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Through a Hamiltonian treatment, charged thin shells in spherically symmetric space-

times, containing black holes, or other specific type of solutions, in d dimensional

Lovelock-Maxwell theory, are studied.

The total action of the theory I is the sum of the gravitational Lovelock action 1 ,

plus the electrodynamic and the matter actions
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Here κ is proportional to Newton’s constant G, M is the d-dimensional space-

time manifold, g is the determinant of the spacetime metric gµν , δ
µ1···µ2p

ν1···ν2p
is totally

anti-symmetric in the upper and lower indices, Rρσ
µν is the Riemann tensor, ǫ is pro-

portional to the vacuum electric permitivity ǫ0, Ωd−2 is the surface area of the d−2

unit sphere, Fµν is the Maxwell tensor, Jµ is the electromagnetic current, Aµ is the

vector potential, and Lm is the matter Lagrangian. The energy-momentum tensor

derived from Lm will be that of a general perfect fluid. The free coefficients αp in

the Lovelock theory are chosen to obtain a sensible theory, with a negative cosmo-

logical constant appearing naturally. After writing the action and the Lagrangian

for a total spacetime comprised of an interior and an exterior regions, with a thin

shell as a boundary in between, one finds the Hamiltonian using the ADM decom-

position of the spacetime metric ds2 = −(N⊥)2dt2 + gij(N
idt + dxi)(N jdt + dxj),

where the gij are the canonical coordinates intrinsic to the (d−1)-dimensional time

foliation, and πij are the respective canonical momenta. The consequent ADM de-

scription of the action is I =
∫

dt
∫

dd−1x
(

πij ˙gij −H
)

, with H = N⊥H⊥ + N iHi

and H⊥ = H(g)
⊥

+ H(e)
⊥

+ H(m)
⊥

, Hi = H(g)
i + H(e)

i + H(m)
i , where N⊥, N i are the

Lagrange multipliers, and H⊥, Hi are the respective constraints 2,3 . To these one

adds Eϕ ≡ pr
,r − J0 = 0, the electrodynamic constraint 4 , where pr is proportional
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to the radial component of the electric field, its only non-zero component due to the

symmetry of the geometric set-up, and is the radial component of the conjugate mo-

mentum to the electrodynamic canonical coordinate Ai. The respective Lagrange

multiplier is ϕ ≡ A0. Upon particularizing to spherically symmetric spacetimes,

one reduces the relevant constraints to H⊥ = 0, H⊥ being the time translation gen-

erator, and Eϕ = 0, the electrodynamic constraint. Variation of the Hamiltonian

with respect to the canonical coordinates and conjugate momenta, and the relevant

Lagrange multipliers, yields the dynamic and constraint equations. The vacuum

solutions 4,5 ,

f2(r) = 1 +
r2
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− χ

(
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N = N∞ = 1 , p(r) = ǫ
Q

r(d−2)
, ϕ(r) =

ǫ

(d − 3)

Q

r(d−3)
, (3)

yield a division of the theory into two branches, namely d − 2k − 1 > 0 (which

includes general relativity, Born-Infeld type theories, and other generic gravities)

and d − 2k − 1 = 0 (which includes Chern-Simons type theories), where k is the

parameter giving the highest power of the curvature in the Lagrangian (cf. (2)).

There appears an additional parameter χ = (−1)k+1, which gives the character of

the vacuum solutions. For χ = 1 the solutions, being of the type found in general

relativity, have a black hole character. For χ = −1 the solutions, being of a new

type not found in general relativity, have a totally naked singularity character. Since

there is a negative cosmological constant, the spacetimes are asymptotically anti-

de Sitter (AdS), and AdS when empty. The integration of the constraint equation

H⊥ = 0 from the interior to the exterior vacuum regions, through the thin shell,

takes care of the smooth junction, yielding the shell equation directly

1

2
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ǫ(Q2
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, (4)

where m ≡ σ Ωd−2R
d−2, and M±, Q± are the masses and charges of the exter-

nal/internal vacuum solutions, resp., and γ± ≡
√

f2
± + Ṙ2 are generalized Lorentz

factors, with f2
± being the metric functions of the inner and outer spacetimes, re-

spectively. The integration of Eϕ = 0 yields charge conservation, Q+ − Q− = q,

with q ≡ σeΩd−2R
d−2, σe being surface charge density. The uncharged case is

treated in 6 . It is interesting to note that Eq. (4) is formally the same as that of

d-dimensional general relativity 7 , however, the functions f± are different in general

relativity and Lovelock gravity. Differentiating (4) with respect to the proper time

of the thin shell, τ , one obtains the equation of the acceleration of the thin shell

mR̈ =
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+ − Q2
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, (5)
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where P is the pressure of the perfect fluid thin shell, and E is the right hand side

of (4). One can now study the static configurations of the thin-shell, determining

the pressure at which the shell is held in stable static equilibrium, that is Ṙ = R̈ =

0, P = − 1
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,

which can be reduced to the known result for general relativity in four dimensions

P = (Gm2)/(16 π R2
0(R0 − m))8 .

Apart from static configurations, one can also study the collapse of the thin

shell, in particular when it is made of dust, P = 0 (note that expanding shells are

the time reversal of the collapsing shells). Following the division of the solutions

into the two branches and the two possible characters, one concludes from (4) and

(5) that the cosmic censorship holds, when the collapse is into an empty interior.

More generally, for a collapsing charged shell into initially non singular spacetimes

with generic character or empty interiors, it is proved that the cosmic censorship is

definitely upheld. Also, when the spacetimes in question have the same character

of those spacetimes provided by general relativity, (χ = 1), the collapse of the

thin shells in the backgrounds, black hole or otherwise, of each different type of

Lovelock theory is in many ways similar to the collapse in general relativity itself,

and when the spacetimes in question have the opposite character (χ = −1), some

other new behaviour shows up. This implies that if there are extra dimensions with

a relative large size, as proposed in large extra dimension scenarios, then differences

in the collapse of a thin shell in spacetimes with different characters can provide

the signature to uncovering not only of actual spacetime dimension d, but also the

value of the parameter k. For a detailed analysis of the above see 9 .
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