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Abstract

We investigate the initial moments of capillary rise of liquids in a tube. In this period both inertia and viscous flow losses balance
the pressure generated by the meniscus curvature (capillary pressure). It is known that the very first stage is purely dominated
by inertial forces, where subsequently the influence of viscosity increases (visco-inertial flow). Finally the effect of inertia vanishes
and the flow becomes purely viscous. In this study we derive the times and meniscus heights at which the transition between the
time periods occur. This is done in an attempt to provide a method to determine a priori which terms of the momentum balance
are relevant for a given problem. Analytic solutions known from previous literature are discussed and the time intervals of their
validity compared. The predicted transition times and the calculated heights show good agreement with experimental results from
literature. The results are also discussed in dimensionless form and the limitations of the calculations are pointed out.
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1. Introduction

When dealing with the problem of capillary rise it is
of great interest to know which forces (e.g. inertia, vis-
cous forces, gravity) are dominant. This is due to the fact
that all equations that can be used to predict the meniscus
height have underlying assumptions. These assumptions
are mostly the neglect of certain forces. This, however, lim-
its the validity of the derived equations to certain time in-
tervals where these forces can actually be neglected [1–4].
Stange et al. [5,6] separate the individual time stages by
means of dimensionless numbers. There are also approaches
to solve the full momentum balance numerically as done
in [7,8]. Ichikawa and Satoda [9] compare several previous
works, present experimental results and conduct a dimen-
sional analysis. Quere et al. [10,11] investigate the inertia
dominated flow period. Some publications focus on the ef-
fect of the dynamic contact angle [12–14]. Subsequent time
stages (t � 0) with influence of gravity are discussed in
[15,16].
In this paper we now want to shed some light on the dif-
ferent stages of capillary rise and the transitions between
them. The momentum balance of a liquid inside a capillary
tube shows that the capillary pressure must be balanced by
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the inertial forces, the viscous forces and the hydrostatic
pressure (e.g.[4,15])

2σ cos θ

R
=

d (ρhḣ)
dt

+
8µh

R2
ḣ + ρgh. (1)

σ refers to the surface tension, R to the inner tube radius,
ρ to the fluid density, g to gravity and µ to the fluid vis-
cosity. Hereby the assumptions are made that there are no
inertia or entry effects in the liquid reservoir and that the
viscous pressure loss inside the tube is given by the Hagen-
Poiseuille law. Most importantly it is assumed that the
capillary pressure is constant, and it is calculated using a
static contact angle θ and the tube radius R. For a more
detailed discussion of this topic please refer to the chapter
”Limitations of the model”.

2. Analytic solutions for defined time stages

In following several approaches to obtain analytical so-
lutions to the momentum balance are discussed.

2.1. Purely inertial time stage

For the very first moments after the contact of the tube
with the liquid Quere [10] takes following approach: Ne-
glecting the viscous and the gravity term in Eq.(1) gives
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Fig. 1. Liquid rise in a capillary tube

2σ cos θ

ρR
=

d (hḣ)
dt

= ḣ2 + hḧ. (2)

Quere solves the differential equation giving a capillary rise
with constant velocity

h = t

√
2σ cos θ

ρR
. (3)

2.2. Visco-inertial time stage

Bosanquet [4] finds a solution featuring the inertial and
viscous term resulting in following differential equation

d

dt

(
hḣ

)
+ ahḣ = b, (4)

with
a =

8µ

R2ρ
, (5)

and

b =
2σ cos θ

Rρ
. (6)

He obtains

h2 =
2b

a

[
t− 1

a
(1− e−at)

]
, (7)

which is also used by Ichikawa and Satoda [9] in dimen-
sionless form. Note: For t → ∞ Eq. (7) converges into the
Lucas-Washburn equation which will be presented next.

2.3. Purely viscous time stage

For the intermediate flow period Lucas [1] and Wash-
burn [2] neglect the influence of inertia and the influence of
gravity. They find

h2 =
σR cos θ

2µ
t. (8)

2.4. Viscous and gravitational time stage

During the later stages of capillary rise gravity can no
longer be neglected. Fries and Dreyer [16] show that for h >
0.1 heq gravity has to be considered. heq is the equilibrium

height where the hydrostatic pressure balances the capil-
lary pressure (see Eq. (13)). Analytic solutions (neglecting
inertia) are given by Washburn [2] in implicit form

t(h) = −h

β
− α

β2
ln

(
1− βh

α

)
, (9)

and by Fries and Dreyer [16] in explicit form

h(t) =
α

β

[
1 + W (−e−1− β2t

α )
]

. (10)

Here W (x) is the Lambert W function. The constants

α =
σR cos θ

4µ
, (11)

and

β =
ρgR2

8µ
(12)

are used. Finally one can calculate the equilibrium height
(where capillary pressure equals hydrostatic pressure) to
be [1]

heq =
α

β
=

2σ cos θ

ρgR
. (13)

3. Separation of time stages

One can derive three transition times (see Fig. 3):
– t1 The transition time between the purely inertial and

the visco-inertial stage,
– t2,S The time when the solution by Quere and the Lucas-

Washburn equation provide the same rise rate [5],
– t2,Q The time when the solution by Quere and the Lucas-

Washburn equation provide the same height [10],
– t3 The transition time between visco-inertial and the

purely viscous stage.
As stated the purely inertial flow period shows a rise with
constant velocity. Both solutions by Quere Eq. (3) and
Bosanquet Eq. (7) show this linear behavior in the begin-
ning. At some point - in contrast to the solution by Quere
- Eq. (7) deviates to lower values as viscous effects become
more important. We find that point where viscous effects
have to be taken into account by following approach: To
obtain the time when both solutions have reached a certain
level of disagreement (e.g. 3% deviation) we write

0.03 =
hQuere(t1)− hBosanquet(t1)

hQuere(t1)
. (14)

By rearranging one finds

t1 =
0.1856

a
=

0.0232R2ρ

µ
, (15)

and using Eq. (7) provides

h1 =
0.1800

√
b

a
= 0.0318

√
R3ρ σ cos θ

µ2
. (16)

Stange et al. [5] find the time when the rise rates of the equa-
tion by Quere and Lucas-Washburn are equal (ḣQuere =
ḣLucas−Washburn) to be
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Fig. 2. Comparison of analytic solutions with experimental results

by Siebold et al. (pentane in a glass tube with 191 µm radius). A
constant contact angle of 73◦ (as found by Siebold et al.) has been

used. Note: This angle differs from the static contact angle.

t2,S =
1
2a

=
R2ρ

16µ
. (17)

Quere [10] calculates the time when the heights of his solu-
tion and the Lucas-Washburn equation intersect (hQuere =
hLucas−Washburn, see Fig. 2). By equating the heights he
obtains

t2,Q =
2
a

=
R2ρ

4µ
, (18)

and Eq. (3) or (8) give

h2,Q =
2
√

b

a
= 0.3536

√
R3ρ σ cos θ

µ2
. (19)

Quere denotes our t2,Q as t∗. We will however use t2,Q to
prevent confusion with the dimensionless time introduced
in the next chapter. t2,S and t2,Q are feasible, ”general”
indicators for the transition from the inertial to the vis-
cous time period. However, they do not provide informa-
tion on when the influence of inertia is negligible and the
Lucas-Washburn equation is sufficient to describe the cap-
illary rise. To obtain such a measure we take the equation
given by Bosanquet [4] (visco-inertial stage) and the Lucas-
Washburn solution (purely viscous). One can show that for
t → ∞ both solutions converge into each other. One may
find the time of 3% deviation in the predicted heights by
writing

0.03 =
hLucasWashburn(t3)− hBosanquet(t3)

hLucasWashburn(t3)
. (20)

By rearranging we find

t3 =
16.921

a
=

2.1151R2ρ

µ
. (21)

Using Eq. (7) gives

h3 =
5.6429

√
b

a
= 0.9975

√
R3ρ σ cos θ

µ2
. (22)

Fig. 3. Dimensionless diagram showing an overview of the initial

time stages of capillary rise.

4. Discussion in dimensionless form

We use the dimensionless scaling provided by Ichikawa
and Satoda [9]. They obtain (here shown in rearranged form
and written with the parameters a and b, see Eqs. (5) and
(6))

t∗ = at =
8µt

ρR2
, (23)

and

h∗ =
ah√
2b

=

√
16µ2h2

ρR3σ cos θ
. (24)

In Fig. 3 the different equations introduced in the previ-
ous chapters are plotted in logarithmic scale. The points of
transition between the time periods are shown.

Using the presented scalings we can give the points of
transition (Eqs. (15-22)) in dimensionless form, see Table
1.
Table 1

Dimensionless values of the transition points.

t∗1 h∗1 t∗2,S t∗2,Q h∗2,Q t∗3 h∗3

0.1856 0.1273 0.5000 2.0000 1.4142 16.921 3.9901

5. Limitations of the model

For all discussed calculations the influence of the
dynamic contact angle is neglected. This assumption may
be especially critical for the initial moments of capillary
rise as the flow velocities reach their maximum value there
[12–14]. Empirical equations are available for the dynamic
contact angle θd; Jiang et al. [17] (based on data by Hoff-
man [18]) give

cos θd − cos θs

cos θs + 1
= − tanh(4.94Ca0.702), (25)

Bracke et al. [19] find
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cos θd − cos θs

cos θs + 1
= −2Ca0.5. (26)

Hereby the capillary number can be rearranged to be

Ca =
µḣ
σ

= µ

√
2 cos θs

σρ R
, (27)

if one uses the maximum theoretical velocity (differentia-
tion of Eq. (3), θs as conservative assumption). The ob-
tained capillary number now allows to calculate the dy-
namic contact angle using Eq. (25) or Eq. (26). However,
one should keep in mind that even for cases with high initial
velocities these slow down fairly fast and assuming a con-
stant contact angle becomes feasible for later time stages
again.

Another restriction is that the model only applies for
cases where gravity can be neglected. Using large, vertical
capillaries one may find that the visco-inertial time stage
can be directly followed by a stage where viscous, inertial
and gravitational forces are dominant. For this special case
there is no purely viscous stage and decaying oscillations
around the equilibrium height can be observed. Thus, to
have a clear separation of inertia and gravity we can state
the following: h3, the height below which inertia has to be
taken into account, has to be smaller that the height from
which on gravity has to be considered. Using the criterion
given in [16] we can write

h3 < 0.1 heq. (28)

Rearranging gives

R5ρ3g2

µ2σ cos θ
< 0.0402. (29)

It is interesting to note that the left hand side of Eq. (29) is
dimensionless and equal to the Bond number Bo multiplied
with the Galileo number Ga defined by

Bo =
ρgR2

σ cos θ
∼ gravitational force

surface tension force
, (30)

and

Ga =
gR3ρ2

µ2
∼ gravitational force

viscous force
. (31)

6. Conclusion

In this note we discuss the different time stages during
the early stages of capillary rise. It is concluded that the
purely inertial and the purely viscous flow period are sepa-
rated by a visco-inertial stage where both effects have to be
considered. By means of mathematical rearrangement we
derive the times and heights where the transition between
the time periods occur. This provides a tool which allows
to calculate which terms of the momentum balance have
to be taken into account to obtain a solution of sufficient
precision. Up to now the time where the solution for the
inertial and the viscous rise provided the same height has
been used as a measure. However, we can now state that it
takes about 8 times that time for the flow to become inde-
pendent of inertial effects.
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Appendix

The scaling by Ichikawa and Satoda [9], discussed in sec-
tion 4 of this paper, can be used to transform some of the
analytic solutions into a dimensionless form. The solution
by Quere [10] then reads

h∗ =
t∗√
2
. (32)

The equation by Bosanquet [4] changes to

h∗ =
√

t∗ − (1− e−t∗), (33)
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and the Lucas-Washburn equation [1,2] reads

h∗ =
√

t∗. (34)
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