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Abstract

In this paper we, first, generalize the quasilocal definition of the stress energy tensor of Einstein

gravity to the case of Lovelock gravity, by introducing the tensorial form of surface terms that make

the action well-defined. We also introduce the boundary counterterm that removes the divergences

of the action and the conserved quantities of the solutions of Lovelock gravity with flat boundary

at constant t and r. Second, we consider the metric of spacetimes generated by brane sources

in dimensionally continued gravity which has no curvature singularity and no horizons, but have

conic singularity and compute the conserved quantities of these solutions through the use of the

counterterm method introduced in the first part of the paper.
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I. INTRODUCTION

The most natural extension of general relativity in higher dimensional spacetimes with

the assumption of Einstein – that the left hand side of the field equations is the most general

symmetric conserved tensor containing no more than second derivatives of the metric – is

Lovelock theory. Lovelock [1] found the most general symmetric conserved tensor satisfying

this property. The resultant tensor is nonlinear in the Riemann tensor and differs from the

Einstein tensor only if the spacetime has more than 4 dimensions. Since the Lovelock tensor

contains metric derivatives no higher than second order, the quantization of the linearized

Lovelock theory is ghost-free [2].

Our first aim in this paper is to generalize the definition of the quasilocal stress energy

tensor for computing the conserved quantities of a solution of Lovelock gravity. The concepts

of action and energy-momentum play central roles in gravity. However there is no good local

notion of energy for a gravitating system. A quasilocal definition of the energy and conserved

quantities for Einstein gravity can be found in [3]. They define the quasilocal stress energy

tensor through the use of the well-defined gravitational action of Einstein gravity with the

surface term of Gibbons and Hawking [4]. Therefore the first step is to find the surface

terms for the action of Lovelock gravity that make the action well-defined. These surface

terms were introduced by Myers in terms of differential forms [5]. Here, we write down the

tensorial form of the surface terms for Lovelock gravity, and then introduce the stress energy

tensor via the quasilocal formalism. The explicit form of these surface terms for second and

third order Lovelock gravity have been written in Refs. [6] and [7] respectively.

Of course, as in the case of Einstein gravity, the action and conserved quantities diverge

when the boundary goes to infinity [3]. One way of eliminating these divergences is through

the use of background subtraction [3, 8, 9], in which the boundary surface is embedded in

another (background) spacetime, and all quasilocal quantities are computed with respect

to this background, incorporated into the theory by adding to the action the extrinsic cur-

vature of the embedded surface. Such a procedure causes the resulting physical quantities

to depend on the choice of reference background; furthermore, it is not possible in general

to embed the boundary surface into a background spacetime. For asymptotically AdS so-

lutions, one can instead deal with these divergences via the counterterm method inspired

by AdS/CFT correspondence [10]. This conjecture, which relates the low energy limit of
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string theory in asymptotically anti de-Sitter spacetime and the quantum field theory on its

boundary, has attracted a great deal of attention in recent years. The equivalence between

the two formulations means that, at least in principle, one can obtain complete information

on one side of the duality by performing computation on the other side. A dictionary trans-

lating between different quantities in the bulk gravity theory and their counterparts on the

boundary has emerged, including the partition functions of both theories. In the present

context this conjecture furnishes a means for calculating the action and conserved quantities

intrinsically without reliance on any reference spacetime [11, 12] by adding additional terms

on the boundary that are curvature invariants of the induced metric. Although there may

exist a very large number of possible invariants one could add in a given dimension, only a

finite number of them are nonvanishing as the boundary is taken to infinity. Its many ap-

plications include computations of conserved quantities for black holes with rotation, NUT

charge, various topologies, rotating black strings with zero curvature horizons and rotating

higher genus black branes [13–15]. Although the counterterm method applies for the case

of a specially infinite boundary, it was also employed for the computation of the conserved

and thermodynamic quantities in the case of a finite boundary [16].

Our second aim in this paper is to apply counterterm method to asymptotically anti de

Sitter (AdS) horizonless solution of dimensionally continued gravity.

In this paper we are dealing with the issue of the spacetimes generated by brane sources in

D-dimensional continued gravity that are horizonless and have nontrivial external solutions.

These kinds of solutions have been investigated by many authors in four dimensions. Static

uncharged cylindrically symmetric solutions of Einstein gravity in four dimensions were

considered in [18]. Similar static solutions in the context of cosmic string theory were found

in [19]. All of these solutions [18, 19] are horizonless and have a conical geometry; they

are everywhere flat except at the location of the line source. The extension to include

the electromagnetic field has also been done [20, 21]. Here we present the D-dimensional

solution in dimensionally continued gravity, and use the counterterm method to compute

the conserved quantities of the system.

The outline of our paper is as follows. In Sec. II, we give the tensorial form of the sur-

face terms that make the action well-defined, generalize the Brown York energy-momentum

tensor for Lovelock gravity, and introduce the counterterm method for calculating the fi-

nite action and conserved quantities of solutions of Lovelock gravity with flat boundary. In

3



Sec. III we introduce the D-dimensional asymptotically AdS horizonless solutions of dimen-

sionally continued gravity in odd and even dimensions and compute the finite conserved

quantities of them. We finish our paper with some concluding remarks.

II. LOVELOCK GRAVITY AND THE COUNTERTERM METHOD

We consider a D-dimensional spacetime manifold M with metric gµν . We denote the

timelike and spacelike boundaries of M by ∂M and Σ respectively. The metric and the

extrinsic curvature of the timelike boundary ∂M are denoted by γab and Θab, while those of

the spacelike hypersurface Σ are denoted by hij and Kij. In this D-dimensional spacetime,

the most general action which keeps the field equations of motion for the metric of second

order, as the pure Einstein-Hilbert action, is Lovelock action. This action is constructed

from the dimensionally extended Euler densities and can be written as

IG = κ

∫
dDx

√−g

n∑
p=0

αpLp (1)

where n ≡ [(D− 1)/2] and [z] denotes the integer part of z, αp is an arbitrary constant and

Lp is the Euler density of a 2p-dimensional manifold

Lp =
1

2p
δµ1ν1···µpνp
ρ1σ1···ρpσp

R ρ1σ1
µ1ν1

· · ·R ρkσk
µpνp

(2)

In Eq. (2) δ
µ1ν1···µpνp
ρ1σ1···ρpσp is the generalized totally anti-symmetric Kronecker delta and R ρσ

µν is

the Riemann tensor of the Manifold M. We note that in D dimensions, all terms for which

p > [D/2] are total derivatives, and the term p = D/2 is the Euler density. Consequently

only terms for which p < D/2 contribute to the field equations.

The Einstein-Hilbert action (with αp = 0 for p ≥ 2) does not have a well-defined varia-

tional principle, since one encounters a total derivative that produces a surface integral in-

volving the derivative of δgµν normal to the boundary ∂M. These normal derivative terms

do not vanish by themselves, but are canceled by the variation of the Gibbons-Hawking

surface term [4]

I
(1)
b = 2κ

∫

∂M
dD−1x

√−γΘ (3)

where γab is induced metric on the boundary r = const. and Θ is trace of extrinsic curvature

of this boundary. The main difference between higher derivative gravity and Einstein gravity

is that the surface term that renders the variational principle well-behaved is much more
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complicated. However, the surface terms that make the variational principle of Lovelock

gravity well-defined are known in terms of differential forms [5]. The tensorial form of these

surface terms may be written as

Ib = −2κ

∫

∂M
dD−1x

√−γ

n∑
p=0

p−1∑
s=0

(−1)p−spαp

2s(2p− 2s− 1)
H(p) (4)

where αp is the Lovelock coefficients and H(p) is

H(p) = δ
[a1...a2p−1]

[b1...b2p−1]R
b1b2

a1a2
· · ·Rb2s−1b2s

a2s−1a2s
Θb1

a1 · · ·Θb2p−1
a2p−1

(5)

In Eq. (5) Rab
cd(g)’s are the boundary components of the Riemann tensor of the Manifold

M, which depend on the velocities through the Gauss–Codazzi equations

Rabcd = R̂abcd + ΘacΘbd −ΘadΘbc (6)

where R̂abcd(γ) are the components of the intrinsic curvature tensor of the boundary. The

explicit form of the second and third surface terms of Eq. (4) may be written as [6, 7]

I
(2)
b = 2κ

∫

δM
dD−1x

√−γ
{

2α2

(
J − 2Ĝ

(1)
ab Θab

)

+3α3

(
P − 2Ĝ

(2)
ab Θab − 12R̂abJ

ab + 2R̂J − 4ΘR̂abcdΘ
acΘbd − 8R̂abcdΘ

acΘb
eΘ

ed
)}

(7)

where Ĝ
(1)
ab is the n-dimensional Einstein tensor of the metric γab, J is the trace of

Jab =
1

3
(2ΘΘacΘ

c
b + ΘcdΘ

cdΘab − 2ΘacΘ
cdΘdb −Θ2Θab), (8)

Ĝ
(2)
ab is the second order Lovelock tensor for the boundary metric γab:

G(2)
µν = 2(R̂acdeR̂

cde
b − 2R̂acbdR̂

cd− 2R̂acR
c
b + RRab)− 1

2
(R̂cdef R̂

cdef − 4R̂cdR̂
cd + R̂2)γab (9)

and P is the trace of

Pab =
1

5

{[
Θ4 − 6Θ2ΘcdΘcd + 8ΘΘcdΘ

d
eΘ

ec − 6ΘcdΘ
deΘefΘ

fc + 3(ΘcdΘ
cd)2

]
Θab

−(4Θ3 − 12ΘΘedΘ
ed + 8ΘdeΘ

e
fΘ

fd)ΘacΘ
c
b − 24ΘΘacΘ

cdΘdeΘ
e
b

+(12Θ2 − 12ΘefΘ
ef )ΘacΘ

cdΘdb + 24ΘacΘ
cdΘdeΘ

efΘbf

}
(10)

In general I = IG + Ib is divergent when evaluated on solutions, as is the Hamiltonian

and other associated conserved quantities. In Einstein gravity, one can remove the non
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logarithmic divergent terms in the action by adding a counterterm action Ict which is a

functional of the boundary curvature invariants [22]. The issue of determination of boundary

counterterms with their coefficients for higher-order Lovelock theories is at this point an open

question. However for the case of a boundary with zero curvature [R̂abcd(γ) = 0], it is quite

straightforward. This is because all curvature invariants are zero except for a constant,

and so the only possible boundary counterterm is one proportional to the volume of the

boundary regardless of the number of dimensions:

Ict = 2κλα0

∫

∂M∞
dD−1x

√−γ (11)

where λ is a constant which should be chosen such that the divergences of the action is

removed.

Having the total finite action, one can use the quasilocal definition of Brown and York

[3] to construct a divergence free stress-energy tensor as

T a
b = −2κ

{
λα0γ

a
b +

n∑
p=0

p−1∑
s=0

(−1)p−spαp

2s(2p− 2s− 1)
H(p,s)a

b

}
(12)

where H(p,s)a
b is

H(p,s)a
b = δ

[a1...a2p−1a]

[b1...b2p−1b] R̂
b1b2

a1a2
· · · R̂b2s−1b2s

a2s−1a2sΘ
b2s+1
a2s+1

· · ·Θb2p−1
a2p−1

, (13)

To compute the conserved mass of the spacetime, one should choose a spacelike surface

B in ∂M with metric σij, and write the boundary metric in Arnowitt-Deser-Misner (ADM)

form:

γabdxadxa = −N2dt2 + σij

(
dϕi + N idt

) (
dϕj + N jdt

)

where the coordinates ϕi are the angular variables parameterizing the hypersurface of con-

stant r around the origin, and N and N i are the lapse and shift functions respectively. When

there is a Killing vector field ξ on the boundary, then the quasilocal conserved quantities

associated with the stress tensors of Eq. (12) can be written as

Q(ξ) =

∫

B
dD−2ϕ

√
σTabn

aξb (14)

where σ is the determinant of the metric σab, ξ and na are the Killing vector field and the

unit normal vector on the boundary B. In the context of counterterm method, the limit

in which the boundary B becomes infinite (B∞) is taken, and the counterterm prescription
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ensures that the action and conserved charges are finite. No embedding of the surface B in

to a reference of spacetime is required and the quantities which are computed are intrinsic

to the spacetimes.

III. HORIZONLESS SOLUTIONS IN DIMENSIONALLY CONTINUED GRAV-

ITY

The dimensionally continued gravity is a special class of the Lovelock gravity, which may

be regarded as the most natural generalization to higher dimensions of the Einstein gravity.

In this theory, the arbitrary constants are reduced to two by embedding the Lorentz group

SO(D − 1, 1) into a larger AdS group SO(D − 1, 2) [17]. The remaining two fundamental

constants are the gravitational and cosmological constants. In odd dimensions it is possible

to construct a Lagrangian invariant under the anti-de Sitter group by making a certain

choice of the Lovelock coefficients, while it is not possible to construct a non-trivial action

principle invariant under SO(D − 1, 2) and it is necessary to break the symmetry down

to the Lorentz group. Accordingly, Lovelock gravity is separated into two distinct type of

branches for odd and even dimensions. In what follows, we will consider a particular choice

of the Lovelock coefficients given by

αp =





(D − 2p− 1)!


 (D − 1)/2

p


 l2p−D for odd D

(D − 2p)!


 D/2

p


 l2p−D for even D

(15)

where l is a length. For later convenience, the units are chosen such that

κ =




− lD−2

2(D−3)!
for odd D

− lD−2

2D(D−3)!
for even D

(16)

In order to obtain simplified equations of motion, it is more convenient to work in the

Hamiltonian formalism. The Hamiltonian form of the action (1) is discussed in [23]. Here

we consider the spacetimes generated by brane sources in D-dimensional spacetime that are

horizonless and have nontrivial external solutions. We will work with the following ansatz

for the metric:
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ds2 = −N2(ρ)dt2 +
dρ2

F (ρ)
+ l2F (ρ)dφ2 +

ρ2

l2
dX2

D−3 (17)

where dX2
D−3 =

∑D−3
i=0 (dxi)

2
is the Euclidean metric of (D − 3)-dimensional submanifold.

The parameter l2 is appropriate constant proportional to cosmological constant Λ. The

functions N(ρ) and F (ρ) need to be determined. The motivation for this metric gauge

[(gρρ)
−1 ∝ gϕϕ] instead of the usual Schwarzschild gauge [(gρρ)

−1 ∝ gtt] comes from the

fact that we are looking for a string solution with conic singularity. by using Hamiltonian

formalism and varying the Hamiltonian form of action with respect to N(ρ) and F (ρ), the

metric functions may be computed as [24].

N(ρ) = C1ρ + C2, (18)

F (ρ) =





ρ2

l2
− (2cρ + 2m)

1
n for odd D

ρ2

l2
−

(
2lc + 2lm

ρ

) 1
n

for even D
(19)

where m, c, C1 and C2 are integration constant. Since N(ρ) is dimensionless and any

constant may be absorbed in t, therefore we choose C1 = l−1 and C2 = 0 without loss of

generality.The properties and general structure of this solution was considered in [24].

A. Conserved Quantities

Now we apply the counterterm method to compute the conserved quantities of the solution

(17). For the horizonless spacetime (17), the Killing vector is ξ = ∂/∂t and therefore its

associated conserved charge is the total mass of the system enclosed by the boundary given

as

M =

∫

B
dD−2ϕ

√
σTabn

aξb (20)

where Tab is the stress energy tensor (12). It is a matter of calculation to show that the

mass per unit volume ωD−2 is

M = m

IV. CLOSING REMARKS

The Lovelock action does not have a well-defined variational principle, since one encoun-

ters a total derivative that produces a surface integral involving the derivative of δgµν normal
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to the boundary ∂M. These normal derivative terms in Einstein gravity do not vanish by

themselves, but are canceled by the variation of the Gibbons-Hawking surface term. Sim-

ilarly in Lovelock gravity these normal derivatives can be canceled by surface terms that

depend on the extrinsic and intrinsic curvature of the boundary ∂M. First, we wrote down

the tensorial form of these surface terms, and generalized the stress energy momentum ten-

sor of Brown and York [3] to the case of Lovelock gravity. As in the case of Einstein gravity,

IG, and Ib of Eqs. (1) and (4) are divergent when evaluated on the solutions, as is the Hamil-

tonian and other associated conserved quantities. We, therefore, introduced a counterterm

dependent only on the boundary volume which removed the divergences of the action and

conserved quantities of the solutions of Lovelock gravity with zero curvature boundary.

Second, we considered the asymptotically AdS horizonless solutions in dimensionally con-

tinued gravity, which has no curvature singularity and no horizons, but have conic singularity

at r = 0. These horizonless solutions have two fundamental constants which are the New-

ton’s and cosmological constants. We applied the counterterm method to the case of our

solutions in dimensionally continued gravity and calculated the finite mass of the spacetime.

We found that the counterterm (11) has only one term, since the boundaries of our space-

times are curvature-free. Other related problems such as the application of the counterterm

method to the case of solutions of Lovelock gravity with nonzero curvature boundary remain

to be carried out.

[1] D. Lovelock, J. Math. Phys. 12, 498 (1971); N. Deruelle and L. Farina-Busto, Phys. Rev. D

41, 3696 (1990); G. A. MenaMarugan, ibid. 46, 4320 (1992); 4340 (1992).

[2] B. Zwiebach, Phys. Lett. B156, 315 (1985); B. Zumino, Phys. Rep. 137, 109 (1986).

[3] J. D. Brown and J. W. York, Phys. Rev. D47, 1407 (1993).

[4] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).

[5] R. C. Myers, Phys. Rev. D 36, 392 (1987).

[6] S. C. Davis, Phys. Rev. D 67, 024030 (2003).

[7] M. H. Dehghani and R. B. Mann, hep-th/0602243.

[8] J. D. Brown, J. Creighton and R. B. Mann, Phys. Rev. D50, 6394 (1994).

[9] I. S. Booth and R. B. Mann, Phys. Rev. D 59, 064021 (1999).

9



[10] J. Maldacena, Adv. Theor. Math. Phys., 2, 231 (1988); E. Witten, ibid. 2, 253 (1998); O.

Aharony, S. S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, Phys. Rept., 323, 183 (2000).

[11] M. Hennigson and K. Skenderis, J. High Energy Phys. 7, 023 (1998).

[12] V. Balasubramanian and P. Kraus, Commun. Math. Phys. 208, 413 (1999).

[13] R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60, 104001 (1999); R. B. Mann,

ibid. 60, 104047 (1999); 61, 084013 (2000); S. Das and R. B. Mann, J. High Energy Phys. 08,

033 (2000); A. M. Awad and C. V. Johnson, Phys. Rev. D 61, 084025 (2000).

[14] S. Nojiri and S. D. Odintsov, Phys. Lett. B 444, 92 (1998); S. Nojiri, S. D. Odintsov and S.

Ogushi, Phys. Rev. D 62, 124002 (2000).

[15] M. H. Dehghani, Phys. Rev. D 66, 044006 (2002).; ibid. 66, 124002 (2002); M. H. Dehghani

and A. Khodam-Mohammadi, ibid. 67, 084006 (2003).

[16] M. H. Dehghani and R. B. Mann, Phys. Rev. D 64, 044003 (2001); M. H. Dehghani, ibid. 65,

104030 (2002); M. H. Dehghani and H. KhajehAzad, Can. J. Phys. 81, 1363 (2003).
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