(r) > 0, it will start moving towards the centre. So a
negative cosmological constant doesn’t change the attractive character of gravitation.

For 0 < Λ < Λc = 4/(9r2S), (259) says that r̈(τ0) is negative only on part of the domain where
f(r) > 0, namely:

r̈(τ0) < 0 ⇐⇒ r < req ,

r̈(τ0) = 0 ⇐⇒ r = req , (260)

r̈(τ0) > 0 ⇐⇒ r > req ,

where

req =
(3rS
2Λ

)1/3

. (261)

This reflects the fact that a positive cosmological constant has a repellent effect: For r > req
this repulsion dominates over the attractive effect produced by the r−1 term in the function
f(r), for r < req it is vice versa. At req there is a balance between repulsion and attraction, so
a particle that is placed at this radius coordinate will stay put. Note that req is, indeed, in the
domain where f(r) is positive, because

f(req) = 1− rS
req

− Λ

3
req

2 = 1− rS

( 2Λ

3rS

)1/3

− Λ

3

(3rS
2Λ

)2/3

= 1−
(
Λ r2S

)1/3

(
(2

3

)1/3

+
( 1

3× 4

)1/3
)

= 1−
(

Λ
9r2S
4

)1/3
(
( 8

27

)1/3

+
( 1

27

)1/3
)

= 1−
( Λ

Λc

)1/3(2

3
+

1

3

)

= 1−
( Λ

Λc

)1/3

> 0 . (262)

From (260) we read that the equilibrium at req is unstable: If we place a particle at rest at a
slightly bigger radius value than req it will be accelerated in the direction of increasing r, and
if we do it at a slightly smaller value it will be accelerated in the direction of decreasing r. In
any case, it will start moving away from the equilibrium position.
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We now turn to circular timelike geodesics. To that end we write (256) in the form of an energy
conservation law,

1

2
ṙ2 + VE,L(r) = 0 (263)

with

VE,L(r) =
f(r)

2

(L2

r2
+ c2

)

− E2

2c2
. (264)

Note that this is not exactly the same effective potential we have used for the Schwarzschild
spacetime, because here the kinetic energy term is formed with ṙ = dr/dτ whereas in the
Schwarzschild case it was formed with dr/dϕ. However, we can use this effective potential in
exactly the same way for determining the circular timelike geodesics: They are given by the
equations VE,L(r) = 0 and V ′

E,L(r) = 0 and stability is determined by the sign of V ′′
E,L(r). The

condition

VE,L(r) =
1

2

(

1− rS
r

− Λ

3
r2
)(L2

r2
+ c2

)

− E2

2c2
= 0 (265)

requires that f(r) = 1 − rS/r
2 − (Λ/3)r2 > 0 and thus Λ < Λc. Again, this reflects the fact

that timelike curves can stay at a constant r value only in a region where ∂t is timelike. At all
r values where this is the case, (265) determines E as a function of L and r. By differentiating
(265) we find

V ′
E,L(r) =

L2

2

(

− 2

r3
+

3rS
r4

)

+
c2

2

(rS
r2

− 2Λ

3
r
)

. (266)

Then the condition V ′
E,L(r) = 0 determines L,

L2 =
c2 rS r

2
(

1− 2Λr3

3rS

)

2
(

r − 3

2
rS

) . (267)

To assure L2 > 0, we must have either

1− 2Λr3

3rS
< 0 and r <

3

2
rS (268)

or

1− 2Λr3

3rS
> 0 and r >

3

2
rS . (269)

The first pair of conditions implies

Λ >
3rS
2r3

>
3rS
2

( 2

3rS

)3

=
4

9r2S
= Λc (270)

which is in contradiction to the fact that a region where f(r) > 0 doesn’t exist for Λ > Λc. So
the second pair of conditions must be satisfied. For Λ < 0, it reduces to

3

2
rS < r <∞ . (271)
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This means that in this case circular timelike geodesics exist for exactly the same radius values
as in the Schwarzschild spacetime. For 0 < Λ < Λc, it can be rewritten as

3

2
rS < r < req (272)

with req from (261). These two limiting values for circular timelike geodesics are easily under-
stood: For r → 3rS/2 the orbital velocity of a circular timelike geodesic approaches the velocity
of light, while for r → req it approaches zero.

To investigate stability of the circular orbits we have to determine the sign of V ′′
E,L(r). To that

end it is convenient to rewrite (266) as

r4V ′
E,L(r) = L2

(

− r +
3rS
2

)

+
c2

2

(

rSr
2 − 2Λ

3
r5
)

. (273)

By differentiating this expression with respect to r and using V ′
E,L(r) = 0 we find

r4V ′′
E,L(r) = L2(−1) + c2

(

rSr −
5Λ

3
r4
)

. (274)

Inserting (267) results in

r4V ′′
E,L(r) = −

c2r2
(

rS − 2Λ

3
r3
)

2r − 3rS
+ c2r

(

rS − 5Λ

3
r3
)

=
c2r

2r − 3rS

(

− ✘✘✘rSr +
�
�
�2Λ

3
r4 + ✁2 rSr −

8
✚✚10Λ

3
r4 − 3r2S + 5ΛrSr

3
)

=
c2r

2r − 3rS

(

rs(r − 3rS)−
Λr3

3

(
8r − 15rS

)
)

=
c2r4(8r − 15rS)

3(2r − 3rS)

(

3rS(r − 3rS)

r3(8r − 15rS)
− Λ

)

(275)

i.e.,

V ′′
E,L(r) =

c2(8r − 15rS)

3(2r − 3rS)

(

F (r)− Λ

)

(276)

with

F (r) =
3 rS

(
r − 3rS

)

r3
(
8 r − 15 rS

) . (277)

The diagram on the next page shows a plot of the function F (r) restricted to the interval
15rS/8 < r < ∞. If r approaches 15rS/8 from above, this function diverges towards −∞.
From (276) we read that stable circular orbits exist in the region below the graph of this
function; this follows from the fact that there the pre-factor in (276) is positive, 8 r− 15 rS > 0
and 2 r−3 rS > 0, so the sign of

...
r is indeed determined by the sign of Λ−F (r). In the diagram

the dotted line marks the circular lightlike orbit at r = 3rS/2 whereas the dashed line marks
the equilibrium radius r = req; i.e., circular timelike orbits exist between the dashed and the
dotted line. On the interval 3rS/2 < r < 15rS/8 the graph of the function Λ = F (r) lies above
the dashed line (not shown), i.e., no circular orbits can exist at radius values in this interval.
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r

Λ = F (r)

rS 3rS rb

Λb

We observe that the function F (r) takes a maximum at a radius value rb. From the plot of
the function Λ = F (r) we read: For 0 < Λ < Λb stable circular orbits exist between an ISCO
(Innermost Stable Circular Orbit) and an OSCO (Outermost Stable Citrcular Orbit). For
Λ < 0 they exist between an ISCO and infinity. For Λ > Λb, there are no stable circular orbits.
To find the radius value rb where F (r) takes its maximum value we evaluate the equation
F ′(rb) = 0:

✟✟3rSr
3
b (8rb − 15rS)−✟✟3rS(rb − 3rS)(32r

3
b − 45r2brS)

r6b (8rb − 15rS)2
= 0 ,

8r4b − 15rSr
3
b − 32r4b + 45rSr

3
b + 96rSr

3
b − 135r2Sr

2
b = 0 ,

−24r2b + 126rSrb − 135r2S = 0 ,
r2b
r2S

− 21

4

rS
rb

+
45

8
= 0 ,

rb
rS

=
21

8
±
√

21× 21

64
− 8× 45

64
=

21± 9

8
.

We have to choose the plus sign because rb > 3rS,

rb =
15

4
rS . (278)

At r = rb, the function F (r) takes the value

Λb = F (rb) =
3rS

(15

4
rS − 3rS

)

153

43
r3S

(8× 15

4
rS − 15rS

) =
16

152 × 52 r2S
=

16

5625 r2S
. (279)

Note that Λb is much smaller than the critical value Λc = 4/(9r2S) where the horizons vanish.
For Λb < Λ < Λc we still have circular timelike geodesics, but all of them are unstable.
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Wemention in passing that in the Kottler spacetime with 0 < Λ < Λb socalled heteroclinic orbits
occur, i.e. orbits, which asymptotically connect two different unstable circular orbits. Recall
from p.29 that in the Schwarzschild spacetime there are only homoclinic orbits, i.e., timelike
geodesics that spiral for τ → −∞ and for τ → ∞ towards the same unstable circular orbit.
The occurrence of heteroclinic orbits is characteristic of situations where one has competing
attractive and repulsive forces which may balance each other.

5.2 Reissner-Nordström black holes

The Reissner-Nordström metric is the unique spherically symmetric and asymptotically flat
solution to the Einstein equation (without a cosmological constant) with the energy-momentum
tensor of a Maxwell field. It is a static metric that describes the spacetime around a spherically
symmetric charged object. Just as in the Schwarzschild case, the field is static even for a
pulsating source. We do not give a derivation of the Reissner-Nordström metric which requires
solving the coupled system of the Einstein and the Maxwell equations under the assumption
of spherical symmetry and then adding the condition of asymptotic flatness. Without the
latter condition, there is also the socalled Bertotti-Robinson spacetime. As an alternative to
requiring asymptotic flatness, it can also be excluded by the assumption that the area function
r, defined by the property that the group orbits (spheres parametrised by ϑ and ϕ) have area
4πr2, is a “good coordinate”, i.e., that dr has no zeros. In the Bertotti-Robinson spacetime dr
is identically zero, i.e., r cannot be used as a coordinate.

The Reissner-Nordström metric reads

g = − c2f(r)dt2 +
dr2

f(r)
+ r2

(
dϑ2 + sin2ϑ dϕ2

)
(280)

where

f(r) = 1− rS
r

+
r2Q
r2
. (281)

It was found independently by H. Reissner (1916), H. Weyl (1917) and G. Nordström (1918).
It contains two integration constants rS and rQ with the dimension of a length. Comparison
with the Newtonian theory for large r shows that, as in the Schwarzschild metric,

rS =
2GM

c2
(282)

where M is the mass of the central object. The interpretation of rQ can be read from the
electric field that is associated with the metric:

r2Q =
GQ2

4πε0c4
(283)

where Q is the electric charge. (Here we assume that the central object carries an electric
charge. If one believes in the existence of magnetic monopoles, one could also consider a
magnetic charge.)
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We can match the Reissner-Nordström solution at some appropriate radius value to an interior
solution, e.g. to a charged perfect fluid, to get a model for a spherically symmetric charged
star. Here we are interested in Reissner-Nordström black holes, so we will assume that the
electro-vacuum Reissner-Nordström metric is valid all the way down to r = 0.

Just as the Schwarzschild metric, the Reissner-Nordström metric has a curvature singularity
at r = 0. This can be verified by calculating the Kretschmann scalar which diverges at r = 0
We will now investigate if this singularity is hidden behind a horizon. From the metric we read
that a coordinate singularity of the same kind as the one at r = rS in the Schwarzschild case
occurs at those real and positive r values where the function f(r) given in (281) has a zero.
This gives a quadratic equation for r,

r2 − rSr + r2Q = 0 . (284)

Any real and positive solution of this equation gives a horizon, as we will demonstrate immedi-
ately with the help of (generalised) Eddington-Finkelstein coordinates. Solving the quadratic
equation yields

r± =
1

2

(

rS ±
√

r2S − 4r2Q

)

. (285)

We have

(a) two horizons if 0 < 4r2Q < r2S (black hole),

(b) one degenerate horizon at r− = r+ = rS/2 if 4r2Q = r2S (extremal black hole), and

(c) no horizon if 4r2Q > r2S (naked singularity).

In the limit rQ → 0 we recover of course the Schwarzschild case. In this limit r− → 0 and
r+ → rS.

We consider case (a) in some detail and treat the other two cases only briefly later. So let us
assume that 0 < 4r2Q < r2S which implies that (285) gives us two real radius values, 0 < r− <
r+. As the metric (280) has the same general structure as the Kottler (and in particular the
Schwarzschild) metric, just with a different function f(r) now given by (281), we can construct
(generalised) Eddington-Finkelstein and Kruskal coordinates by the same method as before.
To that end we first write down the equation for radial lightlike geodesics,

±c dt = dr

f(r)
=

r2 dr

(r − r−)(r − r+)
(286)

which can be integrated,

±c (t− t0) =
r2+

r+ − r−
ln
(
|r − r+|

)
− r2−
r+ − r−

ln
(
|r − r−|

)
. (287)

The transformation to ingoing Eddington-Finkelstein coordinates
(
r, t′, ϑ, ϕ

)
is then given by

c dt′ = c dt − dr +
dr

f(r)
(288)

which yields, upon integration,

c t′ = c t − r +
r2+

r+ − r−
ln
(
|r − r+|

)
− r2−
r+ − r−

ln
(
|r − r−|

)
. (289)
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In these coordinates the ingoing radial light rays are given by

c (t′ − t0) = − r (290)

and the outgoing ones by

c (t′ − t0) = − r +
r2+

r+ − r−
ln
(
|r − r+|

)
− r2−
r+ − r−

ln
(
|r − r−|

)
. (291)

The two plots on the right show
the radial light rays in the Reissner-
Nordström black-hole spacetime, first in
the Schwarzschild-like coordinates and
then in ingoing Eddington-Finkelstein co-
ordinates. The region I is similar to the
exterior part of the Schwarzschild space-
time. Here ∂t is timelike and an observer
can move in the direction of decreasing or
increasing r. No signal from the other side
of the horizon at r = r+ can reach an ob-
server in region I, so it is indeed justified
to speak of a black hole. The region II is
non-static. Just as in the interior part of
the Schwarzschild spacetime, an observer
must move in the direction of decreasing r.
However, in contrast to the Schwarzschild
spacetime this region does not extend to
the singularity at r = 0. There is an-
other static region III between r = 0 and
r = r−. In this region an observer is again
free to move in the direction of decreasing
or increasing r. As indicated by the future
light cones, there are timelike curves that
end in the singularity, but there are also
timelike curves that escape from the sin-
gularity. We will show that, in particular,
timelike geodesics never reach the singu-
larity. On part of region III the hyper-
surfes t′ = const. are non-spacelike.

IIIIII

r

ct

r− r+

IIIIII

r

ct′

r− r+

Note the differences between the Reissner-Nordström spacetime and the Kottler spacetime:
The cosmological constant modifies the Schwarzschild metric at big radii, while the charge
modifies the Schwarzschild spacetime at small radii. In cases where there are two horizons,
in the Kottler spacetime we have a static region between two non-static regions, while in the
Reissner-Nordström spacetime we have a non-static region between two static regions.

We will now demonstrate that in the Reissner-Nordström spacetime a timelike geodesic cannot
reach the singularity. As always in spherically symmetric spacetimes, we need only consider
timelike geodesics in the equatorial plane.
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We use the constants of motion

E = −∂L(x, ẋ)
∂ṫ

= c2 f(r) ṫ (292)

and

L =
∂L(x, ẋ)
∂ϕ̇

= r2ϕ̇ , (293)

and we parametrise the timelike geodesic by proper time,

− c2 = − f(r) c2 ṫ2 +
ṙ2

f(r)
+ r2ϕ̇2 . (294)

We substitute the constants of motion into the last equation:

− c2 = − E2

c2 f(r)
+

ṙ2

f(r)
+
L2

r2
,

and we multiply by f(r),

E2

c2
− c2 f(r) = ṙ2 +

L2

r2
f(r) . (295)

We consider a timelike geodesic in region III, i.e., in the domain where 0 < r < r−. Then the
function f(r) is positive, so (295) implies that

E2

c2
− c2 f(r) ≥ 0 ,

E2

c2
≥ c2

(

1− rS
r

+
r2Q
r2

)

. (296)

For r → 0, the right-hand side goes to +∞ (as we assume rQ 6= 0). On the other hand, (296)
requires this expression to be bounded by a finite number E2/c2. As a consequence, r must be
bounded away from 0. In other words, for every timelike geodesic in the domain 0 < r < r−
there is a region 0 < r < rmin into which this geodesic cannot enter; in particular, an observer
in free fall will never arrive at the singularity at r = 0. This may be interpreted as saying
that the singularity is repulsive. In Worksheet 9 we will show that a radially infalling observer
crosses region III in a finite proper time. So there is the possibility of extending the spacetime
from region III to the future. Such a possibility did not exist for the Schwarzschild spacetime
(because in the latter case there was no region III). In Worksheet 9 we will also show that
for a timelike geodesic in region III the radial acceleration d2r/dτ 2 is always positive, i.e., the
acceleration points outward. This corroborates the observation that in the Reissner-Nordström
spacetime the singularity at r = 0 is repulsive. Note that here we consider timelike geodesics,
i.e., freely falling uncharged particles. Charged particles will, of course, feel a Lorentz force
which is either repulsive or attractive, depending on whether the charge of the particle has the
same sign or the opposite sign of the charge of the black hole. We will not consider the motion
of charged particles in the Reissner-Nordström metric in this lecture course.
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We will now construct the maximal extension of the
Reissner-Nordström black-hole spacetime. We use the
same transformation to (generalised) Kruskal-Szekeres
coordinates as for the Kottler spacetime, see (248) and
(249), but now of course with the function f(r) of
the Reissner-Nordström metric which is given in (281).
Then we compactify the diagram with the help of the
transformations (250).

We begin with the domain covered by ingoing
Eddington-Finkelstein coordinates, i.e., with regions
I, II and III as shown in the spacetime diagrams
on p.71. The horizons at r− and r+ are generated by
radial light rays, so they must make an angle of 45o

with the horizontal. The singularity at r = 0 is ver-
tical which reflects the fact that it can be avoided by
timelike curves, see picture on the right.

I

II

IIIr = 0

r = ∞

r = r+

r = r−

We can glue a region II ′, which is isometric to region II, to the future of region III, so that
observers can escape from region III into this region II ′. We can further extend the spacetime
by gluing a region I ′, which is isometric to region I, to the future of region II ′. For an observer
in region I, the singularity at the centre of region III is hidden behind a horizon, so for this
observer it is a black hole. For an observer in region I ′, however, it is a white hole.

I

II

III

II ′

I ′

r = 0

r = ∞

r = ∞

r = r+

r = r+

r = r−

r = r−
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In the middle of the figure we can match another copy of region III, and we can infinitely
extend the diagram to the future and to the past, see the picture below. Every singularity
is at the centre of a black hole for observers in some asymptotically flat regions and at the
centre of a white hole for observers in some other asymptotically flat region. In this sense,
every Reissner-Nodström black hole is at the same time a white hole. If we think of a Reissner-
Nordström black hole as being the result of gravitational collapse, the past extension of the
original spacetime I, II and III has no physical relevance, similarly to the lower left-hand
portion of the Kruskal diagram; one would have to replace this part by an interior solution.
The future extension, however, would not be cut away by the interior of the collapsing star, so
the conclusion that one can escape from region III would still be true.

The presence of the region III and the possibility
of extending the spacetime towards the future of
this region is a completely new feature which has
no analogue in the Schwarzschild or Kottler case.
While in the Schwarzschild spacetime any ob-
server that has crossed the horizon will inevitably
end up in the singularity, a charged black hole
seems to be more benign: Only those observers
who deliberately accelerate towards r = 0 will
hit the singularity; all other observers that have
entered into region III, in particular the freely
falling ones, will escape from this region through
region II ′ into another asymptotically flat space-
time region I ′. At least that’s what the mathe-
matical model of the Reissner-Nordström space-
time describes. However, we have to take into
account that, according to our present knowl-
edge, all celestial bodies have a net charge that
is very small. Therefore, we expect for all black
holes that r− is very close to 0. As the curva-
ture becomes infinite for r → 0, this means that
the tidal forces are so strong at r− that a macro-
scopic observer will be ripped apart before en-
tering the region III. The situation is different
for (elementary) particles. However, even in this
case there is a minimum radius beyond which the
classical spacetime description is no longer appli-
cable and a (yet-to-be-found) quantum theory of
gravity would have to take over.

It is believed that this break-down of the classical spacetime theory certainly takes place at a
distance from r = 0 of the order of the Planck length ℓP =

√

~G/c3 ≈ 1.6×10−35m. Following
this line of thought, one may conclude that for (elementary) particles the escape through region
III is possible if r− ≫ ℓP . We will discuss a numerical example in Worksheet 9 to investigate
if a Reissner-Nordström black hole with r− ≫ ℓp may be viewed as realistic.
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So much for a Reissner-Nordström black hole with 0 < 4r2Q < r2S.

We now briefly consider the case of
an extremal Reisner-Nordström black
hole, 4r2Q = r2S. Then we have a de-
generate horizon at r− = r+ = rS/2
and the radial light rays satisfy

± cdt =
dr

f(r)
=

4 r2dr

(2r − rS)2
, (297)

± c(t− t0) =

2r(r − rS)

2r − rS
+ rSln

∣
∣2r − rS

∣
∣ . (298)

Correspondingly, the transformation
to ingoing Eddington-Finkelstein co-
ordinates simplifies to

c dt′ = c dt − dr

+
4 r2 dr

(2 r − rS)2
, (299)

c t′ = c t − r rS
2 r − rS

+rS ln
(
|2 r − rS|

)
. (300)

The two plots on the right show
the radial light rays in the extremal
Reissner-Nordström black-hole space-
time, first in the Schwarzschild-
like coordinates and then in in-
going Eddington-Finkelstein coordi-
nates. Obviously, the only differ-
ence with respect to the non-extremal
black-hole case is in the fact that now
the region II is missing: The static
region I is separated from the static
region III by the degenerate horizon
at r− = r+ = rS/2.

IIII

r
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rS/2

IIII

r

ct′

rS/2

The Carter-Penrose diagram for the extremal Reissner-Nordström black hole can be easily
constructed from that of the non-extremal case: We just have to observe that now the region
II has shrunk to a point. The resulting Carter-Penrose diagram is shown on the next page. As
in the non-extremal black-hole case, the figure extends up and down to infinity.
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Finally, we look at the case of a naked singularity, 4r2Q > r2S. Then the radial light rays are
given by

± c
(
t− t0

)
=

∫

dr
(

1− rS
r

+
r2Q
r2

)

= r +
rS
2
ln
(
|r2 − rSr + r2Q|

)
−

2r2Q − r2S
√

4r2Q − r2S

arctan
2r − rS
√

4r2Q − r2S

.

There are no horizons, so there is no need for introducing other coordinates. A plot of the
radial light rays is shown in the following diagram. The spacetime, as shown in this diagram,
cannot be extended.
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The spacetime is static everywhere. Observers can freely move in the direction of increasing
or decreasing r. The singularity at r = 0 is exposed to the eyes of observers anywhere in the
spacetime. If a singularity is not hidden behind a horizon, one says that it is naked.

Already in the late 1960s Roger Penrose formulated the “Cosmic Censorship Hypothesis”,
saying that under physically reasonable assumptions a naked singularity will never form: If a
star or some other massive object undergoes gravitational collapse such that a (true, curvature)
singularity is formed, then there will always be a horizon that hides this singularity from the
eyes of a distant observer. Until now, this is still a hypothesis. The task is to prove the non-
existence of naked singularities under assumptions that are generally accepted as “physically
reasonable”.

In addition to the Schwarzschild, the Kottler and the Reissner-Nordström metrics many other
spherically symmetric and static spacetimes have been investigated. If one goes beyond vacuum
and electro-vacuum solutions of Einstein’s field equation, either by allowing more complicated
energy-momentum tensors or by modifying Einstein’s field equation, one can construct space-
times with quite different properties. Among other things, it was possible to construct regular
black holes, i.e. spacetimes with a black-hole horizon but no curvature singularity inside the
horizon. We will not discuss such spaetimes here.
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6 Kerr black holes

All known celestial bodies rotate, so it is very likely that also black holes are rotating. A
black hole that rotates at a constant rate is described by a spacetime that is stationary and
axisymmetric, i.e., in appropriately chosen coordinates (t, r, ϑ, ϕ) the metric coefficients are
independent of t and ϕ. If we ignore the cosmological constant, and if we assume that the
black hole is uncharged, we have thus to look for a solution to Einstein’s vacuum field equation,
Rµν = 0, that is stationary and axisymmetric.

For spherically symmetric vacuum solutions the situation is quite simple: There is only a one-
parameter family of such solutions, given by the Schwarzschild metric. By contrast, the class
of stationary and axisymmetric vacuum solutions is vast. The exterior regions around two
rotating stars with different interior structure will be completely different from each other and
from the region around a rotating black hole. It is far from obvious by which property the
region around a rotating black hole is distinguished among all stationary and axisymmetric
vacuum solutions.

The vacuum solution that actually describes rotating black holes was found by R. Kerr in 1963,
almost half a century after Schwarzschild had discovered the spherically symmetric solution.
The way in which Kerr found this solution was very involved and cannot be reviewed here.
Actually, the original Kerr paper [Phys. Rev. Lett. 11, 237 (1963)] is less than two pages long
and doesn’t give much of a derivation at all. After the solution had been found, many people
tried to rederive it in a systematic way. In 1965 Newman and Janis [J. Math. Phys. 6, 915
(1965)] showed that the Kerr metric can be found by applying a kind of “complex coordinate
transformation” to the Schwarzschild metric. This method became known as the “Newman-
Janis trick”. A more systematic, but technically very involved path to the Kerr metric was
brought forward by F. Ernst [J. Math. Phys. 15, 1409 (1974)] who showed that the stationary
and axisymmetric solutions to the vacuum Einstein equation can be expressed in terms of a
complex potential, now known as the Ernst potential. The simplest rotating solution to the
Ernst equation, i.e., to the differential equation satisfied by the Ernst potential, gives the Kerr
metric.

Here we will not give a derivation of the Kerr metric, we will just write it down and then discuss
it in detail. We will work with the Kerr metric in a coordinate representation that was found
by R. Boyer and R. Lindquist [J. Math. Phys. 8, 265 (1967)]. Kerr had given the metric in a
different coordinate system.

In Boyer-Lindquist coordinates the Kerr metric reads

g = −
(

1− 2mr

ρ2

)

c2dt2 +
ρ2

∆
dr2 + ρ2dϑ2

+sin2ϑ

(

r2 + a2 +
2mra2sin2ϑ

ρ2

)

dϕ2 − 4mrasin2ϑ

ρ2
c dt dϕ (301)

where
ρ2 := r2 + a2cos2ϑ , ∆ := r2 − 2mr + a2 . (302)

The Kerr metric depends on two parameters, m and a, both of which have the dimension of a
length. We will discuss the physical meaning of m and a in a minute.
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The metric (301) satisfies indeed Einstein’s vacuum field equation Rµν = 0. It is straight-
forward (though tedious, if you do it by hand) to verify this. As was said before, it is recom-
mendable to write a little computer programme, e.g. with Mathematica, that calculates the
inverse metric coefficients, the Christoffels, the curvature tensor and the Ricci tensor from any
given covariant metric coefficients. With such a programme it takes a few seconds to verify
that (301) gives a vanishing Ricci tensor.

In the following section we discuss some general features of the Kerr metric in Boyer-Lindquist
coordinates. Already now, we observe that the metric coefficients are independent of t and ϕ,
i.e., that ∂t and ∂ϕ are Killing vector fields. For sufficiently large r, the metric coefficient gtt
is negative, so the Killing vector field ∂t is timelike. A metric with a timelike Killing vector
field is called stationary. An observer who lives on an integral curve of such a vector field sees
a time-independent metric. The other Killing vector field ∂ϕ is spacelike, at least for positive
r, because then gϕϕ is positive. This second Killing vector field describes invariance of the
spacetime geometry under rotations about the z axis. A metric with such a symmetry is called
axisymmetric. The Kerr metric has no other linearly independent Killing vector fields, i.e.,
it has no other symmetries in addition to stationarity and axisymmetry. This is the main
difference to the Schwarzschild metric. The latter is invariant also under rotations about the
x and the y axes, i.e., it is spherically symmetric. Moreover, the Killing vector field of the
Schwarzschild metric was orthogonal to the hypersurfaces t = constant. In the Kerr metric
this is not the case because of the non-zero gtϕ. We may consider, in the tangent space at
each point of the spacetime, the three-dimensional orthocomplement of ∂t, i.e., the local rest
spaces of the observers who live on t lines. These orthocomplements, however, do not admit
three-dimensional integral manifolds; one should think of the integral curves of ∂t as “twisting”
like spaghetti on a fork. One calls a spacetime static if it admits a timelike Killing vector
field that is orthogonal to hypersurfaces. The Schwarzschild metric is static, whereas the Kerr
metric with a 6= 0 is stationary but not static. The fact that the Kerr metric is axisymmetric
and stationary but not static suggests that it is associated with a stationarily rotating source.
Kerr thought that this source would be a spinning point mass. But then Newman and Janis
observed that the source is not concentrated in a point but rather in a ring, as we will discuss
below. The Kerr metric describes a rotating black hole, at least for a certain range of the
parameter a, with a ring singularity at the centre.

6.1 Properties of the Kerr metric

(a) Asymptotic flatness
For r → ∞, the Kerr metric (301) approaches the Minkowski metric in ordinary spherical
polar coordinates, i.e., the metric is “asymptotically flat”. This observation is crucial for the
interpretation of the two parameters m and a on which the Kerr metric depends. At the time
when Kerr discovered the metric named after him, no exact solution for a rotating body in
general relativity was known. However, one did know an approximative solution which holds
around a rotating body whose gravitational field is weak. This had been found by the Viennese
scientists J. Lense and H. Thirring (with essential contributions by Einstein) already in 1917.
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By comparison with this approximative solution it was clear that one had to identify

m =
GM

c2
, a =

J

Mc
(303)

where M is the mass and J is the angular momentum of the source. Keep in mind that
both m and a have the dimension of a length. As a should vanish for a source with J = 0,
the identification a = J/(Mc) can be guessed, up to a possible numerical factor, just by a
dimensional analysis.

The Kerr metric includes the following special cases.

• a = 0 and m 6= 0 : This corresponds to sending J → 0 with M 6= 0 kept fixed. Then the
Kerr metric (301) reduces to the Schwarzschild metric in Schwarzschild coordinates.

• a 6= 0 and m = 0 : This case corresponds to sending J → 0 and M → 0 in such a way
that the quotient J/M remains fixed. We get the metric

g = −c2dt2 + ρ2

r2 + a2
dr2 +

(
r2 + a2

)
sin2ϑ dϕ2 + ρ2dϑ2 . (304)

This is the Minkowski metric in spheroidal coordinates. To see this, one has to transform
from (r, ϑ, ϕ) to Cartesian coordinates (x, y, z) by

x =
√
r2 + a2 cosϕ sinϑ , y =

√
r2 + a2 sinϕ sinϑ , z = r cos θ . (305)

dx =
r√

r2 + a2
cosϕsin ϑ dr −

√
r2 + a2 sinϕ sinϑdϕ+

√
r2 + a2 cosϕ cosϑdϑ ,

dy =
r√

r2 + a2
sinϕ sinϑ dr +

√
r2 + a2 cosϕ sinϑ dϕ+

√
r2 + a2 sinϕ cosϑ dϑ ,

dz = cosϑ dr − r sin ϑ dϑ . (306)

This transforms the metric (304) to the standard Minkowski metric

g = −c2dt2 + dx2 + dy2 + dz2 . (307)

The picture on the next page shows the surfaces r = constant which are spheroids (i.e.,
rotationally symmetric ellipsoids) and the surfaces ϑ = constant which are hyperboloids.
The set

r = 0 and ϑ = π/2 (308)

is the focal ring of the spheroids, given in the (x, y, z) system as the circle

x2 + y2 = a2 and z = 0 . (309)
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For m = 0 and a = 0 the Kerr metric (301) reduces to the Minkowski metric in ordinary
spherical polar coordinates. This case corresponds to sending J → 0 and M → 0 in such a way
that the quotient J/M goes to zero as well. – From now on we will assume m > 0 throughout.

(b) The range of the coordinates
The fact that for a→ 0 the Kerr metric (301) reduces to the Schwarzschild metric might suggest
to have the coordinates running over the same range as in the Schwarzschild case, i.e., to have
t running over all of R, ϑ and ϕ coordinatising the 2-sphere in the usual fashion, and r running
from 0 to ∞. However, as to the range of the r coordinate there is actually no reason for this
restriction if a 6= 0. From the metric we read that (t = t0, r = 0) is a 2-sphere, parametrised by
ϑ and ϕ, that has a finite area, see Worksheet 10. It is not a point, in contrast to what we are
used to from the case of spherical polar coordinates on flat space. Of course, one has to make
sure that all the metric coefficients are non-singular on this sphere. This is indeed true, unless
in the equatorial plane ϑ = π/2, see item (c) below. If we remove the ring at ϑ = π/2 from the
2-sphere (t = t0, r = 0), the two remaining hemispheres are perfectly regular with a finite area.
This allows extending the spacetime to the domain of negative r values. A convenient way of
plotting this situation is by using er/m for the radial coordinate, see the picture on the next
page. Then r = 0 is represented as a sphere with the domain of positive r values on the exterior
and the domain of negative r values on the interior. The origin corresponds to r = −∞.

In summary, the range of the Boyer-Lindquist coordinates of the Kerr metric with a2 > 0 is
t ∈ R, r ∈ R, (ϑ, ϕ) ∈ S2. For a = 0, there is a pointlike singularity at r = 0 and the
r coordinate is restricted by 0 < r < ∞. (The domain −∞ < r < 0 could be considered as
another spacetime which is disconnected from the domain 0 < r <∞. The Schwarzschild metric
with positive m and r ranging over the negative half-axis is isometric with the Schwarzschild
metric with negative m and r ranging over the positive half-axis. As in this spacetime the
curvature singularity at r = 0 is naked, it is usually believed to be unphysical.)
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(c) The ring singularity
The metric coefficient gtt of the Kerr metric becomes singular at ρ2 = 0. In the Schwarzschild
limit a→ 0 the equation ρ2 = 0 reduces to r2 = 0 which is known to be a curvature singularity.
One would therefore expect that ρ2 = 0 is a curvature
singularity also in the Kerr metric with a 6= 0. This
is indeed true as can be verified by calculating e.g. the
Kretschmann scalar RµνστR

µνστ which diverges for ρ2 →
0. The condition ρ2 = r2 + a2cos2ϑ = 0 is equivalent to

r = 0 and ϑ =
π

2
(310)

if a 6= 0. This is a ring, see picture on the right. We will
discuss the geometry of the sphere r = 0, which contains
the ring singularity, in Worksheet 10.

er/m

r = 0

(d) The horizons
The metric coefficient grr becomes singular if ∆ = 0. In the Schwarzschild case (where we
restrict to r > 0) this corresponds to the coordinate singularity at r = 2m. We know that
this coodinate singularity in the Schwarzschild metric can be removed by a transformation e.g.
to Eddington-Finkelstein coordinates and that in the correspondingly extended spacetime the
surface r = 2m plays the role of a horizon. Therefore, it is natural to assume that also in the
case a 6= 0 the equation ∆ = 0 gives a horizon. We will demonstrate this immediately.

The equation
0 = ∆ = r2 − 2mr + a2 (311)

is a quadratic equation for r with the solution

r± = m±
√
m2 − a2 . (312)

We distinguish three cases:

0 < a2 < m2 : There are two real solutions, 0 < r− < r+, i.e., two horizons. The outer horizon
at r+ is an event horizon that hides its interior with the ring sinularity for an outside
observer. So in this case we have a Kerr black hole. (Mathematically, one may also
consider the time-reversed situation which gives a Kerr white hole.)

0 < a2 = m2 : There is a double solution r− = r+ = m which is real and positive if m > 0,
i.e., there is one degenerate horizon. Again, this is an event horizon for an observer in
the exterior domain. In this case we speak of an extreme Kerr black hole. (Again, one
may also consider an extreme Kerr white hole.)

m2 < a2 : There are no real solutions and thus no horizons. The ring singularity is exposed
to the eyes of any observer, even for an observer at an arbitrarily large distance. In this
case we speak of a Kerr naked singularity.

In the black-hole case, the region r > r+ is called the domain of outer communication because
in this region any two observers can communicate with each other without being hindered by
a horizon.
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For planets, stars or galaxies, a = J/(Mc) is usually bigger than m = GM/c2. This seems to
suggest that such an object would end up as a naked singularity if it undergoes gravitational
collapse. However, this does not take into account that gravitational collapse is believed to be
preceded by a kind of explosion. During such an explosion the body can lose not only mass
but also angular momentum so that eventually it may end up as a black hole. We have already
mentioned that in the late 1960s Roger Penrose formulated the socalled Cosmic Censorship Hy-
pothesis according to which any gravitational collapse that starts out from physically realistic
initial conditions leads to a black hole and not to a naked singularity. (The name refers to the
idea that Nature acts like a censor prohibiting that a distant observer can see a singularities.)
Although several partial results have been achieved, the Cosmic Censorship Hypothesis has not
been made into a mathematical theorem so far. Of course, the crucial point is to give a math-
ematically precise formulation of which initial conditions should be considered as physically
realistic.

For demonstrating that the Kerr metric for 0 < a2 < m2 describes, indeed, a black hole with
two horizons determined by the equation ∆ = 0 we have to transform to generalised ingoing
Eddington-Finkelstein coordinates. To that end consider the vector fields

ℓµ±∂µ = ±∂r +
r2 + a2

∆ c
∂t +

a

∆
∂ϕ . (313)

By inserting these vector fields, for the plus sign and for the minus sign, into the Kerr metric
(301) one sees that they are lightlike,

g(ℓµ±∂µ, ℓ
ν
±∂ν) = 0 . (314)

We will show in Worksheet 10 that the integral curves of ℓµ±∂µ are geodesics, i.e., that these
curves are indeed light rays. From the sign in front of ∂r in (313) we read that the integral
curves of ℓµ+∂µ are outgoing and the integral curves of ℓµ−∂µ are ingoing. As the factor in front of
∂ϕ in (313) goes to zero for r → 0, both families of curves become radial for large r. In contrast
to spherically symmetric spacetimes, the Kerr spacetime does not admit light rays which are
radial everywhere; a light ray that comes in from infinity with a radial initial direction is being
“dragged” by the rotating mass. The integral curves of the vector field (313) with the upper
sign are known as the outgoing principal null geodesics ; with the lower sign they are known
as the ingoing principal null geodesics. Recall that “null” is often used as synonymous with
“lightlike”.

Along each principal null geodesic, we can use r as the parameter. As we read from (313), t, ϕ
and ϑ are then given as functions of r by the differential equations

dt

dr
= ± (r2 + a2)

c∆
,

dϕ

dr
= ± a

∆
,

dϑ

dr
= 0 . (315)

Here the upper sign refers to the outgoing and the lower sign to the ingoing curves. We see that
in the Schwarzschild case a = 0 the principal null geodesics satisfy dϕ/dr = 0 and dϑ/dr = 0,
i.e., they reduce to the radial null geodesics. The new feature in the Kerr case is in the fact that
now not only the t coordinate must be transformed to remove the singularity of dt/dr at the
horizon(s), but also the ϕ coordinate to remove the singularity of dϕ/dr. The latter expresses
the fact that the principal null geodesics approach the horizons in an infinite whirl.
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By integrating the first equation in (315) we get the projection to the r−ct plane of the ingoing
and outgoing principal null geodesics, see the following picture. The ϕ and ϑ coordinates are
not shown. Whereas ϕ depends on r, according to the second equation in (315), ϑ is constant
along each of the principal null geodesics and both dt/dr and dϕ/dr are independent of ϑ. As
to the ϑ dependence, we just have to keep in mind that in the case of ϑ = π/2 the principal
null geodesics are blocked at the ring singularity, whereas for all other values of ϑ they pass
through one of the throats at r = 0. The picture refers to the case 0 < a2 < m2 where we have
two horizons.

IIIIII

r

ct

0 r− r+

The passage to (generalised) ingoing Eddington-Finkelstein coordinates requires a transforma-
tion (t, r, ϑ, ϕ) 7→ (t̃, r̃, ϑ̃, ϕ̃) that maps the ingoing principal null geodesics onto straight lines
under 45o degrees. From (315) we read that this is achieved by setting

c dt̃ = c dt+
2mr

∆
dr , dr̃ = dr , dϑ̃ = dϑ , dϕ̃ = dϕ+

a

∆
dr . (316)

Then the ingoing principal null geodesics are indeed given by

c
dt̃

dr̃
= −1 ,

dϑ̃

dr̃
= 0 ,

dϕ̃

dr̃
= 0 , (317)

and the outgoing ones by

c
dt̃

dr̃
=
r2 + a2 + 2mr

∆
,

dϑ̃

dr̃
= 0 ,

dϕ̃

dr̃
=

2 a

∆
. (318)
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These curves are plotted below in a (r̃ = r, c t̃) diagram. Again, we assume that 0 < a2 < m2.
For a → 0 this picture reduces to the plot of the radial and lightlike Schwarzschild geodesics
in ingoing Eddington-Finkelstein coordinates, recall the diagram on p.12. The ϕ̃ and ϑ̃ = ϑ
coordinates are not shown in the diagram. Keep in mind that only the ingoing principal null
geodesics have ϕ̃ = constant while the outgoing ones approach the horizons in an infinite whirl.

=

IIIIII

r̃

c t̃

0 r− r+

In the case 0 < a2 = m2 the two horizons come together and the region II is gone. In the case
m2 < a2 there are no horizons; in the r − ct plot all principal null geodesics go from +∞ to
−∞ or vice versa, except for the ones with ϑ = π/2 which are blocked at the ring singularity.

Here we have constructed a black hole by using the (generalised) ingoing Eddington-Finkelstein
coordinates. There are of course analogously defined outgoing coordinates which join the regions
I, II and III to produce a Kerr white-hole spacetime. The (generalised) ingoing Eddington-
Finkelstein coordinates (t̃, r̃, ϑ̃, ϕ̃) are related to the Kerr coordinates (û, r̂, ϑ̂, ϕ̂) which were
used by Roy Kerr in his original publication by the simple relations û = c t̃ + r̃, r̂ = r̃, ϑ̂ = ϑ̃
and ϕ̂ = ϕ̃.

As the Kerr spacetime is not spherically sym-
metric, we cannot draw a Penrose diagram
in the strict sense. However, if we restrict to
motion along the axis ϑ = 0 (or ϑ = π), we
can draw a Penrose diagram for this (1 + 1)
dimensional spacetime. Note that ingoing
and outgoing principal null geodesics that
start tangentially to the axis remain tan-
gential everywhere. The figure on the right
shows the Penrose diagram for the axis of a
Kerr black hole with 0 < a2 < m2. In the
extreme case, a2 = m2, there is no region II.
The r-coordinate ranges from −∞ to ∞. As
we are on the axis, the ring singularity is not
met.

I

II

III

r = ∞

r = r+

r = r−

r = −∞
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The maximal analytic extension of the Kerr black-hole spacetime restricted to the axis gives a
Penrose diagram with infinitely many copies of the regions I, II and III, see below.

I

II

II ′

II ′′

III ′

I ′′III

r = ∞

r = ∞

r = ∞

r = ∞

r = ∞

r = ∞

r = r+

r = r+

r = r+

r = r+

r = r+

r = r+

r = r−

r = r−

r = r−

r = r−

r = r−

r = r−

r = −∞

r = −∞

r = −∞

r = −∞

r = −∞

r = −∞

In the extreme case 0 < a2 = m2 the regions II are gone, i.e., there are infinitelky many copies
of region I and region III only. In the naked-singularity case m2 < a2 there is only one block,
with r = ∞ at the upper right and at the lower right, and r = −∞ at the upper left and at
the lower left.

(d) The Killing vector fields ∂t and ∂ϕ
We have already mentioned that the metric coefficients are independent of t and of ϕ, so the
vector fields ∂t and ∂ϕ are Killing vector fields. On a domain where ∂t is timelike (gtt < 0),
we may interpret the transformation t → t + constant as a time translation; invariance under
this transformation then means that the metric is stationary. Similarly, on a domain where
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∂ϕ is spacelike (gϕϕ > 0), we may interpret the transformation ϕ → ϕ + constant as a spatial
rotation about the z axis; invariance under this transformation then means that the metric is
axisymmetric. From the fact that the metric approaches the Minkowski metric for r → ∞ it
follows that the conditions gtt < 0 and gϕϕ > 0 are indeed satisfied for large r. In the inner part
of the spacetime, however, these conditions are violated. The region where gtt > 0 is bounded
by two surfaces which are known as the “stationarity limit surfaces”. They are determined by

0 = gtt = 1− 2mr

ρ2
, 0 = r2 + a2cos2ϑ− 2mr , a2sin2ϑ = ∆ . (319)

Clearly, these surfaces lie in the region where ∆ ≥ 0 and equality, ∆ = 0, holds exactly at the
poles sin ϑ = 0 if a 6= 0. In the black-hole case 0 < a2 ≤ m2 one stationarity limit surface lies
in the region r > r+ and touches the outer horizon at the poles, while the other stationarity
limit surface lies in the region r < r− and touches the inner horizon at the poles.

The region between the outer stationarity limit surface and the outer horizon is known as the
ergoregion. This name refers to the fact that energy can be extracted from a Kerr black hole
by dropping a particle into the ergoregion, splitting it into two particles there and getting one
of them back with a higher energy than the compound had had before. This socalled Penrose
process will be discussed later when we have the equations for timelike geodesics in the Kerr
spacetime at our disposal. In the ergoregion a timelike vector must have a non-vanishing ϕ
component, as can be read from the metric, i.e., “all observers must rotate”.

In the Schwarzschild case
a → 0 the outer station-
arity limit surface merges
with the horizon at r =
2m (while the inner one
merges with the curva-
ture singularity at r =
0), so there is no ergore-
gion in this case.

The picture on the right
shows for a Kerr black
hole with a = 0.9m the
ergoregion (dark shaded)
and the rest of the do-
main where gtt > 0 (light
shaded). We have indi-
cated the sphere r = 0
by a red dashed line, the
ring singularity by a red
blob and the horizons by
solid lines. The picture
is rotationally symmetric
about the vertical axis.

er/m

r = 0

r = r+

r = r−
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The region where gϕϕ < 0, i.e.

(r2 + a2)ρ2 + 2mra2sin2ϑ < 0 ,

lies completely in the domain r < 0 and
touches the ring singularity. It is known as
the causality violating region. In this region
the ϕ lines, which are circles in the space-
time, are timelike. An observer can move
along such a line and thereby return to his
or her own past. Closed timelike curves lead
to the familiar kind of paradoxa, e.g., to the
possibility of killing one’s parents before be-
ing born. In the case of a Kerr black hole
the region with closed timelike curves is ac-
cessible only for those observers who actually
jump into the black hole; for an observer in
the domain of outer comunication it is with-
out relevance.

The plot on the right shows the causality vi-
olating region (shaded) for a Kerr black hole
with a = 0.9m. As before, we have marked
the sphere r = 0 by a red dashed line and the
ring singularity by a red blob. On the bound-
ary of the causality violating region the ϕ
lines are lightlike.

er/m

r = 0

Although we have seen that, in the black-hole case 0 < a2 ≤ m2, the vector field ∂t fails to be
timelike inside the ergoregion, it is nonetheless justified to say that the spacetime is stationary
on the entire domain of outer communication. The reason is that, near any radius value r0 with
r+ < r0 <∞, it is possible to find a constant Ω such that the vector field ∂t + Ω∂ϕ is timelike
near r0. So there is always a family of observers, defined on a spherical shell r0−ε < r < r0+ε,
who see a time-independent metric. The vector field ∂t is distinguished among all vector fields
of the form ∂t + Ω∂ϕ by the fact that it is timelike in the limit r → ∞.

(e) Stationary observers and ZAMOs
Observers whose worldlines are t lines are called stationary. They exist only in the domain
where gtt < 0, i.e. between the outer stationarity limit surface and r = ∞ and between the
inner stationarity limit surface and r = −∞. In particular, stationary observers do not exist
in the ergoregion. We will now investigate on which part of the spacetime the hypersurfaces
t = constant are spacelike. In the Schwarzschild case, where the t-lines were orthogonal to
the hypersurfaces t = constant, the t-lines were timelike exactly on the same domain where
the hypersurfaces t = constant were spacelike, namely on the domain of outer communication
where r > rS = 2m. In the Kerr case, where the t-lines are not orthogonal to the hypersurfaces
t = constant, this is different.
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The Kerr metric (301) induces a 3-dimensional metric on each hypersurface t = constant which
is determined by setting dt equal to zero. As the resulting metric is diagonal, it is positive
definite if and only if grr > 0, gϑϑ > 0 and gϕϕ > 0, i.e., the hypersurfaces t = constant
are spacelike if and only if these three conditions are satisfied. From the metric we read that
grr > 0 is equivalent to ∆ > 0, i.e., it holds everywhere except between the two horizons.
The condition gϑϑ > 0 is true everywhere and the condition gϕϕ > 0 holds everywhere except
in the causality violating region. This demonstrates that all three conditions are satisfied, in
particular, on the entire domain of outer communication of a Kerr black hole, 0 < a2 ≤ m2,
i.e., on the entire domain where r > r+. If the hypersurfaces t = constant are spacelike, the
worldlines orthogonal to these hypersurfaces are timelike, i.e., they are possible worldlines of
observers. These observers are known as Zero Angular Momentum Observers, often abbreviated
as ZAMOs. In contrast to the stationary observers they exist on the entire domain of outer
communication, including the ergoregion. We will now calculate their 4-velocities.

As ∂r and ∂ϑ are orthogonal to both ∂t and ∂ϕ the 4-velocity of a ZAMO must be of the form

Uµ∂µ = α
(
∂t + ω ∂ϕ

)
(320)

where α and ω are functions of r and ϑ. The condition

0 = g
(
Uµ∂µ, ∂ϕ

)
= α

(
gtϕ + ω gϕϕ

)
(321)

gives

ω = − gtϕ
gϕϕ

(322)

and the condition
−c2 = g

(
Uµ∂µ, U

ν∂ν
)
= α2

(
gtt + 2ωgtϕ + ω2gϕϕ

)
(323)

gives

α = c
(

− gtt +
✁2 g2tϕ
gϕϕ

−
�
�
�
��g2tϕ

g2ϕϕ
gϕϕ

)−1/2

, (324)

hence

Uµ∂µ =
c
(
gϕϕ ∂t − gtϕ ∂ϕ

)

√
gϕϕ

√

−gttgϕϕ + g2tϕ

. (325)

The qantity under the square-root in the denominator is minus the determinant of the t − ϕ
block of the matrix (gµν), which can be calculated:

D := gttgϕϕ − g2tϕ = −c2
(

1− 2mr

ρ2

)

sin2ϑ
(

r2 + a2 +
2mra2sin2ϑ

ρ2

)

− 4m2r2a2c2sin4ϑ

ρ4

=
c2sin2ϑ

ρ4

(

−
(
ρ2 − 2mr

)((
r2 + a2

)
ρ2 + 2mra2sin2ϑ

)

− 4m2r2a2sin2ϑ
)

=
c2sin2ϑ

ρ✁42

(

− ρ✁42(r2 + a2)− ✓✓ρ
22mra2sin2ϑ+ 2mr(r2 + a2)✓✓ρ

2
)

=
c2sin2ϑ

✓✓ρ
2

(

− ✓✓ρ
2(r2 + a2) + 2mr✭✭✭✭✭✭✭✭

(r2 + a2cos2ϑ)
)

= −c2∆sin2ϑ . (326)

Note that gtϕ → 0 for r → ±∞, i.e., in this limit the stationary observers and the ZAMOs
coincide.
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6.2 Lightlike and timelike geodesics of the Kerr metric

The geodesics of the Kerr metric have a very rich structure. Even after having worked with
them for many years one still discovers features one hadn’t known before. Therefore we can
give only a few selected results here. In view of physical interpretation, we are interested in
lightlike geodesics (light signals or classical photons) and in timelike geodesics (freely falling
massive particles).

Recall that for any metric the geodesics are the solutions to the Euler-Lagrange eqations with
the Lagrangian

L(x, ẋ) = 1

2
gµν(x)ẋ

µẋν . (327)

The Lagrangian itself is always a constant of motion

gµν(x)ẋ
µẋν = −ε c2 (328)

where ε = 0 for lightlike geodesics and ε = 1 for timelike geodesics parametrised by proper
time. In the following we will not discuss spacelike geodesics but they are also covered by our
equations if we allow ε to be a negative constant.

For the Kerr metric in Boyer-Lindquist coordinates x = (t, r, ϑ, ϕ), the metric coefficients are
independent of t and of ϕ. The corresponding components of the Euler-Lagrange equation give
us two constants of motion,

E = −∂L(x, ẋ)
∂ṫ

= −gttṫ− gtϕϕ̇ and L =
∂L(x, ẋ)
∂ϕ̇

= gtϕṫ + gϕϕϕ̇ . (329)

Up to dimensional factors, E is to be interpreted as the energy of the classical photon or the
massive particle, while L is to be interpreted as the z component of its angular momentum. (It
would be more appropriate to write Lz instead of L, but for the sake of brevity we stick with
L.)

The equations for E and L can be solved for ṫ and ϕ̇,

gϕϕE + gtϕL = −(gttgϕϕ − g2tϕ)ṫ , (330)

gtϕE + gttL = (gttgϕϕ − g2tϕ)ϕ̇ . (331)

Upon inserting D = gttgϕϕ − g2tϕ from (326) we get

ρ2 ṫ =
✘✘✘
sin2ϑ

(
(r2 + a2)ρ2 + 2mra2sin2ϑ

)
E − 2mra✘✘✘

sin2ϑ cL

c2∆✘✘✘
sin2ϑ

, (332)

ρ2ϕ̇ =
− ✁c 2mrasin

2ϑE − c✁2
(
ρ2 − 2mr

)
L

c✁2∆sin2ϑ
. (333)

For any choice of the constants of motion, these two equations determine t and ϕ as functions
of the curve parameter if r and ϑ are known as functions of the curve parameter. However,
the third constant of motion L(x, ẋ) = −εc2/2 gives us only one equation for the two unknown
functions r and ϑ.
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In the case of spherical symmetry we could restrict to the equatorial plane, ϑ = π/2, without
loss of generality. Then we had three constants of motion (E, L and L) for a dynamical system
with three degrees of freedom (t, ϕ and r), and the Euler-Lagrange equations reduced to three
first-order equations that could be solved for ṫ, ϕ̇ and ṙ. The geodesics could then be written
in terms of integrals over the metric coefficients and the constants of motion. A dynamical
system with n degrees of freedom allows such a reduction to first-order form whenever there
are n independent constants of motion with pairwise vanishing Poisson brackets. If this is
the case the dynamical system is called “completely integrable” or “integrable in the sense of
Liouville”. For the Kerr metric, which is only axisymmetric but not spherically symmetric, we
cannot restrict to the equatorial plane; the geodesics are not in general contained in a plane.
So our dynamical system has four degrees of freedom (t, ϕ, r and ϑ) while from the symmetries
of the spacetime we get only three constants of motion (E, L and L). This seems to indicate
that the geodesic equation in the Kerr metric fails to be completely integrable.

Fortunately, this is not the case. It was discovered by Brandon Carter that there is a fourth
constant of motion which is not related to any symmetry of the spacetime. Together with the
constants of motion E, L and L the Carter constant K secures complete integrability of the
Kerr geodesic equation. It is true that every constant of motion is related with a symmetry
transformation on the phase space, i.e., on the (co)tangent bundle over spacetime, but not in
general to a symmetry of the spacetime. A constant of motion is related to a symmetry of
the spacetime, i.e., to a Killing vector field, if and only if it is linear in the velocities ẋµ or,
equivalently, in the momenta pµ = gµν ẋ

ν . The Carter constant is quadratic in the ẋµ, as we
will see.

Carter found the constant of motion that is named after him by working in the Hamiltonian,
rather than the Lagrangian, formalism. The Carter constant made its appearance as a separa-
tion constant for the Hamilton-Jacobi equation. We will follow this path now in detail.

For the geodesic equation of any spacetime, we can pass from the Lagrangian to the Hamiltonian
formalism by introducing the canonical momenta

pµ =
∂L(x, ẋ)
∂ẋµ

= gµν(x)ẋ
ν . (334)

This equation can be solved for the velocities by multiplying with gσµ,

ẋσ = gσµ(x)pµ . (335)

The Hamiltonian is

H(x, p) = ẋµpµ −L(x, ẋ) = ẋµpµ −
1

2
gτσ(x)ẋ

τ ẋσ

= gµν(x)pνpµ −
1

2
gτσ(x)g

τµpµg
σνpν

= gµν(x)pνpµ −
1

2
δµσpµg

σν(x)pν =
1

2
gµν(x)pνpµ . (336)
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Note that

H(x, p) = L(x, ẋ) = −1

2
ε c2 , (337)

i.e. the Hamiltonian is given by the same quantity as the Lagrangian, just expressed in terms
of the momenta instead of the velocities. This is a consequence of the fact that the Lagrangian
is a quadratic form in the velocities.

In particular, the Hamiltonian is a constant of motion which is always true if the Hamiltonian
does not explicitly depend on the curve parameter. It is then possible to solve the equations of
motion with the help of the time-independent Hamilton-Jacobi equation (where “time” refers
to the curve parameter),

H
(
x, ∂S/∂x

)
= − 1

2
ε c2 . (338)

Here the notation means that in the argument of the Hamiltonian we have to replace pµ with
the partial derivative ∂S/∂xµ of a function S(x) = S(t, ϕ, r, ϑ) that is to be determined. The
goal is to find a complete integral of this partial differential equation, i.e., a solution S(x) that
involves as many independent constants as the system has degrees of freedom. In our case, we
need three constants of motion in addition to H = −ε c2/2.
The usual first try to find such a solution is with a separation ansatz,

S(t, ϕ, r, ϑ) = St(t) + Sϕ(ϕ) + Sr(r) + Sϑ(ϑ) . (339)

From classical mechanics we know that it is always possible to separate off a cyclic coordinate,
i.e., a coordinate that does not occur in the Hamiltonian. Then the corresponding momentum
is a constant of motion and the function S is linear in the cyclic coordinate, with the constant
of motion as the pre-factor. As we know that t and ϕ are cyclic coordinates, with corresponding
constants of motion pt = −E and pϕ = L, we specify the separation ansatz according to

S(t, ϕ, r, ϑ) = −Et+ Lϕ + Sr(r) + Sϑ(ϑ) . (340)

We have to plug this ansatz into the Hamilton-Jacobi equation. For that purpose we need
the contravariant metric coefficients gµν . The matrix of covariant components gµν of the Kerr
metric is of the form

(
gµν
)
=







gtt gtϕ 0 0
gtϕ gϕϕ 0 0
0 0 grr 0
0 0 0 gϑϑ







. (341)

With the determinant D from (326) we calculate the inverse matrix:

(
gµν
)
=







D−1gϕϕ −D−1gtϕ 0 0
−D−1gtϕ D−1gtt 0 0

0 0 g−1
rr 0

0 0 0 g−1
ϑϑ







=







gtt gtϕ 0 0
gtϕ gϕϕ 0 0
0 0 grr 0
0 0 0 gϑϑ







(342)
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So the Hamilton-Jacobi equation reads

gttE2 − 2gtϕEL+ gϕϕL2 + grrS ′
r(r)

2 + gϑϑS ′
ϑ(ϑ)

2 = −ε c2 ,

gϕϕE
2

D
+

2gtϕEL

D
+
gttL

2

D
+ g−1

rr S
′
r(r)

2 + g−1
ϑϑS

′
ϑ(ϑ)

2 = −ε c2 ,

−
✘✘✘sin2ϑ

(

r2 + a2 +
2mra2sin2ϑ

ρ2

)

E2

c2∆✘✘✘
sin2ϑ

+
4mra✘✘✘sin2ϑ ✁cEL

ρ2c✁2∆✘✘✘
sin2ϑ

+
��c2
(

1− 2mr

ρ2

)

L2

��c2∆sin2ϑ

+
∆

ρ2
S ′
r(r)

2 +
1

ρ2
S ′
ϑ(ϑ)

2 = −ε c2 ,

(

− (r2 + a2)(r2 + a2 − a2sin2ϑ)− 2mra2sin2ϑ)
) E2

c2∆
+

4mraEL

c∆

+
(
r2 + a2 − a2sin2ϑ− 2mr

) L2

∆sin2ϑ
+∆S ′

r(r)
2 + S ′

ϑ(ϑ)
2 = −ε c2ρ2 ,

−(r2 + a2)2
E2

c2∆
+

��∆a
2sin2ϑE2

c2��∆
+

4mraEL

c∆
+

��∆L
2

��∆sin2ϑ

−a
2✘✘✘
sin2ϑL2

∆✘✘✘
sin2ϑ

+∆S ′
r(r)

2 + S ′
ϑ(ϑ)

2 = −ε c2(r2 + a2cos2ϑ) ,

− 1

∆

(

(r2 + a2)
E

c
− aL

)2

−✘✘✘✘✘✘✘✘2(r2 + a2)aEL

∆c
+
( L

sinϑ
− a

c
sinϑE

)2

+
✟✟✟✟✟✟✟2a sinϑEL

c sinϑ
+

✟✟✟✟✟4mraEL

c∆
+∆S ′

r(r)
2 + S ′

ϑ(ϑ)
2 = −εr2 − ε c2a2cos2ϑ .

S ′
ϑ(ϑ)

2 +
( L

sinϑ
− a

c
sin ϑE

)2

+ ε c2a2cos2ϑ

= −∆S ′
r(r)

2 +
1

∆

(

(r2 + a2)
E

c
− aL

)2

− ε c2r2 =: K . (343)
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The first expression is independent of r whereas the second expression is independent of ϑ.
This implies that K depends neither on r nor on ϑ, so it is a constant of motion. K is the
Carter constant.

With S ′
ϑ(ϑ) = pϑ and S ′

r(r) = pr we have found that

p2ϑ = K −
( L

sinϑ
− a

c
sin ϑE

)2

− ε c2a2cos2ϑ , (344)

∆p2r = −K +
1

∆

(

(r2 + a2)
E

c
− aL

)2

− ε c2r2 . (345)

Now we have all four components of the equation of motion in first-order form: The equations
(332) and (333) above give us ṫ and ϕ̇,

ρ2 ṫ =

(

(r2 + a2)ρ2 + 2mra2sin2ϑ
)

E − 2mracL

c2∆
, (346)

ρ2ϕ̇ =
− 2mra sin2ϑE − c

(
ρ2 − 2mr

)
L

c∆sin2ϑ
. (347)

The two equations (344) and (345), with pϑ = gϑϑϑ̇ = ρ2ϑ̇ and pr = grrṙ = ρ2ṙ/∆, give us ϑ̇
and ṙ:

ρ4ϑ̇2 = K −
( L

sinϑ
− a

c
sinϑE

)2

− ε c2a2cos2ϑ , (348)

ρ4ṙ2 = −K∆+
(

(r2 + a2)
E

c
− aL

)2

− ε c2r2∆ . (349)

(346), (347), (348) and (349) determine the geodesics.

Note that the right-hand side of (348) depends only on ϑ while the right-hand side of (349)
depends only on r. So the only coupling of the r motion to the ϑ motion is through the ρ4

term on the left-hand side. One can completely decouple the two equations by introducing the
(Zakharov-)Mino parameter, λ, which is related to the affine parameter s we have used for the
parametrisation by

ds

dλ
= ρ2 . (350)

Then we have

ρ2( · )· = d

dλ
( · ) . (351)

If we write the left-hand sides of (346), (347) , (348) and (349) with the derivatives with respect
to λ, the r motion is completely decoupled from the ϑ motion. For any choice of the constants
of motion (which determine the initial velocities) and any choice of initial conditions ϑ(0) and
r(0) we can solve (348) and (349) to get ϑ(λ) and r(λ). This can be done by separation of
variables, resulting in elliptic integrals. Upon inserting these results into (346) and (347) we
can determine t(λ) and ϕ(λ) by integrating these equations with initial conditions t(0) and
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ϕ(0). Finally, we can express the result
(
t(λ), ϕ(λ), ϑ(λ), r(λ)

)
in terms of the affine parameter

s (i.e., proper time in the case of timelike geodesics) instead of the (Zakharov-)Mino parameter
λ if we like to do so. In this way we get all the geodesics in the Kerr spacetime. We will see
in the following that, actually, for several special classes of geodesics the solution can be found
without using the (Zakharov-)Mino parameter.

Of course, one is free to choose any four independent combinations of the constants of motion
(ε, E, L,K) for characterising a geodesic. For some applications it is advantageous to use
(ε, E, L,Q) where

Q = K − (L− aE/c)2 . (352)

The name “Carter constant” is frequently used for Q as well. K has a more direct interpretation

than Q because in the case of a non-spinning black hole (a = 0) it reduces to
∣
∣~L
∣
∣2 where – up

to a dimensional factor – ~L is the angular momentum vector. (Keep in mind that, by abuse of

notation, we use the letter L for the z component of ~L, i.e., L2 =
∣
∣~L
∣
∣
2
only for motion in the

equatorial plane.)

We will now study some aspects of lightlike and timelike geodesics separately.

(a) Lightlike geodesics

We will now investigate the spherical lightlike geodesics which are crucial for constructing the
shadow of a Kerr black hole. Recall that in the Schwarzschild case the boundary curve of the
shadow was determined by lightlike geodesics that asymptotically spiral towards the photon
sphere at r = 3rS/2 = 3m. As the spherical symmetry is broken in the Kerr spacetime,
we cannot expect that there still is a photon sphere. We will see that the photon sphere is
replaced by a photon region which is filled with lightlike geodesics each of which stays on a
sphere r = constant. Such geodesics are called “spherical”.

We specify the equations (348) and (349) to the case that we have a lightlike geodesic, i.e.,
ε = 0:

ρ4ϑ̇2 = K −
( L

sin ϑ
− a

c
sinϑE

)2

=: Θ(ϑ) , (353)

ρ4ṙ2 = −K∆+
(

(r2 + a2)
E

c
− aL

)2

=: R(r) . (354)

Spherical lightlike geodesics have to satisfy ṙ = 0 and r̈ = 0, so by (354) the two equations
R(r) = 0 and R′(r) = 0 have to hold. This gives us the following two equations:

0 = −K
(
r2 + a2 − 2mr

)
+
(

(r2 + a2)
E

c
− aL

)2

, (355)

0 = −K(✚✚2 r −✚✚2m) +✚✚2
(

(r2 + a2)
E

c
− aL

) 2rE

c
. (356)

We multiply the first equation with (r−m) and the second with ∆ = r2+ a2− 2mr. Then the
difference of the two equations yields

0 =
✘✘✘✘✘✘✘✘✘✘✘(

(r2 + a2)
E

c
− aL

){(

(r2 + a2)
E

c
− aL

)(
r −m

)
− 2rE

c

(
r2 + a2 − 2mr

)}

,
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aL
(
r −m

)
=

E

c

((
r2 + a2

)(
r −m

)
− 2r∆

)

,

ac
L

E
= r2 + a2 − 2r∆

r −m
. (357)

To determine K, we insert (357) into (356) ,

0 = −K
(
r −m

)
+
(

(r2 + a2)− ac
L

E

) 2rE2

c2
.

c2K

E2

(
r −m

)
=
(

��r
2 +��a

2 −��r
2 −��a

2 +
2 r∆

r −m

)

2 r ,

c2K

E2
=

4 r2∆

(r −m)2
. (358)

(357) and (358) determine the constants of motion for spherical lightlike geodesics at radius
coordinate r.

To find out at which r values spherical lightlike geodesics actually exist, we need to evaluate
(353). As the left-hand side of this equation is the square of a real quantity, it cannot be
negative, hence we must have Θ(ϑ) ≥ 0:

K −
( L

sin ϑ
− a

c
sinϑE

)2

≥ 0 ,

c2K

E2
−

(acL

E
− a2 sin2ϑ

)2

a2 sin2ϑ
≥ 0 ,

4 r2∆

(r −m)2
−

(

r2 + a2 − 2r∆

r −m
− a2 sin2ϑ

)2

a2 sin2ϑ
≥ 0 ,

4 r2∆ a2 sin2ϑ −
(
r −m

)2
(

ρ2 − 2r∆

r −m

)2

≥ 0 ,

(

ρ2
(
r −m

)
− 2r∆

)2

≤ 4 r2∆ a2 sin2ϑ . (359)

This inequality determines the photon region. For a = 0, the right-hand side vanishes, so the
left-hand side must be equal to zero, 0 = r2(r −m)− 2r(r2 − 2mr) = 3r2m− r3. In this case
the photon region reduces to the photon sphere, r = 3m = 3rS/2. In the case a 6= 0, however,
it is not a 2-dimensional surface in space, but rather a 3-dimensional region with a boundary.

Through each point of the photon region there is a spherical lightlike geodesic. Along each
of these geodesics, the ϑ coordinate oscillates between a maximal and a minimal value; the
turning points of the ϑ motion occur on the boundary of the photon region where Θ(ϑ) = 0.
The ϕ motion of a spherical lightlike geodesic may be quite complicated; in the ergoregion it
may even be non-monotonous.

For 0 < a2 < m2, the photon region consists of three connected components: An exterior
photon region in the domain r > r+ and two interior photon regions in the domain r < r−
that are separated from each other by the ring singularity. In the exterior photon region all
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spherical lightlike geodesics are unstable with respect to radial perturbations, as can be verified
by calculating the sign of R′′(r). Therefore, these spherical lightlike geodesics can serve as
limit curves for lightlike geodesics that approach them asymptotically. In the interior photon
regions there are both stable and unstable spherical lightlike geodesics. For the formation of
the shadow, only the exterior photon region is of relevance. The exterior photon region has a
crescent-shaped cross section, which becomes bigger and bigger with increasing a. For a → 0
it shrinks to the photon sphere at r = 3m as already mentioned.

The picture on the left shows the photon regions for a Kerr black hole of a = 0.75m in a
diagram where er/m is the radius coordinate, the picture on the right gives an enlarged view
of the interior region. Unstable spherical lightlike geodesics exist in the blue region, stable
ones in the green region. The domain between the two horizons is shown in black. The ring
singularity is indicated by red blobs and the throats at (r = 0, cosϑ 6= 0) by red dashed half-
circles. The causality violating region, where gϕϕ < 0, is marked in orange, cf. p. 88. In
each of the two pictures a black line shows the projection of one particular spherical lightlike
geodesic. In Worksheet 11 we will discuss the special case of circular lightlike geodesics. In a
Kerr spacetime with a 6= 0, there are exactly five of them, three in the equatorial plane and two
off the equatorial plane. In the domain of outer communication, r > r+, there are two circular
lightlike geodesics which are situated at the intersection of the boundary of the photon region
with the equatorial plane; the outer one is counter-rotating and the inner one is co-rotating
with the black hole.

To construct the shadow of a Kerr black hole, we fix an observer in the domain of outer
communication, i.e., at Boyer-Lindquist coordinates (rO, ϑO) with rO > r+. Clearly, the shape
of the shadow at the observer’s celestial sphere will depend on the observer’s state of motion.
We do the calculation for one particular observer; for any other observer that passes through
the same event with a different 4-velocity the shadow is then determined by the aberration
formula. In the Schwarzschild case, we have assumed that the observer is static, i.e., that his
worldline is a t line. In the Kerr spacetime we will not choose an observer moving on a t line
because this would exclude the ergoregion.
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We find it more convenenient to choose instead an observer associated with the tetrad

e0 =
(r2 + a2)∂t + ac∂ϕ

c ρ
√
∆

∣
∣
∣
(rO ,ϑO)

, e1 =
∂ϑ
ρ

∣
∣
∣
(rO,ϑO)

,

e2 =
− c ∂ϕ − a sin2ϑ ∂t

c ρsinϑ

∣
∣
∣
(rO,ϑO)

, e3 =
−
√
∆ ∂r
ρ

∣
∣
∣
(rO,ϑO)

. (360)

It is readily verified that this tetrad is pseudo-orthonormal, g(eµ, eν) = ηµν . We interpret e0 as
the 4-velocity of our observer; then e1, e2 and e3 form an orthonormal basis in the rest space
of the observer.

Note that the observer’s 4-velocity is chosen such that e0 is in the plane spanned by the ingoing
and outgoing principal null directions. This follows immediately from the representation of
principal null geodesics given in (315).

For the construction of the shadow we have to consider past-oriented lightlike geodesics issuing
from the position of the observer. If such a geodesic is given as a curve

(
t(s), ϕ(s), ϑ(s), r(s)

)

parametrised by an affine parameter s, its tangent vector k at the observation event is

k = ṫ∂t + ϕ̇∂ϕ + ϑ̇∂ϑ + ṙ∂r . (361)

On the other hand, as k is lightlike and past-pointing, it can be written as

k = N
(
− e0 + cosψ sin θ e1 + sinψ sin θ e2 + cos θ e3

)
(362)

with some positive factorN . This equation determines the celestial coordinates (ψ, θ) associated
with the direction of the light ray. According to our choice of the tetrad, θ = 0 corresponds to
the direction towards the black hole.

We now calculate succesively g(k, e0), g(k, e1), g(k, e2) and g(k, e3) from (362) and insert (361).
This results in the following four equations.

N = g(k, e0) = g
(

ṫ∂t + ϕ̇∂ϕ,
(r2 + a2)∂t + ac∂ϕ

c ρ
√
∆

)

=
(r2 + a2)

(
ṫ gtt + ϕ̇ gtϕ

)

c ρ
√
∆

+
a
(
ṫ gtϕ + ϕ̇ gϕϕ

)

ρ
√
∆

=
−(r2 + a2)E

c ρ
√
∆

+
aL

ρ
√
∆
, (363)

N cosψ sin θ = g(k, e1) = g
(

ϑ̇∂ϑ,
∂ϑ
ρ

)

=
ϑ̇ gϑϑ
ρ

= ϑ̇ ρ , (364)

N sinψ sin θ = g(k, e2) = g
(

ṫ∂t + ϕ̇∂ϕ,
− c ∂ϕ − a sin2ϑ ∂t

c ρ sinϑ

)

= − ṫgtϕ + ϕ̇gϕϕ
ρ sinϑ

− a sinϑ
(
ṫgtt + ϕ̇gtϕ

)

c ρ
= − L

ρ sin ϑ
+
a sin ϑE

c ρ
, (365)

N cos θ = g(k, e3) = − g
(

ṙ∂r,

√
∆

ρ
∂r

)

= − ṙ
√
∆ grr
ρ

= − ṙ ρ√
∆
. (366)
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Here all metric functions have to be evaluated at the position of the observer. (364) and (365)
imply

sinψ

cosψ
=

− L

ρ sin ϑ
+
a sinϑE

c ρ

ϑ̇ ρ
,

ρ4 ϑ̇2
sin2ψ

cos2ψ
=
( L

sin ϑ
− a sinϑE

c

)2

,

ρ4 ϑ̇2 sin2ψ =
( L

sinϑ
− a sin ϑE

c

)2(
1− sin2ψ

)
,

{

ρ4 ϑ̇2 +
( L

sin ϑ
− a sinϑE

c

)2}

sin2ψ =
( L

sin ϑ
− a sinϑE

c

)2

, (367)

and with (353)

K sin2ψ =
E2

c2 a2 sin2ϑ

(caL

E
− a2 sin2ϑ

)2

,

sin2ψ =

(caL

E
− a2 sin2ϑ

)2

c2K

E2
a2 sin2ϑ

∣
∣
∣
∣
∣
ϑ=ϑO

(368)

where in the last line we have made explicit that the metric functions have to be evaluated at
the position of the observer.

Similarly, (363) and (366) imply

cos θ =

− ṙ ρ√
∆

−(r2 + a2)E

c ρ
√
∆

+
aL

ρ
√
∆

=
ṙ ρ2

(r2 + a2)E

c
− aL

,

(
1 − sin2θ

)((r2 + a2)E

c
− aL

)2

= ρ4ṙ2 ,

−ρ4ṙ2 +
((r2 + a2)E

c
− aL

)2

=
((r2 + a2)E

c
− aL

)2

sin2θ . (369)

With (354) this results in

∆K =
E2

c2

(

r2 + a2 − caL

E

)2

sin2θ ,

sin2θ =
∆
c2K

E2
(

r2 + a2 − caL

E

)2

∣
∣
∣
∣
∣
r=rO

(370)

where, again, in the last line we have made explicit that the metric funtions have to be evaluated
at the position of the observer. (368) and (370) determine for each lightlike geodesic with known
constants of motion L/E and K/E2 the celestial coordinates (ψ, θ).
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Now recall from our discussion of the Schwarzschild metric how the shadow of a black hole
is defined: We assume that there are light sources distributed everywhere but not between
the black hole and the observer. We divide into two classes the light rays issuing from the
observer into the past: The geodesics in one class go out to infinity after being deflected by the
black hole, so they can reach a light source. The geodesics of the other class go towards the
horizon, so they do not reach one of the light sources. In the Schwarzschild case, the borderline
between the two classes corresponded to light rays that spiraled towards the photon sphere at
r = 3rS/2 = 3m. In the Kerr case, the circular orbits at the photon sphere are replaced by
the spherical orbits in the photon region. In other words, for determining the boundary curve
of the shadow we have to determine those lightlike geodesics that asymptotically approach a
spherical lightlike geodesic.

If two geodesics become asymptotically tangent to each other, they must have the same con-
stants of motion. This follows from the fact that the constants of motion are determined by
the tangent of the geodesic at any one point. So the lightlike geodesics that correspond to the
boundary curve of the shadow must have the constants of motion given by (357) and (358),
where r ranges over the radius values allowed by the inequality (359) for the photon region.
Having determined the constants of motion as a function of the parameter r in this way, we
plug the corresponding expressions into the right-hand sides of (368) and (370). This gives us
the boundary of the shadow as a curve parametrised by r on the celestial sphere of the observer,
(
ψ(r), θ(r)

)
. This is a fully analytic representation of the boundary curve. For each choice of a

with 0 < a2 ≤ m2 and of the observer position (rO, ϑO) the result can be easily plotted, where
we have to represent the celestial sphere of the observer in an appropriate way. It is convenient
to use stereographic projection with the direction towards the black hole, θ = 0, as the origin.

The two images show the shadow for an observer at (rO = 6m,ϑO = π/2) in stereographic
projection. The dashed line marks the celestial equator θ = π/2. On the left, the spin is chosen
to be a = 0.7m; in this case, the deviation of the shadow from a circular shape is not easily
visible to the naked eye. (Note that an observer wouldn’t see in the sky the cross-hairs that
indicate the direction towards the black hole !) On the right, the black hole is extreme, a = m.
In this case the deviation from the circular shape is conspicuous. The asymmetry is easily
understood from the fact that a rotating black hole “drags” the light rays. As we have chosen
positive a values, the spin vector is pointing up in the pictures. In the case that the spin vector
points down the shadow is flattened on the right.
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The pictures below show the shadow of an extreme black hole, a = m, as seen by observers at
rO = 5m and different inclination angles. For ϑO = π/2 (observer in the equatorial plane), the
asymmetry is obvious; for ϑO = 0, or ϑO = π, (observer on the axis) the shadow is again circular,
which is clear from the rotational symmetry about the axis. So if we look approximately from
the top or from the bottom onto a black hole, the shadow doesn’t tell us whether or not the
black hole is spinning. This seems to be the case for the shadow of M87∗, and, surprisingly,
also for the shadow of SgrA∗, recall p. 42.

ϑO = π/2 ϑO = 3π/8 ϑO = π/4 ϑO = π/8 ϑO = 0

From (368) and (370) we read that (ψ, θ) is on the boundary curve of the shadow if and only
if (π − ψ, θ) is on the boundary curve of the shadow. This implies that the shadow is always
symmetrical with respect to a horizontal axis, even for an observer off the equatorial plane,
ϑO 6= π/2. This is a remarkable result which was not to be expected from the symmetry of the
spacetime.

From the analytical formula for the boundary curve of the shadow one finds an expression for
the vertical angular radius, θv, of the shadow. We give it here only for the case that the observer
is in the equatorial plane, ϑO = π/2:

sin2 θv =
27m2r2O

(
a2 + rO(rO − 2m)

)

r6O + 6a2r4O + 3a2(4a2 − 9m2)r2O + 8a6
=

27m2

r2O

(

1 +O(m/rO)
)

(371)

We see that, up to terms of order O(m/rO), Synge’s formula (151) is still correct for the vertical
radius of the shadow. So, if interpreted appropriately, our numerical estimates for the shadows
of the black holes at the centres of our Galaxy and of M87 are valid for rotating black holes as
well, see p. 38. The surprisingly simple formula (371) was found only recently. It was given by
Arne Grenzebach in his PhD Thesis, see A. Grenzebach [The Shadow of Black Holes, Springer
Briefs in Physics (2016)].

(b) Timelike geodesics

We concentrate on two aspects of timelike geodesics. Firstly we investigate circular timelike
orbits in the equatorial plane. Secondly, we discuss some general features of the ϑ motion.

We consider a Kerr black hole with 0 < a2 < m2, viewing a = 0 and a2 = m2 as limiting cases.
We want to determine the circular timelike geodesics in the domain of outer communication,
r > r+. We start out from equations (348) and (349). For timelike geodesics (ε = 1) in the
equatorial plane (ϑ = π/2, ϑ̇ = 0) these equations simplify to

0 = K −
(

L− aE

c

)2

, (372)

ρ4ṙ2 = −K∆+
((
r2 + a2

)E

c
− aL

)2

− c2r2∆ . (373)
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Inserting (372) into (373) yields

ρ4ṙ2 = −
(

L− aE

c

)2

∆+
((
r2 + a2

)E

c
− aL

)2

− c2r2∆ =: −2VE,L(r) . (374)

Circular orbits have to satisfy ṙ = 0 and r̈ = 0, hence VE,L(r) = 0 and V ′
E,L(r) = 0. This

system of two equations can be solved for the constants of motion E and L. The calculation
is elementary, but rather tedious, so that we prefer letting MATHEMATICA do it for us. The
result is

cL

E
=

±
√
mr3 (r2 + a2 − 2mr)− a3m− amr(3r − 4m)

r(r − 2m)2 − a2m
, (375)

E2

c4
=
r3(r − 3m)(r − 2m)2 − a2mr2(3r − 5m)± 2am

√
mr3 (r2 + a2 − 2mr)

(
r(r − 2m)2 − a2m

)2 , (376)

where the upper sign holds for co-rotating and the lower sign for counter-rotating geodesics.

As we consider the domain of outer
communication where r is positive,√
mr3 is real. Therefore, the only re-

striction on the r values comes from the
condition that E2/c4 ≥ 0. This condi-
tion is plotted on the right. Counter-
rotating circular timelike geodesics ex-
ist at radius values above the solid line,
co-rotating ones above the dashed line.
The limiting values are the radii of
lightlike circular orbits in the equato-
rial plane, see Worksheet 11. In the
Schwarzschild limit, circular timelike
geodesics exist for r > 3m, as we al-
ready know. For the extreme Kerr
black hole, a2 = m2, counter-rotating
circular timelike geodesics exist for r >
4m while co-rotating ones exist for r >
m. As in the extreme case r+ = m, this
means that in this limiting case the co-
rorating orbits cover the entire range of
r values up to the horizon.

a

r

m

m

3m

4m

We are now going to investigate for which radius values the timelike circular geodesics are
stable. The condition for stability is

V ′′
E,L(r) > 0 (377)

where we have to insert for E and L the values for circular geodesics. This condition is plotted
on the next page.
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Counter-rotating orbits are stable at r
values above the solid line, while co-
rotating ones are stabe above the dashed
line. In the Schwarzschild limit, the in-
nermost stable circular orbit (ISCO) is
at r = 6m, as we know. The counter-
rotating ISCO is at a bigger radius, with
a maximum at r = 9m for the extreme
case. The co-rotating ISCO is at a smaller
value than in the Schwarzschild case and
approaches r = m, i.e., the radius coordi-
nate of the horizon, in the extreme case.
This gives rise to the fact that objects on
a co-rotating stable orbit around a Kerr
black hole can suffer much stroger grav-
itational time dilation effects than on a
stable orbit around a Schwarzschild black
hole.

a

r

m

m

6m

9m

Actually, the limit a2 → m2 is rather subtle. The Boyer-Lindquist coordinates show a par-
ticularly pathological behaviour near the (degenerate) horizon in this case. The fact that the
co-rotating ISCO approaches the same value of the r coordinate as the horizon does not mean
that the two things coincide in the limit. In contrast to what the Boyer-Lindquist coordinates
suggest, there is still a finite distance between them. In the extreme Kerr spacetime, the dis-
tance (as measured with the metric along an r line) of the horizon from any point in the domain
of outer communication is actually infinite, as we will see in Worksheet 11.

We now turn to a discussion of some general features of the ϑ motion of timelike geodesics. We
use the Mino parameter λ for the parametrisation, recall (350).

Then, according to equation (348), the ϑ motion of timelike (ε = 1) geodesics satisfies

(dϑ

dλ

)2

= K −
( L

sinϑ
− aE

c
sinϑ

)2

− c2a2cos2ϑ . (378)

For the following it will be convenient to use the constant of motion

Q = K −
(

L− aE

c

)2

(379)

instead of K. It was already mentioned that the name “Carter constant” is used both for K
and for Q. In terms of Q, (378) reads

(dϑ

dλ

)2

= Q+
(

L− aE

c

)2

−
( L

sinϑ
− aE

c
sinϑ

)2

− c2a2cos2ϑ

= Q+ L2 −
✚
✚
✚
✚

2L
aE

c
+
a2E2

c2
− L2

sin2ϑ
+

✚
✚
✚
✚

2L
aE

c
− a2E2

c2
sin2ϑ− c2a2cos2ϑ
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= Q− L2
(
1− sin2ϑ

)

sin2ϑ
+
a2E2

c2
(
1− sin2ϑ

)
− c2a2cos2ϑ

= Q− L2cos2

sin2ϑ
+
(a2E2

c2
− c2a2

)

cos2ϑ . (380)

For analysing the possible ϑ motions, we write

u := cos2ϑ ,
du

dλ
= −2 cosϑ sinϑ

dϑ

dλ
. (381)

Then
(du

dλ

)2

= 4 cos2ϑ sin2ϑ
(dϑ

dλ

)2

= 4 cos2ϑ sin2ϑ
{

Q− L2cos2

sin2ϑ
+
(a2E2

c2
− c2a2

)

cos2ϑ
}

= 4 u
(
1− u

){

Q− L2

1− u
+
(a2E2

c2
− c2a2

)

u.
}

= 4 u
{

Q
(
1− u

)
− L2u+

(a2E2

c2
− c2a2

)

u
(
1− u

)}

.

With the abbreviation

T (u) := Q
(
1− u

)
− L2u+

(a2E2

c2
− c2a2

)

u
(
1− u

)
(382)

this allows us to write

sin2ϑ
(dϑ

dλ

)2

=
1

4 cos2ϑ

(du

dλ

)2

= T (u) . (383)

This last equation tells us that all values of u = cos2ϑ where T (u) < 0 are forbidden whereas
values where T (u) ≥ 0 are allowed. Turning points (dϑ/dλ = 0) occur at those values of
u = cos2ϑ where T (u) = 0 and where we are not on the axis, u 6= 1. As u = cos2ϑ, the function
T (u) is defined on the interval 0 ≤ u ≤ 1. For a 6= 0, it is a second-order polynomial, depending
on the constants of motion Q, L and E. The graph of T (u) is a parabola, connecting the end
points T (0) = Q and T (1) = −L2.

On the basis of these observations, we can now analyse the possible ϑ motions. We distinguish
the cases Q > 0, Q = 0 and Q < 0.

Case A: Q > 0:

In the picture on the next page we have fixed a value Q > 0 and a value L 6= 0 which still allows
to vary E. We have plotted the function T (u) for a value of E such that a2E2/c2 − c2a2 <
−Q− L2 (dotted) and for a value of E such that a2E2/c2 − c2a2 > −Q− L2 (dashed). In any
case, only an interval 0 ≤ u ≤ u0 = cos2ϑ0 with 0 < ϑ0 < π/2 is allowed. The motion oscillates
about the equatorial plane (u = 0), with turning points at π − ϑ0 and ϑ0.
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u

T (u)

1

Q

−L2

L 6= 0

An oscillatory behaviour of the ϑ motion between a value ϑ0 and a value π−ϑ0 is what we know
from bound orbits in the Schwarzschild spacetime (or from the Kepler ellipses in Newtonian
theory, for that matter).

The case L = 0 is special insofar as now the zero of the function T (u) is at u = 1, i.e., on the
axis, see the picture below. If a2E2/c2 − c2a2 < −Q (dotted), the entire interval 0 ≤ u ≤ 1 is
allowed. There are no turning points, the motion goes through the axis. If a2E2/c2−c2a2 > −Q
(dashed), only an interval 0 ≤ u ≤ u0 = cos2ϑ0 with 0 < ϑ0 < π/2 is allowed. The motion
oscillates about the equatorial plane, with turning points at π − ϑ0 and ϑ0. In the borderline
case a2E2/c2 − c2a2 = −Q (solid) the motion asymptotically approaches the axis in the future
and in the past.

u

T (u)

1

Q
L = 0
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Case B: Q = 0

Also in this case we first fix a value L 6= 0. If a2E2/c2 − c2a2 > L2 (dotted), an interval
0 ≤ u ≤ u0 = cos2ϑ0 is allowed. As T (u) → 0 for u→ 0, the equatorial plane is asymptotically
approached. If a2E2/c2 − c2a2 < L2 (dashed), the motion is confined to the equatorial plane.
The same is true in the borderline case a2E2/c2 − c2a2 = L2 (solid).

u

T (u)

1

−L2

L 6= 0

Again, the case L = 0 is special. If a2E2/c2 − c2a2 > 0 (dotted), the entire interval 0 ≤ u ≤ 1
is allowed. There are no turning points. The motion goes through the axis. As T (u) → 0 for
u → 0, the equatorial plane is asymptotically approached. If a2E2/c2 − c2a2 < 0 (dashed),
the motion must be confined to the equatorial plane or to the axis. In the borderline case
a2E2/c2 − c2a2 = 0 (solid) the motion is confined to a cone ϑ = constant. Again, this includes
as special cases motion in the equatorial plane and in the axis.

u

T (u)

1

L = 0

Note that motion in the equatorial plane must have Q = 0.
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Case C: Q < 0

If a2E2/c2 − c2a2 < −Q − L2 (dotted), an interval u1 = cos2ϑ1 ≤ u ≤ u2 = cos2ϑ2 with
0 < ϑ2 < ϑ1 < π/2 is allowed. The motion stays either in the northern hemisphere, oscillating
between ϑ1 and ϑ2, or in the southern hemisphere, oscillating between π − ϑ1 and π − ϑ2. If
a2E2/c2 − c2a2 > −Q − L2 (dashed), no motion is allowed. In the borderline case a2E2/c2 −
c2a2 = −Q− L2 (solid), the motion stays on a cone.

u

T (u)

1

Q

−L2

L 6= 0

Orbits oscillating between two cones, or staying on a cone, are called vortical. They do not
occur in the Schwarzschild spacetime except for the case of radial geodesics that stay, indeed,
on a cone.

The special case L = 0 is plotted below. If a2E2/c2 − c2a2 < −Q (dotted), an interval
u0 = cos2ϑ0 ≤ u ≤ 1 with 0 < ϑ0 < π/2 is allowed. The motion goes through the axis. It stays
either in the northern hemisphere, with turning points at ϑ0, or in the southern hemisphere,
with turning points at π − ϑ0. If a2E2/c2 − c2a2 > −Q (dashed) or a2E2/c2 − c2a2 = −Q
(solid), the motion is confined to the axis.

u

T (u)

1

Q

L = 0
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6.3 Ergoregion and Penrose process

For an observer in the domain of outer communication (i.e., outside of the outer horizon) of a
Kerr black hole, the most important new feature in comparison to a Schwarzschild black hole
is the presence of the ergoregion. In particular, this gives rise to the possibility of extracting
energy from the black hole via the socalled Penrose process. We will now discuss this possibility
in some detail.

We consider a Kerr black hole with 0 < a ≤ m. (The restriction to positive values of a is no
loss of generality because we are free to transform the azimuthal coordinate, ϕ 7→ −ϕ.) In this
section we consider only the domain of outer communication which we denote, as before, as
region I, i.e.

I : r > r+ = m+
√
m2 − a2 . (384)

The ergoregion is that part of region I where the Killing vector field ∂t is spacelike. We
decompose the region I into the part outside the ergoregion,

Ia : r > r+ and gtt = −c2
(

1− 2mr

ρ2

)

< 0 , (385)

and the ergoregion

Ib : r > r+ and gtt = −c2
(

1− 2mr

ρ2

)

> 0 . (386)

The interface between Ia and Ib, where gtt = 0, is the stationarity limit surface. In the picture
on p. 87 the ergoregion Ib is the dark shaded region.

We have aleady mentioned that inside the ergoregion the hypersurfaces ϕ = constant are space-
like, i.e., the worldline of an observer or a light signal cannot be tangent to such a hypersurface.
This is another effect of the “dragging” by a rotating black hole: Every observer that is close to
the black hole (inside the ergoregion) must have a velocity with a non-vanishing ϕ component,
i.e., the observer is forced to rotate about the black hole whatever propulsion might be used.
As a preparation for discussing the Penrose process, we want to quantify the allowed angular
velocities for observers. To that end, we consider an observer on a ϕ line (i.e., on a circle about
the axis of the black hole) with constant angular velocity Ω. Such an observer is, of course, not
in general freely falling, i.e., he needs a rocket engine or some other kind of propulsion. The
4-velocity is

U =
c
(
∂t + Ω ∂ϕ

)

√

−
(
gtt + 2gtϕΩ + gϕϕΩ2

) . (387)

We want to determine the allowed values for the constant angular velocity Ω, depending on the
r and ϑ coordinate where the observer is circling. These allowed values are determined by the
condition of ∂t + Ω∂ϕ being timelike, gtt + 2gtϕΩ + gϕϕΩ

2 < 0 . This is true for Ω− < Ω < Ω+

where Ω± are the solutions of the quadratic equation

gtt
gϕϕ

+ 2
gtϕ
gϕϕ

Ω+ Ω2 = 0 , (388)

hence

Ω± =
− gtϕ ±

√

g2tϕ − gttgϕϕ

gϕϕ
. (389)
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We will now determine the signs of Ω− and Ω+. First of all, observe that

gϕϕ = sin2ϑ
(

r2 + a2 +
2mra2sin2ϑ

ρ2

)

> 0 (390)

everywhere in region I except on the axis which is to be excluded because there our circular
orbit degenerates into a point. Also, as we have chosen a > 0,

gtϕ = − 2mrac

ρ2
sin2ϑ < 0 (391)

everywhere in region I except on the axis.

In region Ia (i.e., outside the ergoregion) we have gtt < 0 and thus
√

g2tϕ − gttgϕϕ > −gtϕ. This
implies that in this region Ω− < 0 and Ω+ > 0, i.e., there is allowed motion in the positive and
in the negative ϕ direction, as we are used to.

By contrast, in the ergoregion Ib we have gtt > 0 and thus
√

g2tϕ − gttgϕϕ < −gtϕ. This implies

that in this region both Ω− and Ω+ are positive, i.e., only motion in the positive ϕ direction is
allowed.

We will now demonstrate that the values Ω− and Ω+ tend to the same limit ΩH if the horizon
is approached. To that end, we recall that we have calculated already in (326) that

g2tϕ − gttgϕϕ = c2∆sin2ϑ . (392)

This allows to rewrite Ω± as

Ω± =

2 cmrasin2ϑ

ρ2
± c

√
∆sin ϑ .

sin2ϑ
(

r2 + a2 +
2mra2sin2ϑ

ρ2

) (393)

If the horizon is approached, r → r+, we have ∆ → 0 and thus

lim
r→r+

Ω± =
2 cmr+a✘✘✘

sin2ϑ

✘✘✘
sin2ϑ

((
r2+ + a2

)(
r2+ + a2cos2ϑ

)
+ 2mr+a2sin

2ϑ
)

=
2 cmr+a

2mr+
(
r2+ + a2cos2ϑ

)
+ 2mr+a2sin

2ϑ
=

c a

r2+ + a2
=: ΩH . (394)

ΩH is known as the “angular velocity of the horizon”. Note that ΩH is independent of ϑ which
may be interpreted as saying that the horizon rotates rigidly. The vector field ∂t + ΩH∂ϕ is
timelike and non-geodesic everywhere inside the ergoregion. On the horizon r = r+ it becomes
tangent to the outgoing principal null geodesics, as can be verified by comparison with (315),
so it becomes lightlike and geodesic.

After these preparations we will now consider the motion of freely falling particles (i.e., of time-
like geodesics) in the region I. Recall that, for a timelike geodesic γ(τ) =

(
t(τ), ϕ(τ), ϑ(τ), r(τ)

)

with tangent vector γ̇ = ṫ∂t + ϕ̇∂ϕ + ϑ̇∂ϑ + ṙ∂r we have two constants of motion:
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The energy E and the z component L of the angular momentum,

E = − ∂L
∂ṫ

= − gttṫ − gtϕϕ̇ = − g
(
γ̇, ∂t

)
, (395)

L =
∂L
∂ϕ̇

= gϕϕϕ̇ + gϕtṫ = g
(
γ̇, ∂ϕ

)
. (396)

γ̇ must be timelike and future-pointing everywhere. Outside of the ergoregion, ∂t is also timelike
and future-pointing, hence

E = − g
(
γ̇, ∂t

)
> 0 . (397)

Inside the ergoregion, however, ∂t is spacelike. Then the scalar product g(γ̇, ∂t) may be positive,
negative or zero, i.e., inside the ergoregion there exist freely falling particles with negative
energies. Of course, as E is a constant of motion, such a particle cannot move into the region
Ia; it can leave the region Ib only over the horizon at r+.

As ∂t + ΩH∂ϕ is timelike and future-pointing inside the ergoregion, we have

0 > g
(
∂t + ΩH∂ϕ, γ̇

)
= −E + ΩHL . (398)

As ΩH > 0, this implies

L <
E

ΩH
(399)

which demonstrates that particles with negative E must also have negative L.

We are now ready for a discussion of the Penrose process. Assume that a freely falling particle
is released outside the ergoregion. This particle must have an energy E > 0. Let this particle
enter the ergoregion and decay into two particles there, one with an energy E1 > 0 and another
one with an energy E2 < 0. Of course, we assume energy conservation, E = E1 + E2, hence
E1 > E. The decaying process may be arranged in a way that the particle with positive energy
E1 returns to the region Ia while the particle with the negative energy E2 is swallowed by the
black hole. Then we have the following energy balance:

black hole outside particle

initial energy E0 E

final energy E0 + E2 < E0 E1 > E

We see that it is possible to extract energy from a rotating black hole by this process. Obviously,
the process can be repeated only until all energy of the black hole has been used up. Actually,
the process terminates earlier: As we have seen that particles with negative E have negative L,
the black hole loses not only energy but also angular momentum when swallowing the infalling
particle. The Penrose process can be repeated only until the black hole has lost all its angular
momentum; then it is a Schwarzschild black hole which has no ergoregion. – If the black hole
is surrounded by a magnetic field, it is possible to extract rotational energy from the black hole
in a much more efficient way. This modified Penrose process is known as the Blandford-Znajek
process and it is believed to provide the necessary energy for the powerful jets that are observed
with Active Galactic Nuclei.
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7 Black holes in astrophysics

In this chapter we give a brief overview of the black-hole candidates that are actually observed
in the sky and we discuss why we are quite optimistic that they can be successfully modelled
as Kerr (or Schwarzschild) black holes.

The promising black-hole candidates can be divided into two classes: Stellar black holes with
masses of a few (maybe up to 100) Solar masses, and supermassive black holes with millions
or billions of Solar masses. Black holes with other masses are more speculative: Mini-black-
holes with masses of several orders of magnitude less than a Solar mass could have come into
existence shortly after the big bang, and intermediate black holes with several hundred or a few
thousand Solar masses might be harboured e.g. in globular clusters. However, up to now we
have no strong observational evidence for their existence. Therefore we discuss only the other
two types.

7.1 Stellar black holes

(a) Cyg X-1

As the name indicates, Cyg X-1 is the first X-ray source that was detected in the constellation
Cygnus (Swan). It is the brightest permanent source of hard X-rays in the sky.

X-ray sources cannot be observed with
ground-based telescopes because (fortu-
nately) our atmosphere is non-transparent
for X-rays. The first observations of celes-
tial X-ray sources were made with the help
of Aerobee sounding rockets beginning in
the year 1962. Cyg X-1 was detected in
1964. The Aerobees were ballistic rockets
that could reach an altitude of about 250 km.
After a flight of less than 10 minutes the pay-
load fell back to the ground on a parachute.

The X-ray observations were made at wavelengths from 1 to 15 Å with Geiger counters whose
field of view swept over a stripe in the sky as the rocket rotated about its axis. This allowed
only a rough localisation of the detected sources in the sky, so it ws not possible to decide
whether there is an optical or radio source at the same position as Cyg X-1.

In the year 1970 the first X-ray satellite, Uhuru, was launched. (“Uhuru” is a Swahili word
meaning “freedom”.) It allowed to localise Cyg X-1 to within a few arcminutes which is still not
accurate enough for deciding whether there is an optical (or radio) source at the same position.
However, with the Uhuru satellite one observed time variations in the flux from Cyg X-1 on a
time-scale of a little bit less than a second. As different parts of an emission region can show
synchronised time variations only if they are causally connected, this means that the emission
region of Cyg X-1 must be so small that light can travel through it in less than a second. This
limited the diameter of the emission region of Cyg X-1 to less than 200 000 km. (For the sake
of comparison, note that the diameter of our Sun is about 1 400 000 km!)
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In the early 1970s the resolution of X-ray observations had improved sufficiently to localise Cyg
X-1 to within an arcminute. Also, in the year 1971 a radio source was detected in the same
area that showed variations on a similar time scale as the X-ray source Cyg X-1. This radio
source could be located with an accuracy of about one arcsecond. This observation suggested
that Cyg X-1 might be associated with an O star (a blue giant visible in the optical) with the
catalogue number HDE 226868 that was within the error box of the radio observation. The
spectral lines from this star show a redshift that varies periodically with a period of about 5.5
days. The obvious interpretation is that the star forms a binary system together with a partner;
the periodic variation in the redshift comes from the Doppler effect when the star orbits about
the barycentre of the binary system. The companion is not visible, neither in the optical nor
in the radio. Moreover, it was observed that the intensity of the blue star varies with the same
period as the redshift. The commonly accepted interpretation is that the star is not spherical
but elongated in the direction towards the barycentre. In the course of one orbit it shows us
sometimes a smaller and sometimes a bigger cross-sectional surface.

This indicates that the gravitational field of the
compact companion has deformed the star and
that there is a mass flow (“accretion flow”) from
the star onto the companion. The X-rays that we
observe are produced when the accreted matter
(gas or plasma) is strongly heated near the com-
pact companion. The picture on the right shows
an artist’s impression of how the binary system
may look like. (Actually, an observer would see a
distorted image because of light bending, but these
effects are ignored in the picture.)

HDE 226868 is close enough for measuring its distance with the parallax method. One found
that the system is about 2 kpc away from us. (For the sake of comparison, note that the centre
of our Galaxy is at a distance of about 8 kpc from us.) With the distance known, one can
combine the redshift measurements and other information on the orbits with stellar evolution
models to determine the masses of the two companions. The up-to-date values average to 18
Solar masses for the blue star and 15 Solar masses for the compact companion, but there is
still a rather big error margin. In 2021 a paper was published where the authors advocate
a mass of 40 Solar masses for the blue star and more than 20 Solar masses for the compact
companion. Recall that the latter has a diameter of less than 200 000 km, so it is inded a very
compact object. It cannot be a white dwarf because there is an upper limit of about 1.4 Solar
masses for a white dwarf. (This is the famous Chandrasekhar limit the discovery of which won
S. Chandrasekhar the Nobel prize.) It cannot be a neutron star because also for a neutron star
a mass of more than 10 Solar masses is out of the question. (The upper limit for the mass of
a neutron star is not quite clear, because it depends strongly on the assumptions about the
interior structure, but it cannot be much more than 3 Solar masses. The most massive neutron
star we know has a mass of just a bit more than 2 Solar masses and most astrophysicists believe
that this is close to the limit.) So a black hole is the most natural explanation. Other possible
explanations (a boson star, a neutrino ball, a gravastar .. ) have been suggested, but they are
much more speculative.
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Additional support for the black-hole hypothesis comes from the observation of “dying pulse
trains” from the neighbourhood of Cyg X-1. These are X-ray signals that die down in exactly
the way as one would expect if matter spirals towards an event horizon. By contrast, if matter
hits a surface the emitted radiation does not die down but rather ends in a bright flash. This
is strong evidence for the existence of an event horizon and the absence of a surface.

A black hole with 15 Solar masses has a Schwarzschild radius of about 45 km. At a distance of
2 kpc, the black hole associated with Cyg X-1 would cast a shadow with an angular diameter
of less than 10−9 arcseconds. (Recall Synge’s formula from p. 37 for the angular radius of the
shadow of a Schwarzschild black hole which gives the correct order of magnitude also for a Kerr
black hole.) This is far too small for observations within the foreseeable future. This is a pity
because the shape of the shadow could give us important information on the spin of the black
hole, recall the picture on p. 100. Up to now the spin of the black hole associated with Cyg
X-1 is unknown. Observations with the X-ray satellite Chandra seem to indicate that the inner
edge of the accretion disc is very close to the horizon which would imply that the black hole
is almost extreme. (Recall that in the Schwarzschild limit, a → 0, the ISCO of a Kerr black
hole tends to 6m = 3r+ while for the extreme case, a → m, it approaches m = r+.) However,
this is in disagreement with earlier papers where the authors have found indications for a slow
rotation close to the Schwarzschild limit.

Cygnus X-1 was the subject of a wager between Stephen Hawking and Kip Thorne in 1974.
Thorne was betting that the compact companion was a black hole, whereas Hawking said it
was not. After a few years Hawking admitted that he had lost the bet and paid up (a one-year
subscription of the magazine Penthouse) but claimed that he never really doubted that the
companion was a black hole: He said that he took the opposite position just because he wanted
to have the consolation of winning the bet in the unlucky case that the object turned out not
to be a black hole.

Cyg X-1 is the oldest and best known candidate for a stellar black hole in an X-ray binary,
but it is not the only one . There are more than a dozen further ones, with masses between 3
and 30 Solar masses. An incomplete list can be found on the Wikipedia page on “stellar black
hole”.

Further circumstantial evidence for the existence of stellar black holes comes from the ob-
servation of gamma ray bursts. The precise mechanism behind gamma ray bursts is not yet
understood, but it is widely accepted that they are associated with the collapse of a neutron
star to a black hole. Such a collapse could be caused by matter falling onto the neutron star
from a companion star, thereby making the neutron star unstable, or from the merger of two
neutron stars.

(b) The LIGO gravitational wave events

Further very strong evidence for the existence of stellar black holes comes from gravitational
wave events observed since 2015. The first observations were made with the two LIGO detectors
(Laser Interferometer Gravitational-Wave Observatory). Both detectors are located in the US,
one at Hanford, Washington State, and the other at Livingston, Louisiana. Since 2021 there
are four such detectors in operation: The two LIGO detectors were joined by Virgo in Italy
and KAGRA in Japan. Most of the gravitational wave signals observed so far are believed to
have been produced by a merger of two stellar black holes.
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The LIGO, Virgo and KAGRA instruments are Michelson interferometers. The two LIGO
instruments are the biggest ones with a geometric arm length of 4 kilometres. (The effective
arm length is much bigger because the beams are reflected back and forth many times before
going to the detector.) There is also a smaller instrument called GEO600 near Hannover in
Germany with an arm length of 600 metres. It played a very important role for developing
and testing the laser technology that was then incoporated into the bigger LIGO instruments.
All these interferometric detectors work in the same fashion: An incoming gravitational wave
would influence the distance between the mirrors and also the path of the light beam inside
the interferometer. Both effects produce a change in the interference pattern, see the picture
below. Several second-generation gravitational wave detectors are at the planning stage. In
particular, a space-bound interferometer, LISA, with 5 million kilometres arm length may be
launched in the early 1930s.

The two LIGO detectors underwent an upgrade and were relaunched in the late summer of 2015.
In one of the very first runs after the upgrade, which was not even planned as a full science
run but rather as a test, both LIGO detectors registered a signal on 14 September 2015 which
perfectly matched the expectations of a gravitational wave coming from the merger of two black
holes of about 30 Solar masses each. During the merger the incredibly high energy of 3 Solar
masses times c2 was emitted within a millisecond. After a very careful analysis the LIGO scien-
tists announced the discovery not earlier than 11 February 2016 to the public. (The press confer-
ence can be watched e.g. on youtube, see https://www.youtube.com/watch?v=aEPIwEJmZyE.)
The announcement made headlines around the world. A second event, again from the merger
of two black holes, was detected on 26 December (boxing day) of 2015. By now, as of July
2022, with Virgo and KAGRA having come online, about 100 events have been registered.
The majority was, most likely, produced by the merger of two stellar black holes. A few are
probably produced by the merger of two neutron stars (which for a very short time formed an
unstable neutron star which then collapsed to a black hole) and there are also a few events
where possibly a black hole merged with a neutron star. Gravitational waves were predicted
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by Albert Einstein, on the basis of his (linearised) theory of General Relativity in 1916. It
took almost exactly 100 years until they were finally directly detected. Indirect evidence for
their existence was provided by a binary pulsar whose energy loss was interpreted as due to
gravitational radiation. This won Russell Hulse and Joe Taylor the physics Nobel prize already
in 1993. Rainer Weiss, Kip Thorne and Barry Barish were awarded the physics Nobel prize
in 2017 for their contributions to LIGO and the direct discovery of gravitational waves. In a
sense, this was also a Nobel prize for the detection of black holes.

The direct discovery of gravitational waves is to be considered as the starting point for a
“gravitational wave astronomy”. It is often said, that it will provide us with a “second eye” (in
addition to the “electromagnetic eye”) for observing the universe.

The observation of the LIGO event from 14 September 2015 was published in a paper with
more than 1000 authors, see B. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016). The
pictures in this section are taken from this paper.

As shown in the upper left panel of the figure on the preceding page, the distance between
the two LIGO detectors equals c/(10ms). Depending on the direction the gravitational wave
comes from, the time at which the signal is detected at one detector should be between 0 and
10 ms after it is detected by the other. Only signals that are registered by both LIGO detectors
within 10 ms are considered. In the case of GW150914 the time delay was 6.9 ms. The signal
was observed over approximately 0.2 s. The upper right panel of the figure on the preceding
page shows the sensitivity of the LIGO detectors, depending on the frequency of the incoming
gravitational wave. The relevant LIGO observations were made at a frequency of 50 to 250 Hz.
In this frequency range, the LIGO detectors are able to measure changes in the arm length of
about a thousandth of a proton diameter.
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In the figure on the preceding page the first row shows the signals of GW150914 as they were
received at Hanford (red) and Livingston (blue). The only manipulation is that frequencies
outside of the sensitivity window of the LIGO detectors were filtered away. The observed
signals were then compared to theoretically calculated wave-forms. Theorists have provided a
collection of such wave-forms, for merging black holes and merging neutron stars with a large
variety of parameters. The second row of the figure below shows the template that fits the
observations best. It is a merger of two black holes with masses of 36M⊙ and 29M⊙, see
the table below. Three phases are to be distinguished: The inspiral (which is periodic with
an increasing amplitude), the merger (where the amplitude reaches its maximum) and the
ringdown (where the amplitude strongly drops and the system becomes stationary again). The
third row of the figure below shows the difference between the first and the second row which
is to be interpreted as noise. Note that the ringdown is essentially drowned in the noise. As
the difference between a merger of black holes (two horizons) and a merger of neutron stars
(two surfaces) is significant only in the ringdown phase, one cannot really conclude from the
observed wave-form that it is a black-hole merger. The assuredness that this event was indeed
a black-hole merger comes mainly from the masses involved: It is believed that neutron stars
cannot be much heavier than 3 Solar masses. The last row in the figure on the previous page
shows the increase in frequency from about 50 Hz to about 250 Hz, i.e., the “chirp”.

The location of the source in the sky is largely unknown: With only two detectors one can locate
the source only to within an area that is as big as the constellation Orion. The location is in the
Southern sky, i.e., the signal travelled through the body of the Earth, practically without being
affected. The more gravitational wave detectors come online, the better the position of a source
can be determined by way of triangulation. The table below gives the relevant data. We read
that the merger took place far outside of our Galaxy, about 1.2×109 years ago. The equivalent
of 3 Solar masses was converted into gravitational wave energy within less than a second. This
corresponds to a radiated power that is more than the power radiated as electromagnetic waves
by all visible sources in the Universe.

Primary black hole mass

Secondary black hole mass

Final black hole mass

Final black hole spin |a|/m
Luminosity distance

Source redshift z

36+5
−4M⊙

29+4
−4M⊙

62+4
−4M⊙

0.67+0.05
−0.07

410+160
−180Mpc

0.09+0.03
−0.04

7.2 Supermassive black holes

(a) The S stars near SgrA∗

Already in the 1960s the British astronomers Donald Lynden-Bell and Martin Rees conjectured
that our Galaxy harbours a black hole at its centre, and that the same is true for many other
galaxies. At that time, this idea was highly speculative. By now, there is very good evidence
that it is true.
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The immediate neighbourhood of the centre of our Galaxy, which is in the direction of the
constellation Sagittarius (Archer), cannot be observed with optical telescopes because it is
hidden behind dust. In the infrared and in the radio, however, the dust is largely transparent,
and the same is true on the other side of the optical spectrum in the X-ray. In the year 1974 a
compact radio source was detected near the centre of our Galaxy which was called Sagittarius
A∗, abbreviated SgrA∗. Intensive observations of its neighbourhood began in the 1990s. Two
groups studied the motion of a group of stars, the so-called S stars, that orbit the centre of
our Galaxy with infrared cameras: A team from the Max Planck Institute for Extraterrestrial
Physics (MPE) in Garching, headed by Reinhard Genzel, used the VLT in Chile, while a team
from the University of California at Los Angeles (UCLA), headed by Andrea Ghez, used the
Keck telescope in Hawaii. The S stars have angular distances of about 0.1 to 0.5 arcseconds
from the centre of our Galaxy and one of them, the star S2, needs not more than 15 years for
a revolution. The picture below shows its orbit as it was determined by the MPE group.

The observations of the MPE group and the
UCLA group are in very good agreement. All
S stars were found to describe perfect Ke-
pler ellipses around a common centre (seen
in perspective). From the orbits one could
deduce the mass of the central object to be
4.1 × 106 Solar masses. The distance of the
galactic centre from us is about 8 kpc. This
implies that the S stars orbit at a distance
of more than 1000 Schwarzschild radii which
explains why the deviations from Kepler el-
lipses are small. Only in 2017 was it possible
to measure, for the star S2, the relativistic
pericentre precession.

There is only a very moderate amount of X-ray radiation from the centre of our galaxy. If the
central mass had a surface, a large part of the luminosity, in particular in the X-ray, would be
emitted when accreted matter hits the surface. However, this kind of radiation is not observed.
This is strong evidence for the conjecture that there is a black hole at the centre of our Galaxy.

In the year 2012 an object was observed near the centre of our galaxy in the infrared that was
interpreted as a gas cloud and denoted G2. It was expected that, because of the tidal forces,
G2 would disintegrate when passing through its pericentre and that the fragments would be
swallowed by the black hole, emitting strongly in the X-ray regime when being accelerated
towards the centre.

Nothing like that happened. G2 has gone
through its pericentre in 2014 without any
spectacular events. It is now widely believed
that there is a star at the centre of G2 which
keeps the matter together so that it will not
be ripped apart by the tidal forces. The pic-
ture shows an artist’s impression of the orbit
of G2 (red) and, for the sake of comparison,
the orbits of several S stars (blue).
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In the year 2016 a new beam combiner called GRAVITY went into operation with the VLT.
With this new instrument it is possible to see infrared stars, and other objects orbiting the centre
of our galaxy, with angular distances of less than 0.01 arcseconds. It was already mentioned
that, with the help of this instrument, a pericentre precession of stars orbiting the centre of our
Galaxy has been observed.

If our galaxy harbours a black hole at its centre, then it is very likely that the same is true of
most, if not all, other galaxies. A particularly interesting candidate is the object at the centre
of M87 (i.e., number 87 in the Messier catalogue) in the constellation Virgo (virgin). M87 is
much more active than the centre of our own Galaxy. In partucular, M87 features a spectacular
jet. It was the first jet of a galactic nucleus that was ever detected, namely already in 1918 by
Heber Curtis. In analogy to SgrA∗, the radio source at the centre of M87 is sometimes called
M87∗. It is at a distance of about 17 Mpc which is more than three orders of magnitude farther
away than SgrA∗. However, as its mass is about 5 × 109 Solar masses, the mass-to-distance
ration isn’t much smaller than for SgrA∗.

(b) The shadows of SgrA∗ and M87∗

If the object at the centre of our galaxy is a black hole, then it casts a shadow that is big enough
for being observed with present instruments. A mass of 4.1×106 Solar masses corresponds to a
Schwarzschild radius of rS = 12×106 km. If this value is inserted into Synge’s formula (151) for
the shadow, together with rO = 8 kpc, one finds an angular diameter of the shadow of about 53
microarcseconds. This is resolvable with present day Very Long Baseline Interferometry (VLBI),
using radio telescopes on different continents. The second biggest shadow is the one of the black
hole (candidate) at the centre of the galaxy M87 with approximately 40 microarcseconds. The
shadows of all other known black-hole candidates are smaller by several orders of magnitude.

The Event Horizon Telescope is a project under US leadership aiming at observing the shadow
of SgrA∗ and of M87∗. There is a sub-project, called the BlackHoleCam, which is financed
by the European Union. At present (as of July 2022) the observations are done at 1.3 mm
wavelength (i.e, in the far infrared) with various telescopes, see p. 41, and it is planned to
observe in the future at submillimetre wavelengths; this would further reduce the scattering
effects which are washing out the shadow.

The first pictures of the shadow of M87∗ were released to the public in April 2019, and the
first pictures of SgrA∗ were released to the public in May 2022, see p. 42. In both cases the
data were taken in April 2017, but the processing and the evaluation took several years. In
particular in the case of SgrA∗ the data analysis was very difficult because the image changes
within hours, whereas for the much heavier black hole in M87 it is quite stable over a day or
two.

In principle, the shadow could provide us with important information about the spin of the
object: If the observer is in the equatorial plane, or at least not at a very high inclination, then
the shape of the observed shadow gives full information about the spin. Unfortunately we are
observing M87∗ from a very high inclination (almost from the bottom side) and, apparently
and surprisingly, the same seems to be true for SgrA∗. Therefore, the fact that the shadow is
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circular to a high degree doesn’t tell us much about the spin. From the fact that M87 has a
big jet we suspect that the black hole at its centre must be spinning fast: The most effective
process for launching a jet is the Blandford-Znajek process which asumes that the power for
the jet comes from the angular momentum of a central black hole. In the case of SgrA∗ we
have no clear information about the spin of the black hole associated with this radio source.

We emphasise again that the shadow is not an image of the horizon but rather of the photon
sphere or, in the case of a rotating black hole, of the photon region. Therefore, an observation
of the shadow is not an ultimate proof that there is a black hole, i.e., an object with an event
horizon. However, both in the case of M87∗ and in the case of SgrA∗ all observations are in
perfect agreement with the assumption that there is a Kerr black hole associated with this
radio source. It is not impossible but very difficult to come up with an alternative model that
concentrates the corresponding mass within a few Schwarzschild radii without a shining surface.
All such alternative models are more exotic, and much more speculative, than a black hole.

8 Black-hole theorems

In this chapter we give a brief overview of three kinds of black-hole theorems, the socalled
thermodynamical laws of black holes, the uniqueness (or no-hair) theorems, and the singularity
theorems.

8.1 Black hole thermodynamics

There is a formal analogy between the laws of thermodynamics and black-hole physics. This
analogy was discovered by Jacob Bekenstein when he was a PhD student with John Wheeler
in Princeton. Major contributions were made by Stephen Hawking who originally had opposed
Bekenstein’s ideas. It is now widely believed that the analogy is not only formal but that
the black-hole analogues of temperature and entropy are indeed associated with a physical
temperature and a physical entropy.

For understanding the basic ideas of black hole thermodynamics we need to know what the
“surface gravity” of a black hole is. Of course, this notion is well known from Newtonian
gravity. There the surface gravity of a gravitating body is just the acceleration experienced at
its surface by a test particle. For the Earth, the surface gravity is 9.8 m/s2. By analogy, one
would try to define the surface gravity of a black hole as the modulus of the 4-acceleration a
test particle experiences at the horizon. We will now calculate this quantity for the simple case
of a Schwarzschild black hole and we will find that, unfortunately, it turns out to be infinite.

As we want to evaluate certain expressions on the horizon, we have to consider the Schwarzschild
metric in coordinates in which the metric is regular at the horizon. We choose the ingoing
Eddington-Finkelstein coordinates (t′, r, ϑ, ϕ) in which the metric reads

g = −
(

1− rS
r

)

c2dt′2 +
2rSc

r
dr dt′ +

(

1 +
rS
r

)

dr2 + r2
(
dϑ2 + sin2ϑdϕ2

)
(400)

with

rS = 2m =
2GM

c2
, (401)
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recall (43). A static observer (i.e., an observer at constant (r, ϑ, ϕ) has four-velocity

U = α∂t′ (402)

where α is determined by the condition that

−c2 = g(U, U) = α2gt′t′ = −α2c2
(

1− rS
r

)

, (403)

i.e.,

α =
1

√

1− rS
r

. (404)

We want to calculate the acceleration of such an observer, i.e., the thrust that has to be provided
for keeping the observer in the static position,

aρ∂ρ = ∇UU = ∇(α∂t′ )
(α∂t′) = α

(

α∇∂t′
∂t′ +

(
∂t′α)∂t′

)

= α2∇∂t′
∂t′ (405)

where we have used in the last step that α depends only on r but not on t′. The most obvious
way of determining the coefficients aρ is to express ∇∂t′

∂t′ with the Christoffel symbols in the
Eddington-Finkelstein coordinates. However, there is a more convenient way: We insert both
sides of (405) into g

(
·, ∂σ

)
which results in

aρgρσ = α2g
(
∇∂t′

∂t′ , ∂σ
)
= α2

(

∂t′g
(
∂t′∂σ

)
− g
(
∂t′ ,∇∂t′

∂σ
))

= α2
(

∂t′gt′σ − g
(
∂t′ ,∇∂σ∂t′

))

= α2
(

0− 1

2
∂σg
(
∂t′ , ∂t′

))

= −α
2

2
∂σgt′t′ . (406)

We evaluate this equation successively for xσ = ϑ, ϕ, t′, r:

aϑgϑϑ = 0 =⇒ aϑ = 0 , (407)

aϕgϕϕ = 0 =⇒ aϕ = 0 , (408)

at
′

gt′t′ + argrt′ = 0 =⇒ at
′

= ar
rS✁c

rc✁2
(

1− rS
r

) , (409)

at
′

gt′r + argrr =
α2

2
c2
rS
r2
. (410)

Inserting (409) into (410) yields

ar
rS

r✁c
(

1− rS
r

)
rS✁c

r
+ ar

(

1 +
rS
r

)

= c2
rS

2r2
(

1− rS
r

) ,

✟✟✟arr2S + arr2
(

1−
✁
✁
✁r2S
r2

)

= c2
rS
2
,
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ar =
c2rS
2r2

. (411)

Then (409) gives us the remaining coefficient of the acceleration

at
′

=
c✁2rS
2r2

rS

r✁c
(

1− rS
r

) , (412)

hence

aρ∂ρ = at
′

∂t′ + ar∂r =
cr2S

2r3
(

1− rS
r

)∂t′ +
c2rS
2r2

∂r . (413)

Therefore, the modulus of the acceleration is
√
gρσaρaσ =

√

(at′)2gt′t′ + (ar)2grr + 2at′argt′r =

√
√
√
√
√

− c2r4S

4r6
(

1− rS
r

)✁2
c2
✟✟✟✟✟✟(

1− rS
r

)

+
c4r2S
4r4

(

1 +
rS
r

)

+
2cr2S

2r3
(

1− rS
r

)
c2rS
2r2

rSc

r

=
c2rS

√

−✓✓r
2
S + r2

(

1−
✁
✁
✁r2S
r2

)

+✚
✚2r2S

2r3
√

1− rS
r

=
c2rS

2r2
√

1− rS
r

. (414)

For rS ≪ r we can neglect rS/r in comparison to 1, hence

√
gρσaρaσ ≈ c2rS

2r2
=
c2✁2m

✁2r2
=
GM

r2
, (415)

i.e., in this approximation what is required to hold the observer at constant (r, ϑ, ϕ) is just the
Newtonian acceleration. However, in the limit r → rS we get

√
gρσaρaσ → ∞ , (416)

i.e., an infinite thrust is necessary for holding the observer at the horizon. Clearly, this is
related to the fact that the horizon is lightlike, so a timelike curve cannot be tangent to it. In
order to get a finite expression that characterises the strength of the gravitational field at the
horizon one uses, instead of the derivative with respect to proper time which is encoded into
the notion of 4-acceleration, the derivative with respect to coordinate time. This brings in an
additional redshift factor,

dτ

dt
=

√

1− rS
r0

(417)

and the surface gravity of a Schwarzschild black hole becomes

κ = lim
r→rS

√

1− rS
r

c2rS

2r2
√

1− rS
r

=
c2

2rS
=

c2

4m
=

c4

4GM
. (418)
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As proper time for an observer on a t-line is the same as coordinate time for r → ∞, one often
says that κ is the limit for r → rS of the “acceleration with respect to an observer at infinity”.

We will now demonstrate that the surface gravity κ of a Schwarzschild black hole can be
rewritten in another way that allows generalisation beyond the Schwarzschild case. The horizon
can be characterised as the hypersurface where the Killing vector field

K = Kµ∂µ =
1

c
∂t′ (419)

becomes lightlike. On this hypersurface, the differential of the function

Φ = −gµνKµKν , (420)

dΦ = ∂µΦdx
µ, is a multiple of the covector field Kµdx

µ = gµνK
νdxµ. We will now show how

the factor of proportionality is related to the surface gravity κ.

Claim: For a Schwarzschild black hole, the surface gravity κ = c2/(2rS) satifies

∂µΦ
∣
∣
∣
r=rS

=
2κ

c2
Kµ

∣
∣
∣
r=rS

(421)

where Φ and Kµ are defined as above.
Proof: From

Φ = −gµνKµKν = −gµν
1

c2
δµt′δ

ν
t′ = −gt′t′

1

c2
= 1− rS

r
(422)

we calculate

∂µΦ = δrµ
rS
r2

→ δrµ
1

rS
(423)

for r → rS. On the other hand,

Kµ = gµνK
ν = gµt′

1

c
= δt

′

µgt′t′
1

c
+ δrµgrt′

1

c
= −δt′µ c

(

1− rS
r

)

+ δrµ
rS
r

→ δrµ (424)

for r → rS. So the claim is equivalent to

δrµ
1

rS
=

2κ

c2
δrµ (425)

which is indeed true, because κ = c2/(2rS). �

Note that the Killing vector field K that generates the horizon is defined only up to a constant
scalar factor. We have chosen this factor such that Φ = −g(K,K) → 1 for r → ∞. This fixes
the Killing vector field uniquely.

We have thus found a characterisation of the surface gravity that can be generalised to all other
black holes where the horizon is generated by a Killing vector field (i.e., where it is a socalled
“Killing horizon”). This includes in particular the Kerr spacetime. We will now determine,
with this method, the surface gravity for a Kerr black hole with 0 < a2 < m2.

Also in this case we have to work in coordinates in which the metric is regular at the (outer)
horizon. We choose the (generalised) ingoing Eddington-Finkelstein coordinates (t̃, r̃, ϑ̃, ϕ̃) that
are related to the Boyer-Lindquist coordinates (t, r, ϑ, ϕ) by

c dt̃ = c dt+
2mr

∆
dr , dr̃ = dr , dϑ̃ = dϑ , dϕ̃ = dϕ+

a

∆
dr (426)
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recall (316). As the duality condition

dxµ(∂ν) = ∂νx
µ = δµν (427)

has to hold in both coordinate systems, the Gaussian basis vector fields transform according to

∂t̃ = ∂t , ∂ϕ̃ = ∂ϕ , ∂r̃ = ∂r −
2mr

c∆
∂t −

a

∆
∂ϕ , ∂ϑ̃ = ∂ϑ . (428)

The Killing vector field that generates the outer horizon is

K =
1

c

(
∂t + ΩH∂ϕ

)
=

1

c

(
∂t̃′ + ΩH∂ϕ̃

)
(429)

where
ΩH =

c a

r2+ + a2
=

c a

2mr+
, r+ = m+

√
m2 − a2 , (430)

recall (394). The Killing vector field K changes from timelike to spacelike when the horizon
at r = r+ is crossed from the outside to the inside. At the horizon this vector field is lightlike
and tangent to the horizon. With the help of this Killing vector field K we define the surface
gravity κ of a Kerr black hole by the condition

∂µΦ
∣
∣
r=r+

=
2κ

c2
Kµ

∣
∣
r=r+

(431)

where
Φ = −g(K,K) . (432)

Again, we have normalised the Killing vector field such that Φ → 1 for r → ∞. In the following
calculation we make use of (428) and we read the metric coefficients in the Boyer-Lindquist
coordinates from (301). We first calculate the left-hand side of (431):

Φ = −g(K,K) = − 1

c2
g
(
∂t̃ + ΩH∂ϕ̃, ∂t̃ + ΩH∂ϕ̃

)
= − 1

c2
g
(
∂t + ΩH∂ϕ, ∂t + ΩH∂ϕ

)

=
1

c2
(
−gtt−2ΩHgtϕ−Ω2

Hgϕϕ
)
= 1− 2mr

ρ2
+2ΩH

2mr

ρ2c
a sin2ϑ− Ω2

H

c2
sin2ϑ

(

r2+a2+
2mr

ρ2
a2sin2ϑ

)

= 1− 2mr

ρ2
+ 2ΩH

2mr

ρ2c
a sin2ϑ− Ω2

H

ρ2c2
sin2ϑ

((
∆+ 2mr

)(
∆+ 2mr − a2sin2ϑ

)
+ 2mra2sin2ϑ

)

=
1

ρ2

(

∆+✘✘✘2mr−a2sin2ϑ−✘✘✘2mr+
4mr

c
ΩHa sin

2ϑ− Ω2
H

c2
sin2ϑ

(
∆2+4mr∆+4m2r2−∆a2sin2ϑ

))

=
1

ρ2

(

∆− a2sin2ϑ+
2r

r+
a2sin2ϑ− a2

4m2r2+
sin2ϑ

(
∆2 + 4mr∆+ 4m2r2 −∆a2sin2ϑ

))

. (433)
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Making use of the fact that Φ depends only on r̃ = r and ϑ̃ = ϑ, we now calculate the partial
derivatives of Φ with respect to the (generalised) Eddington-Finkelstein coordinates.

∂t̃Φ = ∂tΦ = 0 , (434)

∂ϕ̃Φ = ∂ϕΦ = 0 , (435)

∂r̃Φ = ∂rΦ + 0 = ρ2Φ ∂r
1

ρ2
+

1

ρ2
∂r
(
ρ2Φ

)
= ρ2Φ ∂r

1

ρ2

+
1

ρ2

(

2(r−m)+
2

r+
a2sin2ϑ− a2

4m2r2+
sin2ϑ

(
4∆(r−✟✟m)+✘✘✘4m∆+8mr(r−✟✟m)+✘✘✘

8m2r−2(r−m)a2sin2ϑ
))

(436)

=⇒ ∂r̃Φ
∣
∣
r=r+

= 0+
1

(r2+ + a2cos2ϑ)

(

2(r+ −m) +
2

r+
a2sin2ϑ− 2a2sin2ϑ

m
+

(r+ −m)

2m2r2+
a4sin4ϑ

)

=
2(r+ −m)

(r2+ + a2cos2ϑ)

(

1− a2sin2ϑ

mr+
+
a4sin4ϑ

4m2r2+

)

=
2(r+ −m)

(
2mr+ − a2sin2ϑ

)2

(r2+ + a2cos2ϑ)4m2r2+
(437)

∂ϑ̃Φ = ∂ϑΦ = ρ2Φ ∂ϑ
1

ρ2
+

1

ρ2
∂ϑ
(
ρ2Φ

)

= ρ2Φ ∂ϑ
1

ρ2
+

2 sinϑ cosϑ

ρ2

(

− a2 +
2r

r+
a2 − a2

4m2r2+
(∆2 + 4mr∆+ 4m2r2) +

∆a4sinϑ

2m2r2+

)

(438)

=⇒ ∂ϑ̃Φ
∣
∣
r=r+

= 0 +
2a2sin ϑ cosϑ

(r2+ + a2cos2ϑ)

(
− 1 + 2− 1

)
= 0 . (439)

We now turn to the right-hand side of (431):

Kt̃ = g(K, ∂t̃) = g(K, ∂t) =
1

c

(

gtt + ΩHgtϕ

)

=
1

c

(

− c2 +
2mrc2

ρ2
− ca

2mr+

2mr

ρ2
ca sin2ϑ

)

=
c

ρ2

(

− r2 − a2cos2ϑ+ 2mr − r

r+
a2sin2ϑ

)

=
c

ρ2

(

−∆+ a2sin2ϑ− a2r

r+
sin2ϑ

)

(440)

=⇒ Kt̃

∣
∣
r=r+

= 0 , (441)

Kϕ̃ = g(K, ∂ϕ̃) = g(K, ∂ϕ) =
1

c

(

gtϕ + ΩHgϕϕ

)

=
1

c

{

− 2mr

ρ2
ca sin2ϑ+

ca

2mr+

(

sin2ϑ(r2 + a2) +
2mr

ρ2
a2sin4ϑ

)}

=
sin2ϑ

ρ2

{

− 2mra +
a
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(

(r2 + a2)(r2 + a2cos2ϑ) + 2mra2sin2ϑ
)}

=
sin2ϑ

ρ2

{

− 2mra+
a

2mr+

(

(∆ + 2mr)(r2 + a2cos2ϑ) + 2mra2sin2ϑ
)}
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=
sin2ϑ

ρ2

{

− 2mra+
a∆

2mr+
(r2 + a2cos2ϑ) +

ar

r+
(∆ + 2mr)

}
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=⇒ Kϕ̃

∣
∣
r=r+

=
sin2ϑ

(
− 2mr+a+ 2mr+a

)

r2+ + a2cos2ϑ
= 0 , (443)

Kr̃ = g(K, ∂r̃) =
1

c
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)

=
2mr

ρ2
+

a2sin2ϑ

2mr+∆ρ2

(

2mr
(
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)
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)

=
1

ρ2

(

2mr +
a2sin2ϑ

2mr+��∆

(
− 2mr��∆− ρ2��∆
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1

ρ2

{
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(
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ρ2

{
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(
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=⇒ Kr̃

∣
∣
r=r+

=
4m2r2+ + a4sin2ϑ− 4mr+a

2sin2ϑ

(r2+ + a2cos2ϑ)2mr+
=

(
2mr+ − a2sin2ϑ

)2

(r2+ + a2cos2ϑ)2mr+
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Kϑ̃ =
1

c
g(∂t̃ + ΩH∂ϕ̃, ∂ϑ̃) =

1

c
g(∂t + ΩH∂ϕ, ∂ϑ) = 0 . (446)

So the condition (431) is equivalent to

2(r+ −m)
(
2mr+ − a2sin2ϑ

)2

(r2+ + a2cos2ϑ)4m2r2+
=

2κ

c2

(
2mr+ − a2sin2ϑ

)2

(r2+ + a2cos2ϑ)2mr+
, (447)

so the surface gravity of a Kerr black hole is

κ =
c2(r+ −m)

2mr+
=

c2
√
m2 − a2

2m(m+
√
m2 − a2)

. (448)
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We will now establish the analogy between black-hole theory and thermodynamics. First we
need to know what is the analogon to the equilibrium state space. If we restrict to Kerr black
holes, then there are two parameters, m and a, both with the dimension of a length, so the
state space is two-dimensional. This is analogous e.g. to a gas which has also a two-dimensional
state space, coordinatised e.g. with the entropy S and the volume V .

To have black holes witrh two horizons, we
restrict the parameters m and a according
to

m > 0 , a2 < m2 (449)

so that we have an outrer horizon at r+ =
m+

√
m2 − a2. The inner horizon at r− =

m −
√
m2 − a2 will play no role in the fol-

lowing.

The set of all such Kerr black holes fill the
interior of an infinite wedge (green in the
picture) in the m − a−plane. This is the
state space of Kerr black holes. The bound-
ary of this wedge (dashed in the picture)
corresponds to the extreme black holes with
a2 = m2. The naked-singularity case (a2 >
m2) is not covered.There is no “thermody-
namics of naked singularities”.

In ordinary thermodynamics we have five
relevant variables on the state space,
namely the temperature T , the entropy S,
the pressure p, the volume V and the in-
ternal energy U . It is our goal to de-
fine five analogous state space functions for
black holes and then to investigate whether
the following well-known laws of thermody-
namics hold for black holes.

m

a

0th law: For a system in equilibrium the temperature is a constant.

1st law: dU = TdS − pdV .

2nd law: In a closed system the entropy cannot decrease, δS ≥ 0 .

3rd law: T = 0 cannot be reached, by any procedure, in finitely many steps.

We have given the 3rd law here in Nernst’s version of 1912. There is also another version, often
called the Planck-Nernst law, which says that the entropy S approaches zero if T approaches
zero. However, it is known that the Planck-Nernst law does not hold for all materials, so it is
not universal.

For a Kerr black hole we need five functions of a and m which can serve as the analogues of T ,
S, p, V and U . There are the following candidates:
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• the surface gravity

κ =
c2(r+ −m)

2mr+
=

c2
√
m2 − a2

2m(m+
√
m2 − a2)

, (450)

• the area of the horizon

A = 8πmr+ = 8πm
(
m+

√
m2 − a2

)
, (451)

recall Problem 1 of Worksheet 10,

• the angular velocity of the horizon

ΩH =
ca

2mr+
=

ca

2m(m+
√
m2 − a2)

, (452)

• the mass

M =
c2M

G
, (453)

• the spin

J =
c3ma

G
. (454)

For setting up an analogy with thermodynamics, one associates:

temperature T =
~

2πck
κ (κ = surface gravity)

entropy S =
kc3

4~G
A (A =area of the horizon)

pressure p =̂ − ΩH (ΩH =angular velocity of the horizon)

volume V =̂ J (J = spin)

internal energy U = c2M (M =mass)

Here we have introduced, in addition to c and G which occur naturally in general relativity,
the Planck constant ~ and the Boltzmann konstant k which is necessary to make sure that T
and S have the correct dimensions. Note that the four laws remain unchanged if we multiply T
with a positive numerical factor and divide S by the same factor, so the factors we have chosen
seem ambiguous at the moment. Also note that p has not the dimension of a pressure and V
has not the dimension of a volume, but this is to be expected because we are considering a
gas just as an example. We could equally well consider another thermodynamical system with
a two-dimensional state space, e.g. a magnetisable material where the analogue of V is the
magnetisation M and the analogue of p is the magnetic field strength −B. So the only thing
to be required is that the product of the analogue of p and the analogue of V should give a
quantity with the dimension of an energy, and this is the case.

We now look at the laws one by one and check if their analogues are true for black holes.
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The analogue of the 0th law says that the surface gravity of a stationary black hole is a constant.
This is indeed true for Kerr black holes. We emphasise again that this result is non-trivial: As
in the Kerr case the horizon is not a “round sphere”, recall Worksheet 10, it would have been
very natural to assume that the surface gravity depends on the latitudinal coordinate ϑ

We now turn to the 1st law. To that end we calculate

T dS =
c2

8πG
κ dA =

c2

✟✟8 πG

c2
√
m2 − a2

2m
(
m+

√
m2 − a2

)✟✟8 π d
(
m(m+

√
m2 − a2)

)

=
c4
√
m2 − a2

2Gm(m+
√
m2 − a2)

(

(
m+

√
m2 − a2

)
dm+m

(

dm+
mdm− a da√

m2 − a2

)
)

=
c4
√
m2 − a2

2Gm(m+
√
m2 − a2)

((
m+

√
m2 − a2

)
dm+

m
(√

m2 − a2 +m
)

√
m2 − a2

dm− mada√
m2 − a2

)

=
c4

2Gm

(√
m2 − a2 dm+mdm− mada

m+
√
m2 − a2

)

. (455)

−p dV = ΩHdJ =
ca

2m(m+
√
m2 − a2)

c3

G
d(ma) =

c4a

2Gm(m+
√
m2 − a2

(
mda+ a dm

)
.

(456)
Hence

T dS − p dV =
c4

2Gm

(√
m2 − a2 dm+mdm−

✘✘✘✘✘✘✘✘mada

m+
√
m2 − a2

+
a
(
✘✘✘mda+ a dm

)

m+
√
m2 − a2
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=
c4

2Gm(m+
√
m2 − a2)

((
m
√
m2 − a2 +m2 −��a

2
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√
m2 − a2

)
dm+✘✘✘✘

a2 dm
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=
c4

✁2Gm✭✭✭✭✭✭✭✭✭
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√
m2 − a2)

✁2✭✭✭✭✭✭✭✭✭✭✭(
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√
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c4

G
dm . (457)

As

dU = c2dM =
c4

G
dm , (458)

this proves that the 1st law is indeed true. This result does not look very deep. One might
have the impression that such a kind of analogy can be always constructed if one plays around
sufficiently long with the available quantities. However, in 1974 Stephen Hawking showed, using
concepts from quantum field theory on a curved background, that (even Schwarzschild) black
holes can radiate: If one considers e.g. a quantised Klein-Gordon field on the Schwarzschild
background, pair creation in the domain of outer communication may produce a field with
negative energy that moves into the black hole and a field with positive energy that escapes to
infinity. Hawking showed that, for an observer sufficiently far outside, the latter shows a Planck

spectrum with the above-given temperature T =
~

2πck
κ which is often called the Hawking
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temperature. Whereas the analogy with the 1st law determined the temeprature only up to a
numerical factor that remained undetermined, from the Planck spectrum the temperature can
be read uniquely. Hawking’s result showed that the analogy between the surface gravity and
a temperature is more than a coincidence: The surface gravity is associated with a physical
temperature that can actually be measured, at least in principle. Note, however, that the
Hawking temperature of a Schwarzschild black hole, T = ~c/(8km) = ~c3/(8kGM), has the
mass in the denominator. Therefore, for a supermassive and even for a stellar black hole this
temperature is very, very low. Correspondingly, these black holes suffer a measurable mass loss
only on very long time-scales. Actually, it takes more than the age of the universe until such
a black hole has lost a measurable fraction of its mass. Therefore, Hawking radiation can be
expected to be actually observed only with mini-black-holes whose existence is still speculative.
However, there are several claims that Hawking radiation has actually been observed in the
laboratory by way of analogue graity experiments. The idea is to do experiements with some
kind of materials (fluids, dielectrics, etc.) which are described by equations that are formally
the same as equations that hold for black holes. In particular, Jeff Steinhauer [Nature 12, 959
(2016)] has claimed that his group has observed Hawking radiation in an analogue experiment
with Bose-Einstein condensates. This claim is still the matter of a vivid debate.

We now turn to the 2nd law. Even before the analogy to thermodynamics was brought forward,
Stephen Hawking [Phys. Rev. Lett. 26, 13 (1971)] had proven a theorem which is often called
the “area theorem”. It says that under certain assumptions the horizon area of a black hole
cannot decrease. It was this observation that brought Jacob Bekenstein to the idea of associat-
ing the horizon area with an entropy. The proof of the area theorem is too involved for being
given here; a good source for background material on the area theorem and on the entire subject
of black-hole thermodynamics is the Living Review by Robert Wald [The Thermodynamics of
Black Holes. Living Rev. Relativ. 2001, 4(1) 6, http://www.livingreviews.org/lrr-2001-6]. The
validity of the 2nd law had to be re-examined after the discovery of Hawking radiation. During
the process of radiating a black hole loses mass. As the horizon area of a Schwarzschild black
hole equals A = 16πm2 = 16πG2M2/c4, this implies that A decreases as well, so the 2nd law
is violated. (The reason why Hawking’s area theorem implicitly excludes Hawking radiation is
in the fact that one of the assumptions on which the area theorem is based is an energy condi-
tion. Roughly speaking, it is assumed that the considered black-hole spacetime is a solution of
Einstein’s field equation with an energy-momentum tensor with non-negative energy density.
Clearly, in the presence of Hawking radiation this assumption is violated because Hawking ra-
diation requires negative energies.) Actually, it should not come as a surprise that the entropy
of a black hole may decrease if it is radiating: Also in ordinary thermodynamics the entropy
of a system may drecrease if it is not closed. A radiating black hole swallows matter (with
negative energy), so it is not closed. Bekenstein was indeed successful in establishing a version
of the 2nd law that includes Hawking radiation. To that end he defined a total entropy that
is composed of the above-mentioned entropy of the black hole and an appropriately defined
entropy of the environment with the outgoing radiation.

In ordinary thermodynamics there is also a way of defining the entropy in the language of
information theory. Leonard Susskind, who is best known for his pioneering contributions to
string theory, and others have shown that a similar interpretation of the above-defined black-
hole entropy is possible as well. In particular, Susskind developed a method of how to actually
calculate the entropy of a black hole with methods from string theory. Susskind described in
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a popular book, entitled “The black hole war”, his controversy with Stephen Hawking on the
question of whether information is lost in a black hole. In technical terms, this controversy
is related to the question of whether the time evolution of a black hole can be described
by a unitary operator as is usually assumed in quantum mechanics. In a bet against John
Preskill, Stephen Hawking and Kip Thorne (for this time on the same side) had opined in
1997 that the answer is “no”. Hawking conceded in 2004, but Thorne never did. Obviously,
all these considerations are to some extent based on speculations, because they make use of a
hypothetical quantum gravity theory (based e.g. on string theory) which up to now does not
exist in a mathematically precise and generally accepted version.

The question of whether an analogue of the 3rd law holds for black holes is still a matter of
debate. It is clear that the Planck-Nernst version is not satisfied: For Kerr black holes the limit
T → 0 corresponds to κ→ 0, i.e, to m2−a2 → 0. In this limit A→ 8πm2 6= 0, i.e., the entropy
does not go to zero. However, the above-quoted Nernst 1912 version of the 3rd law may have
an analogue. There are some partial results to the effect that, under certain conditions, T = 0
cannot be reached, i.e., the black hole cannot become extremal. E.g., Kip Thorne [Astrophys.
J. 191, 507 (1974)] found that, under certain assumptions, the spin parameter of a black hole
that swallows mass and angular momentum from its environment is limited by |a| ≤ 0.998m.

8.2 Black hole uniqueness theorems (“no hair theorems”)

We have studied in this course, among other things, the following black-hole spacetimes:

• Schwarzschild (mass M)

• Reissner-Nordström (mass M , charge Q)

• Kerr (mass M , angular momentum J)

There is also a charged version of the Kerr metric,

• Kerr-Newman (mass M , angular momentum J , charge Q)

The Kerr-Newman metric, which was found by Ted Newman and collaborators shortly after the
discovery of the Kerr metric, has the same form (301) as the Kerr metric. The only difference
is in the ∆ which now contains an additional term proportional to the square of the charge.

We have to ask ourselves whether these three parameters, M , J and Q, characterise a sta-
tionarily rotating charged bFlack hole uniquely, or if there are other types of such black holes
which require additional parameters for their description. Actually, one should not expect
that these three parameters are sufficient: Before undergoing gravitational collapse, a gravi-
tating body may have any combination of (mass, angular momentum and charge) multipole
moments. Why should one expect that, after gravitational collapse has taken place and the
object has settled down as a stationarily rotating black hole, all the higher-order multipole
moments should be uniquely determined by M , J and Q? However, this is exactly what one
found: It was proven, step by step, between the late 1960s and the mid 1980s by several sci-
entists, including Werner Israel (for non-rotating black holes), David Robinson (for rotating
uncharged black holes) and Pavel Mazur (for rotating charged black holes), that a black hole
must be a Kerr-Newman black hole, uniquely characterised byM , J and Q, provided that some
conditions are satisfied: The spacetime should be stationary and asymptotically flat, it should
be a solution of the Einstein-Maxwell equations, it should be analytic and there should be an
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event horizon that satisfies a regularity condition. For a precise formulation of this unique-
ness theorem and a detailed guide to the proof see Theorem 3.3 in P. Chruściel, J. Costa, M.
Heusler[Stationary black holes: Uniqueness and beyond, Living Rev. Relativity 15 (2012) 7 ,
http://www.livingreviews.org/lrr-2012-7]. Other variants of the theorem include energy
conditions and/or conditions that make sure that the horizon has spherical topology.

The black-hole uniqueness theorem is also known as the “no-hair theorem”. Here one refers to
all properties which are not determined by M , J and Q as to “hairs”, and then the theorem
says that a stationary electrovacuum black hole has no hairs. The name “no-hair theorem” was
made popular by John Wheeler but Wheeler himself indicated that it was coined by his PhD
student Jacob Bekenstein.

If one allows, in addition to gravity and electromagnetism, other interactions, i.e., if one gives
the black hole e.g. a scalar charge or a Yang-Mills charge, then there is no no-hair theorem.
Actually, one needs infinitely many parameters for characterising e.g. a black hole with scalar
charge. Details can be found in the above-mentioned Living Review by Chruściel, Costa and
Heusler.

Most people believe that for the supermassive and stellar black holes that actually exist in
Nature the electric charge plays no role, and that this is all the more true for scalar charges,
Yang-Mills charges and so on. (However, we don’t really know this for sure.) Then the no-
hair theorem says that these black holes should be properly described by the Kerr metric. Of
course, this is true only as long as we neglect the influence on the gravitational field of all
matter around the black hole, i.e. only as long as we assume that the vacuum Einstein field
equation holds (outside of the horizon). Matter around the black hole would give a deviation of
the (mass and angular momentum) multipoles from the Kerr multipoles. Such “distorted black
holes” are under detailed investigation. However, this is to be understood as considering small
corrections. The no-hair theorem gives very strong support to the assumption that the black
holes that actually exist in Nature are very well described by the Kerr metric. We have already
emphasised that to date this assumption is in agreement with all observations Therefore, a
good knowledge of the properties of Kerr black holes (which include Schwarzschild black holes
as a special case) is of paramount importance for a thorough understanding of the theory of
black holes. In this course we have tried to lay the foundations for such a good knowledge.

8.3 The singularity theorem of Roger Penrose

In 1965 Roger Penrose proved a mathematical theorem for which he got 50 % of the 2020 Physics
Nobel Prize. It was the first time that the Physics Nobel Prize was given for a mathematical
result. Penrose’s theorem was the first of three singularity theorems. The second one was
proven by Stephen Hawking in 1967 and the third one by Penrose and Hawking together in
1969. Whereas Penrose’s 1965 theorem is of relevance to black holes, Hawking’s 1967 theorem
is of relevance to cosmology. The 1969 theorem resulted from an attempt to formulate one
theorem that covers the black-hole situation and the cosmological situation simultaneously.
However, the 1969 theorem does not cover either of the earlier theorems as a special case. If
one is interested in the gravitational collapse that leads to a black hole, Penrose’s 1965 theorem
is the most relevant one. Therefore, we will restrict to it in the following. All three theorems
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(in a slightly reformulated fashion, and also changing the numbering) are discussed and (almost
completely) proven in the monograph by S. Hawking and G. Ellis [The Large-Scale Structure
of the Universe, Cambridge UP, 1973)]. An insightful discussion of the singularity theorems
can also be found in the textbook by R. Wald [General Relativity, Chicago UP, 1984].

It is important to put the singularity theorems into historic perspective. Before Penrose pre-
sented his result, a generic gravitational collapse had not been investigated. There was the
pioneering work by Oppenheimer and his PhD student Snyder which we have discussed earlier
in this course: This was about the gravitational collapse of a spherically symmetric ball of
dust. It was found that the collapse ended, after a finite time, in a singularity. Here the term
“singularity” means that the mass density and some curvature invariants become infinite, so
an observer near this singularity would be ripped apart by infinitely strong tidal forces. The
Oppenheimer-Snyder result was not usually considered as particularly dramatic: It was widely
believed that the formation of such a singularity was a consequence of the highly idealised
assumptions. Most people expected that a star that is not perfectly spherically symmetric and
not a dust would not end up in such a singular state. What Penrose proved was that this
expectation was wrong.

For formulating Penrose’s theorem we need some terminology. Firstly, and most importantly,
we have to clarify how Penrose defined a singularity. It would certainly be desirable to define
a spacetime as singular if some curvature invariants become infinite. Such “curvature singu-
larities” occur in all the black-hole spacetimes we have discussed in this course, at r = 0 in
the spherically symmetric black-hole spacetimes and at the ring (r = 0, ϑ = π/2) in the Kerr
spacetime. Unfortunately, until now no one was able to prove that such a curvature singularity
forms under generic conditions during gravitational collapse. What Penrose proved was the
formation of a weaker kind of singularities. His definition of a singularity refers to incomplete-
ness of geodesics, i.e., to the situation that along a geodesic the affine parameter does not run
over all of R:

Definition: A spacetime (M, g) is singular if it is not extendable and if there is at least one
timelike or lightlike geodesic that is incomplete.

Here the condition of being not extendable means that the spacetime is not a proper subset of
some bigger spacetime. Clearly, this condition is necessary because otherwise one could always
produce incomplete timelike or lightlike geodesics just by removing points from a perfectly nice
spacetime such as e.g. Minkowski spacetime. Probably everybody will agree that incomplete-
ness of a timelike geodesics, where incompleteness means that proper time does not run over all
of R, indicates some kind of singularity: If the worldline ends for an observer at a finite proper
time, either in the past indicating an initial singularity or in the future indicating an end singu-
larity, this is certainly something disturbing. The situation is maybe not quite so dramatic in
the lightlike case: As an affine parameter along a lightlike geodesic cannot be identified with a
directly measurable quantity, one might be skeptical about calling incompleteness of a lightlike
geodesic a “singularity”. Unfortunately, for the theorem it was not possible to restrict to the
timelike case.

The theorem is based on three hypotheses. The first one is an “energy condition”, i.e., it
requires the energy-momentum tensor of the spacetime to have a certain property. The following
terminology is used.

132



Definition: Assume that on a spacetime (M, g) Einstein’s field equation Rµν − (R/2)gµν +
Λgµν = κTµν holds.

(a) One says that the weak energy condition is satisfied if

TµνU
µUν ≥ 0 for all Uµ with gµνU

µUν < 0 . (459)

(b) One says that the null energy condition is satisfied if

RµνK
µKν ≥ 0 for all Kµ with gµνK

µKν = 0 . (460)

Clearly, the weak energy condition expresses the fact that all observers measure a non-negative
energy density. This is believed to be true for all ordinary matter, i.e., for all matter celestial
bodies such as stars are made of. If the weak energy condition holds, then by continuity we
also have TµνK

µKν ≥ 0 for all lightlike vectors. By Einstein’s field equation, this implies that
the null energy condition holds. So the weak energy condition, which is assumed to hold for all
ordinary matter, implies the validity of the null energy condition.

The second hypothesis uses the following notion.

Definition: A subset S of a spacetime is called a Cauchy surface if every inextendable timelike
curve intersects S exactly once. A spacetime is called globally hyperbolic if it admits a Cauchy
surface.

The standard example of a Cauchy surface is a hypersurface t = constant in Minkowski
spacetime (in standard inertial Minkowski coordinates (ct, x, y, z)), so Minkowski spacetime
is globally hyperbolic. Note, however, that not every inextendable spacelike hypersurface in
Minkowski spacetime is a Cauchy surface: The hyperboloid ct =

√

a2 + x2 + y2 + z2 (with a
constant a > 0) is an inextendable and spacelike hypersurface, but it is not a Cauchy surface;
there are timelike curves, asymptotically approaching the light cone ct =

√

x2 + y2 + z2 from
below, that do not insersect it. The Kruskal extension of the Schwarzschild spacetime is glob-
ally hyperbolic as well: The horizontal cross-section through the middle of the Carter-Penrose
diagram on p.17 (which gives a snapshot of the socalled Einstein-Rosen bridge) is a Cauchy
surface. By contrast, the regions I and II alone of this diagram (which are covered by the
ingoing Eddington-Finkelstein coordinates) do not admit a Cauchy surface, i.e., they are not
globally hyperbolic. Note that a Cauchy surface need not be a (smooth) submanifold. However,
the following has been proven: If a spacetime admits a Cauchy surface, then it admits a Cauchy
surface that is a smooth 3-dimensional spacelike submanifold.

The relevance of this notion becomes clear if one investigates partial differential equations such
as the classical wave equation gµν∇µ∇νφ = 0 on a spacetime: It turns out that existence and
uniqueness of a solution to this equation is guaranteed if initial data on a Cauchy surface are
prescribed. If a spacetime does not admit a Cauchy surface, such an existence-and-uniqueness
theorem does not hold, i.e., the initial-value problem is not well posed.

The third hypothesis uses a notion that was already discussed for the Schwarzschild spacetime
and in the Oppenheimer-Snyder collapse, recall in particular Worksheet 7.

Definition: A closed trapped surface is a 2-dimensional spacelike submanifold of a spacetime
that is diffeomorphic to the 2-sphere S2 for which both families of orthogonal lightlike directions
converge.
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To understand this notion we have to recall that the orthocomplement of a 2-dimensional
spacelike submanifold is 2-dimensional with signature (+−) at each point. Therefore, there are
precisely two lightlike directions in this orthocomplement. In Minkowski spacetime one family
of these lightlike directions is diverging and the other one is converging, which corresponds to
the natural idea of interpreting the first one as outgoing and the other one as ingoing. We have
already seen, however, that in the region r < 2m of a Schwarzschild spacetime for a sphere
(r = constant, t = constant) both families go in the direction of decreasing r, i.e., both families
are converging. For spheres with this property Penrose has coined the term “closed trapped
surface”. Of course, closed trapped surfaces are beyond our ordinary geometric intuition.

Penrose has introduced the term apparent horizon for the boundary of the region where closed
trapped surfaces exist. In the Schwarzschild spacetime the aparent horizon coincides with the
event horizon. We have seen, however, that this is not always true: In the Oppenheimer-Snyder
collapse the apparent horizon is different from the event horizon, recall again Worksheet 7. In
any case, the presence of closed trapped surfaces indicates the existence of some kind of horizon.

We are now ready to formulate Penrose’s singularity theorem.

Theorem (R. Penrose, 1965): Assume that in a spacetime (M, g) the following three hypotheses
are satisfied:

(a) The null energy condition holds.

(b) There exists a non-compact Cauchy surface.

(c) There exists a closed trapped surface.

Then there is an incomplete lightlike geodesic.

Note that the hypotheses of this theorem guarantee only the existence of an incomplete lightlike
geodesic; all timelike geodesics may be complete.

The crucial points are that no symmetry is assumed and that the energy-momentum tensor
can be much more general than a dust, it just has to satisfy the null energy condition. Roughly
speaking, the theorem expresses the fact that the gravitational collapse of a star leads to a
singularity if (a) the star consists of ordinary matter, (b) the state of the star and its surrounding
at one instant of time determines this state at every time (i.e., no unpredictable interference
comes in from somewhere else), and (c) the collapse has reached a certain stage, indicated by
the formation of some kind of horizon. The fact that the Cauchy surface is assumed to be
non-compact may be interpreted as saying that the star is isolated: It is very well possible
that our universe as a whole admits a compact Cauchy surface; such “closed” world models,
where the spatial topology of our universe is a 3-sphere or a 3-torus, are seriously considered.
However, one would not expect the global topology of the universe to have an effect on the
gravitational collapse of a star.

According to the official wording, 50 % of the 2020 Physics Nobel Prize was given to Roger
Penrose “for the discovery that black hole formation is a robust prediction of the general theory
of relativity”. With all due respect, we have to emphasise that this wording is misleading.
Penrose’s theorem is not about the formation of a black hole; it is about the formation of a
singularity inside a black hole. The fact that a black hole is forming is not a result, it is part
of the hypotheses, namely by assuming the existence of a closed trapped surface.
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