Gravitating Non-Abelian Solitons and Hairy Black Holes in Higher Dimensions Michael S. Volkov LMPT, University of Tours FRANCE #### **Contents** - What is known about non-Abelian solutions in D > 4? - Why should one study them ? ## Einstein-Yang-Mills in D=4 Pure gravity /pure attraction/ $$\mathcal{L}_E = -\frac{R}{16\pi G}$$ has no solitons /Lichenrowitz/, there are black holes. Pure Yang-Mills /purely repulsion/ $$\mathcal{L}_{YM} = -\frac{1}{4g^2} F^a_{\mu\nu} F^{a\mu\nu}$$ is scale invariant ⇒ no solitons /Deser, Coleman/. Gravity + Yang-Mills = attraction+repulsion $$\mathcal{L}_{EYM} = -\frac{R}{16\pi G} - \frac{1}{4g^2} F^{a}_{\mu\nu} F^{a\mu\nu}$$ #### EYM solutions in D=4 - Solitons of Bartnik-McKinnon ⇒ the first example of globally regular gravitational solitons. - EYM black holes ⇒ the first example of hairy black holes /Gal'tsov+M.S.V./ - Generalizations: non-spherically symmetric, non-static solitons/black holes, coupling to other fields . . . /Kleihaus-Kunz+. . ./ Manifest counter-examples to a number of electroweak theorems /uniqueness, staticity, circularity, Israel's theorem, no-hair theorems . . ./ /D.V.Gal'tsov, M.S.V. Phys.Rep. **319**, 1 (1999)/ #### What happens in D=5? #### Pure gravity: black holes /SO(4) symmetry/ $$g_{MN}dx^{M}dx^{N} = Ndt^{2} - \frac{dr^{2}}{N} - r^{2}d\Omega_{3}^{2}, \quad N = 1 - \left(\frac{r_{g}}{r}\right)^{2}$$ • black strings: if $\partial/\partial x^4$ is a symmetry and $g_{\mu\nu}$ is 4D Ricci flat (black hole) \Rightarrow $$g_{MN}dx^M dx^N = g_{\mu\nu}dx^\mu dx^\nu - (dx^4)^2$$ if $\partial/\partial t$ is a symmetry and Euclidean $g^E_{\mu\nu}$ is 4D Ricci flat /gravitational instanton/ \Rightarrow $$g_{MN}dx^M dx^N = dt^2 - g_{\mu\nu}^E dx^\mu dx^\nu$$ #### YM particles Pure Yang-Mills is not scale invariant in $D \neq 4$ (the coupling g is dimensionful) $\Rightarrow \exists$ solitons. If $A^a_\mu(x^\nu)$ is a solution of 4D Euclidean YM equations, then $$A_M^a = (0, A_\mu^a(x^\nu))$$ $/\mu = 1, 2, 3, 4/$ will be a soliton in 5D with the energy $$E = \frac{1}{4g^2} \int (F_{\mu\nu}^a)^2 d^4x \ge \frac{8\pi^2 |n|}{g^2}$$ Self-dual 4D YM instantons \Rightarrow 'YM particles' in D=5. #### **YM** vortices If $\partial/\partial x^4$ is a symmetry \Rightarrow $$A_M^a = (0, A_i^a(x^k), H^a(x^k)), /i, k = 1, 2, 3/i$$ the energy per unit x^4 , $$E = \frac{1}{2g^2} \int ((\partial_i H^a + \varepsilon_{abc} A_i^b H^c)^2 + \frac{1}{2} (F_{ik}^a)^2) d^3 x \ge \frac{4\pi |n|}{g^2}$$ coincides with the energy of the D=3 YM-Higgs system ⇒ monopoles, when lifted back to D=5 they become 'YM vortices'. #### Question What happens to the 5D 'YM particles' and 'YM vortices' if one couples them to the 5D gravity? /M.S.Volkov, Phys.Lett. B524 (2002) 369/ ## **Gravitating YM particles** $$S = \int \left(-\frac{1}{16\pi G} R - \frac{1}{4g^2} F_{MN}^a F^{aMN} \right) \sqrt{g} \, d^5 x \,.$$ $$F_{MN}^a = \partial_M A_N^a - \partial_N A_M^a + \varepsilon_{abc} A_M^b A_N^c \ (a = 1, 2, 3),$$ $[G^{1/3}] = [g^2] = [\text{length}] \Rightarrow \text{dimensionless coupling}$ $$\kappa = \frac{8\pi G}{g^6} \qquad /\kappa = 2\alpha^2/$$ SO(4)-symmetry: if θ^a are the invariant forms on S^3 , $$ds^{2} = \sigma(r)^{2}N(r)dt^{2} - \frac{dr^{2}}{N(r)} - r^{2} d\Omega_{3}^{2}, \quad A^{a} = (1 + w(r)) \theta^{a},$$ the length scale is g^2 . ## Field equations $$r^{2}Nw'' + rw' + \kappa (m - (w^{2} - 1)^{2}) \frac{w'}{r} = 2(w^{2} - 1)w,$$ $$rm' = r^{2}Nw'^{2} + (w^{2} - 1)^{2}, \qquad \boxed{N \equiv 1 - \kappa m(r)/r^{2}}$$ $$\sigma' = \kappa \frac{w'^{2}}{r} \sigma$$ If $\kappa = 0 \Rightarrow \sigma = N = 1$, the YM particle with $M_{\rm ADM} = \frac{8}{3}$ $$w = \frac{1 - b \, r^2}{1 + b \, r^2},$$ $b \in R$ is a scale parameter. What happens if $\kappa \neq 0$? #### No finite mass solutions with $\kappa \neq 0$ $$M_{\rm ADM} < \infty \Rightarrow w(\infty) = \pm 1$$. Either - $w = 1 2br^2 + O(r^4), m = O(r^3)$ as $r \to 0$ /solitons/ or - $\exists r_h$: $N(r_h) = 0$, $N'(r_h) > 0$, $w(r_h) < \infty$ /black holes/ $$M_{\text{ADM}}[w(r)] = m(\infty) =$$ $$= \frac{r_h^2}{\kappa} + \int_{r_h}^{\infty} \frac{dr}{r} (r^2 w'^2 + (w^2 - 1)^2) \exp\left(-\kappa \int_{r}^{\infty} \frac{w'^2}{r} dr\right)$$ #### One should have $$\frac{d}{d\lambda}M[w(\lambda r)] = 0 \text{ for } \lambda = 1 \text{ but } \frac{d}{d\lambda}M[w(\lambda r)] < 0 \quad \forall \lambda$$ The SO(4) YM particles get completely destroyed by gravity. They resemble a dust, since $$T_{\mu\nu} = \epsilon(r)\delta^0_{\mu}\delta^0_{\nu}$$ and they can be scaled to an arbitrary size \Rightarrow repulsion and attraction are not balanced \Rightarrow equilibrium states are not possible. The globally regular solutions with infinite mass are quasi-periodic /infinite sequence of static spherical shells/ with the metric approaching the flat metric at large r (but not fast enough). # **Quasi-periodic solutions** $$m(r) \sim \ln r$$ ## Gravitating Yang monopole in D=6 YM field is again = 4D instanton, but this time on S^4 $$ds^{2} = \sigma(r)^{2}N(r)dt^{2} - \frac{dr^{2}}{N(r)} - r^{2}(d\xi^{2} + \sin^{2}\chi d\Omega_{3}^{2}), \quad A^{a} = (1 + w(\chi))\theta$$ YM equations decouple $\Rightarrow w(\chi) = \cos \chi$, Einstein eq-s $\Rightarrow \sigma = 1$, $$N = 1 - \frac{2Gm(r)}{r^3}, \quad m' = 8\pi, \quad m(r) = 8\pi r + m_0,$$ ⇒ mass is linearly divergent /Gibbons, Townsend, hep-th/0604024/ $$D = 2k + 2$$, SO(2k), $m \sim r^{2k-3}$. ## **Gravitating YM vortices** If $\partial/\partial x^4$ is hypersurface orthogonal Killing vector, then $$g_{MN}dx^{M}dx^{N} = e^{-\zeta}g_{\mu\nu}dx^{\mu}dx^{\nu} - e^{2\zeta}(dx^{4})^{2}$$ $$A_{M}^{a}dx^{M} = A_{\mu}^{a}dx^{\mu} + H^{a}dx^{4}$$ reducing the 5D EYM to the 4D EYM-Higgs-dilaton theory $$\sqrt{(5)g}\mathcal{L}_{\text{EYM}} = \left(-\frac{(4)R}{2\kappa g^6} + \frac{3}{\kappa g^6}(\partial_{\mu}\zeta)^2 + \frac{1}{2g^2}e^{-2\zeta}(D_{\mu}H^a)^2 - \frac{1}{4g^2}e^{\zeta}(F_{\mu\nu}^a)^2\right)\sqrt{-(4)g}$$ ## SO(3) symmetry $$e^{-\zeta(r)}ds^{2} = e^{2\nu(r)}dt^{2} - dr^{2} - R^{2}(r) d\Omega_{2}^{2},$$ $$A_{k}^{a}dx^{k} = (w(r) - 1)\epsilon_{aik}n^{i}dn^{k}, \quad H^{a} = n^{a}e^{\zeta(r)}h(r)$$ the independent field equations can be represented as a seven-dimensional dynamical system $$\frac{d}{dr}y_k = F_k(y_s, \kappa)$$ with $$y_k = \{w, w', h, h', Z = \zeta', R, R'\}$$. #### **Fixed points** 1. The origin, (w, h, Z, R) = (1, 0, 0, 0); as $r \to 0$, $$w = 1 - br^2 + O(r^2), \quad h = ar + O(r^3),$$ $Z = O(r^2), \quad R = r + O(r^3).$ (1) II. Infinity, (w, h, Z, 1/R) = (0, 1, 0, 0); as $r \to \infty$, $$w = A r^{C} e^{-r} + o(e^{-r}), Z = \kappa Q r^{-2} + O(r^{-3} \ln r),$$ $$h = 1 - C r^{-1} + O(r^{-2} \ln r),$$ $$R = r - m \ln r + m^{2} r^{-1} \ln r - r_{0} + \gamma r^{-1} + O(r^{-2} \ln r).$$ (2) The ADM mass $$M_{\text{ADM}} = 3(C + (2 + \kappa)Q)$$ III. "Warped" $AdS_3 \times S^2$: If $4q^3 + 7q^2 + 11q = 1$, then $w^2 = q$, $$R^{2} = \kappa \frac{(11q - 1)(1 - q)}{(4q^{2} - 13q + 1)}, \quad h^{2} = \frac{1 - q}{R^{2}}, \quad Z^{2} = -\frac{4q^{2} - 13q + 1}{(4q + 1)R^{2}}$$ Evaluating, $w=0.29,\ h=\frac{1.27}{\sqrt{\kappa}},\ Z=\pm\frac{0.31}{\sqrt{\kappa}},\ R=0.75\sqrt{\kappa} \Rightarrow$ new exact non-Abelian solution with the geometry $$ds^{2} = e^{2(1+\kappa h^{2})Zr}dt^{2} - dr^{2} - e^{2Zr}(dx^{4})^{2} - R^{2}d\Omega_{2}^{2}$$ The characteristic eigenvalues $$\left(-\frac{2.77}{\sqrt{\kappa}}, -\frac{2.47}{\sqrt{\kappa}}, -\frac{2.12}{\sqrt{\kappa}}, -\frac{0.61}{\sqrt{\kappa}} \pm i \frac{1.24}{\sqrt{\kappa}}, +\frac{0.88}{\sqrt{\kappa}}, +\frac{1.54}{\sqrt{\kappa}}\right)$$ #### **Global solutions** ## Strongly gravitating solutions ## Strong gravity limit For $\kappa_{max}=3.22>\kappa>\kappa_{min}=0.11$ one has more than one solution ('branches'). ### **Limiting solution** Strongly gravitating solutions have a regular core connected to the asymptotic region by a long throat. For the limiting solution the throat becomes infinite and the solution splits up into the union of two different solutions - Interior solution interpolates between the regular origin and the 'warped ADS'. - **Exterior solution** interpolates between the 'warped ADS' and infinity. Looks like an extreme non-Abelian black string: in the Schwarzschild gauge (r = R) one has $$g_{rr} \sim (r - r_h)^{-2}$$, $g_{tt} \sim (r - r_h)^{2.02}$, $g_{44} = e^{2\zeta} \sim (r - r_h)^{2.02}$ with $$r_h = 0.42$$, $\kappa = 0.316$. ## Strong gravity limit limiting solution strong gravity interior exterior (extreme black string) ## **Limiting solution** #### **Conclusions** - Gravitating YM vortices form a one-parameter family (fundamental branch) of globally regular solutions that interpolates between the flat space BPS monopole and the extreme non-Abelian black string. Generalizations of the fundamental YM vortices have been considered by Brihaye, Hartmann, Radu + other people. A good recent reference: /Y.Brihaye, B.Hartmann, E.Radu, Phys.Rev. D 72 (2005) 104008./ Excited solutions have not been considered so far. #### YM black strings From the 4D viewpoint the YM vortices are regular gravitating monopoles. Gravitating solitons can usually be generalized to include a small black hole with a non-degenerate horizon in the core /Kastor, Traschen '92/: replace the boundary condition at the origin, r = 0, by those at the regular horizon, $r = r_h$. This generalizes YM vortices to black strings /B.Hartmann '04/. For a given κ there can be several YM vortices \Rightarrow one finds several black string solutions with small r_h . As r_h increases, these solutions approach each other and finally merge for some maximal value $r_h^{\max}(\kappa)$. There are no black strings with $r_h > r_h^{\max}(\kappa) \Rightarrow$ black strings exists only for a finite domain of the $\kappa - r_h$ parameter plane. /Brihaye, Hartmann, Radu '05/. #### 'Twisted' solutions /Brihaye, Radu '05/ consider the case of a non-hypersurface orthogonal Killing vector $\partial/\partial x^4$: $$g_{MN}dx^{M}dx^{N} = e^{-\zeta}g_{\mu\nu}dx^{\mu}dx^{\nu} - e^{2\zeta}(dx^{4} + W_{\mu}dx^{\mu})^{2}$$ $$A_{M}^{a}dx^{M} = A_{\mu}^{a}dx^{\mu} + H^{a}(dx^{4} + W_{\mu}dx^{\mu})$$ Upon the reduction to D=4 the twist W_{μ} becomes a U(1) vector fields \Rightarrow 4D EYM-Higgs-dilaton+U(1) model. When the charge associated to the U(1) field vanishes, the solutions reduce to the YM vortices/black strings. #### **Deformed solutions** /Brihaye, Hartmann, Radu '05/ after the reduction to 4D choose the fields to be static, axially symmetric $$ds^{2} = f(r,\theta)dt^{2} - m(r,\theta)(dr^{2} + r^{2}\sin^{2}\theta) - l(r,\theta)d\varphi^{2}$$ the ansatz for A_{μ}^{a} , H^{a} contains two winding numbers, n, m. If n=1, m=0 the solutions are spherically symmetric. For n>1, m=0 one obtains multimonopoles, they are axially symmetric. Solutions with m=1 describe monopole antimonopole pairs. Both regular solutions and black strings are considered, the existence of several 'solution branches' is detected. Lorentz boosting the solutions along the x^4 axis gives stationary spinning configurations. ## Why studying gravitating YM in D>4? String theory motivates this ⇒ one can do as follows ■ Take a 4D model, set D>4 and study solutions. ## Why studying gravitating YM in D>4? String theory motivates this ⇒ one can do as follows - Take a 4D model, set D>4 and study solutions. - Aim at applications, say, of the Randall-Sundrum type. Example: a 3-brane in the D=7 EYM-Higgs-Λ theory with the monopole field in the orthogonal 3-space $$ds^{2} = A(r)\eta_{\mu\nu}dy^{\mu}dy^{\nu} - B(r)\delta_{ik}dx^{i}dx^{k}$$ $$A_k^a = \epsilon_{akj} x^j W(r), \quad \Phi^a = x^a H(r) \quad /r^2 = x^k x^k / ,$$ solutions with A(0) = 1, $A(\infty) = 0 \Rightarrow$ gravity localization by the monopole /Shaposhnikov et al. '03/. #### **String vacua = solutions of SUGRA's** Heterotic solitons: a 5-brane in the D=10 heterotic string theory with the YM instanton field in the orthogonal 4-space /Strominger '90/ $$ds^{2} = A(x^{\mu})\eta_{MN}dy^{M}dy^{N} - B(x^{\nu})\delta_{\mu\nu}dx^{\mu}dx^{\nu}$$ $$A^{a}_{\mu}(x^{\nu}), \quad F_{\mu\nu} = \tilde{F}_{\mu\nu}, \quad \phi(x^{\mu})$$ compactifications ⇒ many solitons /Duff, Khuri, Liu '95/ Compactifications of type I,II ⇒ gauged SUGRA's in D<10 = EYM-dilaton+moduli fields.</p> Non-abelian solutions: #### **SUGRA** monopole SO(4), N=4 gauged SUGRA $$\mathcal{L}_4 = \frac{1}{4}R - \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{4}e^{2\phi}F^a_{\mu\nu}F^{a\mu\nu} + \frac{1}{8}\left(e^{-2\phi} + \xi^2 e^{2\phi} + 4\xi\right).$$ fermionic SUSY variations $/\mathcal{F} = \frac{1}{2}\alpha^a F^a_{\alpha\beta}\gamma^\alpha\gamma^\beta/\gamma^{\alpha}$ $$\delta\chi = \frac{1}{\sqrt{2}} \gamma^{\mu} \partial_{\mu} \phi \, \epsilon + \frac{1}{2} e^{\phi} \mathcal{F} \epsilon + \frac{1}{4} (e^{-\phi} - \xi e^{\phi}) \epsilon,$$ $$\delta\psi_{\mu} = \mathcal{D}_{\mu} \epsilon + \frac{1}{2\sqrt{2}} e^{\phi} \mathcal{F} \gamma_{\mu} \epsilon + \frac{1}{4\sqrt{2}} (e^{-\phi} + \xi e^{\phi}) \gamma_{\mu} \epsilon.$$ $\delta \chi = \delta \psi_{\mu} = 0$ \Rightarrow consistency conditions \Rightarrow Bogomol'nyi equations \Rightarrow string vacua /A.Chamseddine, M.S.V. '97-'04/ ### Bogomol'nyi equations $$ds_{(4)}^{2} = -e^{2V(\rho)}dt^{2} + e^{2\lambda(\rho)}d\rho^{2} + r^{2}(\rho)d\Omega^{2},$$ $$\tau^{a}A^{a}_{\mu}dx^{\mu} = \frac{i}{2}(1 - w(\rho))[T, dT], \quad \phi = \phi(\rho); \quad T = \tau^{a}n^{a}$$ $$V' - \phi' = \xi \frac{P}{\sqrt{2}N} e^{\phi + \lambda}, \qquad Q = e^{V + \phi} \frac{w}{N},$$ $$\phi' = \sqrt{2} \frac{BP}{N} e^{\lambda}, \qquad w' = -\frac{rwB}{N} e^{-\phi + \lambda},$$ $$N = \sqrt{w^2 + P^2}, \qquad r' = Ne^{\lambda}.$$ $$P = e^{\phi} \frac{1 - w^2}{\sqrt{2}r} + \frac{r}{2\sqrt{2}} (e^{-\phi} + \xi e^{\phi}), B = -\frac{P}{\sqrt{2}r} + \frac{1}{2} e^{-\phi}.$$ #### **Solutions** comprise a family labeled by ξ , all have N=1 SUSY. - $\xi > 0$ asymptotically AdS - $\xi < 0$ compact - $\xi = 0 \Rightarrow SUGRA monopole$ $$ds^{2} = 2e^{2\phi} \left\{ dt^{2} - d\rho^{2} - R^{2}(\rho) \left(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2} \right) \right\},\,$$ $$w = \pm \frac{\rho}{\sinh \rho}$$, $e^{2(\phi - \phi_0)} = \frac{\sinh \rho}{2R(\rho)}$, $R(\rho) = \sqrt{2\rho \coth \rho - w^2 - \phi^2}$ when uplifted to D=10 becomes #### Solution in D=10 $$d\tilde{s}^{2} = dt^{2} - dx_{1}^{2} - dx_{2}^{2} - dx_{3}^{2} - d\rho^{2} - R^{2}(\rho) d\Omega_{2}^{2} - \Theta^{a}\Theta^{a}$$ $$H = \frac{1}{2\sqrt{2}} e^{-\frac{3}{4}\phi} (F^{a} \wedge \Theta^{a} + \epsilon_{abc}\Theta^{a} \wedge \Theta^{b} \wedge \Theta^{c})$$ $$\Theta^a = A^a - \theta^a$$ /A.Chamseddine, M.S.V. '98/ #### Solution in D=10 $$d\tilde{s}^2 = dt^2 - dx_1^2 - dx_2^2 - dx_3^2 - d\rho^2 - R^2(\rho) d\Omega_2^2 - \Theta^a \Theta^a$$ $$H = \frac{1}{2\sqrt{2}} e^{-\frac{3}{4}\phi} (F^a \wedge \Theta^a + \epsilon_{abc} \Theta^a \wedge \Theta^b \wedge \Theta^c)$$ $$\Theta^a = A^a - \theta^a \qquad \text{/A.Chamseddine, M.S.V. '98/}$$ According to /Maldacena, Nunez '01/ this solution describes the NS-NS 5-brane wrapped on $S^2 \Rightarrow$ the dual description of N=1 SYM \Rightarrow the dual description of confinement \Rightarrow plenty of applications in string theory. #### Solution in D=10 $$d\tilde{s}^2 = dt^2 - dx_1^2 - dx_2^2 - dx_3^2 - d\rho^2 - R^2(\rho) d\Omega_2^2 - \Theta^a \Theta^a$$ $$H = \frac{1}{2\sqrt{2}} e^{-\frac{3}{4}\phi} (F^a \wedge \Theta^a + \epsilon_{abc} \Theta^a \wedge \Theta^b \wedge \Theta^c)$$ $$\Theta^a = A^a - \theta^a \qquad \text{/A.Chamseddine, M.S.V. '98/}$$ According to /Maldacena, Nunez '01/ this solution describes the NS-NS 5-brane wrapped on $S^2 \Rightarrow$ the dual description of N=1 SYM \Rightarrow the dual description of confinement \Rightarrow plenty of applications in string theory. Solution is generally known as 'Maldacena-Nunez solution'. #### **Conclusion** Solutions for gravity-coupled Yang-Mills fields can be very useful for those working in string theory.