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We present nonuniform vacuum black strings in five and six spacetime dimensions. We
find qualitative agreement of the physical properties of nonuniform black strings in five
and six dimensions. Our results offer further evidence that the black hole and the black
string branches merge at a topology changing transition. The basic features of Einstein-
Maxwell-dilaton black strings can be derived from those of the vacuum black strings
after performing a Harrison transformation.

Black strings, present for D ≥ 5 spacetime dimensions, have horizon topology

SD−3 × S1. Uniform black strings possess a translational symmetry along the ex-

tracoordinate direction. As shown by Gregory and Laflamme,1 these solutions are

unstable below a critical value of the mass, where at the marginally stable uniform

string a branch of nonuniform black strings arises.2–5

In addition to black string solutions there are also caged black hole solutions with

an event horizon of topology SD−2. The numerical results presented in6 suggest that,

for D = 6, the black hole and the nonuniform string branches merge at a topology

changing transition.7 By numerically constructing nonuniform black strings in D =

5 dimensions, we here give evidence, that this is also true in D = 5.8

We consider the Einstein action in a D−dimensional spacetime, where the black

string solutions approach asymptotically the D − 1 dimensional Minkowski-space

times a circle MD−1 × S1. The nonuniform black string solutions are found within

the metric ansatz

ds2 = −e2A(r,z)f(r)dt2 + e2B(r,z)

(

dr2

f(r)
+ dz2

)

+ e2C(r,z)r2dΩ2
D−3, (1)

where f = 1−(r0r)
D−4. The asymptotic form of the relevant metric components9,10

gtt ≃ −1 +
ct

rD−4
, gzz ≃ 1 +

cz

rD−4
, (2)

yield mass and tension of the string solutions

M =
ΩD−3L

16πG
((D − 3)ct − cz), T =

ΩD−3

16πG
(ct − (D − 3)cz), (3)
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where ΩD−3 is the area of the unit SD−3 sphere. The relative tension11 n = T L/M

is bounded, 0 ≤ n ≤ D − 3, where uniform string solutions have n0 = 1/(D − 3).

A measure of the deformation of the solutions is given by the nonuniformity

parameter λ2

λ =
1

2

(

Rmax

Rmin
− 1

)

, (4)

where Rmax and Rmin represent the maximum radius of a (D − 3)-sphere on the

horizon and the minimum radius, being the radius of the ‘waist’. Thus for uniform

black strings λ = 0, while the conjectured horizon topology changing transition

should be approached for λ → ∞.4,12

In Figure 1 we show the spatial embedding of the horizon into 3-dimensional

space for the D = 5 nonuniform black string solutions. In these embeddings the

proper radius of the horizon is plotted against the proper length along the compact

direction, yielding a geometrical view of the nonuniformity of the solutions.
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Fig. 1. The spatial embedding of the horizon of D = 5 nonuniform black string solutions with
horizon coordinate r0 = 1 and asymptotic length of the compact direction L = Lcrit = 7.1713, is

shown for two values of the nonuniformity parameter, λ = 2, 9.

We exhibit in Figure 2 the mass of D = 5 and D = 6 nonuniform strings

and black holes. Although we see a backbending of the nonuniform string branch in

both D = 5 and D = 6 dimensions, not observed previously, because the nonuniform

string branch had not been continued to sufficiently high deformation, all our data

are consistent with the assumption, that the nonuniform string branch and the black

hole branch merge at such a topology changing transition. In fact, extrapolation

of the black hole branch towards this transition point appears to match well the

(extrapolated) endpoint of the (backbending) part of the nonuniform string branch.

For the phase diagram this would mean that we would have a region 0 < n < nb

with one branch of black hole solutions, then a region nb < n < n∗ with one
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Fig. 2. The mass M of the D = 5 (a) and D = 6 (b) nonuniform string and black hole branches
are shown versus the relative string tension n (in units of the uniform string quantities M0 and
n0). The black hole data are from.6 The D = 6 black hole branch is extrapolated towards the
anticipated critical value n∗.

branch of black hole solutions and two branches of nonuniform string solutions, the

ordinary one and the backbending one, and finally a region n∗ < n < n0 with only

one branch of nonuniform string solutions. Thus the topology changing transition

would be associated with n∗, and nb < n < n∗ would represent a middle region

where three phases would coexist, one black hole and two nonuniform strings. This

is strongly reminiscent of the phase structure of the rotating black ring–rotating

black hole system in D = 5.13

Black string solutions of the Einstein-Maxwell-dilaton theory can be obtained

via a Harrison transformation.14 The basic features of these solutions can be derived

from those of the vacuum black string configurations.8
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