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We consider a d−dimensional spherically symmetric dilatonic R2 string corrected black
hole solution. We study its stability under tensor type gravitational perturbations and
compute the absorption cross section for low frequency gravitational waves.

We are interested in studying the behavior of a string-corrected dilatonic black hole

solution under perturbations in d spacetime dimensions,1 setting any tensorial or

fermionic fields to zero and taking as background metric

d s2 = −f(r) d t2 + f−1(r) d r2 + r2 d Ω2
d−2 (1)

with dΩ2
d−2 = γij (θ) dθi dθj , γij = gij/r2 being the metric of a (d−2)-sphere Sd−2.

We take, in the effective action, only the leading R2 α′ correction:2
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with λ = α′

2 , α′

4 , 0 for bosonic, heterotic and superstrings, respectively.

The corrected field equation for the graviton is, to this order,

Rµν + λe
4

2−d
φ

(

RµρστR ρστ
ν − 1

2(d − 2)
gµνRρσλτRρσλτ

)

= 0. (3)

Here we only take tensorial perturbations to the metric (by using the dilaton

field equation, we show that we can set δφ = 0), given by hµν = δgµν :3

hij = 2r2HT (r)Tij

(

θi
)

, hir = hit = 0, hrr = htr = htt = 0. (4)

Di is the Sd−2 covariant derivative; Tij are the eigentensors of the Sd−2 laplacian,

with eigenvalues −kT = 2 − ℓ (ℓ + d − 3) , ℓ = 2, 3, 4 . . . , satisfying
(

γklDkDl + kT

)

Tij = 0, DiTij = 0, gijTij = 0. (5)

Using the explicit form of the Riemann tensor for the metric (1) and its varia-

tions, computed from (4), and perturbing (3), we determine the equation for HT ,

which we write in the form of a master equation (with r∗ defined by dr∗/dr = 1/f)

∂2Φ

∂r2
∗

− ∂2Φ

∂t2
=: VT Φ, (6)
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As explained in ref.4, we derive our master function and potential:
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To study the stability of a solution, we use the “S-deformation approach”.3 After

having obtained the potential VT (f), we assume that its solutions are of the form

Φ(r∗, t) = eiωtφ(r∗), such that ∂Φ/∂t = iωΦ. The master equation is then written in

the Schrödinger form AΦ = ω2Φ, and a solution to the field equation is then stable

if the operator A is positive definite with respect to the following inner product:

〈φ, Aφ〉 =

∫ +∞

−∞
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− d2

dr2
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]
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)
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(see ref. 4 for the details), with D = d
dr∗

− fHT

Φ
d
dr

(

Φ
HT

)

and
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=
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All that is necessary to guarantee the stability is to check the positivity of Q
f .

In ref. 4 we considered the R2-corrected black hole solution of the type of (1)

studied in ref. 2, taking a coordinate system in which the horizon radius RH is not

changed. Assuming RH ≫
√

λ, for this solution f(r) is given by

f(r) =

(

1 −
(

RH

r

)d−3
)[

1 − λ
(d − 3)(d − 4)

2

Rd−5
H

rd−1

rd−1 − Rd−1
H

rd−3 − Rd−3
H

]

. (10)

We showed4 that Q
f > 0; therefore this solution is stable under tensor perturbations.

In Einstein-Hilbert gravity, for any spherically symmetric black hole in arbitrary

dimension the absorption cross section of minimally coupled massless scalar fields

equals the area of the black hole horizon,5 a result which suggests a universality of

the low-frequency absorption cross sections of generic black holes. Since the equation

describing gravitational perturbations to a black hole solution allows for a study of

scattering in this spacetime geometry, we tried to extend this result to the higher-

derivative corrected black hole (10), focusing only on the leading contribution to
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the scattering process: the s-wave, with ℓ = 0. The low-frequency regime RHω ≪ 1

allows us to fully analytically solve the problem by using the technique of matching

solutions near the event horizon to solutions at asymptotic infinity. In both these

regions the potential VT[f(r)] vanishes, and the master equation reduces to a free-

field equation whose solutions are plane waves in the tortoise coordinate.

Near the event horizon, r ≃ RH , since we are computing the absorption cross

section, we shall consider the general solution for an incoming plane wave HT (r∗) =

Aneare
iωr∗ ; after expanding VT(r) and r∗(r) this solution becomes

HT (r) ≃ Anear

(

1 + i
RHω

d − 3

(

1 +
(d − 1)(d − 4)

2

λ

R2
H

)

log

(

r − RH
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))

. (11)

Close to infinity, one must consider a superposition of incoming and outgo-

ing waves which becomes, expressed in the original radial coordinate, HT (r) =

(rω)
(3−d)/2 [

Aas J(d−3)/2 (rω) + Bas N(d−3)/2 (rω)
]

; at low frequencies, rω ≪ 1,

HT (r) ≃ Aas
1

2
d−3

2 Γ
(

d−1
2

)
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2
d−3

2 Γ
(

d−3
2

)

π (rω)
d−3

+ O (rω) . (12)

In order to compute the absorption cross section, one needs the fluxes per unit area

J = 1
2i

(

H†
T (r∗)

dHT

dr∗
− HT (r∗)

dH†

T

dr∗

)

. Near the horizon this quantity is given by

Jnear = ω |Anear|2 ; close to infinity we analogously have Jas = 2
π r2−dω3−d |AasBas| .

In order to match the coefficients Anear, Aas and Bas, one needs to interpolate be-

tween the solutions near the event horizon and at asymptotic infinity. This requires

solving the master equation in the intermediate region between the horizon and

infinity. The full computation can be found in ref. 4, where it is shown that

Aas = 2
d−3

2 Γ

(

d − 1

2

)

Anear,

Bas = − iπ (RHω)
d−2

2
d−3

2 (d − 3)Γ
(
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2

)

(
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2

λ
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)

Anear. (13)

With these results one obtains the scattering cross section

σℓ=0
T =

∫

rd−2JasdΩd−2

Jnear
= AH

(

1 +
(d − 1)(d − 4)

2

λ

R2
H

)

. (14)

We conclude that the absorption cross section is increased due to the α′ correc-

tions, although it is still proportional to the area of the event horizon. The same

happens to the black hole entropy, although its α′ correction has a different value.2,4
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