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A nonlocal square root of the Klein-Gordon equation is proposed. This nonlocal 
equation is a special relativistic equation for a scalar field of first order in the 
time derivative. Its space derivative part is described by a pseudodifferential 
operator. The usual quantum mechanical formalism can be set up. The nonrel- 
ativistic limit and the classical limit in the form of plane wave solutions and the 
Ehrenfest theorem are correctly included. The nonlocality of the wave equation 
does not disturb the light cone structure, and the relativity principle of special 
relativity is fulfilled. Uniqueness and existence of solutions of the Cauchy prob- 
lem for this equation can be proved. The second quantized version of this theory 
turns out to be macrocausal. 

I. INTRODUCTION 

Point particles are a good idealization for doing physics in the classical domain. However, 
there already occurs problems with the pointlikeness of particles because the electrostatic 
energy of a charged point particle is infinite. Also in the problem of the radiation reaction of 
an accelerated point particle in some electromagnetic field, the pointlikeness seems to cause the 
problem. And one of the main problems in physics is the occurrence of divergences in quantum 
field theory, for which the locality of the underlying field equation was made responsible. For 
most of the field equations this problem was solved by renormalization. 

Therefore the study of nonlocal field equations is of interest and may contribute to the 
solution of some of these problems. There are many proposals of nonlocal theories, theories of 
extended particles, appearing in the literature (see, e.g., the monograph by Namsrai’ and the 
literature cited therein). Also the string theory is a theory of extended particles and in this 
sense a nonlocal one. 

Here we propose another way to introduce a nonlocality in field theory: by means of 
pseudodifferential operator equations. Pseudodifferential operators are first introduced to get 
solutions of partial differential equations with variable coefficients. These operators give a 
parametric for a differential operator, that is, an inverse of the differential operator up to C” 
functions. For applications in physics and treating the subject by an intrinsic calculus see 
Fulling and Kennedy.’ In addition, PseudodifFerential operators can also be used to formulate 
generalizations of differential equations, namely, pseudodifferential equations. This latter ap- 
plication is what we want to describe in the following. 

We will construct a special nonlocal (pseudodifferential operator) field equation, which is 
based on the usual Klein-Gordon equation, and discuss the properties of this new equation. 
Although the nonlocality of pseudodifferential equations do not cure divergences in quantum 
field theory, there are advantages which make such types of equations worth studying. Some of 
the advantages of this pseudodifferential equation are the following: (i) It is a scalar relativistic 
equation of first order in the time derivative. (ii) It possesses a quantum mechanical interpre- 
tation, that is, it leads to a conserved quantity and leads automatically to the correct Ehrenfest 
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theorem. (iii) It preserves the light cone structure. (iv) All observable quantities are in 
accordance with the relativity principle. (v) The classical limit as well as the nonrelativistic 
limit is correctly included. (vi) It possesses plane wave solutions of positive energy only. 

Therefore this theory has all the good properties of a Schrodinger theory and avoids many 
problems connected with the interpretation of usual relativistic field equations. 

In this article we want to consider how to take the square root of the Klein-Gordon- 
equation (KGE). At first we will state this problem in Minkowski space without interaction. 
The coupling to electromagnetism and gravitation will be considered in further publications. 

The KGE 

+vapae + m2p = 0 (1.1) 

(~=0,...,3) with the Minkowski metric q=diag( + - - -) and Q, as a scalar field, is a rela- 
tivistic field equation. However, because of the following reasons it cannot be considered as a 
quantum mechanical equation, that is, as a quantum mechanically interpreted classical field 
equation: 

(i) The KGE ( 1.1) does not obey the usual quantum principles because it is not of the first 
order in the time derivative. 

(ii) The probability current jp= (fi/2mi)(p+d%p- (#q+)p) derived from Eq. (1.1) is 
not positive definite, that is, negative probabilities in finding a particle within a given space 
region may occur. 

(iii) Solutions of the KGE can possess negative energies. This leads to the occurence of the 
Zitterbewegun~ and generally to difficulties for the interpretation of this equation. [Both 
problems (ii) and (iii) can be overcome by demanding that the KG particles be charged. Also 
second quantization removes these difficulties.] 

(iv) There is no good canonical position operator. 
These are reasons which force one to look for another relativistic field equation. Writing 

Eq. (1.1) as -&J= - ( A +m’)p, then, in order to get only one time derivative on the left 
hand side, one might somehow try to take the square root of the operator on the right hand 
side: i&p = dmp. This means, one is looking for an operator A that fulfills 

AAq= ( -A+m2)qJ= --a&. (1.2) 

The usual way to solve this problem formally is to change to a matrix-valued equation. This 
procedure leads to the Dirac equation. 

In this article we intend to go another way: The equation A&=&p can also be solved in 
interpreting A as a pseudodifferential operator. By doing so, all the difficulties with the KGE 
mentioned above can be avoided. Furthermore, some problems which occur with the Dirac 
equation do not occur in our case. However, we want to emphasize that our theory pertains to 
a scalar field and is no replacement for the Dirac equation. 

The outline of this article is as follows: At first we will shortly discuss the Dirac square root 
of the KGE. Then we will give a short introduction to pseudodifferential operators to the extent 
we need. In Sec. IV we use this mathematical tool to get the pseudodifferential operator square 
root of the free KGE. In the rest of this article this pseudodifferential operator field equation 
and its solutions will be discussed. 

II. THE DIRAC EQUATION 

A. Derivation of the Dirac equation 

The equation AAq= ( -A + m2)g, can be solved for A by looking for a matrix-valued 
equation in writing A =a”iao+fim (a = 1,2,3) with matrices an and p and requiring a(*ab) 
=Pb, p’= 1, and a”P+fia”= 0. This procedure especially means that one alters the nature of 
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the considered scalar field q in replacing it by a complex vector valued field ~EC” with s > 1. 
Since the relations for the matrices a and /3 possess nontrivial solutions, this procedure leads to 
a square root of the KGE. Therefore we get a@=aaaaw+flm,, or equivalently, 

0 = iycL+p - mcp, 

the Dirac equation. 
According to Bjorken and Drel14 one is not forced, either for mathematical or for physical 

reasons, to solve the above problem by transforming it to a matrix-valued equation. The KGE 
as well as the Dirac equation are local field equations. This fact is responsible for the occurence 
of divergences in calculating processes within the framework of second quantization. 

B. Discussion of the Dirac equation 

Although one has solved the first two of the above problems, with respect to the Dirac 
equation, there remains problems (iii) and (iv), that is, especially the problems of interpreta- 
tion. When calculating the velocity operator along the usual lines this operator turns out to 
possess only the light velocity as an eigenvalue. This difficulty might be removed by the process 
of a Foldy-Wouthuysen transformation or by constructing a position operator which is dif- 
ferent from the canonical position operator.5 For more interpretation see, e.g., Refs. 3 and 6. 

Ill. PSEUDODIFFERENTIAL OPERATORS 

In the following we want to show that the Dirac equation is not the only possible square 
root of the KGE. The other square root can be performed by pseudodifferential operators, 
which are the natural (nonlocal) generalization of the usual partial differential operators. 

A. Motivation and definition for pseudodifferential operators 

1. Motivation for pseudodifferential operators 

Let P(x, D) be a linear partial differential operator ( D: = -id) of order m with C” coef- 
ficients. Then P(x, D) is a mapping 8 (B”) --) 8 (a”). 

The Fourier transform (FT) of u E $7 (IV) with compact support is denoted by Yu . For 
such a II we can reformulate P(x, D)u by means of the FT (in this section we work in an 
n-dimensional space x, ~EIV and ~*x=&x’, a= l,...,n) 

P(x,D)u(x)=P(x,D)( (2i)nfi j- (~u)(g)ei~‘“~~)=(2b)~,” SP(x,E)(~u)(g)e’E’“~~. 

(3.1) 

The right hand side does not contain any differential operator. Consequently, differentiation is 
replaced by integration. Integration is superior to differentiation. 

This is now the point to generalize Eq. (3.1) : At first we can replace the polynomial P(x,c) 
in c by an arbitrary function a(x,c) in such a way, that the integral still makes sense. This 
procedure defines a new operator JZ!: 

1 
(dolu) (xl:= (2r)m,~ J dx,iJ (Fu) (~P’“4. (3.2) 

Operators of this kind are called pseudodifferential operators (PDO); the functions a(~,{) are 
called symbols. Each symbol a(x,c) corresponds to a pseudodifferential operator &. Writing 
explicitly the FT in Eq. (3.2) we get 
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1 
C&u) (xl:= (2n)n u(x,{)u(y)eic’(x-J’) dy dc. 

(This expression can be easily further generalized by allowing the symbol to depend on y too.) 
An extended exposition of the theory of PDOs can be found in HGrmander,7 Dieudonnt,8 
Taylor,9 and Treves. lo 

PDOs are a basic tool for the mathematical description of the Weylian quantization pro- 
cedure, see, e.g., Folland” and Unterberger.‘* 

2. Symbol classes and definition of PDOs 

To be able to define the integration in Eq. (3.2) resp. Eq. (3.3) the symbols must fulfill 
some requirements. We do not define the most general symbol classes. For all XEKCR”, K 
compact, and PER” the functions a(~&) are not allowed to grow faster with respect to { than 
some polynomial, that is, there are constants m, c;:::::,(K) E R so that 

aj 
a ,,-a pl ah, -ag, a(xg3 <c;y.:j(K) Cl+ ISI I"-', vi9.j. I 

These are the symbols of the order m. Their class is denoted by Sm. We also define Sm: 
= n sm. l?lCR 

Each of these symbols define via Eq. (3.3) a PDO. 
Especially the polynomials P(x,kJ = XL”=, &r”‘~i(x)&. *a& appearing in Eq. (3.1) are 

symbols of the order m. 
Equality of two symbols up to an S-” part, u-u’ES-OO, defines an equivalence relation 

u-u’. 
The symbol classes of smaller m are contained in the symbol classes of greater m: SmCS”’ 

for m cm’. We can also show uGm~ila/agp~Sm-’ and UEP, bcS”‘jubGm+m’.. j 
One of the most important properties of symbols is the fact that they can be expanded’m 

asymptotic series, that is, in a sum of symbols of decreasing order a - Zlzg ui with UieSi; i i 1 

B. Properties of PDOs 

Some of the most important properties of PDOs are the following: (i) The product of two 
PDOs is again a PDO. (ii) PDOs are pseudolocal, that is, 

sing supp ( dp) C sing supp q. (3.5) 

PDOs are not local, they do not fulfill supp ( &q,) C supp 9. This last property, the locality 
condition, characterizes partial differential operators.‘3’14 (iii) As for symbols, there is an 
asymptotic expansion for PDOs: &=Bdpi where each di is a PDO defined by the symbol 
UieS’ with decreasing i. (iv) With the help of the asymptotic expansion we can determine the 
commutator of two PDOs: If a(~&) is the symbol of & and b(x,c) the symbol of 9, then the 
asymptotic expansion of the symbol 0~9 m-l& of the PDO LZ’.@ - 6%’ JZ’ reads7 I 

aWx,o azb(x,c) a2b(x,g a*u(x,c) 
acJlb aXaaXb + al$gh axaaxb * ’ * 2 ,, 

(3.6’), 
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where {, ) is the Poisson bracket with respect to (x,5). The leading term therefore consists in 
the Poisson bracket. The higher order terms correspond to “quantum corrections.” This will be 
shown after coupling the field equation (4.1) to the Maxwell field. If one of the symbols is the 
canonical variable x or 6, then in Eq. (3.6) all higher terms vanish so that the general formula 
reduces to7 

wx,o ad&&d(x,C) =iC4W,&l= -iF . 

(3.7a) 

(Entities with a hat are operators.) The commutator relation [Z’,&,] = - 8: easily results from 
the above general relation. 

IV. THE SQUARE ROOT OF THE FREE KLEIN-GORDON EQUATION USING 
PSEUDODIFFERENTIAL OPERATORS 

A. The definition of the square root of the free KGE 

At first we note that the operator -A + m* is strongly elliptic. For operators of this kind, 
the square root is well-defined and necessarily results in a PD0.9 We can construct the respec- 
tive PDO by taking as the symbol the square root of the original symbol. 

In our case we then have to take as the symbol of the PDO the function @%? with 
~2:=@b&~b, (a, b=l, 2, 3). Th ere ore f our square root of the KGE reads 

1 
ita@) (t,x) = GYPI (0) =m 

ss 
Jme’t’ (x-J’)cp( t,y)d3y d3g. (4.1) 

This equation shows new effects in comparison to the KGE (in the same sense as the Dirac 
equation shows new effects in comparison to the KGE). As for the Dirac equation, the KGE 
just serves as motivation for introducing a new field equation meeting the quantum mechanical 
requirements. Equation (4.1) is a relativistic equation for a scalar Jeld cp which is of the first 
order in the time derivative. In the following we want to discuss this equation with respect to 
its physical content. 

First we make some comments on Eq. (4.1) : 
(i) The function ,,/m is a symbol from St. 
(ii) Since the right hand side of Eq. (4.1) consists in a PDO, Eq. (4.1) is a nonlocal 

equation. 
(iii) The square root is defined with respect to a chosen spacelike hypersurface. But any 

hypersurface can be chosen. Therefore Eq. (4.1) is not in contradiction to the relativity 
principle (that is, no Lorentz system can be distinguished by any physical experiment). Below 
we will show that measured quantities explicitly obey the relativity principle. [Equation (4.1) 
is indeed not manifestly covariant. The covariance appears in the arbitrariness of the chosen 
hypersurface and the covariance of measured quantities.] In addition, it has been shown” that 
there is a representation of the Lorentz group acting on functions so that the respective 
transformation carrys solutions of Eq. (4.1) into another solution. These transformations also 
leave the scalar product ($ ] q) : = s$*q d3x (see Sec. IV H 3 ) invariant. 

(iv) While the usual relativistic field equations like the KGE and the Dirac equation in the 
absence of interactions can be written as real equations (for the Dirac equation this amounts 
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to choosing a special representation of the y matrices, namely, the Majorana representation) 
solutions of Eq. (4.1) are necessarily complex valued. Equation (4.1) has this property in 
common with the Schrijdinger equation. 

(v) By calculating the square root twice, we arrive again at the KGE ( 1.2). In the 
following we discuss some physical implications of the field equation (4.1) . 

B. Plane wave solutions 

At first we will show that Eq. (4.1) possesses plane wave solutions. For doing so we make 
the ansatz tp( t,x) = ue-@/ = ue-i(of-P’x) with a, p = const. Insertion into Eq. (4.1) gives 

1 
wae-i(Wt-P.X)=m3 ,/wei6’ (x-Y)ue-i(mt-p’Y)& d3$ 

The integration can be performed and results in 

w= JpT? (4.2) 

Therefore plane waves are solutions of Eq. (4.1) . These plane waves always have positive energy 
only. The spectrum of the Hamiltonian (4.1) consists in the set [m, 00 ), see Weder.16 

Since for a given time the plane waves form a complete set, any solution, that is, any 
physical state, may be decomposed according to 

1 
&,x) =p s 4We -ip’x d3p. 

Inserting Eq. (4.3) into Eq. (4.1) gives the time evolution of the coefficients idp( t,p) 
= ,/p-u ( t,p) having the solution 

u(t,p) =e- i@=%(p). (4.4) 

Because of the positivity of the energy the group velocity of any wave packet will be 
timelike and future directed. Furthermore, there is no Zitterbewegung, that is, there is no 
interference between positive and negative energies in bilinear expressions. 

C. The light cone 

One characteristic feature of the propagation phenomena described by partial differential 
equations (in the hyperbolic case) is the occurence of light cones (compare Refs. 7 and 17). 
The structure of the light cones is exhibited in the singular support of the fundamental solution 
of the differential equation. 

By taking the pseudodifferential operator square root of the KGE this characteristic fea- 
ture of the KGE is not disturbed. This can be seen as follows (we restrict to t > 0, see Sec. 
IV I): If EKG is a fundamental solution of the KGE, i.e., if ($“‘dPc3,,-m2)EKG=S, then, 
because of (ia,+Z)(ia,-A?)&,= ( -af+A---m2)E,,= (id,-R)(idt+Z)EKG=S, a 
fundamental solution of Eq. (4.1) is given by Em = (id, + %‘)Eko . From this result it is clear 
that (the singular support, sing supp, of a function f is the set of points XEIP which have no 
open neighborhood to which the restriction of f is Cm) sing supp EYm=sing supp ((id, 
+Z) EKG) = sing supp (a&o) Using supp (X&o) C sing supp EKG because of the pseudo- 
locality of X (3.5) and sing supp (a&k,) Csing supp EKG. This means that the light cone 
structure is not disturbed by taking the pseudodifferential operator square root of the KGE. 

The result that even sing supp Ed~~=sing supp EKG for t > 0 will be explicitly established 
in Sec. IV I. 
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pY The npnreiativistic limit 

As we have seen, plane waves with momentum p are solutions of Eq. (4.1). We can now 
introduce aset of functions S,, by means of the requirement that the support of the FT of these 
functions is restricted to a neighborhood U, CR3 of zero. To be more precise, S,,: 
={p~Y’Isupp(Y~)) C Vi} with U,:={t~R~l{~<?n~}. This means that in the decomposi- 
tion of these functions with respect to plane waves, only plane waves with momentum Ip ( < m 
contribute., p is the momentum as measured by the observer introduced by the (3 + 1) slicing. 
This means in addition, that the group velocity of wave packets built up of plane waves with 
momenta 6~ U, is smaller than the velocity of light. In this case the square root appearing in 
Eq. (4.1) can be expanded with respect to g2/m2. This gives 

;jt? . . 1 
i(&p) (x) =gq3 

J-J ( 
P e 

I 8 ‘_ , 
m l+~+--~+“’ dc’(X-Y)~(Y)d3Yd3C 

) 
,,I,r,’ : , ,. 1 1 

= m+GA+sA2+.** (4.5) 
L,l’i\ I, ?’ 

rT&erefore we get to the first order (except the term mp which however can be absorbed into 
.the function p by substitution) the usual Schrodinger equation. Consequently, the nonrelativ- 
istic limit, is correctly contained in Eq. (4.1) . 
;) Go, Of course, the expansion (4.5) is valid only when applied to q&S,,. Otherwise the sum of 
symbols of increasing order will not converge. 
f,,f!, 
‘Eihe ultrarelativistic limit 

r, f I. 
If in ,the opposite case the FT of the particle contains large momenta p2 > m2, then the 

square root in Eq. (4.1) can be expanded with respect to m2/c2 resulting in 

Inserting a plane wave ei(p’x--or) gives the correct dispersion relation for the ultrarelativistic 
J+t,wy,(pI +(m2/2(pI I+--- . This expansion describes a light cone expansion which means 
the appro,ximation of geometrical optics. The first term gives the light cone structure. 

From the mathematical point of view the above expansion is always defined because each 
‘$& &2j/ 1 c 12j- 1 

‘pG& 
is a symbol of order 1-2j. It is an asymptotic expansion of the symbol 

:!;’ ‘., 
F.. .The nonlocality 

‘!’ At first we have to distinguish between different notions of nonlocality appearing in phys- 
ics. There are (i) Aharonov-Bohm-like interactions; (ii) Einstein-Podolsky-Rosen Paradox 
(EPR) correlations; (iii) the impossibility to localize a particle, that is, S functions are not 
eigenfunctions of a position operator; (iv) the field equation contains an infinite order of 
derivatives; (v) coupling of a field to derivatives of potentials, e.g., Darwin-like terms; (vi) 
locality conditions in quantized theories, that is, the commutator of fields vanishes for spacelike 
,distances. 
_ !, Here we are not concerned with (i) and (ii). We have no problems with (iii) either, 
because it has already been shown that Eq. (4.1) provides us with a complete set of plane waves 
so that it is possible to localize a particle. The nonlocality of Eq. (4.1) is of the form (iv). 
PDOs are so to say differential operators with an infinite order of derivatives. After coupling 
the field equation (4.1) to the Maxwell field, nonlocalities of the kind (v) also occur. Therefore 
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we have to discuss the nonlocality of type (iv). In Sec. IV J it is shown that a locality in the 
sense of (vi) does not hold either; nevertheless, the fields will prove to be macrocausal. 

We first observe that the nonlocality induced by the pseudodifferential operator appears 
only with respect to the space coordinates x. There is no nonlocality with respect to the time 
coordinate. 

One approach to the nonlocality of particles described by Eq. (4.1) is to observe that in an 
expansion of the square root [compare Eq. (4.5)] there is so to say an infinite order of 
differentiations. Equation (4.5) can be compared with an operator of the form eeL2’ which is 
the prototype of a nonlocal operator with a characteristic nonlocality given by the length ;1. 
This comparison up to the order four gives that il is equal to the Compton-wavelength & 
= Wmc. 

This is true for all choices of hypersurfaces which one chases for the formulation of the 
square root. Therefore, although it amounts to the measurement of a length in the chosen 
spacelike hypersurface, this nonlocality is a covariant phenomenon; no hypersurface, that is, no 
Lorentz observer, can be distinguished by this measurement. Also in this sense (4.1) is a 
relativistic equation. 

The above nonlocality of the field equation does not imply that fields cannot be localized. 
Indeed, by means of Eq. (4.3) it is possible to construct with plane wave solutions of Eq. (4.1) 
a 6 function in x space. 6 functions are eigenfunctions of the position operator x. This is in 
contrast to the usual relativistic field equations, that is, the KGE and Dirac equation.4 In these 
theories the impossibility to localize a particle is connected with the existence of positive and 
negative energy solutions. 

In addition, the nonlocality of the field equation (4.1) means the following: If an initial 
state q. with compact support is given, then the time derivative of the solution evolving from 
this initial state is not bound to supp qo, as it is for partial differential equations, see Audretsch 
and Liimmerzahl. l4 If, for example, the initial state is given by qo=So, then we get 

1 
i(%p) (0,x) =(2n)3 

s 
,j~ei~‘x d3tj 

and observe that the support of this function is larger than the point {O}=supp qo. See Sec. 
IV H. 

The nonlocality of Eq. (4.1) also means that there is no finite maximum speed for the 
propagation of solutions. Requiring finite propagation speed implies that the underlying evo- 
lution equation is a partial differential equation77’8819 which then necessarily turns out to be 
weakly hyperbolic.7 Nonfinite propagation speed must not be in contradiction to the principles 
of special relativity because of the following reasons: (i) The light cone structure is not 
disturbed by Eq. (4.1) as was shown above. (ii) The special theory of relativity is valid in the 
classical domain as it is shown by the plane wave solutions and by the Ehrenfest theorem. 
Equation (4.1) is macrocausal (see Sec. IV J). (iii) All observables agree with the relativity 
principle. 

G. Ehrenfests’s theorem 

1. The velocity operator 

The Hamilton function in six-dimensional phase space corresponding to Eq. (4.1) , that is, 
the symbol of the Hamilton operator, is H(x,p) = dpv. The velocity operator is obtained 
by means of the canonical relation 

d 1 
P=;7;P=y [sY(x,p),c?y. 
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This commutator can be evaluated according to Eq. (3.7a). We get for the symbol of the 
velocity operator 

(4.6) 

The velocity operator v” then reads 

1 
(flq) (w) =m v(~)ei~‘(“-y)~(t,~>d3vd3~. 

Eigenfunctions of 8’ are plane waves a( t)ewiq ‘JZ with eigenvalue r]“/ ,/m. 
Expanding the square root one gets the expansion for slow velocities 

lf(x,p) =6 ab! 

Therefore in our theory there appears no difficulties with the velocity operator in contrast to 
the Dirac theory. We do not have to construct a new position operator, the canonical is already 
the right one. 

2. Acceleration and force operator 

For the acceleration operator a”= (d/dt)v”= ( l/i) [aSqvy1 we of course get P=O because 
the Hamiltonian does not depend on x. The force operator f=;,= (d/dt)j== ( l/i) [X,p^,] van- 
ishes also. 

H. Lagrange formalism 

1. A Lagrangian 

The field equation (4.1) can be derived from a Lagrangian. Since the field equatioz is of the 
first order in the time derivative, the kinetic term of the Lagrangian must contain $p*iZQp where 
q* is the complex conjugate of q~. It is then easy to see that the Lagrangian density must be 

1 1 
~(Gx> =z ~*(~,xm~w) -@-$ p*(t,x) ~~ei~‘(x-Y)q,(r,y)d3yd3~. 

The Lagrange function will then be 

L(t)= .2’d3x 
I 

= s ; @YW%pkx)d3=& p* (t,x) dme’c’ (+Y)p( t,y)d3x d3y d3{. 

Introducing the Schwartz kernel 

1 
mY):=~ ~~ei~‘(x-Y) d3c=K(x-y) =lvle(y,x) 

this can be written as 

J. Math. Phys., Vol. 34, No. 9, September 1993 

Downloaded 31 Jul 2006 to 134.102.236.59. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Claus Mmmerzahl: Pseudodifferential operator root of Klein-Gordon 3927 

L= 
s 

; q*(t,x)&p(f,x)d3x- ~*(t,x>K(x,v>~(t,~)d3X d”v. 

Starting from these expressions we can carry through the usual canonical formalism. So we get 
the canonical momentum 

7r( t,x) = 
SL(t) * 

=f rp*(t,x). 
wa,x) 2 

(4.7) 

2. The field equations 

By variation with respect to q* we arrive again at the field equation (4.1). A general 
variation of the action gives 

SS=f( ,,,-L,) s (cp*Q-&p*g,)d3x+i (6gafl--afl*6~)d3x dt 

- (s~*(t,x)K(x,r)~(f,~) +~*(t,x)K(x,y)6g,(f,y))d3x d3y dt, 
where 2, and X1 are two hypersurfaces of constant t2 > cl. Now we can insert various varia- 
tions: 

(i) Choosing especially SF* =Sq, =0 at t, and f2 we recover the field equation (4.1) and its 
complex conjugate. 

3. Symmetries 

In addition we can get conserved quantities by choosing other variations: 
(ii) Choosing Sq~=iaq, for aER, and constant, and using the field equation, we get prob- 

ability conservation 

d 

iii s 
rp%p d3x = 0 

in the sense that there is a globally conserved probability which is positive definite. Therefore 
one can define a scalar product ($ I q) : = J$*q d3 x which is conserved for solutions of Eq. 
(4.1) . A Hilbert space formalism can be established. 

For a field obeying Eq. (4.1) no current conservation in the sense of aJP = 0 can be found 
because this current conservation would be a local law. 

(iii) Choosing SQ)=a’a& for aER3, and constant, and using the field equation, we get 
momentum conservation 

(&,p*p-q*&p)d3x= - 
s 

q*i+p d3X=const. 

for fields falling off sufficiently fast outside a bound region. Therefore k = -iv is the momen- 
tum operator. 

(iv) Choosing in the same way Sq,=cra~, aEn%, we get energy conservation 

E: = 
s 

q*iaN d3x = const. 

and &p=ia, is the Hamilton operator giving the energy of the quantum system. 
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FIG. 1. Contours of the various Green’s functions. 

(v) And for Sg,=ayafl with (Tab= - a& we get angular ‘momentum conservation 

Lab=; J q*i(x2b-x$a)p d3x=const. 

All integrals are to be evaluated with respect to an arbitrary spacelike hypersurface. That 
means that the observables of our theory are in accordance with the relativity principle. 

I. The fundamental solution, Greeti’s functions 

1. The Green’s functionlr 

By means of standard Fourier transformation techniques it is possible to construct the 
fundamental solutions, i.e., Green’s functions, G( t,x) for Eq. (4.1) . That is, we are construct- 
ing the solution the source of which is a delta function 

1 
WG) (~4 -m JJ ~~eis’(“-Y)G(t,y)d3yd3~=--S3(x)S(t). 

The Fourier transform of this equation gives 

--& J (wG(w,p) - ~p~G(O,p))e-i(~f-*‘x) d3p dw= -$-+ s e-i@‘r-p’x) d3p dw. 

This leads to an equation for G(w,p) in momentum space 

1 1 
G(**p)=--vo-- 

Transforming back to x space we get 

--icot-P’d &,, dxp. 

The integrgtion over w can be performed by choosing a path in the complex w plane (see 
Fig. 1). This procedure amounts in replacifig the denominator o - dpw by w - ( 1 
r 2) Jp’;Tt-;;;z with E > 0. With 
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e(t)= :, 
I 

if t>O 

, if t<O 

integration along a path in the upper half plane gives G+ (t,x), the other path gives G- (t,x) 

i 
G+ (&xl =m t: e(t) 

s 
ei(P. x- ( I- ic) @-GA) &, 

G-(t,x)=-~Slim8(-t) 
(2r) E-0 s 

e’b ’ X- ( 1+ id v’pZ+m2t) djp. 

These are the fundamental solutions. We additionally can define 

G(t,x)=G+(t,x)-G-W& 
. s 

,i(Px- mt) dsp, 

which later proves to be the commutator function. 
The integration with respect to d3p can also be performed. We write p . x=px cos 8 

(p: = Ip 1 ,x: = 1 x I) and integrate with respect to 4 and 8 
,I ” ?[I 

G’(x)=*~&~~8(*f) 
s 

ei(PX COS 8- (1 Tic) mtjp2 dp sin 0 de d+ 
‘. i”! I 1 i 

2i 1 
J- 

-it(lFiE)Vlp2+m2dp. 
,. 

p sin(px)e 

We formally write p sin ( px) = - (d/dx) cos ( px) , commute integration and differentiation, and. 
integrate” 

2 Id 
G*W=*~Wd)f~,;i;; 

mt( 1 rk) 
K,(m ,/x2--$( 1 rie>2) (4.8) 

‘..,I ’ I 

WecanreplacetZ(1ri~)2-x2byt2-x2~i~andnotethatK,(z)=H”l(iz)=-((?r/2)~‘)(iz) 
giving . ’ 

I .’ 

@‘)(-m ,/m) 

- ) 

’ :,i i 

-m t2-x2rk 

.=-,@Xi 
1’; (4;?,), 

These are the two Green’s functions, the advanced and the retarded one. Up to the te( ft) 
function these Green’s functions are Lorentz invariants. For a given (3 + 1) slicing the Green’s 
functions are given by a Lorentz invariant function which will be projected by te into the 
corresponding Lorentz system. 

I 

It would be of course possible to calculate the Green’s function according to..,G= (%: 
+X)&o which however seems not to be as easy as the calculation above. ” ” ’ 
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We also get singsuppG*=BoU{(t,x)ER41*-x2=0}, that is, the union of the t=O 
hypersurface and the light cone. This is a feature our equation has in common with other 
relativistic field equations as the Maxwell equations” or the equation of linear perturbation of 
a background solution of Einstein’s equation.2’ 

2. Light cone expansion 

For small z, that is, near the light cone, we can expand the Hankel function 

@‘)(z)=Jl(z)+iNl(z), 

223 2 
Jl~z~=~-~+222242.~+“’ 9 

2 Z4 
Jo(z)=l-~+~+-+-, 

where y is Euler’s number. Inserting these expansions into Eq. (4.9) and using 

&=$-id@), p&p=& ( -s+h-r6(2) , 
) 

ln(t+ic) =ln $i-i?re(2) 

we finally get (2=m2(t2-x2)) 

G*(z)=*&e(*t)tm4 Z--$S(t)+a(t)+ 1-e - [ (Z)] (f-ii) 

(4.10) 

Therefore the Green’s functions do not vanish outside the light cone. The appearance of a 
derivative is in accordance with G= (ic3,+SY)E,, . 

3. Zero-mass Green’s functions 
Since m -0 implies z-0 we can use Eq. (4.10). Defining g= :m2? then the only 

m-independent term appearing in Eq. (4.10) is the term (d/dg)S(g) giving as Green’s 
functions for the m=O case (?=?-x2) 

4. On the Cauchy problem 

Since the Green’s functions are known, the homogeneous and inhomogeneous Cauchy 
problems can be solved. For the case ia,q-&“p= f with supp f CRg”, with qo(x) =q(O,x) =O 
we have as unique solution cp(t,x) = SG+(t--‘,x-x’) f (t’,x’)d3x’ dt’. For the case ia@ 
-%p=O and qo(x) =p(O,x) we get as solution p(t,x) = JG+(t,x-x’)qO(x’)d3x’. 

Equation (4.1) is an evolution equation for which the question of uniqueness and existence 
of the Cauchy problem should be answered. It is the PDG generalization of the same question 
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for partial differential equations with x-independent coefficients. In the latter case uniqueness 
and existence is equivalent to the demand of hyperbolicity of the differential operator, see, e.g., 
Ref. 7. However there does not seem to exist a complete theory of pseudodifferential equations 
with constant symbols seems not to exist. What can be shown is that a Cauchy-Kowalewski 
theorem for analytical PDOS~~ holds and that there are existence and uniqueness theorems for 
symmetric hyperbolic equations.’ 

It should be noted once more that nonfinite propagation speed does not contradict the 
relativity principle: If two Lorentz systems prepare the same initial state, then each of them will 
also see the same dynamical evolution. 

J. On second quantization 

We will shortly remark that our theory can be second quantized by means of the canonical 
formalism. To that purpose we introduce the operators $( t,x), i;( t,x) = (i/2)@+ (t,x) and the 
canonical commutation relations 

[@(t,x,, Q(t,x’) ] = [@+(t,x), rj?+(t,X’)]=O, [@(t,x,, &J+(t,x’)]=2s(x-x’). 
(4.11) 

$(t,x) fulfills Eq. (4.1). Since plane waves with arbitrary spatial momentum are solutions of 
Eq: (4.11, a complete set of solutions is available, namely, the energy-eigenfunctions 
e -r’or-p’x). Therefore an arbitrary solution can be expanded according to Eq. (4.3) with the 
coefficients c1 (t,p) replaced by operators a^( t,p). From Eq. (4.11) we get 

[a^(t,p), 4tYP’) I= [a^+(t,P), a^+(t,P’) 1 =o, [a^(t,p,t a^+(t,p’) 1=6(p,p’). 
The time dependence of the creation and annihilation operators a^+ and a^ is given by 
da^(t,p)/dt= (I/i>[fi,a^(t,p)] leading to a^(t,p) = emimrA a(p) in accordance with Eq. (4.4). 
Now we are able to build up the whole quantum field theoretical formalism. 

we can also shcw [r$( t,x), 6’ ( t’,x’>l=[@(t,x), 9+wJ’>I-[qxt,~>, @+(w)l+ 
= 2iG( t’ - t,x’ -x) with 4: = @ + 4’. Th$ commutator function is also a characteristic feature 
of the nonlocality of the fields. Because G= G+ - G- we infer from Eq. (4.8) that G does not 
vanish for spacelike separated points for t > 0. However, by means of the expansion of 

K,(mJZ?)=ie-‘( l+ii+.*.), 

with Z: = m ,jm for t > 0 we can see that G approaches zero for large spacelike distances. 
Since the leading term is emrnp, the characteristic length is the Compton wavelength. 
Therefore the commutator function fulfills a macrocausality condition. 

In quantum mechanics the vanishing of the commutator of two Hermitian operators has 
the consequence that the related observed quantities can be measured simultaneously with 
arbitrary accuracy and without mutual influence. Accordingly, in local relativistic quantum 
theories the commutator of field operators at two spacelike separated points are required to 
vanish. In our case the commutator does not vanish for spacelike separations. This implies that 
the measurement of the field at two spacelike points can influence one another. However, since 
the commutator function falls off with the characteristic length & this influence is only 
effective within a distance of/z c. Since a violation of causality at such small distances is not 
measurable by any macroscopic device and since this violation is of the order fi, a macroscopic 
causality is still valid. 

The fact that the canonical formalism works without essential modification is due to the 
fact that the field equation (4.1) is differential with respect to the time. 
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’ Therefore, after coupling our field equation to the Maxwell field, we may perform quantum 
electrodynamics as usual. The coupling to gravitational fields may be also described in this way. 
And finally even the dynamics of weak gravitational fields which is described by an equation 
v+m,+ . . . =0 may be treated using this formalism. These problems will be postponed to 
a later publication. 

V. CONCLUSION 

By the method of taking the pseudodifferential operator square root of the KGE we have 
derived a relativistic field equation for a spinless particle of first order in the time derivative 
(4.1). This equation proved to be nonlocal and meets all the requirements of quantum me- 
chanics and special relativity. This field equation can be properly interpreted. 

The coupling of the field equation (4.1) to the Maxwell field can be performed by the usual 
minimal coupling procedure as will be shown later. For describing an equation of the form 
(4.1) in a gravitational field a more powerful method is needed, namely, Fourier integral 
operators. Of course, one expects that the main features of the present theory, the nonlocality 
or the violation of microcausality, will persist or become even more complicated. 

Note added in proofi Another related work to ours but using a different formalism is E. 
Triibenbacher, Z. Naturforsch. #a, 801 ( 1989). 
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