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In this paper we, first, generalize the quasilocal definition of the stress energy tensor

of Einstein gravity to the case of Lovelock gravity, by introducing the tensorial form

of surface terms that make the action well-defined. In order to compute the conserved

quantities of the solutions of Lovelock gravity, We introduce the boundary counterterm

that removes the divergences of the action with flat boundary at constant t and r.

1. Introduction

The most natural extension of general relativity in higher dimensional spacetimes

with the assumption of Einstein – that the left hand side of the field equations

is the most general symmetric conserved tensor containing no more than second

derivatives of the metric – is Lovelock theory.1 Since the Lovelock tensor contains

metric derivatives no higher than second order, the quantization of the linearized

Lovelock theory is ghost-free.2

Our aim in this paper is to generalize the definition of the quasilocal stress en-

ergy tensor for computing the conserved quantities of a solution of Lovelock gravity.

The concepts of action and energy-momentum play central roles in gravity. How-

ever there is no good local notion of energy for a gravitating system. A quasilocal

definition of the energy and conserved quantities for Einstein gravity can be found

in.3 They define the quasilocal stress energy tensor through the use of the well-

defined gravitational action of Einstein gravity with the surface term of Gibbons

and Hawking.4 Therefore the first step is to find the surface terms for the action of

Lovelock gravity that make the action well-defined. Of course, as in the case of Ein-

stein gravity, the action and conserved quantities diverge when the boundary goes

to infinity.3 For asymptotically AdS solutions, one can deal with these divergences

via the counterterm method inspired by AdS/CFT correspondence.5 This conjec-

ture relates the low energy limit of string theory in asymptotically anti de-Sitter

spacetime and the quantum field theory on its boundary. In the present context

this conjecture furnishes a means for calculating the action and conserved quan-

tities intrinsically by adding additional terms on the boundary that are curvature

invariants of the induced metric.

The outline of our paper is as follows. In Sec. 2, we give the tensorial form of the

surface terms that make the action well-defined, generalize the Brown York energy-

momentum tensor for Lovelock gravity, and introduce the counterterm method for

calculating the finite action and conserved quantities of solutions of Lovelock gravity

with flat boundary. We finish our paper with some concluding remarks.
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2. Lovelock Gravity and the Counterterm Method

We consider a D-dimensional spacetime manifold M with metric gµν . In this space-

time, The gravitational action satisfying the assumption of Einstein is precisely of

the form proposed by Lovelock:1

IG = κ

∫
dDx

√
−g

n∑

p=0

αpLp (1)

where n ≡ [(D − 1)/2] and [z] denotes the integer part of z, αp is an arbitrary

constant and Lp is the Euler density of a 2p-dimensional manifold

Lp =
1

2p
δ

µ1ν1···µpνp

ρ1σ1···ρpσp
R ρ1σ1

µ1ν1
· · ·R ρkσk

µpνp
(2)

In Eq. (2) δ
µ1ν1···µpνp

ρ1σ1···ρpσp is the generalized totally anti-symmetric Kronecker delta and

R ρσ
µν is the Riemann tensor of the Manifold M.

The Einstein-Hilbert action (with αp = 0 for p ≥ 2) does not have a well-

defined variational principle, since one encounters a total derivative that produces

a surface integral involving the derivative of δgµν normal to the timelike boundary

∂M. These normal derivative terms are canceled by the variation of the Gibbons-

Hawking surface term4

I
(1)
b = 2κ

∫

∂M

dD−1x
√
−γΘ (3)

where γab is induced metric on the boundary r = const. and Θ is trace of extrinsic

curvature of this boundary. The surface terms that make the variational principle of

Lovelock gravity well-defined are known in terms of differential forms.6 The tensorial

form of these surface terms may be written as7

Ib = −2κ

∫

∂M

dD−1x
√
−γ

n∑

p=0

p−1∑

s=0

(−1)p−spαp

2s(2p − 2s − 1)
H(p) (4)

where αp is the Lovelock coefficients and H(p) is

H(p) = δ
[a1...a2p−1]

[b1...b2p−1]R
b1b2

a1a2
· · ·Rb2s−1b2s

a2s−1a2s
Θb1

a1 · · ·Θb2p−1

a2p−1
(5)

In Eq. (5) Rab
cd(g)’s are the boundary components of the Riemann tensor of the

Manifold M, which depend on the velocities through the Gauss–Codazzi equations.7

The explicit form of the second and third surface terms of Eq. (4) have been written

in.8

In general I = IG+Ib is divergent when evaluated on solutions, as is the Hamilto-

nian and other associated conserved quantities. In Einstein gravity, one can remove

the non logarithmic divergent terms in the action by adding a counterterm action

Ict which is a functional of the boundary curvature invariants.9 The issue of deter-

mination of boundary counterterms with their coefficients for higher-order Lovelock

theories is at this point an open question. However for the case of a boundary with
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zero curvature [R̂abcd(γ) = 0], it is quite straightforward. This is because all curva-

ture invariants are zero except for a constant, and so the only possible boundary

counterterm is one proportional to the volume of the boundary regardless of the

number of dimensions:

Ict = 2κλα0

∫

∂M∞

dD−1x
√
−γ (6)

where λ is a constant which should be chosen such that the divergences of the action

is removed.

Having the total finite action, one can use the quasilocal definition of Brown

and York3 to construct a divergence free stress-energy tensor as

T a
b = −2κ

{
λα0γ

a
b +

n∑

p=0

p−1∑

s=0

(−1)p−spαp

2s(2p − 2s − 1)
H(p,s)a

b

}
(7)

where H(p,s)a
b is

H(p,s)a
b = δ

[a1...a2p−1a]

[b1...b2p−1b] R̂
b1b2

a1a2
· · · R̂b2s−1b2s

a2s−1a2sΘ
b2s+1

a2s+1
· · ·Θb2p−1

a2p−1
, (8)

To compute the conserved mass of the spacetime, one should choose a spacelike

surface B in ∂M with metric σij , and write the boundary metric in Arnowitt-Deser-

Misner (ADM) form:

γabdxadxa = −N2dt2 + σij

(
dϕi + N idt

) (
dϕj + N jdt

)

where the coordinates ϕi are the angular variables parameterizing the hypersurface

of constant r around the origin, and N and N i are the lapse and shift functions

respectively. When there is a Killing vector field ξ on the boundary, then the quasilo-

cal conserved quantities associated with the stress tensors of Eq. (7) can be written

as

Q(ξ) =

∫

B

dD−2ϕ
√

σTabn
aξb (9)

where σ is the determinant of the metric σab, ξ and na are the Killing vector field

and the unit normal vector on the spacelike boundary B.

3. CLOSING REMARKS

The Lovelock action does not have a well-defined variational principle, since one en-

counters a total derivative that produces a surface integral involving the derivative

of δgµν normal to the boundary ∂M. These normal derivative terms in Lovelock

gravity are canceled by the variation of the surface terms that depend on the ex-

trinsic and intrinsic curvature of the boundary ∂M. we wrote down the tensorial

form of these surface terms, and generalized the stress energy momentum tensor of

Brown and York3 to the case of Lovelock gravity. As in the case of Einstein gravity,
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the action is divergent when evaluated on the solutions. We, therefore, introduced

a counterterm dependent only on the boundary volume which removed the diver-

gences of the action and conserved quantities of the solutions of Lovelock gravity

with zero curvature boundary.

We found that the counterterm (6) has only one term, since the boundaries of

our spacetimes are curvature-free.
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