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We report a study of the Gregory-Laflamme instability of black strings, or more pre-

cisely of the order of the transition, being either first or second order, and the critical

dimension which separates the two cases. First, we describe a novel method based on the

Landau-Ginzburg perspective for the thermodynamics that somewhat improves the ex-

isting techniques. Second, we generalize the computation from a circle compactification

to an arbitrary torus compactifications. We explain that the critical dimension cannot

be lowered in this way, and moreover in all cases studied the transition order depends

only on the number of extended dimensions. We discuss the richer phase structure that

appears in the torus case.

In the presence of a compact dimension Gregory and Laflamme (GL) discov-

ered that uniform black strings are perturbatively unstable below a certain critical

dimensionless mass density.1 The order of the transition can be computed by fol-

lowing perturbatively the branch of non-uniform solutions which emanates from

the critical GL string, as first shown by Gubser in the case of a five-dimensional

spacetime2 where the transition is first order. That calculation was generalized by

one of us (ES) to arbitrary spacetime dimensions with the surprising result that the

transition is first order only for D < D∗ = “13.5” while it is second order for higher

dimensions.3 Here first order means a transition between two distinct configurations,

while a second order transition is smooth – the uniform string changes smoothly

into a slightly non-uniform string. Kudoh and Miyamoto4 repeated the calculation

in the economical Harmark-Obers coordinates,5 confirmed previous results and ob-

served that in the canonical ensemble the critical dimension actually changes from

D∗ = “13.5” to D∗
can = “12.5”. All this data is crucial in the construction of the

phase diagram for this system (see6 and7 for a review).

The present report includes two main results. First, we show how to somewhat

improve the existing method of calculating the transition order by employing a

Landau-Ginzburg perspective (the basic idea was described already in Appendix

A of8). Secondly, we generalize from the usual S1 ≡ T1 compactification to an

arbitrary torus compactification T p.

Landau-Ginzburg improvement to the method. In the Landau-Ginzburg (LG)

theory of phase transitions one expands the free energy of the system around the

critical point in powers of order parameters. In particular, it is known that as long

as the coefficient of a certain cubic term in the free energy is non-vanishing then

the transition is first order. If the cubic term vanishes, for instance due to a parity

symmetry such as in our case, then it is the sign of the coefficient of a certain quartic

term, which we denote by C, that determines whether the transition is first order

or higher (of course if this term vanishes one has to go to higher terms).

Before we can compare the Landau-Ginzburg method with Gubser’s method,
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we recall the features of the latter. There one computes order by order the metric

of the static non-uniform string branch emanating from the critical GL string. The

first order is nothing but the GL mode. At the second order one computes the

back-reaction. Finally the third order is computed, or more precisely only the first

harmonic along the compact dimension, from which one can finally compute the

leading coefficients of the changes in mass and entropy, η1, σ2 of the new branch.

The sign of these two quantities determines the order of thetransition.

At first sight the two methods look quite different. However, we show that in

the LG method one also needs to precisely compute the second order back-reaction

to the metric. The third order however is not required in LG (thereby avoiding the

solution of a set of linear differential equations with sources). Rather one needs only

to expand the action to an appropriate quartic order, to substitute in the results from

the first and second orders and perform certain integrals that add up to the constant

whose sign determines the order.

A way to understand the simplification is the following: in Gubser’s method

one computes the third order, but it turns out that all that is really needed is the

projection of the third order onto the GL mode. That is precisely the reason why the

first harmonic sufficed (as the GL mode is in the first harmonic). Our substitution

into the quartic order of the free-energy achieves exactly that, without the need to

compute other properties of the third order. We perform the “Landau-Ginzburg”

calculation for an S1 compactification in various dimensions and verify that we get

the same bottom-line coefficients η1, σ2 as in the previous method.

Torus compactification. It is interesting to generalize the compactifying manifold,

and the simplest option beyond the circle S1
≡ T1, is a product of circles, or more

generally a p-torus Tp. The number of extended spacetime dimensions is denoted

by d and the total spacetime dimension is D = d + p. The critical GL density for

such a torus compactification is easily found to be given in terms of the shortest

vector in the reciprocal lattice.9

Before we proceed to analyze the transition order we note that it sufficies to

restrict to square torii. Basically, we view the space of torii as having two boundaries

– on the one hand highly asymmetrical torii, where one (or more) dimensions are

much larger than the rest, and on the other hand highly symmetrical torii such as

the square torus. Since the limit of a highly asymmetrical torus reduces to the case of

a lower dimensional torus (mostly the well-understood case of S1 compactification),

we argue that by studying the opposite limit of a highly symmetrical torus, we

achieve an understanding of both limits and thereby also some understanding of

the intermediate region of general torii.

For a square Tp torus compactification, p modes turn marginally tachyonic at

the same (GL) point. We find that the constant C is replaced by a p × p quadratic

form Cij , in order to allow for the various possible directions in the (marginally)

“tachyon space”, and that the transition is second order iff Cij is positive for all

directions. Namely, it is enough that there is a single direction in tachyon space

which sees a first order transition for the transition to be one. Taking into account
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the T1 results we may immediately deduce that the critical dimension cannot be

lower than in the T1 case with the same number of extended dimensions, d.

Due to the high degree of symmetry of the square torii Cij consists only of two

independent entries: all the diagonal entries are the same, denoted by C=, and all

the off-diagonal entries are the same, denoted by C 6=. Since the diagonal term is

precisely the one computed in the T 1 compactification, we set to compute the off-

diagonal term. Due to the symmetry C 6= is the same for all p and for that purpose

it suffices to consider p = 2, namely we consider the square T 2 torus. The only

parameter remaining is the number of extended dimensions. Once we have chosen

the diagonal direction in tachyon space we are not bothered any longer by the

presence of several (marginally) tachyonic modes. However, the number of metric

components involved in the calculation (back reaction and quartic coefficient) is

larger than in the T1 case. Certain discrete symmetries are found to be helpful in

simplifying the calculation.

As a result we find that for all the studied values of d where the T 1 transition is

second order, the T p transition is also second order for all p. Combining this result

with observation mentioned above we conclude that the transition order for square

torii shows some robustness in that it depends only on d, the number of extended

dimensions, and not on p.

In addition we note some subtler implications, including the finding that for

almost all d the diagonal direction in tachyon space is disfavored relative to turning

on a tachyon in a single compact dimension, and in this sense we have spontaneous

symmetry breaking.
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